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SUMMARY

Multivariate meta-analysis models can be used to synthesize multiple, correlated endpoints such as over-
all and disease-free survival. A hierarchical framework for multivariate random-effects meta-analysis
includes both within-study and between-study correlation. The within-study correlations are assumed
known, but they are usually unavailable, which limits the multivariate approach in practice. In this paper,
we consider synthesis of 2 correlated endpoints and propose an alternative model for bivariate random-
effects meta-analysis (BRMA). This model maintains the individual weighting of each study in the
analysis but includes only one overall correlation parameter, ρ, which removes the need to know the
within-study correlations. Further, the only data needed to fit the model are those required for a separate
univariate random-effects meta-analysis (URMA) of each endpoint, currently the common approach in
practice. This makes the alternative model immediately applicable to a wide variety of evidence synthesis
situations, including studies of prognosis and surrogate outcomes. We examine the performance of the al-
ternative model through analytic assessment, a realistic simulation study, and application to data sets from
the literature. Our results show that, unless ρ̂ is very close to 1 or –1, the alternative model produces ap-
propriate pooled estimates with little bias that (i) are very similar to those from a fully hierarchical BRMA
model where the within-study correlations are known and (ii) have better statistical properties than those
from separate URMAs, especially given missing data. The alternative model is also less prone to esti-
mation at parameter space boundaries than the fully hierarchical model and thus may be preferred even
when the within-study correlations are known. It also suitably estimates a function of the pooled estimates
and their correlation; however, it only provides an approximate indication of the between-study variation.
The alternative model greatly facilitates the utilization of correlation in meta-analysis and should allow an
increased application of BRMA in practice.
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1. INTRODUCTION

Meta-analysis methods combine quantitative data from several studies to produce pooled results that aid
evidence-based decision making. Multiple pooled results are required whenever there are multiple out-
comes (Berkey and others, 1998) or multiple treatment groups (Hasselblad, 1998). For example, in di-
agnostic studies both sensitivity and specificity are of interest (Reitsma and others, 2005; Harbord and
others, 2006), while in prognostic studies often both overall and disease-free survival are important (Riley
and others, 2007a). In such situations, the common practice is to perform a univariate meta-analysis for
each endpoint independently. This approach is simple but ignores the potential correlation between end-
points. On the other hand, a multivariate meta-analysis jointly synthesizes the endpoints and can incor-
porate their correlation (Raudenbush and others, 1988; Becker and others, 2000; Van Houwelingen and
others, 2002). This can improve efficiency over separate univariate syntheses (Riley and others, 2007a)
and allows the association between endpoints to be modeled. This facilitates the identification of surro-
gate outcomes (Daniels and Hughes, 1997) and the production of joint confidence or prediction regions
(Reitsma and others, 2005).

In multivariate random-effects meta-analysis, both within-study and between-study correlation can
be incorporated. The “within-study correlation” indicates the association between endpoint estimates
within a study. In some situations, this might be assumed zero, for example, where the 2 endpoints
are sensitivity and specificity which are calculated using separate sets of patients (Reitsma and others,
2005); however, for structurally dependent endpoints, like overall and disease-free survival, the within-
study correlation is likely to be nonzero (Riley and others, 2007a). The “between-study correlation” in-
dicates how the underlying true endpoint values are related across studies, perhaps because of differences
across studies in patient-level characteristics, such as age, or changes in study-level characteristics, such
as the threshold level in diagnostic studies. Both within-study and between-study correlation can influence
the meta-analysis results (Riley and others, 2007a). The within-study correlation is most influential in the
analysis when the within-study variation (i.e. the sampling error of study estimates) is large relative to the
between-study variation in the underlying true study values, and the converse is true for the between-study
correlation.

The within-study correlations are usually assumed known but in practice they may be difficult to
obtain, especially from published information (Becker and others, 2000). Calculation of the within-study
correlation may also be nontrivial, perhaps requiring bootstrap methods (Daniels and Hughes, 1997), and
study authors may be unable to provide the correlation even on request. A number of articles consider
the problem of unavailable within-study correlations. Berkey and others (1996) assess how their results
change for a range of different within-study correlation values, while Nam and others (2003) perform
sensitivity analyses using a range of different prior distributions for the unknown correlations. Where the
multiple endpoints are survival proportions, Dear (1994) suggests a method for retrospectively estimating
the within-study correlations. Raudenbush and others (1988) suggest using the known correlation from
external data as an approximation, while Berrington and Cox (2003) limit the range of possible values for
the unknown correlation between multiple relative risks.

Another issue in multivariate random-effects meta-analysis is the estimation of between-study correla-
tion. Riley and others (2007b) consider maximum likelihood estimation and show that the between-study
correlation is often estimated as 1 or –1, even when the within-study correlations are known. This occurs
because the maximum likelihood estimator truncates the between-study covariance matrix on the bound-
ary of its parameter space, and this often occurs when the within-study variation is relatively large or the
number of studies is small. However, it is associated with an upward bias in the between-study variance
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174 R. D. RILEY AND OTHERS

estimates, which can inflate the mean-square error and standard error of pooled estimates. Thompson and
others (2005) suggest a reparameterized model that avoids estimating the between-study correlation, at
the loss of making strong within-study and between-study correlation assumptions.

In this paper, we consider synthesis of 2 correlated endpoints and propose an alternative model for
bivariate random-effects meta-analysis (BRMA) to help alleviate the aforementioned problems associated
with the within-study and between-study correlation. Our new model includes only one overall correlation
parameter, which removes the need to know the within-study correlations or estimate the between-study
correlation, and we show that the alternative model produces appropriate pooled estimates that are su-
perior to those from separate univariate syntheses. In Section 2, we introduce our alternative model in
relation to the general BRMA model proposed by Van Houwelingen and others (2002). In Section 3, we
compare analytically the models and perform a realistic simulation study to examine the statistical proper-
ties of their estimates. In Section 4, we then illustrate the benefits and limitations of the alternative model
through application to data sets from the literature. Section 5 contains a critical discussion and makes
recommendations for practice and for future research priorities.

2. MODELS FOR BRMA

2.1 The general model for BRMA

Suppose that 2 endpoints, j = 1 or 2, are available from each of i = 1 to n studies. Each study supplies
summary measures, Yi j , and associated standard errors, si j , for each endpoint. For instance, for prognostic
studies Riley and others (2007a) set Yi1 and Yi2 to be the log-hazard ratio for disease-free survival and
overall survival, respectively. Each summary statistic (Yi j ) is assumed to be an estimate of a true value
(θi j ) in each study, and in a hierarchical structure each θi j is assumed to be drawn from a distribution with
mean, or “pooled,” value β j and between-study variance τ 2

j . If Yi j and θi j are both assumed normally
distributed, then the general BRMA model can be written as (Van Houwelingen and others, 2002)(

Yi1

Yi2

)
∼ N
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)
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(2.1)

In this general model, δδδi and ��� are the within-study and between-study covariance matrices, respectively,
and the model is equivalent to 2 independent univariate random-effect meta-analyses (URMAs) when the
within-study correlations ρWi and the between-study correlation ρB are all zero. In (2.1), it is common to
assume that the s2

i j and the ρWi are known (Berkey and others, 1998; Van Houwelingen and others, 2002).
The usually objective from the BRMA is to estimate β1 and β2 or some function of these pooled values,
for example, β1 −β2. However, the estimate of correlation between β1 and β2 may also be of importance,
for example, when assessing whether one endpoint could be a surrogate for the other (Daniels and Hughes,
1997) or calculating joint confidence regions. The θi j in (2.1) are often considered nuisance parameters
and are rarely of interest. Inference and estimation are thus usually based on the marginal model, which
can be written as(

Yi1

Yi2

)
∼ N

((
β1

β2

)
Vi

)
, Vi =

(
s2

i1 + τ 2
1 si1si2ρWi + τ1τ2ρB

si1si2ρWi + τ1τ2ρB s2
i1 + τ 2

1

)
. (2.2)

In this paper, we estimate the between-study parameters (τ 2
1 , τ 2

2 , and ρB) and the 2 pooled values
β1 and β2 iteratively using restricted maximum likelihood (REML) in SAS Proc Mixed, as described by
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Van Houwelingen and others (2002). We also use Cholesky decomposition (Gentle 1998) of ��� to ensure
that this matrix is estimated to be positive semi-definite and therefore that the between-study correlation
estimate, ρ̂B, is in the range [−1, 1].

2.2 An alternative model for BRMA

The general BRMA model of (2.1) partitions the observed variation of the Yi1 and Yi2 into within-study
and between-study variation using a fully hierarchical structure. Similarly, (2.1) partitions the observed
correlation between the Yi1 and the Yi2 into within-study and between-study correlation. Given known
within-study correlations, one can then, at least in principle, estimate the between-study correlation. How-
ever, the within-study correlations are unlikely to be available in practice and so application of the general
model may be difficult. Consider now an alternative model for BRMA, where we continue to partition
the overall variation but now do not partition the overall correlation. That is, rather than partitioning the
overall correlation into within-study and between-study parameters, we propose a “single” parameter,
ρ, to model directly the overall correlation. This situation is specified in (2.3), which is essentially a
modification of the marginal model in (2.2) to take into account the overall correlation parameter:

(
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Yi2

)
∼ N
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β2
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)
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(2.3)

By modeling the overall correlation directly, we obtain the desirable property that the within-study cor-
relations are not required, unlike in the general model. The only information required to fit (2.3) are the
Yi j and the s2

i j , that is, the same information needed to fit a URMA for each endpoint independently.
Equation (2.3) thus provides a way to synthesize 2 endpoints and utilize their correlation, even when the
within-study correlations are unknown. It can also include studies that provide only one of the 2 endpoints
under a missing at random assumption.

Note that the within-study variances (i.e. the s2
i j ) are still specified and assumed known in the alter-

native model in order to preserve the individual weighting of each study. The additional variation beyond
sampling error is indicated by ψ2

j . However, ψ2
j is not directly equivalent to τ 2

j , the between-study vari-
ance in the general model, although in some circumstances they may be similar (see Sections 3.1 and
3.2). The reason they are different is that by not partitioning the overall correlation, the alternative model
does not have a fully hierarchical structure. In Sections 3 and 4, we will examine what effect this has on
the pooled estimates from the alternative model and investigate if and how they differ from the pooled
estimates from the general model. In this paper, we estimate β1, β2, ψ2

1 , ψ2
2 , and ρ in (2.3) using a

self-written program in Stata that implements the “maximize” procedure (see supplementary material
available at Biostatistics online, http://www.biostatistics.oxfordjournals.org). It is not possible to use
SAS Proc Mixed due to the nonhierarchical structure of the alternative model. Our Stata program uses
the Newton–Raphson procedure to maximize iteratively the restricted log-likelihood, which can be spe-
cified as

−1

2
[(n − k) log(2π) − log |XT X| + log |�| + log |XT �−1X| + (Y − Xβ)T �−1(Y − Xβ)], (2.4)

where n is the number of studies, k = 2 as there are 2 endpoints, Y is a vector of the Yi j , X is the design
matrix, and ��� is a square matrix with diagonal components ���i . Our Stata program ensured that ��� is
estimated positive definite by modeling ψ2

1 and ψ2
2 on the log-scale (see supplementary material available

at Biostatistics online, http://www.biostatistics.oxfordjournals.org).
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176 R. D. RILEY AND OTHERS

We verified our Stata program by also specifying and estimating the general model in this way and
found that the REML estimates were practically identical to those obtained from fitting the general model
in SAS Proc Mixed.

3. COMPARISON OF THE ALTERNATIVE MODEL WITH THE GENERAL MODEL

3.1 Analytic comparison of the covariance

It is important to compare the alternative model directly to the general model as the latter is likely to
be more realistic because of its hierarchical structure. We first compare the covariance between Yi1 and
Yi2 from each model, that is, the off-diagonal components of Vi and ���i in (2.2) and (2.3):

General model: cov(Yi1, Yi2) = ρB

√
(τ 2

1 τ 2
2 ) + ρWi

√
(s2

i1s2
i2), (3.1)

Alternative model: cov(Yi1, Yi2) = ρ

√
(ψ2

1 + s2
i1)(ψ

2
2 + s2

i2). (3.2)

As the additional variation beyond sampling error increases so that the s2
i j become relatively small,

cov(Yi1, Yi2) will tend to ρBτ1τ2 in the general model and to ρψ1ψ2 in the alternative model. These are
likely to be similar because the within-study parameters have little influence and so the overall correlation,
ρ, will be based mainly on ρB, the between-study correlation; similarly, ψ2

j is also likely to be very similar

to τ 2
j in this situation. This suggests that the alternative model will closely approximate the general model

when the within-study variability is relatively small.
Conversely, as the within-study variability becomes increasingly large, the 2 models are unlikely to

be similar. In this situation, cov(Yi1, Yi2) will tend to ρWi si1si2 in the general model and to ρsi1si2 in the
alternative model. These are likely to differ as the ρWi in the general model can vary across the i = 1 to
n studies, whereas the alternative model specifies a common ρ. Further, ρ is an amalgam of the between-
study correlation and the within-study correlations as measured by the observed correlation of the Yi1 and
Yi2; however, each ρWi relates to the correlation within a particular study, which is unobservable without
the raw study data. Thus, when there is relatively large within-study variability it would seem particularly
important to know the within-study correlations.

3.2 Comparison of the models through simulation

To compare the statistical properties of estimates from the general and alternative models, we performed a
simulation study using a number of realistic scenarios. Each scenario related to a different specification of
the general model of (2.1), from which we generated 1000 meta-analysis data sets for subsequent analysis.
We chose to generate data from the general model due to its realistic hierarchical structure. The scenarios
differed in 4 factors considered important in practice, namely, (a) the number of studies in the meta-
analysis, (b) whether complete data were available for both endpoints or whether some data were missing
for endpoint j = 2 (Rubin, 1976), (c) the size of the within-study variation relative to the between-study
variation, and (d) the size of the within-study correlations relative to the between-study correlation. Nine
such scenarios are described in Tables 1 and 2 as scenarios (i)–(ix). As with any simulation study, these
cannot cover all eventualities, but we would claim that they are sufficiently wide ranging to give useful
insights into the comparative performance of the different models.

Each of the 1000 meta-analysis data sets generated in each scenario were analyzed separately by fitting
(i) 2 separate URMAs (i.e. as (2.1) but assuming zero within-study and between-study correlation), (ii) the
general BRMA model of (2.1), with the within-study correlations known, and (iii) the alternative BRMA
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Table 1. Simulation results for a selection of complete data scenarios

Model No. of the
1000

simulations
compared

Mean bias Coverage Mean-square error Mean standard error Mean
correlation

between
β̂1 and β̂2

β̂1 β̂2 β̂1 − β̂2 β̂1 (%) β̂2 (%) β̂1 − β̂2 (%) β̂1 β̂2 β̂1 − β̂2 β̂1 β̂2 β̂1 − β̂2

Scenario (i): Complete data for n = 50 studies; between-study variation large relative to within-study variation; within- and between-study correlations all 0.8
URMA 1000 0 −0.01 0 96 95 100 0.04 0.04 0.02 0.20 0.20 0.28 0

General BRMA 1000 0 −0.01 0.01 96 96 93 0.04 0.04 0.02 0.19 0.20 0.13 0.76
Alternative BRMA 1000 0 0 0.01 95 96 94 0.04 0.04 0.02 0.19 0.19 0.14 0.74

Scenario (ii): Complete data for n = 50 studies; between-study variation similar to the within-study variation; within- and between-study correlations all 0.8
URMA 1000 0 −0.01 0 96 95 100 0.01 0.01 0.01 0.10 0.11 0.15 0
General BRMA 1000 0 −0.01 0 95 94 94 0.01 0.01 0.01 0.10 0.10 0.07 0.71
Alternative BRMA 1000 0 0 0 95 94 95 0.01 0.01 0.01 0.09 0.10 0.08 0.69

Scenario (iii): Complete data for n = 5 studies; between-study variation large relative to within-study variation; within- and between-study correlations all 0.8
URMA 787 0.02 0.01 0 94 93 100 0.34 0.36 0.15 0.52 0.53 0.75 0
General BRMA 787 0.02 0.01 0.01 95 93 95 0.34 0.36 0.15 0.52 0.52 0.38 0.71
Alternative BRMA 787 0.02 0.01 0.01 95 94 95 0.35 0.36 0.15 0.52 0.53 0.38 0.71

Scenario (iv): Complete data for n = 5 studies; between-study variation similar to within-study variation; within- and between-study correlations all 0.8
URMA 604 −0.01 0.02 0.01 99 93 100 0.09 0.10 0.05 0.28 0.27 0.40 0
General BRMA 604 −0.02 0.02 0.01 98 93 97 0.09 0.09 0.04 0.28 0.27 0.20 0.72
Alternative BRMA 604 −0.01 0.02 0.01 98 93 97 0.09 0.09 0.04 0.28 0.28 0.21 0.71

Scenario (v): Complete data for n = 50 studies; between-study variation similar to within-study variation; within-study correlations −0.8 in 25 studies & 0.8 in others;
between-study correlation 0.8

URMA 1000 0 0 0 95 94 99 0.01 0.01 0.02 0.10 0.11 0.15 0
General BRMA 1000 0 0 0 95 96 93 0.01 0.01 0.01 0.09 0.09 0.09 0.52
Alternative BRMA 1000 0 0 0 95 94 96 0.01 0.01 0.01 0.10 0.10 0.12 0.29

NB. The number of simulations compared relates to those which met the comparison criteria specified in Section 3.2. For the coverage, 95% confidence intervals were
calculated using a t-distribution with n − 1 degrees of freedom. The true value of β1 and β2 in the simulations was 0 and 2, respectively. Results are quoted to 2 decimal
places as in each scenario the standard error of the values reported (e.g. mean bias) were <0.01.
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Table 2. Simulation results for a selection of missing data scenarios

Model No. of the
1000

simulations
compared

Mean bias Coverage Mean-square error Mean standard error Mean
correlation

between
β̂1 and β̂2

β̂1 β̂2 β̂1 − β̂2 β̂1 (%) β̂2 (%) β̂1 − β̂2 (%) β̂1 β̂2 β̂1 − β̂2 β̂1 β̂2 β̂1 − β̂2

Scenario (vi): n = 50 studies; complete data for 25 studies, only endpoint 1 data for others with endpoint 2 missing completely at random;
between-study variation similar to within-study variation; within- and between-study correlations all 0.8

URMA 988 −0.01 −0.01 0 95 95 100 0.01 0.02 0.02 0.10 0.15 0.18 0
General BRMA 988 −0.01 −0.01 0 94 95 94 0.01 0.01 0.01 0.10 0.12 0.09 0.64
Alternative BRMA 988 −0.01 −0.01 0 94 95 96 0.01 0.01 0.01 0.10 0.12 0.10 0.62

Scenario (vii): n = 10 studies; complete data for 5 studies, only endpoint 1 data for others with endpoint 2 missing completely at random;
between-study variation large relative to within-study variation; within- and between-study correlations all 0.8

URMA 770 −0.01 0 0 96 94 99 0.15 0.34 0.24 0.39 0.54 0.67 0
General BRMA 770 −0.01 −0.01 0.01 95 94 95 0.15 0.28 0.18 0.39 0.45 0.36 0.69
Alternative BRMA 770 0 −0.01 0.01 95 94 95 0.20 0.26 0.16 0.44 0.48 0.39 0.64

Scenario (viii): n = 50 studies; complete data for 25 studies, only endpoint 1 data for others with endpoint 2 missing completely at random;
between-study variation similar to within-study variation; within-study correlations −0.8 in 25 studies & 0.8 in others; between-study correlation 0.8

URMA 997 0 −0.01 0 95 94 98 0.01 0.02 0.02 0.10 0.14 0.18 0
General BRMA 997 0 0 0 95 93 92 0.01 0.02 0.02 0.10 0.12 0.11 0.46
Alternative BRMA 997 0 0 0 95 95 96 0.01 0.02 0.02 0.10 0.14 0.15 0.26

Scenario (ix): n = 50 studies; complete data for endpoint 1, but data for endpoint 2 missing if its Yi2 was negative (i.e. non-ignorable missing data);
between-study variation similar to within-study variation; within- and between-study correlations all 0.8

URMA 879 0 0.52 −0.52 94 0 1 0.01 0.27 0.29 0.11 0.09 0.14 0
General BRMA 879 −0.02 0.32 −0.34 94 7 7 0.01 0.11 0.13 0.10 0.09 0.10 0.49
Alternative BRMA 879 −0.02 0.32 −0.33 95 12 11 0.01 0.11 0.11 0.11 0.10 0.13 0.70

NB. The number of simulations compared relates to those which met the comparison criteria specified in Section 3.2. For the coverage of β̂ j , 95 confidence intervals were

calculated using a t-distribution with n j − 1 degrees of freedom, where n j is the number of studies providing data for endpoint j . For the coverage of β̂1 − β̂2, 95 confidence
intervals were calculated using a t-distribution with n degrees of freedom. The true value of β1 and β2 in the simulations was 0 and 2, respectively. Results are quoted to 2
decimal places as in each scenario the standard error of the values reported (e.g. mean bias) were <0.01.
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model of (2.3), which does not require the within-study correlations. REML estimation was used to fit
each model, and the mean bias, mean standard error, mean-square error, and coverage of pooled estimates
β̂1, β̂2, and β̂1 − β̂2 were then compared across models. Details of our simulation exercise are shown
elsewhere (Riley and others, 2007b); we now summarize the key findings.

Estimation issues. When the within-study variation was relatively large, or when the number of studies
in the meta-analysis was small (e.g. n = 5), the general model often did not converge or estimated the
between-study correlation, ρB, as 1 or −1, a phenomenon detailed elsewhere (Riley and others, 2007b).
Also in these situations, the alternative model often did not converge or gave estimates of the overall
correlation, ρ, very close to 1 or −1, which were associated with unstable pooled estimates and standard
errors. As ρ̂ becomes close to 1 or −1, the determinant of ���i in (2.3) becomes close to zero, causing
unstable maximum likelihood solutions; for example, for one of the simulated data sets from scenario
(iv), where ρ was estimated as 0.999, β̂1 changes rapidly from about −0.2 to −0.45 as �ρ moves from
0.95 to 1. Interestingly though, a �ρ very close to 1 or −1 in the alternative model occurred less frequently
than a ρB equal to 1 or −1 in the general model. For example, in scenario (i), 20 of the 1000 simulations
estimated ρ̂B as 1 in the general model, whereas ρ was always estimated to be less than 0.95 in the
alternative model with no evidence of unstable solutions. Thus, even when the within-study correlations
are known, those practitioners who would rather estimate a correlation away from 1 or −1 may prefer to
fit the alternative model and estimate the overall correlation rather than the between-study correlation (see
Section 4.1 for an example).

The problem of non-convergence and unstable estimates when �ρ is close to 1 or −1 is a clear limitation
of the alternative model. Given this, and to aid comparison across models, the results in Tables 1 and 2
only consider those simulated data sets which (a) gave converged estimates for both the general model and
the alternative model and (b) gave a value of −0.95 < ρ̂ < 0.95 in the alternative model. The ±0.95 limit
was chosen because an inspection of results where ρ̂ was within this range did not raise concerns about
unstable estimates. Hence, Tables 1 and 2 essentially indicate the statistical properties of the alternative
model when it does fit adequately; what to do when |ρ̂| > 0.95 is discussed in Section 5.

Within-study variance small relative to between-study variance. When the within-study variation is rela-
tively small (scenarios (i) and (iii)), the alternative model and the general model perform well and produce
similar pooled estimates, as reasoned in Section 3.1, with small bias relative to the Monte Carlo standard
error of the simulations (Table 1). The estimates of ψ2

1 and ψ2
2 , the additional variation in the alternative

model, are also close to the estimates of τ 2
1 and τ 2

2 , the between-study variation in the general model. In
comparison to 2 independent URMAs, for complete data there are benefits for estimating β1 − β2; for
example, in scenario (i) the mean standard error (coverage) of β̂1 − β̂2 is 0.13 (93%) in the general model,
0.14 (94%) in the alternative model, and 0.28 (100%) in the URMA. For the individual pooled estimates
themselves, the complete data scenarios indicate that the alternative model offers no benefit over URMA
in terms of their standard error and mean-square error; however, it does provide a good estimate of their
correlation which may itself be of interest. For example, in scenario (iii), the correlation between β̂1 and
β̂2 is 0.71 in both the alternative model and the general model, but it is of course zero in the URMA.

For missing data, there are large benefits for estimating β1 − β2 and noticeable benefits for estimating
β2 due to the missing data for endpoint j = 2. For example, in scenario (vii), where there is large
correlation and data missing completely at random in 5 out of 10 studies for endpoint 2, the alternative
model reduces the standard error and mean-square error of β̂2 from the URMA by about 11% and 24%,
respectively.

Within-study variance similar to between-study variance. When the within-study variances were similar
in size to the between-study variances (scenarios (ii), (iv)–(ix)), the general model and the alternative
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model again gave similar pooled estimates with little bias (Tables 1 and 2). On the whole, both BRMA
models also produced pooled estimates with better statistical properties than those from URMA (Tables
1 and 2), in the same manner as described above. However, unlike the scenarios where the between-study
variance was large, the estimates of ψ2

1 and ψ2
2 are less similar to the estimates of τ 2

1 and τ 2
2 here, due to

the within-study variation being more influential as discussed in Section 3.1.

Discrepant within-study correlations across studies. Scenarios (v) and (viii) involve within-study corre-
lations that vary substantially across studies, being 0.8 in some and −0.8 in others. The alternative model
again gives appropriate estimates with little bias in this situation. For example, in scenario (v), the cover-
age of β̂1 − β̂2 is 96% in the alternative model, which is closer to 95%, than the general model (93%) and
the URMA (99%). Interestingly, the overall correlation in scenarios (v) and (viii) is much lower here than
in other scenarios due to the negative within-study correlations. This causes the correlation between
β̂1 and β̂2 to be quite small in the alternative model, less than 0.30, and thus there are only very small
benefits over URMA. For example, in scenario (viii), where there were data missing completely at random
for endpoint 2, the standard error of β̂1 −β̂2 is 0.15 in the alternative model and 0.18 in the URMA, but the
mean standard error of β̂2 is actually the same in both models. This indicates that, as one would expect,
the use of the alternative model rather a URMA is more important when the overall correlation is large.

Extreme missing data scenario. Scenario (ix) considers a special case of missing data where, after gen-
erating complete data from the general model, we deleted the data for endpoint j = 2 if Yi2 < 0, i.e.
non-ignorable, rather than completely random missingness (Rubin, 1976). This is akin to authors or jour-
nals not reporting negative results for endpoint j = 2. In this situation, the URMA gives estimates of β2
which are upwardly biased by 0.52 on average (Table 2). However, the alternative model and the general
model both “borrow strength” from the data for endpoint j = 1 (Riley and others, 2007a) and consid-
erably reduce this bias by about 38% to 0.32. Similarly, β̂1 − β̂2 is less biased in the BRMA models. In
scenarios like this in practice, it is conceivable that, due to the reduction in bias, the alternative model may
even lead to different clinical or scientific conclusions than URMA.

Assuming the within-study correlations are all zero. For all the scenarios shown in Tables 1 and 2, we
also assessed how well the general model performed when, regardless of their true value, we assumed the
within-study correlations to be zero (results available upon request). This approach frequently estimates
the between-study correlation to be 1 or –1, especially when the true within-study correlations were far
from zero, and gives a large upward bias in the estimates of between-study variance; this in turn greatly
increases the standard error and mean-square error of pooled estimates and makes them larger than those
from the alternative model on average. Thus, as more suitable estimates are available from the alternative
model, simply setting the within-study correlations to zero is not generally recommended unless they truly
are zero or close to zero as highlighted in some previous applications (Reitsma and others, 2005; Daniels
and Hughes, 1997; Korn and others, 2005; Thompson and others, 2005; Van Houwelingen and others,
2002). For example, in scenario (ix), the alternative model reduces the bias of β̂2 to 0.32, with coverage
12%, but fitting the general model assuming zero within-study correlation reduces the bias of β̂2 to only
0.42 with coverage 1%.

4. APPLICATIONS

We now apply the alternative model to 3 data sets from the medical literature, all of which have previously
been considered for BRMA. The first example is a rare case where the within-study correlations are known
and so the general and alternative models can be directly compared; the other 2 examples involve nonzero
but unavailable within-study correlations, the more common situation in practice.
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4.1 Surrogate outcomes—Daniels and Hughes data

Daniels and Hughes (1997) assess whether the change in CD4 cell count is a surrogate for time to either
development of AIDS or death in drug trials of patients with HIV. They consider between–treatment arm
log-hazard ratios of time to onset of AIDS or death (Yi1) and between–treatment arm differences in mean
changes in CD4 count (Yi2) from pretreatment baseline to about 6 months. Fifteen relevant trials were
identified. Some of the trials involved 3 or 4 treatment arms, but to enable application to BRMA we
only consider outcome differences between the control arm and the first treatment arm in the reported
data set (Daniels and Hughes, 1997). All 15 studies provided complete data, including the within-study
correlations. These were quite small, varying between −0.22 and 0.17 with a mean of −0.08. The within-
study variances for endpoint 2 had a mean value of 97 and in some studies were so large that endpoint
2 was akin to being missing; this makes a BRMA particularly appealing to borrow strength in the estima-
tion of β2 (Riley and others, 2007a). The general model estimates the between-study correlation as –1,
at the boundary of its parameter space (Table 3), and thus the between-study variances will be inflated
(Riley and others, 2007b), which likely explains why the standard errors of the pooled estimates are ob-
served larger than for 2 URMAs. The alternative model, however, estimates a more well-defined overall
correlation of −0.76 and produces pooled estimates with greater precision than those from URMA; for
example, the standard error of β̂2 was 4.87 in the alternative model compared to 5.56 in the URMA, a
reduction of about 12%. Furthermore, the correlation between β̂1 and β̂2 was estimated as −0.70 in the
alternative model, which is comparable to the estimate of −0.76 in the general model and more realistic
than the estimate of zero from URMA. This estimate of association may itself help facilitate decisions
regarding whether CD4 should be used as a surrogate of disease-free survival. This example shows that
the alternative model may be considered worthwhile even when the within-study correlations are known.

4.2 Prognostic studies—Riley data

A systematic review in neuroblastoma sought to establish the prognostic importance of MYCN, a proto-
oncogene (Riley and others, 2004a). In 17 studies, a log-hazard ratio estimate for “amplified” versus
“non-amplified” MYCN was available for both disease-free survival (Yi1) and overall survival (Yi2); how-
ever, no studies reported the within-study correlations, which are likely to be strongly positive due to the
structural relationship between these endpoints. Further, there were 64 studies which provided data for
only one of the 2 endpoints. If one assumes the missing endpoints are missing completely at random, then
a BRMA is desirable to increase precision and reduce mean-square error. However, the general model
cannot be applied unless one makes some assumptions about the within-study correlation values (Riley
and others, 2007a). The alternative model was thus applied, and the overall correlation was estimated as
0.80 (Table 3), which causes the standard error of pooled estimates to be smaller in the alternative model
than in the URMA (Table 3); for example, the standard error of β̂1 is 0.113 in the alternative model com-
pared to 0.127 in the URMA (a reduction of 11%). The pooled estimates themselves are very similar;
the alternative model has therefore increased our confidence in the meta-analysis results provided that
we can assume endpoints were missing completely at random. Whether this assumption holds is open to
debate, especially as publication bias may be affecting this data set (Riley, Sutton and others, 2004), and
so the BRMA results should perhaps be treated with caution here. However, it is important to note that
the URMA also makes the missing at random assumption, and simulation scenario (ix) suggests that the
alternative model is preferable to 2 URMAs even if the data are not missing at random.

4.3 Passive smoking studies—Nam data

Nam and others (2003) consider BRMA where the 2 endpoints are the log-odds ratio for developing
asthma (Yi1) and the log-odds ratio for developing lower respiratory disease (Yi2), comparing children
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Table 3. Results from the applied examples

Data set Model Pooled Between-study Pooled Between-study Between-study Overall Correlation
value for variance value variance correlation correlation between
endpoint for endpoint for endpoint for endpoint ρ̂B ρ̂ β̂1 and β̂2

j = 1 j = 1 j = 2 j = 2
β̂1 (SE) τ̂2

1 β̂2 (SE) τ̂2
2

Within-study variation large relative to between-study variation for endpoint 1, but relatively small for endpoint 2
(1) Daniels and URMA −0.049 0.025 17.300 379.93 — — 0

Hughes data (0.070) (5.561)
General model −0.109 0.048 18.314 412.96 −1.0 — −0.760

(0.075) (5.740)
Alternative model −0.042 — 14.072 — — −0.759 −0.700

(0.063) (4.871)

Within-study variation similar to between-study variation for both endpoints
(2) Riley Data URMA 1.478 0.386 1.627 0.374 — — 0

(0.127) (0.118)
General model NA NA NA NA NA NA NA
Alternative model 1.474 — 1.649 — — 0.800 0.452

(0.113) (0.113)

Within-study variation large relative to between-study variation for both endpoints
(3) Nam data URMA 1.260 0.036 1.280 0.019 — — 0

(0.046) (0.036)
General model NA NA NA NA NA NA NA
Alternative model 1.184 — 1.661 — — 0.997 0.467

(0.145) (0.198)

SE = standard error; NA = model could not be applied due to missing within-study correlations.
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exposed and unexposed to passive smoking. Fifty-nine relevant studies were identified of which 8 reported
both endpoints but without the within-study correlations. As 51 studies only reported data for 1 endpoint,
a BRMA is appealing here in order to borrow strength (Riley and others, 2007a). However, the general
model is not applicable without making some assumptions about the missing within-study correlations
or by performing sensitivity analyses (Nam and others, 2003). We applied the alternative model, but
the overall correlation was poorly estimated as 0.997 and spurious standard errors were evident for the
pooled estimates (Table 3). Further, small changes in the overall correlation caused large changes in
the pooled results, and thus the alternative model results should not be used here. This failure is likely
due to the within-study variances being relatively large. For instance, the between-study variance for
endpoint 2 is estimated as 0.019 in the URMA, whereas the mean within-study variance for endpoint
2 is 0.23, about 12 times larger. In this situation, the alternative model is less appropriate (see Section
3.1) and another approach for dealing with the missing within-study correlations is required; for example,
one could perform sensitivity analyses by fitting the general model using either imputed within-study
correlation values (Berkey and others, 1996) or a range of different prior distributions for the unknown
correlations (Nam and others, 2003).

5. DISCUSSION

The Campbell Collaboration states that meta-analysts “should not ignore the dependence among study
outcomes” and “should use some procedure to deal with dependence” (Becker and others, 2004). Mul-
tivariate meta-analysis models can facilitate this requirement as they enable the synthesis of multiple,
correlated endpoints of interest. However, application to settings involving nonzero within-study correla-
tions is difficult as studies do not usually report the correlation between endpoint estimates; this is also
the case for other measures of correlation like the intra-class correlation coefficient in cluster trials
(Campbell and others, 2004). Unfortunately, without the within-study correlations it is difficult to fit the
general multivariate meta-analysis model. For this reason, application of multivariate meta-analysis “may
require data imputation, which can be both complex and problematic” (Becker and others, 2004). Various
articles have considered how to deal with unavailable within-study correlations, such as Berkey and others
(1996) and Nam and others (2003). In this paper, we have introduced an alternative model for BRMA,
which provides a further option for synthesizing 2 endpoints when their within-study correlations are
unknown. Our new model maintains the individual weighting of each study in the analysis but includes
only one overall correlation parameter, which can be considered a hybrid measure of the within-study
and between-study correlations. Importantly, this removes the need to know the within-study correlations,
and the data required to fit the model are the same as are needed for a separate URMA of each end-
point. Section 4 highlights some areas of potential application; others may include education (Becker
and others, 2000), psychology (Raudenbush and others, 1988), and genetics (Thompson and others,
2005).

An important assumption of both the alternative and the general models is that the endpoints are nor-
mally distributed. This is commonly used in meta-analysis, for example, where the Yi j are log-odds ratios
(Nam and others, 2003), mean differences (Berkey and others, 1998), and log-event rates (Arends and
others, 2003). Yet, it is not always appropriate. For example, for synthesis of logit-sensitivity and logit-
specificity from diagnostic studies, a bivariate generalized model is preferred as the normality assumption
breaks down when the proportions are close to 0 or 1 (Chu and Cole, 2006; Harbord and others, 2006).
Where the Yi j can be assumed normally distributed, our simulation study shows that when |ρ̂| < 0.95
the alternative model produces pooled estimates with little bias that are similar to those obtained from the
general BRMA model when the within-study correlations are known. The alternative model also offers
benefits over 2 URMAs in a similar manner identified elsewhere for the general model (Riley and others,
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2007b). That is, the mean-square error is smaller and standard error more appropriate for a contrast of
the pooled estimates, for example, β̂1 − β̂2. Also, when some data are missing completely at random
the alternative model produces, on average, a smaller standard error and mean-square error for the indi-
vidual pooled estimates themselves. Such a missing data assumption may be hard to justify in practice
(Rubin, 1976), but scenario (ix) shows that the alternative model can outperform URMA even for non-
ignorable missing data. The benefits of the alternative model increase as the overall correlation increases.
Also, an estimate of the correlation between β̂1 and β̂2 from the alternative model may be useful for mak-
ing predictions (Daniels and Hughes, 1997) or calculating joint confidence regions (Reitsma and others,
2005).

If practitioners are fortunate to have the within-study correlations available, or if they can be assumed
zero (Thompson and others, 2005; Arends and others, 2003), then we recommend that they still perform
a BRMA using the general model as this has a more realistic, hierarchical structure and allows estimation
of the between-study variances, τ 2

1 and τ 2
2 , whereas the alternative model only provides an approximate

indication of these (see Section 3.1). However, even when the within-study correlations are known, the
general model may still estimate the between-study correlation as 1 or −1, which leads to upwardly bi-
ased between-study variance estimates and thus an increase in the standard error and mean-square error of
pooled estimates (Riley and others, 2007b). In this situation, one might still apply the alternative model
as the overall correlation is often estimated more easily and away from the edge of its parameter space
(see Section 4.1). Occasionally, estimation issues also arise for the alternative model (see Section 4.3); in
particular, when the overall correlation is very close to 1 or −1 the pooled estimates may be unstable. This
occurs most often when the within-study variation is relatively large, in which case a bivariate fixed-effects
meta-analysis may be more appropriate (Berkey and others, 1995). Indeed, in those scenarios where the
alternative model has difficulties, it seems more important to specify the within-study correlations and in
which case imputing a range of values within the general model may be the best approach to take (Berkey
and others, 1996). We restricted our use of the alternative model to when ρ̂ was between −0.95 and 0.95,
within which we did not observe problems of unstable estimates; this may have been conservative as most
problems arose when |ρ̂| > 0.99. A cautious suggestion is that practitioners who obtain a high overall
correlation, say >0.9 in absolute value, should assess the robustness of pooled results to small changes in
ρ̂ as a sensitivity analysis.

It is always preferable to explain the between-study variability where possible (Thompson, 1994).
The alternative model can be extended to a bivariate meta-regression to include additional study-level
covariates (Berkey and others, 1998). However, this approach will reduce the between-study variation
and make the within-study variation relatively large; this will in turn make estimating the overall corre-
lation difficult. A multivariate meta-regression approach may thus be difficult without the within-study
correlations. The ideal way to examine heterogeneity is to obtain and directly model the individual pa-
tient data for each study (Lambert and others, 2002), and this itself would negate the problem of un-
available within-study correlations. Yet, individual patient data may not always be available (Riley, Look
and others, 2007) and in practice meta-analysts tend to reduce their available individual patient data to
aggregate data for synthesis, suggesting that they are more comfortable with traditional aggregate data
techniques (Simmonds and others, 2005). For future research, it is important to assess if and how the
alternative model may help identify surrogate outcomes (Daniels and Hughes, 1997), make predictions,
or calculate predictive regions. Extension to 3 or more correlated endpoints would also be interesting
(Berkey and others, 1996). The underlying assumptions regarding the multivariate models perhaps also
require more critical evaluation; for example, are Yi1 and Yi2 truly sampled from the same distribu-
tion, and can one really assume that the s2

i1 and s2
i2 are known? A Bayesian approach may overcome

the latter issue as it accounts for all parameter uncertainty (Nam and others, 2003). The impact of
dissemination bias within multivariate meta-analysis also warrants attention (Riley, Sutton and others,
2004).
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