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1. INTRODUCTION

A large volume of literature exists on the spherical near field to far
field transformation [1–3]. In this paper, the approach similar to [4]
is taken to expand the fields in terms of TM and TE modes to r as
described by [5–7]. The final expressions of this paper are somewhat
different and simpler than the expressions of [1,4] and [6].

2. SPHERICAL NEAR-FIELD TO FAR-FIELD TRANS-
FORMATION

Consider a sphere of radius a over which the tangential components
of the electric field, Eθ and Eφ , are known. So

Eθ(a, θ, φ) = f1(θ, φ) (1)
Eφ(a, θ, φ) = f2(θ, φ) (2)

From this near field given in equations (1) and (2) we determine the
far field. The complete expression for the field external to the sphere
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is given by [4, p. 269] using the following vector potentials

Ar = jωε
∞∑
n=0

n∑
m=0

rh(2)
n (kr)Pm

n (cos θ) [αmn cosmφ+ βmn sinmφ] (3)

Fr = jωµ
∞∑
n=0

n∑
m=0

rh(2)
n (kr)Pm

n (cos θ) [γmn cosmφ+ δmn sinmφ] (4)

where h
(2)
n (kr) is the spherical Bessel function of the second kind of

order n and argument kr , Pm
n (cos θ) is the associated Legendre func-

tion of the first kind of argument cos θ , and αmn , βmn , γmn , δmn
are the four constants to be determined from the boundary value prob-
lem specified by (1) and (2). Here, k is the free space wave number
and ε and µ are the permittivity and permeability of free space. The
θ and φ field components are then given by [4] as

Eθ =
−1

r sin θ
∂Fr
∂φ

+
1

jωεr

∂2Ar
∂r∂θ

=
∞∑
n=0

n∑
m=0

jωµmh
(2)
n (kr)

sin θ
Pm
n (cos θ)[γmn sinmφ− δmn cosmφ]

+
∞∑
n=0

n∑
m=0

1
r

∂

∂r

[
rh(2)

n (kr)
] dPm

n (cos θ)
dθ

[αmn cosmφ+ βmn sinmφ]

(5)

Eφ =
1
r

∂Fr
∂θ

+
1

jωεr sin θ
∂2Ar
∂r∂φ

=
∞∑
n=0

n∑
m=0

jωµh(2)
n (kr)

dPm
n (cos θ)
dθ

[γmn cosmφ+ δmn sinmφ]

−
∞∑
n=0

n∑
m=0

1
r

∂

∂r

[
rh(2)

n (kr)
] Pm

n (cos θ)m
sin θ

[αmn sinmφ− βmn cosmφ]

(6)

Hθ =
1

r sin θ
∂Ar
∂φ

+
1

jωµr

∂2Fr
∂r∂θ

=
∞∑
n=0

n∑
m=0

−jωµh(2)
n (kr)

Pm
n (cos θ)m

sin θ
[αmn sinmφ− βmn cosmφ]

+
∞∑
n=0

n∑
m=0

1
r

∂

∂r

[
rh(2)

n (kr)
] dPm

n (cos θ)
dθ

[γmn cosmφ+ δmn sinmφ]

(7)
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Hφ =
1
r

∂Ar
∂θ

+
1

jωµr sin θ
∂2Fr
∂r∂φ

=
∞∑
n=0

n∑
m=0

−jωµh(2)
n (kr)

dPm
n (cos θ)
dθ

[αmn cosmφ+ βmn sinmφ]

−
∞∑
n=0

n∑
m=0

1
r

∂

∂r

[
rh(2)

n (kr)
] mPm

n (cos θ)
sin θ

[γmn sinmφ− δmn cosmφ]

(8)
By replacing the field components Eθ and Eφ in equations (1) and

(2) with their expressions described by equations (5) and (6), respec-
tively, and then using orthogonality relationships, the coefficients αmn ,
βmn , γmn and δmn can be determined. Therefore, from equations (1)
and (5) we have

f1(θ, φ) =
∞∑
n=0

n∑
m=0

jωµmh
(2)
n (ka)

ka sin θ
Pm
n (cos θ)[γmn sinmφ− δmn cosmφ]

+
∞∑
n=0

n∑
m=0

1
r

∂

∂r

[
rh(2)

n (ka)
] dPm

n (cos θ)
dθ

[αmn cosmφ+ βmn sinmφ]

(9)
and from equations (2) and (6) we have

f2(θ, φ) =
∞∑
n=0

n∑
m=0

jωµmh(2)
n (ka)

dPm
n (cos θ)
dθ

[γmn cosmφ+ δmn sinmφ]

−
∞∑
n=0

n∑
m=0

1
r

∂

∂r

[
rh(2)

n (ka)
] Pm

n (cos θ)m
sin θ

[αmn sinmφ− βmn cosmφ]

(10)
From equations (9) and (10) we have,

f1(θ, φ) =
∞∑
n=0

n∑
m=0

Dm

sin θ
Pm
n (cos θ)[γmn sinmφ− δmn cosmφ]

+
∞∑
n=0

n∑
m=0

N

a

dPm
n (cos θ)
dθ

[αmn cosmφ+ βmn sinmφ]

(11)
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and

f2(θ, φ) =
∞∑
n=0

n∑
m=0

D
d

dθ
Pm
n (cos θ)[γmn cosmφ+ δmn sinmφ]

−
∞∑
n=0

n∑
m=0

N

a

Pm
n (cos θ)m

sin θ
[αmn sinmφ− βmn cosmφ]

(12)

where
D = jωµh(2)

n (ka) (13)

and
N = kah(2)′

n (ka) + h(2)
n (ka) (14)

At this point we attempt to use orthogonality to determine the un-
known coefficients. From (11) we have

∫ 2π

0

∫ π

0
f1(θ, φ)

dPm′
n (cos θ)
dθ

sin θ cosm′φdθdφ

=
∞∑
n=0

n∑
m=0

Dm

∫ π

0
Pm
n (cos θ)

dPm′
n′ (cos θ)
dθ

dθ

∫ 2π

0
cosm′φ[γmn sinmφ− δmn cosmφ]dφ

+
∞∑
n=0

n∑
m=0

N

a

∫ π

0

dPm
n (cos θ)
dθ

dPm′
n′ (cos θ)
dθ

sin θdθ

∫ 2π

0
cosm′φ[αmn cosmφ+ βmn sinmφ]dφ

(15)

Since ∫ 2π

0
cosm′φ cosmφdφ =

{
0 for m �= m′
2π
εm

for m = m′ (16)

where

εm =
{

1 for m = 0
2 for m �= 0 (17)

and ∫ 2π

0
cosm′φ sinmφdφ = 0 for all m and m′ (18)
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Equation (15) may be written as

∫ 2π

0

∫ π

0
f1(θ, φ)

dPm′
n′ (cos θ)
dθ

sin θ cosm′φdθdφ

=
∞∑
n=0

2πDm′

εm′

∫ π

0
(−δm′n)Pm′

n (cos θ)

+
∞∑
n=0

2Nπ

εm′a

∫ π

0
(αm′n′)

dPm′
n (cos θ)
dθ

dPm′
n′ (cos θ)
dθ

sin θdθ

(19)

from equation (12) we have

∫ 2π

0

∫ π

0
m′f2(θ, φ)Pm′

n′ (cos θ) sinm′φdθdφ

=
∞∑
n=0

n∑
m=0

Dm′
∫ π

0

dPm
n (cos θ)
dθ

Pm′
n′ (cos θ)dθ

∫ 2π

0
sinm′φ[γmn cosmφ+ δmn sinmφ]dφ

−
∞∑
n=0

n∑
m=0

N

a
m

∫ 2π

0

∫ π

0
Pm′
n′ (cos θ)

Pm
n (cos θ)m

sin θ

[αmn sinmφ− βmn cosmφ] sinm′φdθdφ

(20)

where D and N are described by equations (13) and (14), respectively.
By using equation (18) and

∫ 2π

0
sinm′φ sinmφdφ =

{
0 for m �= m′
2π
εm

for m = m′ (21)

we can rewrite equation (20) as

∫ 2π

0

∫ π

0
m′f2(θ, φ)Pm′

n′ (cos θ) sinm′φdθdφ

=
∞∑
n=0

2Dm′π
εm′

∫ π

0
δm′n

dPm′
n (cos θ)
dθ

Pm′
n′ (cos θ)dθ

−
∞∑
n=0

2N
εm′a

m′2π
∫ π

0
αm′nP

m′
n′ (cos θ)

Pm′
n (cos θ)

sin θ
dθ

(22)
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Now by subtracting equation (22) from (19) we have

−2Dπm′

εm
δm′n

∞∑
n=0

[
Pm′
n (cos θ)

dPm′
n′ (cos θ)
dθ

+ Pm′
n′ (cos θ)

dPm′
n (cos θ)
dθ

]
dθ

+
2N
εma

αmn

∫ π

0
sin θ

[
dPm′

n (cos θ)
dθ

dPm′
n′ (cos θ)
dθ

+
m′2

sin2 θ
Pm′
n′ (cos θ)Pm′

n (cos θ)

]
dθ

=
∫ 2π

0

∫ π

0

[
f1(θ, φ)

dPm′
n′ (cos θ)
dθ

sin θ cosmφ

−mf2(θ, φ)Pm
n (cos θ) sinmφ

]
dθdφ (23)

using the following orthogonality relationships [6]

∫ π

0

[
dPm′

n (cos θ)
dθ

dPm′
n′ (cos θ)
dθ

+
m′2

sin2 θ
Pm′
n′ (cos θ)Pm′

n (cos θ)
]

sin θdθ

=

{
0 for n �= n′

2n(n+ 1)(n+m)!
(2n+ 1)(n−m)! for n = n′ (24)

and

∫ π

0

[
Pm′
n (cos θ)

dPm′
n′ (cos θ)
dθ

+ Pm′
n′ (cos θ)

dPm′
n (cos θ)
dθ

]
dθ = 0 (25)

equation (23) can be rewritten as

2N
εma

αmn

[
2n(n+ 1)(n+m)!
(2n+ 1)(n−m)!

]

=
∫ 2π

0

∫ π

0

[
f1(θ, φ)

dPm
n (cos θ)
dθ

sin θ cosmφ

−mf2(θ, φ)Pm
n (cos θ) sinmφ

]
dθdφ

(26)
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Therefore,

αmn =
za

N

∫ 2π

0

∫ π

0


f1(θ, φ)dP

m
n (cos θ)
dθ

sin θ cosmφ

−mf2(θ, φ)Pm
n (cos θ) sinmφ


 dθdφ (27)

where
z =

1
π

(2n+ 1)(n−m)!
2n(n+ 1)(n+m)!

εm
2

(28)

To determine βmn we can rewrite equations (11) and (12) in the fol-
lowing ways:∫ 2π

0

∫ π

0
f1(θ, φ)

dPm′
n′ (cos θ)
dθ

sinm′φ sin θdθdφ

=
∞∑
n=0

n∑
m=0

Dm

∫ π

0
Pm
n (cos θ)

dPm′
n′ (cos θ)
dθ

dθ

∫ 2π

0
sinm′φ[γmn sinmφ− δmn cosmφ]dφ

−
∞∑
n=0

n∑
m=0

N

a

∫ π

0
sin θ

dPm
n (cos θ)
dθ

dPm′
n′ (cos θ)
dθ

dθ

∫ 2π

0
sinm′φ[αmn cosmφ+ βmn sinmφ]dφ

(29)

and ∫ 2π

0

∫ π

0
f2(θ, φ)m′Pm′

n′ (cos θ) cosm′φdθdφ

=
∞∑
n=0

2Dm′

εm′

∫ π

0
γmn

d

dθ
Pm′
n (cos θ)Pm′

n′ (cos θ)dθ

+
∞∑
n=0

2Nm′2

εm′a

∫ π

0
βmnP

m′
n′ (cos θ)Pm′

n (cos θ)dθ

(30)

and via a similar approach the unknown coefficient βmn is determined
as

βmn =
za

N

∫ 2π

0

∫ π

0


f1(θ, φ)dP

m
n (cos θ)
dθ

sinmφ sin θ

+mf2(θ, φ)Pm
n (cos θ) cosmφ


 dθdφ (31)
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Similarly γmn and δmn may be determined:

γmn =
z

D

∫ 2π

0

∫ π

0


 mf1(θ, φ)Pm

n (cos θ) sinmφ

+f2(θ, φ)dP
m
n (cos θ)
dθ

cosmφ sin θ


 dθdφ (32)

δmn =
z

D

∫ 2π

0

∫ π

0


 −mf1(θ, φ)Pm

n (cos θ) cosmφ

+f2(θ, φ)dP
m
n (cos θ)
dθ

sinmφ sin θ


 dθdφ (33)

We now focus our attention to determining the far field components of
Eθ and Eφ

Eφ = −Z0Hθ (34)
Eθ = Z0Hφ (35)

where Z0 is the characteristic impedance of free space. The electric
fields are related to the magnetic fields Hθ and Hφ through Z0 .
By taking the large argument approximations of the spherical Hankel
functions, we obtain

h(2)
n (kr) � jn+1e−jkr

kr
for r � λ (36)

From (36) we obtain

1
r

d

dr

[
rh(2)

n (kr)
]

=
jn+1

kr
(−jke−jkr) (37)

After simplifying equation (37) we have

1
r

d

dr

[
rh(2)

n (kr)
]

=
jn

r
e−jkr for r � λ (38)

Substituting from equations (34) and (37) into (7) we have

Hθ(r, θ, φ) =
∞∑
n=0

n∑
m=0

−jωεj
n+1e−jkr

kr

Pm
n (cos θ)m

sin θ
[αmn sinmφ− βmn cosmφ]

+
∞∑
n=0

n∑
m=0

jne−jkr

r

d

dθ
Pm
n (cos θ)[γmn cosmφ+ δmn sinmφ] (39)
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After simplifying we have

Hθ(r, θ, φ) =
∞∑
n=0

n∑
m=0

jnωεe−jkr

kr

Pm
n (cos θ)m

sin θ
[αmn sinmφ− βmn cosmφ]

+
∞∑
n=0

n∑
m=0

jne−jkr

r

d

dθ
Pm
n (cos θ)[γmn cosmφ+ δmn sinmφ] (40)

Substituting from equations (27), (31), (32) and (33) in terms of αmn ,
βmn , γmn , δmn , respectively, into equation (40) yields:

Hθ(r, θ, φ) =
e−jkr

4πrη

∞∑
n=0

(2n+ 1)
n(n+ 1)

jn




j

h
(2)
n (ka)

2π∫
0

π∫
0

[
f1(θ′, φ′)

d2Pn(ξ)
dθdφ

+ f2(θ′, φ′) sin θ′
d2Pn(ξ)
dθdθ′

]
dθ′dφ′

+
ka

N

2π∫
0

π∫
0

[
f1(θ′, φ′)

sin θ′

sin θ
d2Pn(ξ)
dφdθ′

+
f2(θ′, φ′)

sin θ
d2Pn(ξ)
dφdφ′

]
dθ′dφ′




(41)
where from [7]

Pn(ξ) =
n∑

m=0

εm
(n−m)!
(n+m)!

Pm
n (cos θ)Pm

n (cos θ′) cosm(φ− φ′) (42)

and via a similar approach

Hφ =
e−jkr

4πrη

∞∑
n=0

(2n+ 1)
n(n+ 1)

jn




j

kh
(2)
n (ka)

2π∫
0

π∫
0

[
f1(θ′, φ′)

sin θ
d2Pn(ξ)
dφdφ′

+ f2(θ′, φ′)
sin θ′

sin θ
d2Pn(ξ)
dθ′dφ′

]
dθ′dφ′

+
a

N

2π∫
0

π∫
0

[
f1(θ′, φ′) sin θ′

d2Pn(ξ)
dθdθ′

+ f2(θ′, φ′)
d2Pn(ξ)
dθdφ′

]
dθ′dφ′




(43)
It is interesting to note that both (41) and (43) do not contain any sum-
mation over m , which has been eliminated in the present formulation



278 Sarkar et al.

by utilizing the addition theorem for Legendre polynomials introduced
through (42). Also observe that the second derivatives of the Legendre
polynomials can be evaluated, for example, as

∂2Pn(ξ)
∂θ∂φ

=
∂2Pn(ξ)
∂ξ2

∂ξ

∂φ

∂ξ

∂θ
+
∂Pn(ξ)
∂ξ

∂2ξ

∂θφ
(44)

where
∂Pn(ξ)
∂ξ

=
n+ 1
1− ξ2

[ξPn(ξ)− Pn+1(ξ)] (45)

and
∂2Pn(ξ)
∂ξ2

=
n+ 1

(1− ξ2)2
{
[(2 + n)ξ2 − n]Pn(ξ)− 2ξPn+1(ξ)

}
(46)

Furthermore, for a given prespecified ka , one could precompute the
summation over n , in terms of the four “pseudo” Green’s functions
and store them. Under these conditions, one then needs to perform
only an integral over θ and φ as

Hθ �
e−jkr

4πrη

∫ 2π

0
dφ′

∫ π

0
dθ′

[
f1(θ′, φ′)G1(θ, φ, θ′, φ′)

+f2(θ′, φ′)G2(θ, φ, θ′, φ′)

]
(47)

and

Hφ =
e−jkr

4πrη

∫ 2π

0
dφ′

∫ π

0
dθ′

[
f1(θ′, φ′)G3(θ, φ, θ′, φ′)

+f2(θ′, φ′)G4(θ, φ, θ′, φ′)

]
(48)

where

G1(θ, φ, θ′, φ′) =
∞∑
n=1

(2n+ 1)
n(n+ 1)

jn

[
j

h
(2)
n (ka)

∂2Pn(ζ)
∂θ∂φ

+
ka

N

sin θ′

sin θ
∂2Pn(ζ)
∂φ∂θ′

]

(49)

G2(θ, φ, θ′, φ′) =
∞∑
n=1

(2n+ 1)
n(n+ 1)

jn

[
j sin θ′

h
(2)
n (ka)

∂2Pn(ζ)
∂θ∂θ′

+
ka

N sin θ
∂2Pn(ζ)
∂φ∂φ′

]

(50)

G3(θ, φ, θ′, φ′) =
∞∑
n=1

(2n+ 1)
n(n+ 1)

jn

[
j sin θ

h
(2)
n (ka)

∂2Pn(ζ)
∂φ∂φ′

+
ka sin θ′

N

∂2Pn(ζ)
∂θ∂θ′

]

(51)

G4(θ, φ, θ′, φ′) =
∞∑
n=1

(2n+ 1)
n(n+ 1)

jn

[
j sin θ′

h
(2)
n (ka) sin θ

∂2Pn(ζ)
∂θ′∂φ′

+
ka

N

∂2Pn(ζ)
∂θ∂φ′

]

(52)
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The integrals in (47) and (48) can efficiently and accurately be done
by the conventional Fast Fourier Transformation technique. The func-
tions G1 –G4 are called “pseudo” Green’s functions because for a true
Green’s functions, f1 and f2 would be convolved with the Green’s
functions, but here it is an integral. These equations indicate that
if for a fixed ka , the Green’s functions are precomputed and stored,
then the actual computations of (47) and (48) can be done even on a
note-book PC. If the quality of the measured data, i.e., f1(θ, φ) and
f2(θ, φ) are good (which implies that quite a few significant bits are
accurate), the derivatives in (41) and (43) can be transferred from
Pn to f1 and f2 . This may enhance the rate of convergence of the
summation over n .

In summary, the present approach offers the following features:
(1) The transformation is expressed in an analytic form.
(2) There is only one summation, i.e. over n . To obtain a relative

numerical accuracy of 10−7 in the computation of the fields,
the limit of the summation over n should be n = 1.27 ka for
ka > 60 .

(3) The derivatives can be transferred to the data (if the quality is
good) to further enhance the rate of convergence. Or equivalently
the data can be expanded in a Fourier series as is conventionally
done (at least in the first step) and the derivatives can be carried
out in an analytic fashion utilizing the FFT.

(4) For a fixed ka , all the summations over n can be precomputed
and stored on a diskette. This NF/FF transformation procedure
is equivalent to synthesizing a plane wave region using an infinite
number of point sources on a sphere having radius a and each
individual point source having a complex amplitude is given by
the “Pseudo” Green’s functions G1–G4 .

3. NUMERICAL EXAMPLES

As a first example consider a four dipole array. The dipoles are located
at the corners of a 4λ× 4λ planar surface which is in the x - y plane.
The center of the 4λ× 4λ square surface is located at x = 0.22λ and
y = 0.22λ . The plane of the array is the x - y plane. So the four
dipoles are not located symmetrically about the origin. A spherical
surface is drawn with the center defined above and a radius of 10 λ .
On that spherical surface of 20 λ diameter encapsulating the four offset
dipoles located on the x - y plane both the electric field components
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Figure 1. Comparison of exact and computed far field for φ = 0◦ cut
for a 4 dipole array at the corners of a 4λ× 4λ surface.

Eθ and Eφ are computed analytically. Next, the two field components
are used in conjunction with (41) and (43) to evaluate the far fields.
Figure 1 presents Eφ in dB for φ = 0◦ as a function of θ . Both the
exact analytical far field and the far field computed by using the present
theory are presented in Figure 1. They are visually indistinguishable.
In Figure 2, Eθ is presented in dB for φ = 90◦ as a function of θ .
Again, the analytical far fields from the four off centered dipoles and
the computed far fields are visually indistinguishable. The cross polar
components in both the figures are negligible.

Next, measured data is utilized. Consider a microstrip array consist-
ing of 32×32 uniformly distributed patches on a 1.5m×1.5m surface.
The near fields are measured on a spherical surface at a distance 1.23m
away from the antenna at a frequency of 3.3GHz. The data is taken
every 2◦ in φ and every 1◦ in θ . Measurements have been performed
using an open ended cylindrical WR284 waveguide fed with the TE11

mode. The measured data was provided by Dr. Carl Stubenrauch of
NIST [8]. Figure 3–6 compare the far field patterns obtained by the
present analytical method with the far field patterns obtained by the
numerical technique described in [8]. These numerically computed far
field patterns employ the same measured data utilizing an equivalent
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Figure 2. Comparison of exact and computed far field for φ = 90◦

cut for a 4 dipole array at the corners of a 4λ× 4λ surface.

magnetic current approach for near field to far field transformation [8].
Figure 3 describes 20 log10 |Eφ| for φ = 0◦ and various angles of θ .
Figure 4 represents 20 log10 |Eθ| for φ = 90◦ and for −90◦ < θ < 90◦ .
These are the principal plane patterns. As observed, the agreement is
good. Figures 5 and 6 show the cross polar pattern. Figure 5 de-
picts 20 log10 |Eθ| φ = 0◦ for different values of θ . Figure 6 presents
20 log10 |Eφ| for φ = 90◦ and for −90◦ < θ < 90 . The agreement
between the approach presented in this paper and the nllmerical ap-
proach for the cross polar pattern is reasonable for pattern levels above
−70 dB.

4. CONCLUSION

An alternate method is described for spherical near field to near/far
field transformation without probe correction. The advantage of this
approach is that one of the summations over m has been eliminated
by utilizing the addition theorem for Legendre polynomials. Hence the
expressions are more concise and easier to visualize. This method is
accurate, as illustrated by the performance of this method on both
synthetic and real experimental data.
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Figure 3. Co-polarization characteristic for φ = 0◦ cut for a 32× 32
patch microstrip array using analytical and numerical results.

Figure 4. Co-polarization characteristic for φ = 90◦ cut for a 32×32
patch microstrip array using analytical and numerical results.
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Figure 5. Cross-polarization characteristic for φ = 0◦ cut for a 32×32
patch microstrip array using analytical and numerical results.

Figure 6. Cross-polarization characteristic for φ = 90◦ cut for a
32× 32 patch microstrip array using analytical and numerical results.
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