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Abstract

An alternative model is proposed for mixtures�of�experts� by utiliz�
ing a di�erent parametric form for the gating network� The mod�
ied model is trained by an EM algorithm� In comparison with
earlier models�trained by either EM or gradient ascent�there is
no need to select a learning stepsize to guarantee the convergence of
the learning procedure� We report simulation experiments which
show that the new architecture yields signicantly faster conver�
gence� We also apply the new model to two problems domains�
piecewise nonlinear function approximation and combining multi�
ple previously trained classiers�

� INTRODUCTION

For the mixtures of experts architecture �Jacobs� Jordan� Nowlan � Hinton� ������
the EM algorithm decouples the learning process in a maner that ts well with the
moudular structure and yields a considerably improved rate of convergence �Jordan
� Jacobs� ���
�� The favorable properties of EM have also been shown through the
results of theoretical analyses �Jordan � Xu� �n press� Xu � Jordan ���
��

One inconvenience of using EM on the mixtures of experts architecture is the non�
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linearity of softmax gating network� which makes the maximization with respect
to the parameters in gating network become nonlinear and unsolvable analytically
even for the simplest generalized linear case� Jordan � Jacobs ����
� suggested a
double�loop EM to attack the problem� An inner�loop iteration IRLS is used to solve
the nonlinear optimization with considerably extra computational costs� Moreover�
in order to guarantee the convergence of the inner loop� safeguard measures �e�g��
appropriate choice of a step size� are required�

We propose here an alternative model for mixtures�of�experts by using a di�erent
parametric form for the gating network� This model overcomes the disadvantage of
the original model� and make the maximization with respect to the gating network
solvable analytically� Thus� a single�loop EM can be used� and no learning stepsize
is required to guarantee learning convergence� We report simulation experiments
which show that the new architecture yields signicantly faster convergence� We
also apply the model to two problem domains� One is piecewise nonlinear function
approximation with soft joints of pieces specied by polynomial� trigonometric� or
other prespecied basis functions� The other is to combine classiers developed
previously�a general problem with a variety of applications �Xu et al� ����� ������
Xu � Jordan ������ proposed to solve the problem by using the mixtures�of�experts
architecture and suggested an EM algorithm for bypassing the di�culty caused by
the softmax gating networks� Here� we show that the algorithm of Xu � Jordan
������ can be regarded as a special case of the single�loop EM given in this paper
and that the single�loop EM also provides a further improvment�

� MIXTURES�OF�EXPERTS AND EM LEARNING

The mixtures of experts model is based on the following conditional mixture�

P �yjx��� �
KX

j��

gj�x� ��P �yjx� �j��

P �yjx� �j� � ��� det �j�
�

�

� expf�
�

�
�y � fj�x�wj��

T���j �y � fj�x�wj��g ���

where � consists of �� f�jgK� � and �j consists of fwjg
K
� � f�jg

K
� � The vector fj�x�wj�

is the output of the j�th expert net� The scalar gj�x� ��� j � �� � � � �K is given by
the softmax function�

gj�x� �� � e�j �x����
X

i

e�i�x���� ���

In this equation� �j�x� ��� j � �� � � � �K are the outputs of gating network�

The parameter � is estimated by Maximum Likelihood �ML� L �P
t lnP �y�t�jx�t����� which can be made by the EM algorithm� It is an iterative

procedure� Given the current estimate ��k�� it consists of two steps�

��� E�step� For each pair fx�t�� y�t�g� compute h
�k�
j �y�t�jx�t�� � P �jjx�t�� y�t��� and

then form a set of of objective functions�

Qe
j��j� �

X

t

h
�k�
j �y�t�jx�t�� lnP �y�t�jx�t�� �j�� j � �� � � � �K�



Qg��� �
X

t

X

j

h
�k�
j �y�t�jx�t�� lng

�k�
j �x�t�� ��k��� ���

���� M�step� Find a new estimate ��k��� � ff�
�k���
j gKj��� �

�k���g with�

�
�k���
j � argmax

�j
Qe
j��j�� j � �� � � � �K� ��k��� � argmax

�
Qg���� �
�

In certain cases� max�j Q
e
j��j� can be solved by solving �Qe

j���j � �� e�g��

fj�x�wj� � wT
j �x� ��� When fj�x�wj� is nonlinear with respect to wj� however�

the maximization can not be performed analytically�

Moreover� due to the nonlinearity of softmax eq����� max� Qg��� cannot be solved
analytically in any case� There are two possibilities for attacking these nonlinear
optimization problems� One is to make use of a conventional iterative optimization
technique �e�g�� gradient ascent� to form an inner�loop iteration� The other is to

simply nd a new estimate such that Qe
j��

�k���
j � � Qe

j��
�k�
j �� Qg���k���� � Qg���k���

Usually� the algorithms that perform a full maximization during the M step are
referred as �EM� algorithms� and algorithms that simply increase the Q function
during the M step as �GEM� algorithms� In this paper we will further distinguish
between EM algorithms requiring and not requiring an iterative inner loop by the
single�loop EM and double�loop EM respectively�

Jordan and Jacobs ����
� considered the case of linear �j�x� �� � �Tj �x� �� with

� � ���� � � � � �K� and semi�linear fj�w
T
j �x� ��� with nonlinear fj���� They proposed

a double�loop EM algorithm by using the Iterative Recursive Least Square �IRLS�
method to implement the inner�loop iteration� For more general nonlinear �j�x� ��
and fj�x� �j�� Jordan � Xu �in press� showed that an extended IRLS can be used
for this inner loop� It can be shown that IRLS and the extension are equivalent to
solving eq���� by the so�called Fisher Scoring method�

� A NEW GATING NET AND A SINGLE�LOOP EM

For the original model� the nonlinearity of softmax makes the analytical solu�
tion of max� Qg��� impossible even for the cases that �j�x� �� � �Tj �x� �� and

fj�x�t�� wj� � wT
j �x� ��� That is� we do not have a single�loop EM algorithm for

training this model� We need to use either double�loop EM or GEM� For single�
loop EM� convergence is guaranteed automatically without setting any parameters
or restricting the initial conditions� For double�loop EM� the inner�loop iteration
can increase the computational costs considerably �e�g�� the IRLS loop of Jordan �
Jacobs����
�� Moreover� in order to guarantee the convergence of the inner loop�
safeguard measures �e�g�� appropriate choice of a step size� are required� This can
also increase computing costs� For a GEM algorithm� a new estimate that reduces
�Q� functions actually needs an ascent nonlinear optimization technique itself�

To overcome this disadvantage of the softmax�based gating net� we propose the
following modied gating network�

gj�x� �� � 	jP �xj�j��
P

i 	iP �xj�i��
P

j 	j � �� 	j � ��



P �xj�j� � aj��j�
��bj�x� expfcj��j�

T tj�x�g �	�

where � � f	j� �j� j � �� � � � �Kg� the P �xj�j��s are density functions from the
exponential family� The most common example is the Gaussian�

P �xj�j� � ��� det �j�
�

�

� expf�
�

�
�x�mj�

T���
j �x�mj�g� ���

In eq��	�� gj�x� �� is actually the posteriori probability P �jjx� that x is assigned to
the partition corresponding to the j�th expert net� obtained from Bayes� rule�

gj�x� �� � P �jjx� � 	jP �xj�j��P �x� ��� P �x� �� �
X

i

	iP �xj�i�� ���

Inserting this gj�x� �� into the model eq����� we get

P �yjx��� �
X

j

	jP �xj�j�

P �x� ��
P �yjx� �j�� � �

If we directly do ML estimate on this P �yjx��� and derive an EM algorithm� we
again nd that the maximization max� Qg��� cannot be solved analytically� To
avoid this di�culty� we rewrite eq�� � into�

P �y� x� � P �yjx���P �x� �� �
X

j

	jP �xj�j�P �yjx� �j�� ���

This suggests an asymmetrical representation for joint density� We accordingly
perform ML estimate based on L� �

P
t lnP �y�t�� x�t�� to determine the parameters

	j� �j� �j of the gatting net and expert nets� This can be made by the following the
EM algorithm�

��� E�step� Compute

h
�k�
j �y�t�jx�t�� �

	
�k�
j P �x�t�j�

�k�
j �P �y�t�jx�t�� �

�k�
j �

P
i	

�k�
i P �x�t�j�

�k�
i �P �y�t�jx�t�� �

�k�
j �

� ����

Then let Qe
j��j�� j � �� � � � �K to be the same as given in eq����� and Qg��� can be

further decomposed into

Qg
j ��j� �

X

t

h
�k�
j �y�t�jx�t�� lnP �x�t�j�j�� j � �� � � � �K�

Q� �
X

t

X

j

h
�k�
j �y�t�jx�t�� ln	j� with 	 � f	�� � � � � 	Kg� ����

���� M�step� Find a new estimate for j � �� � � � �K

�
�k���
j � argmax�j Qe

j��j�� �
�k���
j � argmax�j Qg

j ��j��

	�k��� � argmax� Q�� s�t�
P

j 	j � �� ����

The maximization for the expert nets is the same as in eq��
�� However� for the
gating net the maximizations now become analytically solvable as long as P �xj�j�
is from the exponential family� That is� we have�

�
�k���
j �

P
t h

�k�
j �y�t�jx�t��tj�x

�t��
P

t h
�k�
j �y�t�jx�t��

� 	
�k���
j �

�

N

X

t

h
�k�
j �y�t�jx�t��� ����



In particular� when P �xj�j� is a Gaussian density� the update becomes�

m
�k���
j �

�
P

t h
�k�
j �y�t�jx�t��

X

t

h
�k�
j �y�t�jx�t��x�t��

�
�k���
j �

�
P

t h
�k�
j �y�t�jx�t��

X

t

h
�k�
j �y�t�jx�t���x�t� �m

�k�
j ��x�t� �m

�k�
j �T ���
�

Two issues deserve to be further emphasized�

��� The gatting nets eq���� and eq��	� become identical when �j�x� �� � ln	j !
ln bj�x� ! cj��j�T tj�x� � ln aj��j�g� In other words� the he gatting net eq��	� uses
explicitly such function family instead of implicitly the one given by a multilayer
farward networks�

��� It follows from eq���� that max lnP �y� x��� � max �lnP �yjx��� ! lnP �xj����
So� the solution given by eqs����� ��������������
� is actually di�erent from the one
given by the original eqs�����
�� The fomer one tries to model both the mapping
from x to y and the input x� while the latter only model the mapping from x and
y� In fact� here we learn the paramters of the gatting net and the experts nets via
an asymmetrical representation eq���� of the joint density P �y� x� which includes
P �yjx� implicitly� However� in the testing phase� the total output still follows eq�� ��

� PIECEWISE NONLINEAR APPROXIMATION

The simple form fj�x�wj� � wT
j �x� �� is not the only case that single�loop EM

applies� Whenever fj�x�wj� can be written in the following form

fj�x�wj� �
X

i

wi�j
i�j�x� !w��j � wT
j �
j�x�� ��� ��	�

where 
i�j�x� are prespecied basis functions� max�j Q
e
j��j�� j � �� � � � �K in eq����

are still weighted least squares problems that can be solved analytically� One useful
special case is that 
i�j�x� are canonical polynomial terms xr�� � � �xrdd � ri � �� In
this case� the mixture�of�experts model implements piecewise polynomial approxi�
mations� Another case is that 
i�j�x� is

Q
i sin

r
i �j�x�� cos

r
i �j�x��� ri � �� in which

case the mixture�of�experts implements piecewise trigeometric approximations�

� MULTI�CLASSIFIERS COMBINATION

Given pattern classes Ci� i � �� � � � �M � we consider classiers ej that for each input
x ej produces an output Pj�yjx�

Pj�yjx� � �pj��jx�� � � � � pj�M jx��� pj�ijx� � ��
X

i

pj�ijx� � �� ����

The problem of CombiningMultiple Classi�ers �CMC� is to combine these Pj�yjx��s
to give a summay P �yjx�� This is general problem with many applications in pat�
tern recognition �Xu et al� ����� ������ Xu � Jordan ������ proposed to solve CMC
problem by regarding the problem as a special example of the mixture density prob�
lem eq���� with Pj�yjx��s known and only the gating net gj�x� �� to be learned� In



Xu � Jordan ������� one problem encountered was also the nonlinearity of softmax
gating networks� and an algorithm was proposed to avoid the di�culty�

Actually� the single�loop EM given by eq����� and eq����� can be directly
used to solve the CMC problem� In particular� when P �xj�j� is Gaussian�
eq����� becomes eq���
�� Assume that 	� � � � � � 	K in eq����� eq����� be�

comes h
�k�
j �y�t�jx�t�� � P �x�t�j�

�k�
j �P �y�t�jx�t���

P
iP �x�t�j�

�k�
i �P �y�t�jx�t��� If we

divide both the numerator and denominator by
P

iP �x�t�j�
�k�
i �� which gives

h
�k�
j �y�t�jx�t�� � gj�x� ��P �y�t�jx�t���

P
i gj�x� ��P �y�t�jx�t��� By comparing this

equation with eq���a� in Xu � Jordan ������� we will nd that the two equa�
tions are actually the same by noticing that 	j�x� and Pj��y

�t�jx�t�� there are the
same as gj�x� �� and P �y�t�jx�t�� in ones given in Sec�� in spite of di�erent notation�
Therefore� we see that the algorithm of Xu � Jordan ������ is a special case of the
single�loop EM given in Sec���

� SIMULATION RESULTS

We compare the performance of the EM algorithm presented earlier with the orig�
inal model of mixtures�of�experts �Jordan � Jacobs� ���
�� As shown in Fig���a��
we consider a mixture�of�experts model with K � �� For the expert nets� each
P �yjx� �j� is Gaussian given by eq���� with linear fj�x�wj� � wT

j �x� ��� For the
new gating net� each P �x� �j� in eq��	� is Gaussian given by eq����� For the old
gating net eq����� ���x� �� � � and ���x� �� � �T �x� ��� The learning speeds of the
two are considerably di�erent� The new algorithm takes k��	 iterations for the
log�likelihood to converge to the value of ������ � These iterations require about
�� �	�� � �MATLAB flops� For the old algorithm� we use the IRLS algorithm given
in Jordan � Jacobs ����
� for the inner loop iteration� In experiments� we found
that it usually took a large number of iterations for the inner loop to converge�
To save computations� we limit the maximum number of iterations by �max � ���
We found that this did not obviously in"uence the overall performance� but can
save computation� From Fig���b�� we see that the outer�loop converges in about
�� iterations� Each inner�loop takes ���
� flops and the entire process requires
	� ���� ��	 flops� So� we see that the new algorithm yields a speedup of about

� �
 � �� ���

�� 
�	 � ���� Moreover� no external adjustment is needed to ensure
the convergence of the new algorithm� But for the old one the direct use of IRLS
will make the inner� loop diverge and we need appropriately to rescale �it can be
costly� the updating stepsize of IRLS�

Figs���a���b� show the results of a simulation of a piecewise polynomial approxi�
mation problem by the approach given in Sec�
� We consider a mixture�of�experts
model with K � �� For expert nets� each P �yjx� �j� is Gaussian given by eq����
with fj�x�wj� � w��jx

� !w��jx
�!w��jx!w��j� In the new gating net eq��	�� each

P �x� �j� is again Gaussian given by eq����� We see that the higher order nonlinear
regression has been t quite well�

For multi�classier combination� the problem and data are the same as in Xu �
Jordan ������� Table � shows the classication results� Com�old and Com�new
denote the method given in in Xu � Jordan ������ and in Sec�	 respectively� We



see that both improve the classication rate of each individual considerably and
that Com� new improves Com � old�

Classifer e� Classifer e� Com� old Com� new
Training set  ���# ����# � ��# ���
#
Testing set  ���# ����# � ��# ����#

Table � An Comparison on the correct classication rates

� REMARKS

Recently� Ghahramani � Jordan ����
� propose to solve function approximation
via estimating joint density based on the mixture Gaussians� In the special case of
linear fj�x�wj� � wT

j �x� �� and Gaussian P �xj�j�

with equal priors� the method given in sec�� provides the same result as Ghahramani
� Jordan ����
� although the parameterizations of the two methods are di�erent�
However� the method of this paper also applies to nonlinear fj�x�wj� � wT

j �
j�x�� ��
for piecewise nonlinear approximation or more generally fj�x�wj� that is nonlinear
with respect to wj� and applies to the case that P �y� xj�j� �j� is not Gaussian� as
well as the case for combining multi�classiers� Furthermore� we like to point out
that the methods proposed in secs�� � 
 can also be extended to the hierarchical
architecture �Jacobs�Jordan� ����� so that single�loop EM can be used to facilitate
its training�
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Figure �� �a� ���� samples from y � a�x! a� ! � a� � �� � a� � ��
� x � ���� ��	�
with prior 	� � ���	 and y � a��x! a�� ! � a�� � �� � a� �

� ��
� x � ��� 
� with prior
	� � ���	� where x is uniform random variable and z is from Gaussian N ��� �����
The two lines through the clouds are the estimated models of two expert nets� The
ts obtained by the two learning algorithms are almost the same� �b� The evolution
of the log�likelihood� The solid line is for the modied learning algorithm� The
dotted line is for the original learning algorithm �the outer�loop iteration�
�
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Figure �� Piecewise �rd polynomial approximation� �a� ���� samples from y �
a�x

�!a�x!a	!� x � ���� ��	� with prior 	� � ��
 and y � a��x
�!a��x

�!a�	!� x �
��� 
� with prior 	� � ���� where x is uniform random variable and z is from Gaussian
N ��� ���	�� The two curves through the clouds are the estimated models of two
expert nets� �b� The evolution of the log�likelihood�


