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Abstract This paper deals with a classical Economic Order Quantity model with backlog-
ging and the demand of end customers is dependent on promotional effort and selling price
simultaneously. The order quantity and shortage quantities are functionally related to pro-
motional effort (PE), unit selling price and time alone. At first, a crisp solution is made.
Then, a general fuzzy optimal and intuitionistic fuzzy optimal policy have been discussed,
considering selling price and PE as fuzzy number and fuzzy variable respectively. Finally, a
graphical illustration, numerical examples with sensitivity analysis and conclusion are made
for justification of the model.

Keywords Backlogging · Inventory · Fuzzy selling price · Fuzzy promotional effort ·
Index · α-cut · Intuitionistic fuzzy technique

1 Introduction

The Economic Order Quantity (EOQ) model is an elegant formula which is used in the supply
chain (Cárdenas-Barrón [1], Cárdenas-Barrón et al. [2,3], Cárdenas-Barrón and Treviño-
Garza [4], Cárdenas-Barrón and Porter [5]; Sarkar [6–8], Sarkar et al. [9],Sett et al. [10]).
For any kind of inventory, we generally know that the demand rate is basically depends
upon the intensity of publicity/promotional effort and the selling price of unit items. A
considerable selling price per unit item may be the cause of high demand and it may act
as motivational factor over unit selling price. The demand is also affected by PE such as
advertising, sales teams initiatives, better services, free gifts, delay in payment, etc. Among
others, researchers like Sana et al. [11], Sana [12–15], Cárdenas-Barrón and Sana [16],
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Sana [17] and Sarkar et al. [18,19] did research works in this direction. Sarkar and Sarkar
[20] extended an inventory model for deteriorating items with stock-dependent demand,
considering time varying backlogging rate as well as time varying deterioration rate. Pal et al.
[21] investigated two echelon production inventory model where selling price and ordering
size are decision variables. De et al. [22] suggested an EOQ model for Phase Inventory
system with induced demand and periodic cycle length. Sana [23] analyzed an EOQ model
for uncertain demand for limited capacity of own warehouse, and the rented warehouse is
considered, if needed. Sana and Goyal [24] proposed a (Q, r, L) model for stochastic demand
with lead-time dependent partial backlogging.

In this competitive world no other variable is finite rather they are non-randomly uncertain
in nature. For this reason, we consider PE as fuzzy interval. On the other hand, the selling
price may lie in a fuzzy set. Zadeh [25] first developed the concept of fuzzy set theory and
later on, Bellman and Zadeh [26] made an application of fuzzy set theory in several decision
making problems of operations research. Since then, numerous research findings have been
established along this direction. Kaufmann and Gupta [27] developed a fuzzy mathematical
model in engineering and management science. Vojosevic et al. [28] fuzzified the order
cost into trapezoidal fuzzy number in the backorder model. Using these propositions, Wu
and Yao [29] studied a fuzzy inventory with backorder for fuzzy order quantity and fuzzy
shortage quantity. With the help of fuzzy extension principle, an EOQ in fuzzy sense for
inventory without backorder model had been developed by Lee and Yao [30]. Yao et al.
[31] analyzed a fuzzy model without backorder for fuzzy order quantity and fuzzy demand
quantity. Kao and Hsu [32] developed a lot size reorder point inventory model with fuzzy
demands by considering the α-cut of the fuzzy numbers and they used ranking index to solve
the model. De et al. [33] developed an EPQ (Economic Production Quantity) model for fuzzy
demand rate and fuzzy deterioration rate using the α-cut of the membership function of the
fuzzy parameters. De et al [34] studied an economic ordering policy of deteriorated items
with shortage and fuzzy cost coefficients for vendor and buyer. Recently, Kumar et al. [35]
developed a fuzzy model with ramp type demand rate and partial backlogging.

In crisp sense, several optimization techniques have been used in the modern developed
inventory model. Some of these are, Golden Region Search method in Simulation technique
that was developed by Kabirian and Olafsson [36] and another one is an analytic approach via
Eigen values of the system Jacobian Matrix expressing from characteristic polynomial which
was analyzed by Saleh et al. [37]. But, in fuzzy environment, the early stage of Intuitionistic
Fuzzy Set (IFS) was developed by Atanassov [38]. The concept of IFS can be viewed as an
alternative approach to define a fuzzy set while the information available in the system is
not sufficient for the definition of an imprecise concept or ambiguity (vagueness) concerning
the description of the semantic meaning of declaration of statements relating to an economic
world in the sets itself. Therefore, it is to be expected that IFS can be used to simulate human
decision making process and activities that requires human expertise and knowledge which is
valid and reliable. Here, the degree of rejection and satisfaction are considered so that the sum
of both values is always less than unity. Angelov [39] implemented the IFS for optimizing the
real world problem in intuitionistic fuzzy environment. An interval valued IFS was developed
by Atanassov and Gargov [40] and, a solution of a probabilistic fixed order interval system
was analyzed by Banerjee and Roy [41]. De and Sana [42] proposed the Classical EOQ model
for promotional effort sensitive demand which was considered as intuitionistic fuzy variable.
De and Sana [43] developed the EOQ model with backordering for promotional effort and
selling price sensitive demand, introducing intuitionistic fuzzy approach. Recently, De et
al. [44] established an interpolating by pass to Pareto optimality for the EOQ model with
time sensitive backlogging, applying intuitionistic fuzzy technique. In intuitionistic fuzzy
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environment, De and Sana [45] presented a global optimal solution for the multi-periods
production—inventory model with capacity constraints for multi-manufacturers. Das et al.
[46] investigated a backorder EOQ model for natural leisure/closing time system while the
demand rate depends upon the total shortage period under the seasonal effect.

In this paper, we have used PE and unit selling price as IFS. However, the demand rate
is considered such a way that (i) one part depends upon promotional effort and (ii) the other
part goes to infinity when the unit selling price reaches to a certain minimum bound and
reaches zero when the unit selling price attains its upper bound. Considering fuzzy as well
as intuitionistic fuzzy environment, we have developed the model under proposed consid-
erations. First, we have optimized the profit function under crisp environment. Thereafter,
we have constructed a General Fuzzy Optimization (GFO) problem and Intuitionistic Fuzzy
Optimization (IFO) problem. Using the α-cuts of the membership functions and β-cuts of
the non-membership functions for the fuzzy sets, we have obtained some numerical results
via some algorithms. A sensitivity analysis for Crisp, GFO and IFO models, graphical illus-
trations and a concluding remark are made to generalize the model.

2 Assumptions and Notations

The following notations and assumptions are used to develop the model.

Notation

q: The order quantity per cycle.
D: Demand rate per year.
s: Shortage quantity per cycle.
c1: Setup cost ($) per cycle.
c2: Inventory holding cost ($) per unit quantity per cycle.
c3: Shortage cost ($) per unit quantity per unit time.
s1: Selling price ($) per unit item.
s1max : Upper bound of selling price ($) per unit item.
s1min : Lower bound of selling price ($) per unit item.
ρ: Promotional effort per unit time.
ρmax : Upper bound of promotional effort ρ.
ρmin : Lower bound of promotional effort ρ.
p1: Purchasing price ($) of unit item.
k: Promotional cost ($) per factor over promotional effort.
m: Elasticity constant, a positive integer.
t1: Shortage period (months).
t2: Inventory run time (months).
T : Cycle time in months.
Z: Average profit ($) of the inventory.

Assumptions

1. Replenishment rate is instantaneous but its size is finite.
2. The time horizon is finite (months)
3. Shortages are allowed
4. Demand rate is unit selling price (s1) and promotional effort (ρ) dependent where

D (s1, ρ) = η
(

smax −s1
s1−smin

)
+ τ

(
ρ

1+ρ

)
, η and τ are constants. Quite often, the demand

rate increases with promotional effort (ρ) and it decreases with selling price (s1).
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2.1 Crisp Mathematical Model

In crisp model, inventory starts with shortages due to lead time or any other factors and it
continues up to time t1. When the ordering quantity (q) reaches at time t1, the backlogged
amount (s) is adjusted. Then, the rest amount (q-s) satisfies the demand for the period

(
0, t2

)
and it reaches to zero level at the end of time t2. Therefore, s = Dt1, (q − s) = Dt2 and
the total cycle length is T = t1 + t2 = q/D. The average profit per cycle, by trading of
purchasing cost, set up cost, inventory cost, shortage cost, promotional cost and sales price,
is

Z = (s1 − p1) D − c1

T
− c2 Dt2

2

2T
− c3 Dt2

1

2T
− kρm (1)

where
s

t1
= q − s

t2
= q

T
= D, T = t1 + t2 (2)

Now, substituting the formulas of Eq. (2) in Eq. (1), we have

Maximize Z = (s1 − p1)D − c1 D

q
− c2(q − s)2

2q
− c3s2

2q
− kρm (3)

subject to the conditions

s = Dt1, q = DT, T = t1 + t2 (4)

where

D (s1, ρ) = η

(
s1max − s1

s1 − s1min

)
+ τ

(
ρ

1 + ρ

)
(5)

Now, our objective is to maximize Z where ρ, q and s are the decision variables.

2.2 Fuzzy Mathematical Model

In the traditional EOQ model, we have seen that, the demand rate is constant. In practice, in
many cases, it depends upon PE and unit selling price which are flexible in nature. For this
reason, we shall fuzzify those.

Now, using Eqs. (3), (4) and (5), the fuzzy problem for Eq. (3) is

Maximize Z̃ = (s̃1 − p1) D̃ − c1

T
− c2 D̃t2

2

2T
− c3 D̃t2

1

2T
− kρ̃m (6)

Subject to the conditions
s̃ = D̃t1, q̃ = D̃T, T = t1 + t2 (7)

Where

D̃ (s1, ρ) = η

(
s1max − s̃1

s̃1 − s1min

)
+ τ

(
ρ̃

1 + ρ̃

)
. (8)

2.2.1 Cases of Optimality

Now, we have to solve (6) for the following cases:
We may assume s1 ∈ [s1min, s1 max] and ρ ∈ [ρmin, ρmax].In our proposed model, we

observe that the demand rate tends to infinite when s1 → s1min , and the first part of the
demand rate tends to zero when s1 → s1max . Also, it is observed that the crisp optimality
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attains at ρ = ρ∗ (say), and it attains its maximum value (when average profit reaches near
zero) at ρ = ρmax. Thus, we take the domain space for s1 and ρ as follows:

1. s1 ∈ [s1min, s1max ] and ρ ∈ [
ρmin,ρ

∗]
2. s1 ∈ [s1min, s1max ] and ρ ∈ [

ρ∗, ρmax
]

If we seek to split more sub partitions of
[
ρ∗, ρmax

]
, taking any intermediate value at

ρ = ρ′, then

3. s1 ∈ [s1min, s1max ] and ρ ∈ [
ρ∗, ρ′]

4. s1 ∈ [s1min, s1max ] and ρ ∈ [
ρ′, ρmax

]
.

Now, to obtain a general fuzzy optimal solution (GFO) of Eq. (6), we assume PE (ρ) and
unit selling price (s1) as L-fuzzy and the objective function as R-fuzzy numbers. Then the
membership functions for ρ, s1 and z are obtained as follows:

μρ̃(ρ̃) =
⎧⎨
⎩

0 for ρ > ρ0
ρ0−ρ

p01
for ρ0 − p01 ≤ ρ ≤ ρ0

1 for ρ < ρ0 − p01

(9)

μs̃1(s̃1) =
⎧⎨
⎩

0 for s1 > s10
s10−s1

p02
for s10 − p02 ≤ ρ ≤ s10

1 for s1 < s10 − p02

(10)

and

μz̃(z̃) =
⎧
⎨
⎩

0 for z < z0
z−z0
p03

for z0 ≤ z ≤ z0 + p03

1 for z > z0 + p03

(11)

Using aspiration level α to each membership function, the equivalent crisp optimization
problem can be obtained with the help of Bellman and Zadeh [24] and Zimmermann [47].
Therefore, applying the membership functions in Eqs. (9)–(11), the fuzzy non-linear function
Eq. (6) may be transformed into crisp equivalent and is given by

Max α

subject to z > z0 + α p03
(12)

where

z =
[
(s10 − αp02 − p1) − c2t2

2

2T
− c3(T − t2)2

2T

]

[
η

s1 max − s10 + αp02

s10 − αp02 − s1 min
+ τ

ρ0 − αp01

1 + ρ0 − αp01

]
− c1

T
− k (ρ0 − αp01)

m .

2.2.2 Formulation of Intuitionistic Fuzzy Optimization (IFO) Technique

Intuitionistic Fuzzy Set is generally applied when the sufficient information in the fuzzy set
is not available or a lack of knowledge in fuzzy decision making process exists. In such cases,
the IFS is a proper subset of the fuzzy set in which the degree of rejection (non-membership)
and the degree of acceptance (membership) are defined simultaneously and they are not
complementary to each other. In fuzzy set, our aim is to maximize the support (degree of
acceptance) of the membership function that results in minimizing the height of negation or
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non-membership (degree of rejection). Thus, we may transform the optimization problem
into the following way:

Max μ(X̄) X̄ ∈ R+
Min ν(X̄) X̄ ∈ R+

ν(X̄) ≥ 0
Subject to μ(X̄) ≥ ν(X̄)

μ(X̄) + ν(X̄) < 1, X̄ ∈ R+

(13)

where μ(X̄) denotes the degree of membership (acceptance) function of X̄ to the IFS and
ν(X̄) denotes the degree of non-membership (rejection) function of X̄ for the IFS.

2.2.3 IFO Technique for Solving the Objective Functions with Linear Membership and
Non-membership Functions

In this section, we define the membership functions of the objective functions with their lower
and upper bounds. Let Lacc as lower and U acc as upper bound of the objective function. These
values are determined as follows: The lower and upper bounds of ρ and s1 are taken first. These
predictions depend upon the decision maker’s choice and expertise that is concerned with the
insight of the model. These values are then arranged as a pair like (ρ, s1)= { (max, max), (max.
min), (min. max), (min, min)}. The optimum value of each objective function for each pair
(ρ), is to be found out first. Let X̄∗

1, X̄∗
2, X̄∗

3 . . . . . . ..X̄∗
j be the respective optimal solutions

to the objective function Z(X̄ j ) for j =1, 2, 3 and 4. For each objective, the lower bound
= Min

{
Z

(
X̄ j

)}
and the upper bound U acc = Max

{
Z

(
X̄ j

)}
. But, in IFO, the degree

of rejection (non-membership) and degree of acceptance (membership) are considered so
that the sum of both values is less than one. To obtain the membership functions under IFO
environment let Lrej be the lower and Urej be the upper bound of the objective functions
Z(X̄ j ) where Lacc ≤ Lrej ≤ Urej ≤ U acc. These values are obtained from the following
definition.

Definition 1 For maximization problem, the upper bound for non-membership function
(rejection) is always less than that of the membership function (acceptance). We take lower
bound and upper bound for non-membership function as follows:

Lrej = Lacc + λ(U acc − Lacc) for λ = 0
U acc = Urej + λ(U acc − Lacc) for 0 < λ < 1

Definition 2 If we have to take the value of the parameter/variable as minimum, then the
lower bound for non-membership function (rejection) is always greater than the membership
function (acceptance). We take lower bound and upper bound for non-membership function
as follows:

Lrej = Lacc + λ(U acc − Lacc) for 0 < λ < 1
Urej = U acc + λ(U acc − Lacc) for λ = 0

Note that, for both the cases of definition-1 and definition-2, we always choose λ in such
a way that the differences between two consecutive parameters are minimum with realistic
value.
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The linear membership function and linear non-membership function for the objective
function Z(X̄) are given by

μ(Z(X̄)) =

⎧
⎪⎨
⎪⎩

0 for Z(X̄) < Lacc

Z(X̄)−Lacc

Uacc−Lacc for Lacc ≤ Z(X̄) ≤ U acc

1 for Z(X̄) > U acc
(14)

ν(Z(X̄)) =

⎧⎪⎨
⎪⎩

1 for Z(X̄) < Lrej

Urej −Z(X̄)

Urej −Lrej for Lrej ≤ Z(X̄) ≤ Urej

0 for Z(X̄) > Urej

(15)

The linear membership and non-membership function of ρ is given by

μρ(ρ) =

⎧⎪⎨
⎪⎩

0 for ρ > ρacc
U

ρacc
U −ρ

ρacc
U −ρacc

L
for ρacc

L ≤ ρ ≤ ρacc
U

1 for ρ < ρacc
L

(16)

νρ(ρ) =

⎧
⎪⎪⎨
⎪⎪⎩

1 for ρ > ρ
rej
U

ρ−ρ
rej
L

ρ
rej
U −ρ

rej
L

for ρ
rej
L ≤ ρ ≤ ρ

rej
U

0 for ρ < ρ
rej
L

(17)

The linear membership and non-membership function of s1 is given by

μs1(s1) =

⎧
⎪⎨
⎪⎩

0 for s1 > sacc
1U

sacc
1U −s1

sacc
1U −sacc

1L
for sacc

1L ≤ s1 ≤ sacc
1U

1 for s1 < sacc
1L

(18)

νs1(s1) =

⎧
⎪⎪⎨
⎪⎪⎩

1 for s1 > srej
1U

s1−srej
1L

srej
1U −srej

1L

for srej
1L ≤ s1 ≤ srej

1U

0 for s1 < srej
1L

(19)

The notations used here keep their usual meanings. The diagrams of membership and non-
membership functions of the concerned variables are shown in Figs. 1, 2, 3.

Based on fuzzy decision of Bellman and Zadeh [19] together with membership and non-
membership functions of Eqs. (14)–(19) and Angelov’s [32] approach of the IFO problem,

( ( ))Z Xν ( ( ))Z Xμ
1 

1

accL = r e jL re jU accU ( )Z X
Fig. 1 (Non) Membership function for Z (R-fuzzy) 123
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( )ρμ ρ ( )ρν ρ

1 
1

acc
Lρ r e j

Lρ r e j
Uρ = acc

Uρ ρ
Fig. 2 (Non) Membership function for ρ (L-fuzzy)

1 1( )s sμ
1 1( )s sν

1 
1

1
a cc
Ls 1

r e j
Ls 1

r e j
Us = 1

a cc
Us 1s

Fig. 3 (Non) Membership function for s1 (L-fuzzy)

Eq. (13) can be written as follows

Max α − β

Subject to Z(X̄) ≥ Lacc + α (U acc − Lacc)

Z(X̄) ≥ Urej − β
(
Urej − Lrej

)
β ≥ 0, α ≥ β, α + β < 1, X̄ ∈ R+

where X̄ = (
ρ, s1,s, q, α, β

)
(20)

2.2.4 Computational Algorithm

Step-1. Optimize the objective function for different fixed pair of values of (ρ, s1). Find the
lower bound and upper bound of the objective function Lacc = Min{Z(X̄ j )} and
the upper bound U acc = Max{Z(X̄ j )} for j = 1, 2, 3 and 4.

Step-2. At first construct the membership functions of objective goals, promotional index
ρ and unit selling price s1 with appropriate tolerances (decision maker’s choice).
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Then, from Definition-1 and Definition-2, for suitable choice of λ (requires deci-
sion maker’s expertise and knowledge) find the non-membership functions of the
objective function Z, promotional index ρ and unit selling price s1.

Step-3. Construct the fuzzy programming problem and its equivalent crisp optimization
problem stated in Eq. (20).

Step-4. Use a compromised/ ideal solution of ρ and s1 for the problem stated in Eq. (20).
Solve this non-linear programming problem with appropriate programming for the
decision variable α and β and then obtain t∗1 , t∗2 , ρ∗, s∗

1 , q∗, s∗, α∗, β∗ and Z∗.

Note: The compromise solution of ρ and s1 are given by
〈

s∗
1 = 0.5

(
srej

1L + sacc
1U

)
+ 0.5β∗

(
srej

1U − srej
1L

)
− 0.5α∗ (

sacc
1U − sacc

1L

)

ρ∗ = 0.5
(
ρ

rej
L + ρacc

U

)
+ 0.5β∗

(
ρ

rej
U − ρ

rej
L

)
− 0.5α∗ (

ρacc
U − ρacc

L

)
〉

(21)

3 Numerical Example

3.1 Numerical Example-1

For Crisp model, let a seller starts his/ her business with initial demand rate η = 50 units,
τ = 70 units, setup cost c1 = $28, holding cost per unit item c2 = $20, shortage cost
c3 = $100, m = 3, selling price per unit item s1 = $20, purchasing price p1 = $12,
k = $15, the cycle time T = 0.4 month. Then, we get the following results in Tables 1, 2,
3, 4.

From the above table, we see that the maximum profit attains at ρ∗ = 3.667 and m∗ = 1;
the inventory run time is 12 days and the shortage period is 2 days only. Also, we further
observe that the profit will be nominal for m = 3 and ρmax = 3.6.

Table 1 Crisp optimal solution for fixed ρ and m

q∗ s∗ ρ∗ t∗2 days t∗1 days Z∗ ($)

65.364 10.894 1.216 10 2 665.617

Table 2 Crisp optimal solution for different ρ and m

m ρ∗ q∗ s∗ t∗2 days t∗1 days Z∗ ($)

1 3.667 72.000 12.000 10 2 715.00

2 1.605 67.251 11.208 675.96

3 1.216 65.364 10.894 665.62

4 1.080 64.537 10.756 662.54

5 1.017 64.119 10.687 661.72

6 0.984 63.887 10.648 661.73

7 0.965 63.748 10.625 662.07

8 0.953 63.663 10.610 662.53

9 0.946 63.609 10.601 663.03

10 0.941 63.574 10.596 663.54

Bold face indicates optimal solution
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Table 3 Crisp optimal solution for different shortage period

t2 months t1 months ρ∗ q∗ s∗ Z∗ ($)

0.4 0.0 2.021 18.734 0.000 930.07

.36 .04 2.036 18.777 1.878 956.33

.32 .08 2.038 18.783 3.757 960.09

.28 .12 2.028 18.753 5.262 941.32

.24 .16 2.006 18.684 7.474 900.14

.20 .20 1.970 18.572 9.285 836.80

.16 .24 1.919 18.407 11.044 751.74

.12 .28 1.849 18.172 12.720 645.65

.08 .32 1.755 17.838 14.271 519.58

.04 .36 1.628 17.344 15.610 375.24

.00 .40 1.443 16.541 16.541 215.70

Bold face indicates optimal solution

Table 4 Crisp optimal solution for different ρ and s1

s1 ρ∗ q∗ s∗ t∗2 days t∗1 days Z∗($)
12–15 . . .. . . . . .. . .. . . .. . ... . . .. . . ... . . .. . ...

16 0.626 130.782 21.797 10 2 144.29

20 1.216 65.364 10.894 665.62

24 1.480 43.378 7.230 821.19

28 1.665 32.495 5.416 889.72

32 1.811 26.039 4.340 925.87

36 1.933 21.787 3.631 947.31

40 2.038 18.785 3.131 961.34

From above table, we see that, if we set the shortage period to 2.4 days then the maximum
profit will occur for maximum selling price $ 40.00 (so obtained by treating the objective
function as the functions of ρ and s1 only) which is very unrealistic.

The solutions in Table 4 are similar to the solution of Table 3.

Example 2: For Case-1, let η = 50 units and τ = 70 units. If the set up cost c1 = $28.0,
holding cost per unit item c2 = $20.0, shortage cost c3 = $100.0, selling price per unit
item s1 max = $40.0, s1 min = $12.0, unit purchasing price c1 = $12.0, publicity cost
k = $15.0, m = 3, the cycle time T = 0.4 month and

ρ0 = 1.2, Z0 = 129, s10 = 23, p01 = .7, p02 = 2.4 and p03 = 716

for GFO problem and, for IFO problem, we consider

srej
1U = sacc

1U = 40, sacc
1L = 16, srej

1L = 20, ρacc
L = 0.5, ρ

rej
L = 0.8,

ρ
rej
U = ρacc

U = 1.2, Lacc = Lrej = 129, U acc = 845.0, Urej = 840.0.

Then, we have the solution Table 5.
Example 3: For Case-2, we consider the same data set (as per Case-1) along with

ρ0 = 3.6, Z0 = 581, s10 = 23, p01 = 2.4, p02 = 2.4 and p03 = 264
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Table 5 Solution for s1 ∈ [s1 min, s1 max] and ρ ∈ [
ρmin , ρ∗]

Type t∗2 t∗1 s∗ q∗ s∗
1 ρ∗ Z∗ α∗ β∗

GFO 10 2 8.733 52.398 21.13 0.656 685.65 0.777 . . ..

IFO 10 2 8.156 48.936 21.83 0.746 718.49 0.823 .171

for GFO problem and, for IFO problem, we assume

srej
1U = sacc

1U = 40, sacc
1L = 16, srej

1L = 20, ρacc
L = 1.2, ρ

rej
L = 1.6,

ρ
rej
U = ρacc

U = 3.6, Lacc = Lrej = 581, U acc = 845.0, Urej = 841.0.

Then, we have the solution Table 6.

Example 4 : For Case-3, we consider the same data set (as per Case-1) along with the
assumptions ρ0 = 2.2, Z0 = 2.0, s10 = 23, p01 = 1.0, p02 = 2.4 and p03 = 955 for GFO
problem and, for IFO problem, we assume

srej
1U = sacc

1U = 40, sacc
1L = 16, srej

1L = 20, ρacc
L = 1.2, ρ

rej
L = 1.6,

ρ
rej
U = ρacc

U = 3.6, Lacc = Lrej = 2.0, U acc = 957.0, Urej = 950.0.

Then, we have the solution Table 7.

Example 5: For Case-4, we consider the same data set (as per Case-1) along with the
assumptions ρ0 = 3.6, Z0 = 2.0, s10 = 23, p01 = 1.4, p02 = 2.4 and p03 = 955 for GFO
problem and, for IFO problem, we assume

srej
1U = sacc

1U = 40, sacc
1L = 16, srej

1L = 20, ρacc
L = 2.2, ρ

rej
L = 2.6,

ρ
rej
U = ρacc

U = 3.6, Lacc = Lrej = 2.0, U acc = 957.0, Urej = 950.0.

Then, we have the solution Table 8.

3.2 Interpretation on GFO and IFO Solutions (Tables 6, 7, 8)

From Table 5, we see that, if ρ assumes value 0.656 and unit selling price s1 be $21.13
then the average maximum profit is $685.65 under GFO policy, but in IFO policy, the profit

Table 6 Solution for s1 ∈ [s1 min, s1 max] and ρ ∈ [
ρ∗, ρmax

]

Type t∗2 t∗1 s∗ q∗ s∗
1 ρ∗ Z∗ α∗ β∗

GFO 10 2 8.272 49.634 22.91 1.891 768.97 0.712 . . ..

IFO 10 2 7.918 47.505 23.42 1.942 780.90 0.753 .247

Table 7 Solution for s1 ∈ [s1 min, s1 max] and ρ ∈ [
ρ∗, ρ′]

Type t∗2 t∗1 s∗ q∗ s∗
1 ρ∗ Z∗ α∗ β∗

GFO 10 2 9.267 55.600 21.47 1.427 739.34 0.772 . . ..

IFO 10 2 8.503 51.018 22.31 1.476 771.36 0.804 .196
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Table 8 Solution for s1 ∈ [s1 min, s1 max] and ρ ∈ [
ρ∗, ρ′]

Type t∗2 t∗1 s∗ q∗ s∗
1 ρ∗ Z∗ α∗ β∗

GFO 10 2 8.128 48.766 23.56 2.640 656.31 0.685 . . ..

IFO 10 2 7.307 43.841 24.96 2.795 657.20 0.684 .316

Table 9 Sensitivity analysis for GFO problem

Parameter % change t∗2 t∗1 s∗ q∗ s∗
1 ρ∗ Z∗ α∗ Z∗−Z∗

Z∗ × 100%

p01 +50 10 2 8.170 49.024 21.24 0.431 653.11 0.732 −4.70

+30 10 2 8.404 50.425 21.19 0.516 667.06 0.751 −2.70

−30 10 2 9.028 54.170 21.08 0.809 700.77 0.799 +2.20

−50 10 2 9.204 55.221 21.06 0.917 708.63 0.809 +3.35

p02 +50 10 2 9.749 58.495 20.34 0.683 657.66 0.738 −4.08

+30 10 2 9.338 56.027 20.64 0.672 669.78 0.755 −2.36

−30 10 2 8.152 48.914 21.66 0.642 699.78 0.797 +2.06

−50 10 2 7.783 46.698 22.03 0.634 707.95 0.809 +3.25

p03 +50 10 2 8.407 50.440 21.68 0.814 721.67 0.552 +5.25

+30 10 2 8.600 51.059 21.50 0.763 710.57 0.624 +3.63

−30 – – – no feasible solution – – –

−50 – – – no feasible solution – – –

s10 +50 10 2 3.019 18.766 32.56 0.636 706.36 0.806 +3.02

+30 10 2 4.311 25.866 27.86 0.606 736.86 0.849 +7.46

−30 . . .. . ..no feasible solution. . .. –

−50 . . .. . ..no feasible solution. . .. –

ρ0 +50 10 2 9.581 57.688 21.02 1.222 719.83 0.825 +4.98

+30 10 2 9.308 55.848 21.04 0.989 712.72 0.815 +3.94

−30 10 2 7.897 47.384 21.30 0.344 636.20 0.708 −7.20

−50 10 2 7.144 42.865 21.46 0.152 587.02 0.639 −14.38

Z0 +50 10 2 8.625 51.750 21.31 0.707 697.86 0.704 +1.78

+30 10 2 8.668 52.008 21.24 0.686 693.03 0.734 +1.07

−30 10 2 8.798 52.790 21.03 0.625 678.11 0.820 −1.09

−50 10 2 8.842 53.053 20.96 0.605 673.00 0.849 −1.80

increases to $718.49 with a little variation in ρ and s1 alone. From Table 6 we see, though
the profit function is decreasing in ρ but at ρ = 1.942 we have received a better result in
IFO policy for s1 = $23.42. However the Table 7 shows, in GFO policy, the average profit
is quite high ($20.85) with ρ = 1.427 which is approximately double of the value of IFO
policy with respect to the Table 5. Also, we see in IFO policy if ρ assumes values near 1.5
and s1 = $22.31 then the average profit be slightly less ($9.55) for the benefit in ρ = 0.47
alone with respect to the Table 6 for both the cases of GFO and IFO policies. Again from
Table 8, we have noticed that though both unit selling price s1 and promotional index ρ are
very high, but the average profit is very much depressive and it is below the results of the
crisp one.
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Fig. 4 GFO and IFO solutions of the model

3.3 Sensitivity Analysis of GFO Model (Referring to Table 5)

The sensitivity of the parameters {p01, p02 p03, s10, ρ0 and Z0} from −50% to + 50%
changes for the GFO model which is shown in the following table.

3.4 Sensitivity Analysis of IFO Model (Referring to Table 5)

The sensitivity analysis of the parameters {srej
1L &sacc

1U , srej
1L , sacc

1L , ρ
rej
U &ρacc

U , ρacc
L , ρ

rej
L ,

Lacc&Lrej , U accand Urej } from −50% to +50% changes for the IFO model which is shown
in the following table.

3.5 Comments on Sensitivity Analysis for GFO and IFO Problems

From Table 9, we see that all the parametric values are poorly sensitive or have the insensitivity
for the GFO model. Only one case arises where ρ0 changes to −50% giving average sensitivity
to −14.38%. On the other hand, the Table 10 shows that all the parameters have insensitivity
that means no effects can be carried out whenever any kind of tolerance is made in the IFO
model. Note that this sensitivity analysis has been done to study the trend solution of the
models so that we feel no need the same for the Tables 6, 7, 8 also.

3.6 Comments over the Graph of the Model

As per Table 4, s1 assumes values in [16,40] and Fig. 4 shows optimum profit function
where, in all cases, IFO policy gives better result than GFO policy. The upper line bar shows
the optimal solutions for the IFO policy and the lower line bar in each interval shows the
solutions for GFO policy. If PE lies in [1.2, 3.6], then the average maximum profit will occur
in Case-2. Splitting the interval into [1.2, 2.2] and [2.2, 3.6], we see the average profit is
unsatisfactory in both the cases for GFO and IFO policies in [2.2, 3.6]. This result lies below
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Table 10 Sensitivity analysis for IFO problem

Parameter
% change

t∗2 t∗1 s∗ q∗ s∗
1 ρ∗ Z∗ α∗ β∗ Z∗−Z∗

Z∗× 100%

srej
1L &sacc

1U +50 10 2 6.756 40.538 23.48 0.722 749.57 0.866 0.127 +4.32

+30 10 2 7.222 43.333 22.87 0.729 740.46 0.853 0.140 +3.05

−30 10 2 9.805 58.831 20.42 0.783 670.44 0.756 0.238 −6.70

−50 . . .. . .no feasible solution. . .. . ... –

srej
1L +50 10 2 5.834 35.004 24.91 0.712 763.05 0.889 0.108 +6.20

+30 10 2 6.749 40.494 23.49 0.722 749.71 0.866 0.127 +4.34

−30 – – – no feasible solution –

−50 – – – no feasible solution –

sacc
1L +50 10 2 6.297 37.785 24.15 0.716 757.11 0.877 0.117 +5.37

+30 10 2 7.039 42.235 23.10 0.726 744.20 0.859 0.135 +3.57

−30 10 2 9.217 55.301 20.87 0.769 688.72 0.781 0.213 −4.14

−50 10 2 9.874 59.245 20.37 0.785 668.22 0.753 0.242 −7.00

ρ
rej
U &ρacc

U +50 10 2 8.461 50.768 21.66 0.841 723.99 0.831 0.163 +0.80

+30 10 2 8.348 50.091 21.72 0.804 722.03 0.828 0.166 +0.50

−30 10 2 7.927 47.563 21.97 0.685 714.01 0.817 0.177 −0.60

−50 . . .. . .no feasible solution. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . ..

ρacc
L +50 10 2 8.473 50.839 21.65 0.846 724.20 0.831 0.163 +0.80

+30 10 2 8.353 50.115 21.72 0.805 722.10 0.828 0.166 +0.50

−30 10 2 7.940 47.642 21.96 0.688 714.28 0.817 0.177 −0.60

−50 10 2 7.786 46.714 22.06 0.650 711.10 0.813 0.181 −1.01

ρ
rej
L +50 10 2 8.642 51.851 21.57 0.908 726.97 0.835 0.159 +1.18

+30 10 2 8.463 50.700 21.66 0.842 724.03 0.831 0.163 +0.80

−30 10 2 7.799 46.793 22.05 0.653 711.38 0.813 0.181 −1.01

−50 . . .. . .no feasible solution. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. –

Lacc&Lrej +50 10 2 7.985 47.915 22.02 0.751 724.20 0.815 0.179 +0.80

+30 10 2 8.055 48.334 21.94 0.749 721.87 0.818 0.176 +0.50

−30 10 2 8.251 49.510 21.73 0.743 715.25 0.827 0.166 −0.60

−50 10 2 8.313 49.879 21.66 0.742 713.15 0.831 0.164 −0.70

Uacc +50 10 2 6.471 38.825 24.12 0.820 774.46 0.567 0.092 +7.78

+30 10 2 6.962 41.774 23.34 0.795 758.94 0.650 0.114 +5.62

−30 – – – no feasible solution …… –

−50 – – – no feasible solution . . .. . .. . .. . .. . . –

Urej +50 – – – no feasible solution . . .. . ... –

+30 . . .. . .. . .. . .. no feasible solution . . .. . .. . .. . .. . . –

−30 10 2 9.292 55.755 20.76 0.730 680.39 0.770 0.000 −5.30

−50 10 2 9.292 55.755 20.76 0.730 680.39 0.770 0.000 −5.30
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Table 11 Sensitivity analysis

Parameter % change ρ∗ q∗ s∗ t∗1 t∗2 Z∗ Z∗−Z∗
Z∗ 100%

c1 +50 1.216 65.364 10.874 10.0 2.0 630.62 −5.26

+30 1.216 65.364 10.874 10.0 2.0 644.62 −3.15

−30 1.216 65.364 10.874 10.0 2.0 686.62 3.15

−50 1.216 65.364 10.874 10.0 2.0 700.62 5.26

c2 +50 1.095 64.636 14.916 9.0 3.0 457.28 −31.30

+30 1.145 64.944 13.401 9.5 2.5 536.33 −19.42

−30 1.285 65.747 8.074 10.5 1.5 809.39 21.60

−50 1.331 65.986 6.000 11.0 1.0 914.45 37.38

c3 +50 1.199 65.268 7.679 10.6 1.4 633.60 −4.81

+30 1.205 65.299 8.707 10.4 1.6 643.84 −3.27

−30 1.234 65.468 14.548 9.0 3.0 701.96 5.46

−50 1.255 65.581 18.737 8.6 3.4 743.50 11.70

η +50 1.216 90.364 15.394 10.0 2.0 957.28 43.82

+30 1.216 80.364 13.394 10.0 2.0 840.62 26.29

−30 1.216 50.364 8.394 10.0 2.0 490.62 −26.29

−50 1.216 40.364 6.727 10.0 2.0 373.95 −43.82

τ +50 1.384 74.383 12.397 10.0 2.0 758.03 13.88

+30 1.322 70.728 11.788 10.0 2.0 720.46 8.24

−30 1.082 60.188 10.031 10.0 2.0 613.17 −7.88

−50 0.968 56.886 9.481 10.0 2.0 580.07 −12.85

s1 +50 1.742 28.899 4.817 10.0 2.0 910.36 36.77

+30 1.580 37.144 6.191 10.0 2.0 861.43 29.42

−30 …… no feasible solution……. …… …….

−50 ……. no feasible solution….. ….. … ….

p1 +50 ……. no feasible solution … …….. …….

+30 0.740 61.910 10.318 10.0 2.0 89.01 −86.63

−30 1.459 66.611 11.102 10.0 2.0 1260.09 89.31

−50 1.579 67.144 11.191 10.0 2.0 1661.43 149.61

k +50 1.065 64.442 10.740 10.0 2.0 654.69 −1.64

+30 1.116 64.771 10.795 10.0 2.0 658.52 −1.07

−30 1.363 66.150 11.025 10.0 2.0 675.17 1.44

−50 1.515 66.867 11.145 10.0 2.0 684.03 2.77

the crisp optimal level. Finally we may say that to have a considerable average profit, we
always enrich our ρ values into the interval [1.2, 2.2] whatever the unit selling price within
be [16,40].

4 Sensitivity Analysis of the Crisp Model

The sensitivity for the crisp model of the parameters { c1, c2, c3, η, τ, s1, p1 and k} changes
from (−50% to +50%) is shown in the following table.
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From the Table 11, it is observed that the parameters (η, s1, τ, c2) are high sensitive
whenever a change is made from (−50% to +50%) each separately. At +50% change of the
demand parameter η the profit is increased to 43.82% and it decreases to 43.82%, whenever
a change is made to −50%. For shortage cost c2, at +50% change, the profit decreases to
31.30% and, at −50% change, it increases to 37.38%. The cost price parameter p1 and selling
price parameter s1 is extraordinarily high sensitive for their changes from −50% to +50%.
At −50% change of p1,the relative increment of the total average profit reaches to 149.61%
and has no feasible solution for +50% change. But at +30% change for the cost price p1,
the average profit decreases to −86.63%. The other parameters (c1, τ c3 and k} are less
sensitive with respect to the crisp optimal solution.

Throughout the whole table, the average total profit will be maximum when the cost
price decreases to −50% and, in that case, the decision variables are the order quantity
q∗ = 67.144, the shortage quantity s∗ = 11.191, the PE ρ∗ = 1.79 and the maximum
average profit Z∗ = $1661.43.

5 Conclusion

In this paper, we have discussed the nature of the average profit function for the classical
backorder model under fuzzy promotional effort and fuzzy unit selling price. The demand
rate is affected by unit selling price and the PE variable. From the crisp result or more specific
from Table 4, the optimality reaches at maximum unit selling price which is the unfavorable
situation in practice. In our study of GFO and IFO policy, we have incorporated the most
common (β) α-cut of the fuzzy (non) membership function as well. To do this, we have
considered the whole span of each interval to measure the tolerance values. However, with
proper choice of upper and lower bounds, the fuzzy sets have been constructed in a nice
way. Also, to get a comparative study within the models (Crisp, GFO and IFO), we have
gone through some sensitivity analysis to each of the models. From the Tables 9, 10, 11,
we observed that IFO policy is better to make a decision for a managerial part. Although,
few deviations (poorly sensitivity) have been observed in GFO and IFO tables but a trend
study shows such errors due to the human unconsciousness. From the whole observations, we
have analyzed that neither more unit selling price nor less promotional cost would promote
a maximum profit for the models. Therefore, a serious attention is required for all time to
cope with the model itself.

The proposed model can be extended further incorporating time value of money and
inflation of the cost parameters. Partial backlogging with variable shortage cost and delay-
in-payment policy may be considered in the present model for future extension.
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