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Abstract— In prediction error identification model uncertainty
bounds are generally derived from the statistical properties
of the parameter estimator. These statistical properties reflect
the variability in the estimated model under repetition of
experiments with different realizations of the measured signals.
However when the primal interest of the identification is in
quantifying the uncertainty in an estimated parameter on the
basis of one single experiment, this is not necessarily the
best and only approach. In the alternative paradigm that is
presented here, not the covariance of the estimator will be used
for bounding the model uncertainty, but an a posteriori bound
on the error in the estimated parameter will be constructed that
is structurally dependent on the particular data sequence. This
will allow simpler computations for probabilistic model uncer-
tainty bounds also applicable to the situation of approximate
modelling (S /∈ M) and to model structures that are nonlinear
in the parameters, such as Output Error (OE) models.
Index Terms— model validation, system identification, under-
modelling, model uncertainty.

I. INTRODUCTION

Dynamical models that are identified on the basis of mea-
surement data are usually accompanied by an indication of
their reliability. The variance of estimated parameters or
the variance of estimated frequency responses is generally
used as an indication of this reliability (or precision); it is
commonly constructed on the basis of prior information on
the data generating system and on the noise disturbances
acting on the measurement data. The presence of the noise
disturbances together with a finite length of measurement
data is generally the underlying reason for the finite precision
of estimated parameters/models.
Apart from its intrinsic importance in classical statistical
parameter estimation, the need for quantifying model uncer-
tainties has lately become apparent also in many other fields
of model applications. When identified models are used as a
basis for model-based control, monitoring, simulation or any
other model-based decision-making, then robustness require-
ments impose additional constraints on model uncertainties,
which can be taken into account to guarantee robustness
properties of the designed algorithms.
There are several identification paradigms in which model
uncertainty sets can be identified on the basis of measurement
data. The areas of set membership identification [10] and
H∞ identification [1] have been particularly devoted to this
problem, aiming at the construction of hard-bounded errors
on estimated nominal models. While hard-bounded model
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uncertainty sets have the advantage that they allow hard
guarantees on robustness properties of designed controllers,
they can suffer from substantial conservatism when noise
disturbances that affect the measurement data are of a
random-type. This is extensively discussed in e.g., [11].

In the mainstream approach of system identification, i.e. pre-
diction error identification, model uncertainty quantification
is based on covariance information on estimated parameters,
in conjunction with a presumed (or asymptotically achieved
if the number of data tends to infinity) Gaussian probability
density function, see e.g., [9], [12]. This description leads
to probabilistic confidence bounds on estimated parameters,
from which also probabilistic confidence bounds on esti-
mated frequency responses can be constructed, with any
prechosen level of probability.

In classical prediction error identification, explicit and exact
expressions for the parameter covariance matrix are available
for model structures that are linear-in-the-parameters in the
situation that the model structures are correct, i.e. the data
generating system is part of the model set, S ∈ M. For
linear regression models with deterministic regressors (such
as FIR and generalized FIR [13], [7]) this holds for finite
data length, for ARX models this holds asymptotically. For
general model structures, and under the assumption S ∈ M,
the parameter covariance matrix can be approximated by
using first order Taylor expansions. However, in this situation
exact system knowledge is also required to compute these
approximate expressions for the covariance matrix.

Only in case of linear parametrizations results are available
for model uncertainty bounding when the model structures
are not correct (S /∈ M), see e.g. [6], [8] and [7] Chapter 7.

In this paper it will be shown that utilizing the statistical
properties of the estimator is not necessarily the only way
to arrive at uncertainty bounds for estimated parameters.
Whereas the statistical properties of the parameter estimator
reflect the variability in the estimated results upon experi-
ment repetition, the quantification of parameter uncertainty
on the basis of only one experiment can be done without the
full analysis of the parameter estimator. This will be shown
to facilitate uncertainty bounding in several ways.

After presenting the principle concepts of the new paradigm,
parameter uncertainty regions are derived for ARX and OE
models, for the situation that S ∈ M. Additionally it is
shown how the new procedure can be applied to an OE
approximate modelling procedure (S /∈ M). Due to space
limitations the discussion is kept brief. For more details the
reader is referred to [4].
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II. ESTIMATOR PROPERTIES AND UNCERTAINTY REGIONS

It is standard practice to base the characterization of the qual-
ity of a parameter estimate θ̂ on the (statistical) properties of
the estimator, where the estimator is defined as a mapping:

θ = g(z)

where z indicates the measurements. In this section boldface
symbols are used to distinguish random variables from
realizations thereof.
The classical way of arriving at a model uncertainty bound
is:

• Assume knowledge of pθ(θ), given by prior information
and/or by application of the Central Limit Theorem;

• Assume that the estimator is unbiased, i.e. θ0 = Eθ;
• Then knowing that every estimate θ̂ is a realization of

the random variable with p.d.f. pθ(θ), this pdf with
expected value θ0 can be used to statistically bound
the difference |θ̂ − θ0|.

Having in mind this classical way of determining uncertainty
bounds let’s consider the following example.

Example 1: Consider the data generating system y =
θ0x1 +x2, and one available measurement {y, x1} of y and
x1. It is given that x1,x2 are random numbers of which it
is only known that they satisfy |x2| ≤ 2 and |x1 − 3| ≤ 1.
We consider the following estimator for θ0:

θ =
y
x1

. (1)

Substituting the expression for y in the estimator expression,
shows that

θ0 + min
{

x2

x1

}
≤ θ ≤ θ0 + max

{
x2

x1

}
.

In other words, the statistical properties of the estimator lead
to the expression

θ ∈ θ0 + [−1, 1] , (2)

and this expression is valid not only for the random variable
θ, but then also for every realization θ̂ of θ.
Now, given one particular estimate θ̂ a relevant question is
’how far is θ̂ removed from θ0?’ or in practice ’what bound
on the difference |θ̂ − θ0| can be established based on
assumptions and data?’ In standard practice this question
of model uncertainty is answered by using the estimator
properties, that is, the answer would be

(θ̂ − θ0) ∈ [−1, 1] . (3)

However, a much more accurate answer is readily available
using the fact that x1 is measured as well. Suppose the
particular estimate θ̂ was obtained from a measurement y
and x1 = 4. Then θ̂ = y

x1
= θ0 + x2

x1
= θ0 + x2

4 . The
exact realization x2 is unknown but the properties of the
random variable x2 can now be used to specify the parameter
uncertainty:

(θ̂ − θ0) ∈
[
−2

4
,
2
4

]
. (4)

The example is mainly intended to illustrate that for the
construction of parameter uncertainty bounds it is not strictly
necessary to employ the full statistical properties of the
estimator. However, the suggestion is also raised that the
alternative model uncertainty bound (4) is always smaller
than the one derived from the estimator statistics (3). But
this is not true in general.
In this example only hard bounds are used leading neces-
sarily to a worst-case description in the estimator statistics.
When another distribution of the random terms is assumed,
either of the approaches can lead to the smallest region,
since the size of the bound (4) depends on the particular
realization.
Note that the uncertainty region (4) would have followed
as the result of the estimator statistics if the assumption
would have been adopted that the input x1 is deterministic.
This difference in assumptions is apparently essential for
the estimator statistics, but is not necessarily crucial for the
construction of parameter uncertainty regions on the basis of
one single experiment.
To further illustrate the conceptual and computational advan-
tages of the approach considered here, the previous example
is slightly extended.

Example 2: Consider the situation of Example 1 but now
assume that the random numbers are Gaussian distributed
and correlated. Under these conditions the estimator (1)
satisfies

θ =
y
x1

= θ0 +
x2

3 + 1
2x2

for x2 ∈ N (0, 2). (5)

The probability density function of this estimator is rather
complex and will generally not be Gaussian1. Therefore,
evaluation of parameter uncertainty regions on the basis of
pθ will be cumbersome.
However since x1(θ − θ0) = x2, and a particular pair x1, θ̂
is available from the measurement (y, x1), it can easily be
verified that

x1(θ̂ − θ0) = x2 (6)

where the term on the right hand side is unknown. Using
the prior information that x2 is a realization of the random
variable x2 it simply follows that

(θ̂ − θ0)x2
1(θ̂ − θ0) ≤ σ2

x2
cχ(α, 1) w.p. α, (7)

where cχ(α, 1) corresponds to a probability level α in the
Chi-squared distribution with one degree of freedom, i.e.
the α probability region under a one-dimensional Gaussian
distribution. Expression (7) is easily derived and, more
importantly, the probability level associated with the bound
is exact.
Since the distribution of the right hand side of (6) is known,
we now consider the test statistic

x1(θ̂ − θ̃)

1It is plotted in Figure 1 for x2 ∈ N (0, 2) and x1 = 3 + 0.5
x2
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and select all the values of θ̃ that lead to an x1(θ̂ − θ̃) that
is within the α probability level of the Gaussian distribution
of x2. This set is exactly given by

D(α, θ̂) =
{

θ |x1(θ̂ − θ)|2 ≤ σ2
x2

cχ(α, 1)
}

(8)

and it holds that θ0 ∈ D(α, θ̂) w.p. α.

III. THE CONCEPTUAL DIFFERENCE

The correctness of expression (7) in Example 2 might seem
questionable at first sight: can we make a solid probabilistic
expression of parameter uncertainty bounds without knowing
the p.d.f of the parameter estimator? However the probabilis-
tic expression is solid and correct.
In the classical approach first an α-probability region
D(α, θ0) would be constructed for the estimator θ by upper-
bounding the distance from θ0 = Eθ, leading to, e.g.,

D(α, θ0) :=
{
θ | |θ − θ0|2 ≤ cpθ

(α)
}

with cpθ
(α) such that θ ≤ cpθ

(α) w.p. α.2 Subsequently,
an uncertainty region D(α, θ̂) for a given estimate θ̂ is
constructed using the same upper-bound cpθ

(α) to describe
the distance from θ0, i.e.

D(α, θ̂) :=
{

θ | |θ − θ̂|2 ≤ cpθ
(α)

}
.

Per definition, however, the upper-bound cpθ
(α) on the dis-

tance between θ0 and θ̂ was only correct for those estimates
θ̂ ∈ D(α, θ0). In other words, the statement holds that

θ0 ∈ D(α, θ̂) w.p. α, (9)

which means that when we construct the uncertainty region
D(α, θ̂) for n experiments, i.e. n realizations of x1 and x2,
the constructed region will contain the true parameter only
a number of αn times if n → ∞.
Instead of considering the properties of the estimator θ to
evaluate the estimate θ̂, the alternative form considers the
properties of x2 ∈ N (0, 2). For any realization x2 of this
random variable it holds that

x2
2 ≤ σ2

x2
cχ(α, 1) w.p. α,

which states that the inequality x2
2 ≤ σ2

x2
cχ(α, 1) is true

only αn times out of n experiments for n → ∞. Now, since
for each realization x2 expression (6) holds true, it follows
that the inequality

|x1(θ̂ − θ0)|2 ≤ σ2
x2

cχ(α, 1) (10)

will be true w.p. α as well. And again,with

Dnew(α, θ̂) :=
{

θ | |x1(θ̂ − θ)|2 ≤ σ2
x2

cχ(α, 1)
}

(11)

the statement θ0 ∈ Dnew(α, θ̂) w.p. α means that when we
construct the uncertainty region Dnew(α, θ̂) for n experi-
ments, i.e. n realizations of x2, the constructed region will

2For Gaussian distributions such a symmetric (ellipsoidal) norm-bounded
α-probability region corresponds to the smallest possible region satisfying
a probability of α. For other distributions the smallest region corresponds
to the contours of level sets of the probability density function.

contain the true parameter only a number of αn times if
n → ∞.
Whereas the classical approach considers experiment repeti-
tion for analysis of the variation in the estimated parameter
θ̂, the new paradigm considers the statistical properties of a
data-dependent mapping of the parameter, i.e. x1(θ̂ − θ0).
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Fig. 1. Probability density function of θ (example 2) and three uncertainty
regions each corresponding to a probability of α = .9. The symmetric and
smallest 90% regions are tied to the pdf of θ. The computed 90% region
Df−1(x2)(α, 0) corresponds to all θ̂ for which the derived bound (10) is
correct. This region is based on a 90% probability region of random variable
x2.

IV. ARX MODELLING

In prediction error identification with ARX models a one-
step-ahead predictor is considered of the format

ŷ(t|t − 1; θ) = ϕT (t)θ (12)

with ϕT (t) = [−y(t−1) · · ·−y(t−na) u(t) · · ·u(t−nb+1)],
and θT = [a1 · · · ana

b0 · · · bnb−1], both having dimensions
n = na + nb. The parameter estimate is obtained by
minimizing the quadratic prediction error criterion

θ̂N = arg min
θ

VN (θ); VN (θ) =
1
N

N∑
t=1

ε(t, θ)2 (13)

with ε(t, θ) = y(t) − ŷ(t|t − 1; θ). By denoting

Φ =

⎛
⎜⎝

ϕT (1)
...

ϕT (N)

⎞
⎟⎠ and y = [y(1) · · · y(N)]T

it follows that θ̂N = (ΦT Φ)−1ΦT y.If the data generating
system belongs to the model class (S ∈ M) then it holds
that y = Φθ0 + e with e an N -vector of samples from a
white noise process, and so

θ̂N = θ0 + (ΦT Φ)−1ΦT e. (14)

A. Classical approach

When analyzing the statistical properties of the estimator, it
is generally derived3 that, for N → ∞,√

N(θ̂N − θ0) → N (0, Parx)

3For this derivation it is required that both the terms (ΦT Φ)−1 and ΦT e
as well as their product converge almost surely.
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with

Parx = (E[
1
N

ΦT Φ])−1 · Q · (E[
1
N

ΦT Φ])−1 (15)

with Q = E[ 1
N ΦT Φ] · σ2

e and σ2
e the variance of the white

noise, leading to

Parx = (E[
1
N

ΦT Φ])−1 · σ2
e . (16)

This leads to the expression that, asymptotically in N ,

θ0 ∈ Darx(α, θ̂N ) w.p. α, with

Darx(α, θ̂N ) := {θ | (θ − θ̂N )T P−1
arx(θ − θ̂N ) ≤ cχ(α, n)

N
}.

One of the problems in the latter expression is that Parx can-
not be computed, since σ2

e and E[ 1
N ΦT Φ] are not available

directly. Therefore in practice, the exact covariance matrix
Parx is commonly replaced by an estimate

P̂arx = (
1
N

ΦT Φ)−1 · σ̂2
e , (17)

where the estimate σ̂2
e is usually determined on the basis of

ε2(t, θ̂N ).

B. New approach

Alternatively we can use expression (14) to analyze for
the particular data sequence {u(t), y(t)}t=0,···N−1 that is
available, the expression

β :=
1√
N

ΦT Φ(θ̂N − θ0) =
1√
N

ΦT e.

The unknown term on the right hand side of the equation is
known to satisfy

β =
1√
N

ΦT e ∈ N (0, Q), Q = E[
1
N

ΦT Φ]σ2
e

where the Gaussian distribution is reached asymptotically in
N as a result of the Central Limit Theorem.
For the random variable β = 1√

N
ΦT e, the following uncer-

tainty bound can be specified asymptotically in N :

β ∈ Dβ(α, 0) w.p.α, with

Dβ(α, 0) :=
{
β | βT Q−1β ≤ cχ(α, n)

}
As this probabilistic expression is also valid for the particular
estimate β = 1√

N
ΦT Φ(θ̂N − θ0), it follows that

(θ̂N−θ0)T 1
N

ΦT ΦQ−1 1
N

ΦT Φ(θ̂N−θ0) ≤ cχ(α, n)
N

w.p. α

and consequently θ0 ∈ Darx(α, θ̂N ) w.p. α, with

Darx(α, θ̂N ) := {θ | (θ− θ̂N )T P−1
arx,n(θ− θ̂N ) ≤ cχ(α, n)

N
}

(18)
with

Parx,n = (
1
N

ΦT Φ)−1Q(
1
N

ΦT Φ)−1. (19)

Note that this expression is very close to the classical
expression (15). However instead of the three asymptotes that
were required to be satisfied in the classical case, the current

expression only requires the a.s. convergence of 1√
N

ΦT e.
Again, as in the classical case, since σ2

e and E[ 1
N ΦT Φ]

are unknown, they are replaced by their estimates σ̂2
e and

1
N ΦT Φ, leading to (18).

P̂arx,n = (
1
N

ΦT Φ)−1σ2
e . (20)

Whereas in the classical approach Parx has the interpreta-
tion of covariance matrix of the parameter estimator, this
interpretation is not applicable to the matrix Parx,n. The
latter expression only serves as a basis for the parameter
uncertainty region.

C. Evaluation

In its implementable form (20) the alternative approach is
seen to result in exactly the same uncertainty region as is
practically used in the classical approach (17), based on the
theoretical result (15). However, when comparing the two
theoretical expressions (15) and (19) it appears that, besides
the replacement of σ2

e by an estimate, the latter approach
requires only the replacement of Q by a computable estimate,
while the former requires three substitutions to be made.
Summarizing, through the new paradigm the commonly used
uncertainty region based on (17) has a stronger theoretical
support than is generally acknowledged.
Moreover, the Gaussian distribution in the standard approach
requires the distribution of (ΦT Φ)−1Φe to be Gaussian,
whereas the alternative approach only requires 1√

N
Φe to

be Gaussian distributed. Monte Carlo simulations show that
the term 1√

N
Φe becomes Gaussian even for very small data

length N . The term (ΦT Φ)−1Φe generally requires a longer
data length to approximate the Gaussian distribution.
The results presented here are applicable both to open-loop
and closed-loop data. In the latter situation the input signal
will also be correlated to the noise. This will influence the
convergence properties of the terms 1

N ΦT Φ and 1√
N

ΦT e.
Note that also in this situation the new approach has to deal
with the second term only.

V. OUTPUT ERROR MODELLING

In an Output Error (OE) model structure we consider the
one-step ahead predictor

ŷ(t|t − 1; θ) =
B(q, θ)
F (q, θ)

u(t)

and we denote the predictor derivative:

ψ(t, θ) =
∂

∂θ
ŷ(t|t − 1; θ).

A. Classical approach

For quantifying parameter uncertainty bounds in the classical
approach, the starting point is a first order Taylor expansion:

(θ̂N − θ0) ∼ −[V̄ ′′(θ0)]−1[V ′
N (θ0)] (21)
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where V ′
N (θ) = ∂VN (θ)/∂θ and V̄ ′′ is the second derivative

of V̄ = Ēε(t, θ)2 ([9]). In the first order Taylor approxima-
tion, the asymptotic expressions

V ′
N (θ0) → N (0, Q), Q = σ2

eE[ 1
N Ψ(θ0)T Ψ(θ0)] (22)

V̄ ′′(θ0) = E[ 1
N ΨT (θ0)Ψ(θ0)] (23)

with

Ψ(θ) =

⎛
⎜⎝

ψT (1, θ)
...

ψT (N, θ)

⎞
⎟⎠

are then substituted to arrive at the asymptotic covariance
matrix of (θ̂N − θ0) given by

Poe = σ2
e [E

1
N

Ψ(θ0)T Ψ(θ0)]−1 (24)

and the asymptotic model uncertainty region

{θ0 ∈ Doe(α, θ̂N )} w.p. α, with

Doe(α, θ̂N ) := {θ | (θ − θ̂N )T P−1
oe (θ − θ̂N ) ≤ cχ(α, n)

N
}.

Note that the approximations and assumptions that are in-
volved in this analysis include:

• Validity of the first order Taylor approximation;
• Convergence to (asymptotic) normality of the product

term on the right hand side of (21), and
• Convergence of the covariance of this term to the

product of the separate terms, as reflected in (22) and
(23).

For arriving at a computable expression for the parameter un-
certainty, the unknown terms σ2

e and [E 1
N Ψ(θ0)T Ψ(θ0)] that

appear in the covariance matrix are replaced by estimates, to
arrive at

P̂oe = σ̂2
e [

1
N

ΨT Ψ]−1. (25)

B. New approach

In our new paradigm, the starting point for the analysis of
the parameter estimate is the derivative of the identification
criterion: V ′

N (θ̂N ) = 0 or equivalently

1
N

N∑
t=1

[y(t) − B(q, θ̂N )

F (q, θ̂N )
u(t)] · ψ(t, θ̂N ) = 0. (26)

By defining

yF (t) = F (q, θ̂N )−1y(t); uF (t) = F (q, θ̂N )−1u(t)

equation (26) can be rewritten as

1
N

N∑
t=1

[F (q, θ̂N )yF (t) − B(q, θ̂N )uF (t)] · ψ(t, θ̂N ) = 0.

(27)
The parameter estimate θ̂N satisfying these equations can
now be written in a linear regression-type equation through:

θ̂N = (ΨT Φ)−1ΨT yF (28)

with ΦT =
[
ϕF (1, θ̂N ), · · ·ϕF (N, θ̂N )

]
,

ϕT
F (t, θ̂N ) = [−yF (t−1)··−yF (t−nf ) uF (t)··u(t−nb+1)]

being a vector with dimension n = nb + nf , and yF =
[yF (1) · · · yF (N)]T .
Note that (28) is an equation that characterizes θ̂N ; however
it cannot be used to calculate θ̂N , as the right hand side
of the equation is also dependent on θ̂N . Nevertheless the
equation can fruitfully be used to characterize the parameter
uncertainty on θ̂N .
To this end we write the system’s relations as:

y(t) =
B0(q)
F0(q)

u(t) + e(t), or (29)

F0(q)yF (t) = B0(q)uF (t) +
F0(q)

F (q, θ̂N )
e(t),

which can be written in the regression form:

yF = Φθ0 + eF , (30)

where eF = F0(q)

F (q,θ̂N )
[e(1) · · · e(N)]T .

Substituting (30) into (28) now delivers:

θ̂N − θ0 = (ΨT Φ)−1ΨT eF , or (31)

(
1√
N

ΨT Φ)(θ̂N − θ0) =
1√
N

ΨT eF . (32)

To bound the parameter uncertainty in θ̂N , now the same
procedure can be followed as applied to the ARX case.
The random variable β = 1√

N
ΨT eF is asymptotically

Gaussian distributed with zero mean and covariance matrix

Q = σ2
eF

E[
1
N

ΨT Ψ]

Mapping the uncertainty region of β to θ̂N − θ0 now leads
to the asymptotic uncertainty region

{θ0 ∈ Doe,n(α, θ̂N )} w.p. α, with

Doe,n(α, θ̂N ) := {θ | (θ− θ̂N )T P−1
oe,n(θ− θ̂N ) ≤ cχ(α, n)

N
}

with

Poe,n = (
1
N

ΨT Φ)−1 · Q · ( 1
N

ΦT Ψ)−1. (33)

In order to arrive at a computable expression for the pa-
rameter uncertainty, σ2

eF
is replaced by an estimate σ̂2

e and
E[ 1

N ΨT Ψ] is replaced by [ 1
N ΨT Ψ] leading to the estimate

P̂oe,n = (
1
N

ΨT Φ)−1 · 1
N

ΨT Ψ · ( 1
N

ΦT Ψ)−1σ̂2
e . (34)

Note again, as in the ARX situation, that Poe,n does not
have the interpretation of a covariance matrix. It only serves
to specify the parameter uncertainty region.

C. Evaluation

Unlike the situation for ARX models, the actual expressions
for the classical and the new approach now are different.
In the new analysis, e.g., no first order Taylor expansion is
involved, and asymptotic normality of the term 1√

N
ΨT e is

the only stochastic convergence issue that is involved.
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VI. OUTPUT ERROR MODELLING, S /∈ M
So far it has not been possible to quantify parameter uncer-
tainty bounds in situations of approximate models (S /∈ M),
except for the situation of linear regression structures with
deterministic regressors. See e.g. [5], [2], [6], [7]. The new
paradigm presented here shows that also for models that are
not linear in the parameters (as e.g. OE models), uncertainty
bounds can be derived in a way that relates strongly to
the handling of linear regression models. This is reflected
by expression (28) that is used to specify the parameter
uncertainty bounds. For incorporating unmodelled dynamics
the system’s equations, as given in (29) are rewritten as

y(t) =
B0(q)
F0(q)

u(t) + G∆(q)u(t) + e(t)

where the system’s coefficient vector θ0 that is composed
of the coefficients of the polynomials B0 and F0 is defined
as the minimizing argument: θ0 = arg minθ Ēε(t, θ)2 for
an identification experiment with sufficiently exciting input
signal. This leads to a system’s equation

yF = Φθ0 + eF + β

where β is the undermodelling term induced by G∆(q)u(t).
Substituting this expression into (28) now delivers

θ̂N − θ0 = (ΨT Φ)−1ΨT [eF + β] or equivalently

1√
N

ΨT Φ(θ̂N − θ0) =
1√
N

ΨT [eF + β].

There are several options now to proceed. The term on the
right hand side can be bounded in a stochastic way, using
the stochastic embedding approach [5]. As an alternative,
the right hand side term 1√

N
ΨT β can be bounded in a

deterministic way, while the remaining term 1√
N

ΨT eF can
be treated stochastically as in the earlier OE analysis. This
second approach ([6]) then comes down to writing

1√
N

ΨT Φ(θ̂N − θ0) − 1√
N

ΨT β =
1√
N

ΨT eF .

Since the right hand side term is asymptotically Gaussian
distributed:

1√
N

ΨT eF → N (0, Q), Q = σ2
eF

[E
1
N

ΨT Ψ]

it follows that asymptotically

(
1√
N

ΨT Φ(θ̂N−θ0)− 1√
N

ΨT β)T ·Q−1·(·) ≤ cχ(α, n) w.p. α.

By defining the square root term Γ by

ΓT Γ =
1
N

ΦT ΨQ−1 1
N

ΨT Φ

the expression for the uncertainty region can be rewritten as

‖Γ[(θ̂N − θ0) − (ΨT Φ)−1ΨT β‖2
2 ≤ cχ(α, n)

N
w.p. α.

Now applying the triangle inequality to the norm expression
delivers

‖Γ(θ̂N − θ0)‖2 ≤
√

cχ(α, n)
N

+ ‖Γ(ΨT Φ)−1ΨT β‖2 w.p. α.

The second term on the right hand side can be bounded
through an upper bound on the unmodelled dynamics. As a
result, an ellipsoidal parameter uncertainty region becomes
available that quantifies the uncertainty in θ̂N with a pre-
specified level of probability ≥ α.

VII. CONCLUSIONS

The standard approach of formulating probabilistic parameter
bounds on the basis of the statistical properties of the
parameter estimator is discussed. In this paper an alternative
approach is followed for deriving parameter uncertainty
regions based on the analysis of data-dependent mappings
of the parameter estimator. Many of the approximations
and asymptotic assumptions in the standard results can be
avoided in this way. For ARX models it follows that the
standard implemented results have a stronger theoretical
support than originally suggested. For OE models the new
paradigm leads to new parameter uncertainty regions that,
in terms of their computation, are similar in complexity to
the linear regression situation. The new paradigm also allows
the application to the situation where unmodelled dynamics
is present (S /∈ M). BJ model structures are treated in [4].
It seems that the new paradigm bears resemblance to the so-
called likelihood method of determining confidence regions
[3]; this relation is subject of ongoing research.
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