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This note contains a report of a proof by computer that the

Fibonacci group F (2; 9) is automatic. The automatic structure

can be used to solve the word problem in the group. Further-

more, it can be seen directly from the word-acceptor that the

group generators have infinite order, which of course implies

that the group itself is infinite.

For n � 2 an integer, the Fibonacci groups F (2; n)is de�ned by the presentationha1; : : : ; an j a1a2 = a3; a2a3 = a4; : : : ;an�1an = a1; ana1 = a2i:These groups have been favourite test examples incombinatorial group theory for many years. By1974, it had been determined that they were �-nite for n = 2; 3; 4; 5 and 7 and in�nite for allother values of n, except possibly 9. The �nitenessproofs were either by hand or by computer, usingcoset enumeration, whereas the in�niteness proofseither constructed explicit epimorphisms onto in�-nite groups or (for n > 10) used small cancellationtheory (for further details and references see [John-son 1980, Sections 9 and 26], for example).The remaining case F (2; 9) remained open until1990, when it was �nally proved in�nite [Newman1990]. In the meantime, it had been shown thatthis group had a �nite quotient of order 152 � 5741[Havas et al. 1979], and Newman was able to usethe structure of this quotient, together with sometheoretical results, to show that it in fact had �nitequotients of order 152 � 5t, for arbitrarily large val-ues of t. This of course proved that the group wasin�nite, but it provided no information about the
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group itself, as distinct from its �nite quotients. Inparticular, it remained an open problem whetherthe generators ai had �nite or in�nite order. (Infact, it still appears to be unknown whether thereexists any �nitely presented in�nite torsion group.)In [Helling et al. 1994], it is shown that certainFibonacci groups are fundamental groups of hyper-bolic three-manifolds, which implies immediatelythat they are automatic, and in fact short-lex auto-matic. (The notion of an automatic group is brieyde�ned below; for the general theory and details,see [Epstein et al. 1992].) However, these proofsdo not apply to F (2; n) for odd values of n.The purpose of this note is to report a successfulcomputer proof that F (2; 9) is automatic, and thatits generators have in�nite order. The programsused in the proof implement algorithms describedin [Epstein et al. 1991] and, more recently, in [Holt1994]. It was much easier to prove the automatic-ity of F (2; 6), F (2; 8) and F (2; 10) computation-ally, since the associated automatic structures aremuch smaller. The author had been attemptingthe calculation on F (2; 9) for several years, butit was only recently that a computer with enoughmemory became available.Of course, with an enormous machine calcula-tion of this nature, one inevitably asks how far theresult can be trusted, and whether it is likely that asmall logical or other error in the code (which can-not realistically be ruled out as impossible) couldhave resulted in an incorrect �nal result. I am ofthe opinion that this is extremely unlikely in thisparticular case, for the following reasons. The cor-rect automatic structure is the result of a sequenceof constructions of approximations to this struc-ture, and the eventual correct structure is consid-erably smaller than the incorrect approximations.Also, there is a �nal stage to the computation, inwhich the structure is checked for correctness byanother program; this so-called \axiom-checking"program constructs a series of much larger struc-tures, in pairs, and the components of each pairhave to be identical for the veri�cation processto succeed. In addition, all of the calculations

have been carried out successfully by two radi-cally di�erent versions of the complete package,and yielded the same results.Roughly speaking, a group G, together with a�nite set A that generates G as a monoid, is au-tomatic if there exist two �nite-state automata WandM , the word-acceptor and the multiplier , withthe following properties. The word-acceptorW hasinput language A, and must accept a unique wordin A� for each group element. The multiplier Mreads pairs of words (w1; w2), with w1; w2 2 A�,and accepts such a pair if and only if w1 and w2are both accepted byW and w�11 w2 is equal in G toone of the generators ai. (See the references abovefor a more detailed de�nition, and other equiva-lent de�nitions.) It turns out that automaticity isa property of the group, and is independent of thegenerating set, although the automata W and Mwill of course depend on A. The Warwick programsused in the calculation for F (2; 9) are only capableof calculating short-lex automatic structures, thatis, those in which W accepts the lexicographicallyleast amongst the shortest words that map onto aparticular group element. (This assumes that anordering has been speci�ed for A.) The automaticstructure can be used to solve the word-problemin G e�ciently, by reducing words in A� to theirrepresentatives in the language of W .For the calculation in F (2; 9), we used the or-dered monoid generating setfa1; a�11 ; a2; a�12 ; : : : ; a9; a�19 g:We have not experimented much with other gen-erating sets or orderings, but the ordering doesnot seem to have much inuence on the di�cultyof the computation, whereas other generating sets(such as one with only two group generators) seemto make things much more di�cult. Our generalexperience in this area suggests that the \natu-ral" generating set is the best to use, wheneverthis makes sense. Of course, the large number ofgenerators does increase the space requirements insome places. The �nal correct automataW andM
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have 3251 and 25741 states. Some of the intermedi-ate automata constructed were considerably largerthan this; further technical details follow below.By looking at the transitions of W , one can ob-serve immediately that when reading the word an1for n > 0, the automaton starts in state 1, movesto state 2, then to state 20, then to state 172 andthen to state 686, where it remains. Since all pos-itive states of W are accepting, this shows that anis an accepted word for all n, which means thatan cannot be equal to the identity for any n > 0.Thus a has in�nite order.We conclude with some technical details of thecomputation. It was done on a SPARCstation 20with 256Mb (megabytes) of core memory. As men-tioned above, it was successfully completed twice,the �rst time using older versions of the software,which took several weeks of continuous CPU time.The second time, we were able to use a new, com-pletely rewritten, version of the code. The run thentook about 12.5 hours of CPU time, and used amaximum of just over 100Mb of addressable mem-ory, in addition to about 140Mb of disk space fortemporary �les. The �les for the �nal correct au-tomatic structure have total size about 5Mb.The following description assumes some familiar-ity with the algorithm. The �rst step is to run theKnuth{Bendix process on the presentation untilthe number of word-di�erences arising from reduc-tion equations appears to have become constant.This is probably the component of the algorithmthat has most scope for improvement, since the lastfew word-di�erences seem to be very di�cult to ob-tain. We stopped with 539 word-di�erences (or 629when closed under inversion), at which point therewere about 250,000 reduction equations, and theprocess was occupying about 100Mb. In fact, wedid not have the full set of word-di�erences at thispoint, which rendered the next few steps in the cal-culation more di�cult. The word-acceptorW (cal-culated using all 629 word-di�erences) then had8538 states. Using this and the word-di�erencesto calculate the multiplier M resulted in M hav-ing 1,980,342 states initially, which minimized to

42808 states. It was this calculation that requiredthe large temporary �lespace for storing the origi-nal unminimized transition table for M (this tabledoes not need to be held in core memory, but canbe read in state by state during minimization).The next step is a partial correctness test on M(we test whether, for each word u accepted by Wand each generator ai, there is a word v accepted byW such that (u; v) is accepted by M , where uai isequal to v in G). This test failed, and increased thesize of the (inverse-closed) word-di�erence set to653. We proceeded to recalculate W and A, whichthen had 8547 and 31021 states, respectively. Thecorrectness test failed again, at which point we had661 word-di�erences. This time, however, W hadonly 3251 states, and it turned out thatW was cor-rect at this stage. The number of states of M wasthen 863 871 before minimization and 25729 afterminimization; the reduced sizes were due to the re-duced size of W . The correctness test failed twicemore, butW remained unchanged. The number ofword-di�erences increased to 671, and the numberof states of M to 25741. At this stage, the partialcorrectness test succeeded, and we could proceed tothe full axiom-checking. This process took about4.7 hours of CPU time and required about 105Mbof core memory (the largest amount of memoryused at any stage). The fact that all of the re-lations are short, having length two or three, ren-dered it more straightforward than usual, however.From the correct automatic structure, it was thenpossible to construct an automaton that acceptsthe minimal complete set of reduction rules, andthis in turn could be used to �nd the correct min-imal set of word-di�erences, of which there were563. This is useful, since it can be used to makethe word-reduction process in the group more e�-cient.
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