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Abstract: In this work, we introduce an extension of the study of the first law of thermodynamics of
black holes based on the geometry of the extended phase space for AdS Lovelock gravities, which
includes changes in scales. As expected, the result obtained coincides with the previously known
four-dimensional case. For higher dimensions, the result is the rise of two new contributions to
the first law of thermodynamics. The first term corresponds to corrections of the usual definition
of thermodynamic volumes at the horizon due to the presence of the higher curvature terms. The
second term arises in odd dimensions, comes from the asymptotic region, and corresponds to a
scale transformation of the form ∝ δ̂ ln(l/`), with l the AdS radius and ` a parameter. A particularly
interesting case corresponds to the Chern Simons gravity where the change scale does not generate a
contribution at the asymptotic region, likely due to the Chern Simons AdS local symmetry.

Keywords: black holes thermodynamics; higher curvature gravity; higher dimensional gravity

1. Introduction

The discovery that accretion processes around a black hole can be reinterpreted as
thermodynamic processes was one of the greatest breakthroughs in theoretical physics.
In this respect, it is worth mentioning that in reference [1], it was shown that the entropy
production itself can be viewed as a Noether–conserved quantity, which certainly could be
relevant to black hole accretion processes.

The original derivation by Carter [2], Bardeen [3], Bekenstein [4], Hawking [5], and
many others, was based, roughly speaking, on the idea that in-falling matter, in pseudo-
adiabatic processes, introduces small perturbations on the black hole that can be expressed
as infinitesimal changes in the space of parameters that characterize the black hole solution.
Given that the black hole must evolve into another black hole solution, the variation of
those changes is constrained by the first law of the black hole thermodynamics, i.e., by a law of
the form:

δM = TδS + . . . , (1)

where—for a black hole—one can define a temperature T and an entropy S. Although
heretofore, there is no agreement on which micro-states give rise to this entropy, still these
results are widely accepted. In many ways, this can be considered the starting point
upon later, the holographic principle, originally proposed by t’Hooft and Susskind [6–8],
was constructed.

Although the many derivations of Equation (1) are expected to be connected, in one
way or another, there is no certainty of this [9]. In the case of asymptotically locally AdS,
one can refer to [10], where different approaches to define conserved charges are discussed.
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Therefore, the analysis of the first law of thermodynamics by means of conserved charges
is still an open question.

One can notice in Equation (1) the lack of the work term, −Pδv. Obviously, to include
such a term requires introducing definitions for both pressure and volume. This has been
conducted in many different ways, but there is a general agreement that it is necessary
to promote the mass parameter, M in Equation (1), from the energy of the system to its
enthalpy, H, such as the first law of black hole thermodynamics adopt the form:

δH = δM = TδS + ΩhδJ + ΦδQ + VδP, (2)

where V is the function of the black hole radius r+. In [11], for four dimensions, it was
proposed that the thermodynamics pressure satisfies P ∼ −Λ with Λ, the cosmological
constant. See [12,13] for different discussions on this.

The introduction of pressure P as a new thermodynamic variable in black hole ther-
modynamics determines what is called an extended phase space. However, as occurred
with the standard BH thermodynamics, this is a broad name that includes many differ-
ent derivations, as mentioned above. Because of that, many interesting results of these
improved thermodynamics have been obtained during the last decade. In reference [14],
it was shown that some charged black holes exhibit a P− V critical behavior where the
small/large black hole phase transitions are analogous to the liquid/gas phase transitions
in a Van der Waals fluid. Regarding this, in [15], the Hawking Page phase transition was
restudied. In [16], the Van der Waals behavior, re-entrant phase transitions, and tricritical
points were tested. Other examples of P−V critical behavior were discussed in [17–22].

1.1. Change of the Cosmological Constant in Four Dimensions and Generalizations

As a starting point in the discussion, let us review the consequences of considering
changes in the cosmological constant in four dimensions. The simplest case where this
can be realized is the four-dimensional Schwarzschild–AdS spaces. In Schwarzschild
coordinates, the line element reads:

ds2 = − f (r)2dt2 +
1

f (r)2 dr2 + r2(dθ2 + sin(θ)2dφ2) (3)

with:

f (r)2 = 1 +
r2

l2 − 2
M
r

.

Here, the cosmological constant is given by−3l−2. Remarkably, one can interpret f (r+) = 0
as a curve in a space defined by the coordinates (r+, M, l) and from this to study the
thermodynamics of this solution. This is called the extended phase space.

It is obvious that any modification of the cosmological constant, due to Λ = −3l−2,
can be reinterpreted as a change of the AdS radius l2 of the geometry. This transformation,
in turn, can be promoted to a change of scale of the geometry. To observe this, let us
consider Λ = −3l−2, and the transformation l → (1 + σ)l = l + δl, with |σ| � 1. This
transformation can rewritten as:

− 2Λ
√

det gd4x =
6
l2

√
det gd4x ⇒ 6

l2 (1− 2σ)
√

det gd4x =
6
l2

√
det g̃d4x (4)

where g̃µν = (1− σ)gµν. This corresponds to a rigid Weyl transformation.
A consequence of the previous rigid transformation of scale at the bulk is the induction

of a Weyl transformation at the conformal infinity [23–25]. For a review of conformal
transformations in this context, see [26]. This has some interesting consequences in the
context of the AdS/CFT, as discussed in [27].

Now, one can notice that most of the ideas mentioned above are not restricted to only
Einstein gravity or four dimensions. To address the problem in higher dimensions, we
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will study only Lovelock gravity because this preserves the same features of GR in four
dimensions [28].

To begin with a discussion, one can notice that in four dimensions, in the absence of
matter, there are only two coupling constants. This scenario changes in higher dimensions
where additional terms can be incorporated in the Lagrangians, and with them, additional
coupling constants arise. In principle, for each of these new coupling constants, one could
introduce an additional extra dimension in the space of the parameters mentioned above.
Unlike four dimensions moving in that enlarged space of parameters, we can modify
the asymptotia of the solutions. For Lovelock gravity, this can be confirmed as follows.
Lovelock gravity has different k-fold degenerated ground states, each being a manifold of
constant curvature λ2

i with λi and k defined by the coupling constants in the Lagrangian;
see below. Evidently, if the coupling constants vary independently, not only the values
of λ2

i would change, but also the degeneration of each of the ground states k and also the
asymptotia of the non-ground state solutions. To avoid this, one can make each of the
constant functionals dependent on a single scale, using the one provided by the AdS radii.
This maintains the asymptotia and, at the same time, allows us to study the changes of that
scale. This can be considered one of the simplest generalizations of changing the cosmological
constant in four dimensions. Conversely, only changing the cosmological constant and not
the rest of the coupling constants in the Lovelock Lagrangian accordingly, see below, would
spoil the asymptotic behavior of the solutions.

1.2. Thermodynamics

As mentioned above, there are several approaches to construct the thermodynamics
of a black hole. In this work, a generalization of Wald’s deviation [29] that considers
transformation of the form (4) will be explored. In [30], a similar idea was explored in four
dimensions in terms of the cosmological constant.

In the original proposal by Wald, the thermodynamics arises as a consequence of
changes in parameters that define the classical solutions. In this context, to be on-shell
replaces the thermal equilibrium and the variation of the parameter becomes analogous
to the more standard quasi-static evolution of the thermodynamics. The variation of
parameters originally discussed in [31] corresponds to the variation of the Hamiltonian
charges expressed in terms of the variations of the Noether’s charges and addition boundary
terms. The entropy is obtained in terms of the Noether charge associated with the Killing
vector that defines the (Killing) horizon of the geometry [29].

It is worth noticing that Wald’s approach requires implementing certain considerations
before the computations can be performed properly. For asymptotic flat spaces, the process
of defining conserved charge can be cumbersome but it is usually free of divergences.
However, the AdS asymptotia requires the introduction of a regularization process to define
the Noether’s charges computed at infinity. To our knowledge, in doing this, any method
defines charges that are independent of AdS radius l (or the cosmological constant). The
consequences of this are two-fold. On one hand, this seems to introduce to a sort regulator
or a naïve regularization parameter into the computations defined as r/l with r, a radial
coordinate. On the other hand, the independence on l, or equivalently on the cosmological
constant, of the conserved charges is usually considered a hint of a conformal pedigree
of these charges, in spite of the gravitational theory is not conformal. This last idea is
reinforced by the fact that it is direct to check that the Kerr–Newman–AdS thermodynamics
behaves as the thermodynamics of a conformal theory, see, for instance [32]. See [33],
about the correlation between the emission modes and temperature of the event horizon in
Einstein Gauss Bonnnet gravity.

Unlike the charges computed at (the conformal) infinity, the charges computed at
the horizon are affected by any change of scale. This naturally implies that additional
terms must arise to compensate the transformation of scale if a thermodynamic relation
holds. This must be valid for any method to obtain the thermodynamics, including those
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mentioned above and the Hamiltonian approach [34]. The additional terms for Einstein
gravity in four dimensions [35] is given by:

vδP =
4
3

πr3
+δ

(
1
l2

)
. (5)

where P = l−2 and V = 4
3 πr3

+ coincide with the naive definition of volume of a black hole
whose radius is r+. This is not the geometric volume.

Therefore, it is of physical interest to explore the physical consequences in the first
law of thermodynamics of incorporating changes of scales (which preserve the asymptotic
structure), and testing the contributions of the Noether charge to the first law, both at the
horizon, as the asymptotic region.

In the next sections, this problem will be extended in general terms to any asymptoti-
cally local AdS solutions of Lovelock gravity. The fundamental result is the definition of
thermodynamic volumes which depend of the theory and a universal expression for the
thermodynamics pressure given by P ∼ l−2. This parallels the dependencies of the Entropy
and Temperature, respectively, in the sense that the temperature also has a purely geometri-
cal origin, while the expression of entropy depends on the theory considered [29,36]. To do
this, an extension of the formalism developed in [31] that incorporates changes of scales
that preserve the asymptotic structure is constructed. For simplicity, the computations will
be carried out in first order formalism of gravity. The connection with the second order
formalism (metric formalism) will be explored elsewhere.

2. Phase Space and Charges
2.1. Noether Charges

Let us start by rephrasing the construction of the Noether currents associated with
symmetry. In general, the most general infinitesimal transformation of a field φ(x) is
given as:

x → x′ = x + ξ(x) and φ(x)→ φ′(x′). (6)

Now, the infinitesimal transformation, defined as δφ = φ′(x′) − φ(x), can be split into
δφ = φ′(x′)− φ(x′) + φ(x′)− φ(x). Here, one can recognize the usual function variation
δ0φ = φ′(x′)− φ(x′) and the Lie derivative, φ(x′)− φ(x) = Lξφ, along the diffeomorphism
defined by ξ(x).

Now, a transformation that defines a symmetry of an action principle is:

I =
∫

Md

L(φ) (7)

where L is d−form Lagrangian, provided L(Œ) and L(Œ + ffiŒ) have the same equations
of motion (EOM). This can be written formally in terms of the transformations as:

δL(φ) = δ0L(φ) +LξL(φ) = dΨ. (8)

where:
δ0L(φ) = EOMφδ0φ + dΘ(δ0φ, φ). (9)

where EOMφ stands for the equations of motion associated with φ. Here, Θ(δ0φ, φ) is
called the boundary term and it is worth stressing that in order to have a proper action
principle, Θ(δ0φ, φ) must vanish on the boundary conditions. Finally, it is worth recalling
that LξL = dIξ L since dL ≡ 0. Therefore, for any symmetry transformation it is possible
to define:

d(Θ + Iξ L(φ)−Ψ) = −EOMφδ0φ. (10)

With this in mind, one can define the n− 1-form current,

∗J = Θ(δ0φ, φ) + Iξ L(φ)−Ψ (11)
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whose divergence vanishes on the shell, i.e., d∗J|On Shell = 0. This is called the Noether
current. This implies that at least locally, ∗J = dQ. In the next section, the exact form of this
current will be discussed for Lovelock gravity [25].

The definition of Noether charge ∗J is just a first step to define a conserved charge. In
fact, to compute from Equation (11) a conserved charge is necessary to impose at least two
additional conditions. First, the manifold Md must have at least an asymptotic time-like
Killing symmetry. For simplicity, one can consider a stationary space Md = R⊗ Σd−1,
where R stands for a time direction, but in general, it is only necessary that R⊗ ∂Σ∞ ⊂ ∂Md.
The second condition is that the transformation of φ must be defined by a (Killing) symmetry
in the space of solutions, i.e., by a transformation that maps solutions into solutions. In the
case of diffeomorphisms, where δφ = 0 = δ0φ + Lξ φ, this last condition merely implies
that ξ must be a Killing vector of Md.

One aspect to consider, in addition, is that it is necessary to have a proper action
principle, meaning that the action principle must be finitely evaluated on any solution
that satisfies the boundary conditions and having an extreme subjected to those boundary
conditions. This implies that Θ(φ, δ0φ) must vanish (on shell), provided the boundary
conditions are satisfied. In addition, the action must have proper conserved charges. For
asymptotically AdS spaces, this implies the need to implement a regularization process on
the action principle. See, for instance [32,37,38]. Essentially, the process of regularization
corresponds to the addition of terms to the action principle that do not alter the EOM but
satisfy the three aforementioned conditions. In order to do that, there are only two options:
the addition of boundary terms Φ or the addition of topological densities Φ̂. This last is
because any topological density, Φ̂, satisfies δ0Φ̂ = dδ0Φ. For both options, Φ must be a
suitable function of the fields. Therefore, the improved action principle must be either:

L→ L′ = L + dΦ or L→ L′ = L + Φ̂. (12)

The variation of the improved action principle is given by:

δ0 I′ =
∫
M

δL′ =
∫

∂M
Θ(δ0φ, φ) + δ0Φ. (13)

Under the suitable boundary conditions it must be satisfied that:

(Θ(δ0φ, φ) + δ0Φ)|∂M = 0. (14)

From now on, for notation, it will be denoted as:

Θ′(δ0φ, φ) = Θ(δ0φ, φ) + δ0Φ. (15)

It must be recalled that both the improved action principles, I′, and the improved Noether
charges,

∗J′ = Θ′(δ0φ, φ) + Iξ L′(φ)−Ψ, (16)

must be finite, in order to have a well defined action principle. This imposes strong
restrictions. Fortunately, for AdS spaces, this can be accomplished. Finally, it will be
denoted that the local expression of the current ∗J′ = dQ′. It must be stressed that Q′ is
connected with conserved charges only if ξ is a Killing vector.

2.2. The Presymplectic Form and Charges

In general, the generator, in Hamiltonian formalism, of the diffeomorphisms associated
with the transformation x → x + ξ is given by:

G(ξ) =
∫

Σ
Hµξµ +

∫
∂Σ

g(ξ). (17)

g(ξ) is a n− 2-form whose presence is necessary to construct a proper generator on the
phase space of the theory [34]. The Hamiltonian charges come from this definition as the
value on-shell for the Killing vector, i.e.,
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G(ξ)|on-shell =
∫

Σ
Hµ︸︷︷︸
=0

ξµ

∣∣∣∣∣∣∣
on-shell

+
∫

∂Σ
g(ξ)| on-shell

=
∫

∂Σ
g(ξ)| on-shell (18)

It must be stressed that this is not modified by the presence of sources since, in general, if
they are presented, they must be included in the definitions Hµ and g(ξ).

2.3. An Extended Covariant Phase Space Formalism

Before proceeding it is worth highlighting some of the elements of the original con-
struction of the covariant phase space method [29,31]. In principle, for a given Killing vector,
the corresponding Noether and Hamiltonian charges differ. Fortunately, it is possible to
connect them on shell by the phase space method [31]. Let us define the d− 1-form:

χ = δ1Θ′(φ, δ2φ)− δ2Θ′(φ, δ1φ), (19)

where δ1 and δ2 stand for transformations of the form Equation (6). As mentioned above,
for simplicity, it will be considered only the stationary case Md = R× Σd−1. In addition, it
must be imposed that ∂Σd−1 = ∂Σ∞ ⊕ ∂ΣH where ∂ΣH is to be connected with existence of
a Killing horizon in the manifold. Under these conditions [31],

Ξ =
∫

Σ
χ = 0, (20)

provided either δ1 or δ2, are transformations along the space of solutions, as mentioned above.
The identity in Equation (20) contains the thermodynamics of a black hole in [29] pro-

vided one of the transformation is generated as the generator of the Killing horizon, ξ and
the second one corresponds to variation along the parameters of the solution. As mentioned
above, under diffeomorphisms, it is satisfied that δ0φ = δξφ = −Lξ φ, following [29,31],
and therefore:

χ(φ, δξ φ, δ̂φ) = d
(
δ̂(Q′) + Iξ Θ′(φ, δ̂φ)

)
. (21)

Finally, Equation (20) can be expressed as the conservation relation between the horizon and
asymptotic region:∫

∂Σ∞
δ̂(Q′) + Iξ Θ′(φ, δ̂φ) =

∫
∂ΣH

δ̂(Q′) + Iξ Θ′(φ, δ̂φ). (22)

Remarkably, see [31], the relation above can be restated as the variation on shell, δ̂, at any
of the boundaries of the generator of the diffeomorphism G(ξ). Therefore,

δ̂G(ξ)|∂Σ =
∫

∂Σ
δ̂g(ξ) =

∫
∂Σ

δ̂(Q′) + Iξ Θ′(φ, δ̂φ), (23)

where ∂Σ stands for the asymptotic region or the horizon. In this way, in principle, one
can compute (conserved) Hamiltonian charges g(ξ) by direct integration of Equation (23),
provided the boundary conditions on each boundary hold.

On this point, it is necessary to comment on the difference between δ0, the functional
variation, and δ̂. It is worth recalling that Θ′(φ, δ0φ) = 0 must be guarantied by the
boundary conditions. Conversely, it is possible that Θ′(φ, δ̂φ) 6= 0 because the boundary
condition might not suffice. Fortunately, the vanishing of Θ′(φ, δ̂φ)|∂Σ is not a requirement
for Equation (23) to hold. A simple example of this occurs for GR for asymptotic flat spaces
(Λ = 0) under the usual boundary conditions. See, for instance [39], for a discussion.

The previous discussion became utmost relevant when it comes to the Killing vectors
and its associated charges. In general, one is concerned only with the case where ξ stands
for either time translation, rotations, or a linear combination of them that may define a
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Killing horizon on the space. It is direct to notice [40] that for rotations, the second term
of Equation (23) vanishes identically, implying that Noether and Hamiltonian charges
associated with rotational symmetries are the same. Conversely, for the time translation,
the second term of Equation (23) may contribute, and thus, the Noether and Hamiltonian
charges may differ in the case. This will be discussed in detail in the next section for gravity.

3. Lovelock Action Principle

In the previous section, both Hamiltonian and Noether charges have been identified
and related. In this section, these results will be applied on Lovelock gravity—one of the
simplest generalization of General Relativity in higher dimensions d > 4. The Lovelock
Lagrangian is the addition, with arbitrary coefficients {α̃p}, of the lower dimensional Euler
densities [28,41]. The Lagrangian can be written as:

L =
[(d−1)/2]

∑
p=0

α̃pRped−2p (24)

where [(d− 1)/2] is the integer part of (d− 1)/2, and:

Rped−2p = Ra1a2 ∧ . . . ∧ Ra2p−1a2p ∧ ea2p+1 ∧ . . . ∧ ead εa1 ...ad . (25)

The variation of this action principle is given by:

δ0L =
[(d−1)/2]

∑
p=0

pα̃pd(δ0ωRp−1ed−2p) + EOMeδ0e + EOMωδ0ω, (26)

where [41]:

EOMe =
[(d−1)/2]

∑
p=0

(d− 2p)α̃pRped−2p−1 = 0. (27)

On the other hand, in general, EOMω = 0 is satisfied by considering the Levi–Civita
connection, i.e., if Ta = dea + ωa

0 b ∧ eb = 0 is satisfied. It is worth mentioning that for the
Chern–Simons gravity [41], the Levi–Civita connection, though a solution, is not the most
general solution to EOMω. From now on, the ∧-product will be omitted as its presence is
self explanatory on the equations.

3.1. The Ground States and Regularization

The analysis of the asymptotic structure of Lovelock gravity solutions can be found,
for instance, in [42]. Let us consider that α̃p = 0 for p > I with [(n− 1)/2] ≥ I ≥ 1. Now,
one can notice that the equations of motion can be written as:

Gad = (Ra1a2 + κ1ea1 ea2) . . . (Ra2I−1a2I + κIea2I−1 ea2I )ea2I+1 . . . ead−1 εa1 ...ad = 0, (28)

where {κi} is a set of constants to be determined from the set {α̃p}. Now, it is straight-
forward to notice that any space of constant curvature κi is a solution of the EOM. These
could be identified as the ground states of the theory, but this is not yet the final situa-
tion. By introducing a constant curvature ansatz Rab = xeaeb, Equation (28) becomes
Gad = Pl(x)ea1 . . . ead−1 εa1 ...ad , where Pl(x) is the polynomial:

Pl(x) =
I

∑
p=0

α̃pxp = (x + κ1) . . . (x + κI) =
I

∏
i=1

(x + κi). (29)

One can notice that the set {κi} corresponds to the zeros of Pl(x), which, in general, can be
complex numbers with a non-null imaginary part. This restricts the number of potential
ground states to be defined by {α̃p} and can be called a dynamical selection of the ground
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sates. By the same token, one can assert that the positive or null κi defines the possible
asymptotic behaviors of the solutions of Equation (28), as those solutions must approach
one of the ground states asymptotically. The case of a κi < 0, which would correspond to a
dS ground state, stands apart since there are no asymptotic regions in this case. It is worth
mentioning that, as noticed in [43], in certain cases, the definition of a ground state can be
extended to non-constant curvature spaces.

To proceed beyond the ground state solution, let us consider the case where κ1 =
. . . = κk = l−2 in Equation (29), for some k ≤ I, with l ∈ R− {0}. κi 6= l−2 for I ≥ i > k.
This corresponds to the existence of a k-fold degenerate solution of Pl(x) = 0. In this case,
Equation (28) can be written as:

(
R +

e2

l2

)k([(d−1)/2]−k

∑
q=0

β̃qRqed−2k−2q−1

)
= 0, (30)

where the β̃q are arbitrary coefficients. The original α̃p coefficients, mentioned above, can
be written as:

α̃p =
1

d− 2p

[(d−1)/2]−k

∑
j=0

l2(j−k)
(

k
p− j

)
β̃ j. (31)

Once this is explicit, one can realize that the respective associate family of solutions,
satisfying Equation (30), must behave such that lim

x→∂Σ∞
Rab = −l−2eaeb.

3.2. Problems and a Solution

The Lovelock Lagrangian presents three problems. It is direct to confirm that the
Lagrangian asymptotically becomes proportional to the element of volume of the space
and therefore the action principle in Equation (24) diverges.

Second, by noticing that the boundary term is given by:

Θ(ω, e, δω) = δωab ∂L
∂Rab =

[(d−1)/2]

∑
p=0

pα̃pδωRp−1ed−2p, (32)

it is direct to realize that there is no proper set of boundary conditions under which this
can vanish because asymptotically lim

x→∂Σ∞
δωRp−1ed−2p ≈ δωed−2 and ed−2 diverges.

Finally, one can notice that the Nöther current associated with the diffeomorphisms,
x → x + ξ, which is given by [32]:

∗J = −d
(

Iξ ωab ∂L
∂Rab

)
, (33)

where:
∂L

∂Rab =
[(d−1)/2]

∑
p=0

pα̃pεabc1 ...cd−2
Rc1c2 . . . Rc2p−3c2p−2 ec2 p−1 . . . ecd−2 , (34)

becomes proportional to the spatial volume element, ed−2
∣∣∣
Σ

, and thus it diverges as well.
These three problems can be solved simultaneously by the introduction of a regulator

in the action principle [44]. In [44], for even dimensions, and later generalized in [37,38,45],
a different method based on the addition of topological densities was introduced. This
method is sketched in Appendix A.

The boundary conditions for an internal boundary, meaning the event horizon of a
black hole ∂ΣH, will be discussed in the sections. At the horizon, see Equation (32), is
possible just fixing ωab as no divergences might come from ∂L/∂Rab. This naïve condition
actually fixes the temperature [46] of the black hole since the surface gravity is defined by
the second fundamental form of the horizon which, in turn, is the pull back of ω onto the
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horizon. In the next sections this will be discussed for a static geometry where the relation
between fixing ωab and fixing the temperature of the horizon manifests.

4. Scale Transformations and an Improved Presymplectic Form

Before proceeding, it is worth it to comment on the EOM (30). In an AdS/CFT
scenario, one can conjecture that somehow each different theory of gravity must correlate
to a different conformal theory on the conformal infinity. Therefore, upholding the form of
the EOM must be relevant in an AdS/CFT scenario as a way to be able to identify a single
family of gravitational theories, given their common asymptotic form, see Equation (58)
below, with a single family of would-be dual CFT living on the conformal infinity. On the
other hand, it is direct to check that the independent variation of the coefficients α̃p spoils
the form of equations of motion (30). Because of that, in this work, the variation of the
α̃p would be constrained to maintain the form of Equation (24). This differs from most
of the literature, see, for instance [14,15,47]. The difference arises because, even though
the AdS radius l and the cosmological constant are connected, in order to maintain the
form of Equation (30), each of the α̃p in the Lovelock Lagrangian, with the exception of
α̃1 the Newton constant, must vary along l → l + δ̂l and they must do it in a specify way.
Obviously, this can be expected to render different results, and in particular, different
definitions for thermodynamic pressure and volume.

In this work, it is assumed that l is a property of the theory; this differs from [48],
where the cosmological constant in four dimensions is generated by a three-form or the
most usual generation by the potential of a scalar field. In fact, the construction of the
extended covariant space method below will treat l as an additional coordinate in the space
parameters. In the same fashion, δl−2 is to be considered an additional (co-)direction in the
co-tangent space of the space of parameters. One can be concerned that l, from a physical
point of view, not being a conserved charge, is essentially different from M, J, or the rest
of the conserved charges, and yet is treated in a similar footing with them. From a mathe-
matical point of view, and in principle, this is similar to the considered l−2—an intensive
quantity in thermodynamics where the conserved charges are the extensive variables.

Now that it has been established that the variation of l must preserve the EOM in
Equation (31), it is necessary to implement how this will be done. Let us consider the
infinitesimal global scale transformations:

e→ (1 + σ)−1e, (35)

with |σ� 1|. It is straightforward to check that this preserves the EOM in Equation (31).
These transformations can be reshaped, for convenience, into:

l → l′ = (1 + σ)l = l + δ̂l. (36)

Now, by a direct (dimensional) analysis, one can notice that the coefficients α̃p, that give
rise to Equation (30), not only must depend on l but they do it with different powers of
l. Therefore, in order to vary them along l → l + δ̂l, it is convenient to make an explicit
dependency on l by defining a new set of coefficients {αp} functionally independent of l. To
clarify the analysis, let L be the unit of length, after fixing c = h̄ = κb = 1. Notice that with
these definitions, the action principle is dimensionless, L0. By the same token, the units
are given as follows: [energy (and enthalpy)] = L−1, [entropy] = L0, [temperature] = L−1

and [force] = L−2 in any dimension. Finally, [volume] = Ld−1 and [pressure = force/area]
= L−d, as expected.

The next consideration comes from recognizing the presence of quotient e/l in R +
(e/l)2 = 0 and realizing that ea/l is dimensionless. With this in mind, one can introduce
a criterion to redefine the coefficients α̃p. One can notice that in four dimensions, the
gravitational constant does not depend on the scale, and this can be extended to the
corresponding Newton constant, defined by α̃1 (the constant accompanying the Ricci scalar
in the Lovelock action), in any dimension. This imposes that α1 = α̃1 and is consistent with
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α̃1 having units L2−d. [α̃1] = L2−d rules out any dependency of the standard gravitational
force on l.

The dependency of the rest of the coefficients follows the same rule, and thus, in
order to comply with the units, one must define α̃p = l2p−2αp, where the αp coefficients are
functionally independent of l and satisfy [αp] = L2−d ∀p. This yields:

L =
[(d−1)/2]

∑
p=0

l2p−2αpRped−2p = ld−2
[(d−1)/2]

∑
p=0

αp Rp
( e

l

)d−2p

︸ ︷︷ ︸
L0

. (37)

After this analysis of the dependency on l of the coefficients, one can construct a
pre-symplectic form that incorporates the l → l + δ̂l transformation. This was proposed
in [30] for the four dimensional Einstein Hilbert action in similar terms. This yields,

δ̂L = ∑
p

l2p−2 pαpd
(

δ̂(ω)Rp−1ed−2p
)
+ (2p− 2)αpl2p−3δ̂l

(
Rped−2p

)
. (38)

Now, for notation, let us assume that last term is a total derivative, i.e., (2p− 2)αpl2p−3δ̂l(
Rped−2p

)
= dθp . This is direct to prove, see below, for a static space. Therefore,

δ̂L = ∑
p

l2p−2 pαpd
(

δ̂(ω)Rp−1ed−2p
)
+ dθp. (39)

Before concluding this subsection, it is worth mentioning that a transformation l →
l + δ̂l induces at the boundary R× Σ∞ a rigid Weyl transformation. However, considering
a potential AdS/CFT interpretation, and the fact that a conformal structure should not
be altered classically by this kind of transformation, then it would become necessary to
promote R× Σ∞ to a representative of a family of conformal manifolds, as defined, for
instance, in [26].

4.1. Regularization in Even Dimensions

In d = 2n dimensions, the regularization can be performed by adding the Euler density
with an adequate coupling constant. This case is discussed in detail in [32] and sketched in
Appendix A. The Lagrangian changes according to:

L→ L′ = l2n−2
n−1

∑
p=0

αpRp
( e

l

)2(n−p)
+ αnRn (40)

where:

αn = − l2n−2

n

n−1

∑
p=0

pαp(−1)n−p, (41)

We must stress that in this case, regularization corresponds to the completion of the
Lovelock polynomial, by including the Euler density with a very particular coupling
constant αn. The corresponding improved Noether charge is given by the expression,

∗J′ = −d
(

Iξ ωab ∂L′

∂Rab

)
and Q′ = −Iξ ωab ∂L′

∂Rab (42)

Now, using this definition, the improved presymplectic form has the form:

δ̂Θ′(φ, δξ φ)− δξ Θ′(φ, δ̂φ) =
n

∑
p=0

d
(

δ̂(Qp) + Iξ

(
l2p−2δ̂(ω)Rp−1ed−2p + θp

))
(43)

where:
Qp = −l2p−2 pαp

(
Iξ ω
)

Rp−1ed−2p. (44)
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A last relevant comment is in place. In Equation (43), one can observe the presence of:

Iξ

(
n

∑
p=0

l2p−2δ̂(ω)Rp−1ed−2p

)
, (45)

which vanishes by construction on ∂Σ∞ due to the (asymptotic) boundary conditions. See
Appendix A for that construction.

4.2. Regularization in Odd Dimensions

The regularization of the Lovelock action for asymptotic AdS spaces in d = 2n + 1
dimensions differs from the even-dimensional case. The process of regularization in odd
dimensions requires considering boundary terms that cannot be expressed in a closed from
in terms of Rab and e. The regulator can be expressed, however, in terms of the second
fundamental form one form Ki, which contains the extrinsic curvature, the intrinsic two form
curvature of the boundary Rij as well as the pullback of the vielbein onto the boundary. For
a discussion, see [37,38,45,49], and a review can be found in Appendix A. In this case, the
regularized action principle is given by:

I′ =
∫
M

l2n−2
n

∑
p=0

αpRp
( e

l

)2(n−p)

+ κ
∫

∂M∞

∫ 1

0

∫ t

0

(
Ke
(

R̃ + t2(K)2 + s2 e2

l2

)n−1)
dsdt (46)

where:

κ =
2l2n−2

n

(
n

∑
p=0

p(−1)2n−2pαp

)
Γ
(

n + 1
2

)
Γ(n)
√

π
(47)

with R̃ and K stand for the Riemann two-form and extrinsic curvature one-form respectively
of the boundary ∂M∞ = R× ∂Σ∞.

In order to proceed, we must carefully discuss the variation, including the change of
scale. This is given by:

δ̂I′ = −
∫

∂MH

n

∑
p=0

(
l2p−2δ̂(ω)Rp−1e2(n−p)+1 + θp

)
+

∫
∂M∞

n

∑
p=0

θp

+ 2κ(n− 1)δ̂l
∫

∂M∞

∫ 1

0

∫ t

0

(
K
( e

l

)(
R̃ + t2(K)2 + s2 e2

l2

)n−1)
dsdt

− 2κ(n− 1)δ̂l
∫

∂M∞

∫ 1

0

∫ t

0

(
K
( e

l

)3
(

R̃ + t2(K)2 + s2 e2

l2

)n−2)
dsdt

+ κ
∫

∂M∞

∫ 1

0

(
eδ̂K− δ̂eK

)(
R̃ + t2(K)2 + t2 e2

l2

)n−1

dt (48)

On this point, it is good to stress that since the variation δ̂ includes variations along δ̂l, then(
eδ̂K− δ̂eK

)
6= 0. This will be fundamental for the computations.

5. Static Solution

The static solutions of Lovelock gravity of the form in Equation (30), see [24], can be
written using the vielbein:

e0 = f (r)dt , e1 = f (r)−1dr and ei = rẽi, (49)
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where ẽi is the intrinsic vielbein for a constant curvature transverse section, Ω, which must
be compact and closed. Therefore, the intrinsic curvature of the transverse section satisfies
R̃ij = γẽi ẽj with γ a constant. Without loss of generality one can take γ = ±1, 0.

One can notice, see Equation (49), that the vielbein has been written such as r → ∞
defines the asymptotic region R× ∂Σ∞. Conversely, f (r)2 = 0 defines an event horizon.
The spin connections are given by:

ω01 =
1
2

d
dr

f (r)2dt, ω1i = f (r)ẽi and ωij = ω̃ij (50)

where ω̃ij is the intrinsic Levi-Civita spin connection defined from ẽi. The curvatures are:

R01 = −1
2

d2

dr2 f (r)2dt ∧ dr, R0i = −1
2

d
dr

f (r)2 f dt ∧ ẽi (51)

R1i = −1
2

d
dr

f (r)2 f−1dr ∧ ẽi and Rij = (γ− f (r)2)ẽi ∧ ẽj.

By using the ansatz in Equation (49) together with the time-like Killing vector ξ = ∂t,
one can show that:

Rped−2p =
d2

dr2

(
(γ− f (r)2)prd−2p

)
dt ∧ dr ∧ dΩ

= −d
(

d
dr

(
(γ− f (r)2)prd−2p

)
dt ∧ dΩ

)
θp = −(2p− 2)αpl2p−3δ̂l

d
dr

(
(γ− f (r)2)prd−2p

)
dt ∧ dΩ

IξωRp−1ed−2p =

(
d f (r)2

dr
(γ− f (r)2)p−1

)
rd−2pdΩ (52)

δ̂ωRp−1ed−2p = δ̂

(
d f (r)2

dr
(γ− f (r)2)p−1

)
rd−2pdt ∧ dΩ

+ (d− 2p)δ̂( f (r)2)
(
(γ− f (r)2)p−1rd−2p

)
dt ∧ dΩ

where dΩ = εi1 ...id−2
ẽi1 ∧ . . . ∧ ẽid−2 . Let us define for simplicity, Ω =

∫
dΩ as well.

With these results in mind one can evaluate Equation (43). First, one can notice that
for ξ = ∂t, θp is given by:

Iξ θp = −(2p− 2)αpl2p−3δ̂l
(

d
dr

(
γ− f (r)2)prd−2p

))
dΩ (53)

5.1. Even Dimensions

In d = 2n dimensions, the presymplectic form can be separated into two contributions
from ∂Σ∞ and ∂ΣH that cancel each other. In this case, the construction is straightforward
for both horizon and asymptotic region ∂Σ∞ and in both surfaces it is satisfied that:

Ξ =
∫

∂Σ

n

∑
p=0

αp

(
−p(2p− 2)δ̂ll2−3

(
d
dr

f (r)2
)(

γ− f (r)2
)p−1

rd−2p

− l2p−2 pδ̂

((
d
dr

f (r)2
)((

γ− f (r)2
)p−1

rd−2p
))

+ l2p−2 pδ̂

((
d
dr

f (r)2
)(

γ− f (r)2
)p−1

)
rd−2p (54)

− (2p− 2)l2p−3δ̂l
(

d
dr

(
γ− f (r)2)prd−2p

)))
dΩ.
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It is direct to notice that some formal simplifications occur; however, the explicit form
depends on the boundary considered and its corresponding boundary conditions. Because
of that, those simplifications will be carried out only after the boundary conditions are
discussed in the next sections.

5.2. Odd Dimensions

In d = 2n + 1 dimensions, the Ξ at the horizon has exactly the form of Equation (54).
The difference happens at the asymptotic region ∂Σ∞. See Appendix A. To proceed, it is
necessary to work out the following set of relations in Equation (48)

θp = − d
dr

(
(γ− f (r)2)prd−2p

)
dt ∧ dΩ

(
eδ̂K− δ̂eK

)(
R̃ + t2(K)2 + t2 e2

l2

)n−1

= tr
d
dr

(
δ̂( f 2)

(
γ + t2

(
− f 2 +

r2

l2

)))n−1

dt ∧ dΩ

K
e3

l3

(
R̃ + t2(K)2 + s2 e2

l2

)n−2

=

((
d f 2

dr
r3

l3 + 6 f 2 r2

l3

)(
γ− t2 f 2 +

s2r2

l2

)n−2

+ 2 f 2 r3

l3
d
dr

(
γ− t2 f 2 +

s2r2

l2

)n−2)
dt ∧ dΩ

K
e
l

(
R̃ + t2(K)2 + s2 e2

l2

)n−1

=

((
d f 2

dr
r
l
+ 2

f 2

l

)(
γ− t2 f 2 +

s2r2

l2

)n−1

+ 2 f 2 r
l

d
dr

(
γ− t2 f 2 +

s2r2

l2

)n−1)
dt ∧ dΩ (55)

5.3. Asymptotic Behavior

Following the discussion above, let us consider that the equations of motion have
k-degenerated ground states of constant curvature −l−2, i.e.,

∂L
∂e

=
∂LR
∂e

= ld−3
(

R +
e2

l2

)k([(d−1)/2]−k

∑
q=0

βqRq
( e

l

)d−2k−2q−1
)

= 0. (56)

Here, βq = ld−2 β̃q are arbitrary coefficients. One can notice that the EOM behaves asymp-
totically in the branch lim

x→∂Σ∞
Rab = −l2eaeb as:

lim
x→∂Σ∞

∂L
∂e
∼
(

[(d−1)/2]−k

∑
q=0

βq(−1)q

)
ld−3

(
R +

e2

l2

)k( e
l

)d−2k−1
= 0. (57)

This implies that the solutions of this branch must behave asymptotically as:

lim
r→∞

f (r)2 ∼ γ +
r2

l2 −
(

C
rd−2k−1

)1/k
, (58)

where C is a constant to be determined from the exact solution. Remarkably, knowing
this asymptotic behavior is enough to compute the variation of the asymptotic Nöther
charges, Equation (33). However, as mentioned previously, one still has to concern about
regularization of the action principle to obtain the proper Nöther charges.

5.4. Noether Charge in Even Dimensions

In even dimensions d = 2n, the process of regularization is straightforward, see
Appendix A. In the case at hand, the Killing vector ξ = ∂t defines the Killing horizon and
the mass parameter.
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Q2n(∂t) =
∫

∂Σ∞
I∂t ω

ab ∂L′

∂Rab = Cl2k−2

(
n−1−k

∑
q=0

βq(−1)q

)
Ω. (59)

By identifying M = Q(∂t) one can fix C such that:

M = Cl2k−2

(
n−1−k

∑
q=0

βq(−1)q

)
Ω↔ C = l2−2k M

Ω

(
n−1−k

∑
q=0

βq(−1)q

)−1

. (60)

It is direct to check that [M] = L−1, as expected, while [C] = Ld−2k−1.

5.5. Noether Charge in Odd Dimensions

Certainly the most striking difference of the odd dimensional case, says d = 2n + 1,
is the presence of an additional term corresponding to the vacuum energy of AdS2n+1.
This has been obtained by several authors in different ways. See, for instance [49]. This
vacuum energy, although its dependence on l is generic given d, it is not independent of
the (Lovelock) gravitational theory considered. For the static case discussed above, it can
be shown that this is given by:

Q2n+1(∂t) = M + E0 with E0 = κγnΩ, (61)

which is the result in [49] rewritten in the conventions of this work. To proceed, it will be
useful to write down κ explicitly in this point, i.e.,

E0 =
2Ω
n

(−1)n+1l2(n−1)γn
Γ
(

n + 1
2

)
√

πΓ(n)

(
n

∑
p=0

p(−1)pαp

)
, (62)

in order to make explicit the presence of the αp coefficients in this expression. See Equation (31).
As can be observed, E0 depends on the particular Lovelock theory considered. It is also
necessary to notice that:

C = l2−2k M
Ω

(
n−k

∑
q=0

βq(−1)q

)−1

, (63)

which confirms, as previously, that [M] = L−1 and [C] = Ld−2k−1.

5.6. Variation along the Space of Solutions

First, one must stress that the constant C is merely a function of the integration
constants and therefore C lacks any physical meaning by itself. Conversely, the Noether
and Hamiltonian charges are the physical meaningful quantities. In this way, C must be
defined in terms of M and l to acquire a physical meaning.

One can notice that for the construction of the presymplectic form is necessary to
consider the variation along M and l, and thus necessary to construct the variation of the
conserved charges. In general, for the variation along M, the presence of E0 is irrelevant.
Conversely, the presence of E0 for the variation along l is quite relevant.

The existence of Equations (60) and (61) is not necessary to compute the variation of
the conserved charges, not even M, which, in this context, can be understood as the integral
of δ̃M. However, since Equations (60) and (61) actually fix the dependency of C on l, they
can be considered shortcuts to compute δ̂ f (r)2.

5.7. Hamiltonian Variation

The variation of the Hamiltonian charges Equation (43) at the asymptotic region is
given by:
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δ̂g(∂t)
∣∣
∂Σ∞

= lim
r→∞

[(d−1)/2]

∑
p=0

αp

(
l2p−2 pδ̂ f (r)2(γ + f (r)2)p−1(d− 2p)rd−2p−1

− (2p− 1)(d− 2p)(γ− f (r)2)prd−2p−1l2p−3δ̂l
)

dΩ. (64)

It is straightforward to notice that the form above can be casted as:

δ̂g(∂t)
∣∣
∂Σ∞

=
∂g
∂M

δ̂M +
∂g
∂l

δ̂l. (65)

To compute each of the contributions one needs to separate the variation of f (r)2 as:

δ̂ f (r)2
∣∣∣
x→∂Σ∞

=
∂ f (r)2

∂M
δ̂M +

∂ f (r)2

∂l
δ̂l. (66)

where f (r)2 is given by Equation (58). It direct to compute the variation along δ̂M:

∂g
∂M

∣∣∣∣
∂Σ∞

= lim
r→∞

[(d−1)/2]

∑
p=0

αp

(
l2p−2 p

∂

∂M
f 2(r)(γ + f (r)2)p−1(d− 2p)rd−2p−1

)
dΩ

=
1
Ω

dΩ (67)

The variation along δ̂l requires a careful discussion.

5.7.1. For d = 2n

In this case, the element to evaluate is given by:

∂g
∂l

∣∣∣∣
∂Σ∞

= lim
r→∞

n

∑
p=0

αp

(
l2p−2 p

∂

∂l
f 2(r)(γ + f (r)2)p−1(d− 2p)rd−2p−1

− (2p− 1)(d− 2p)(γ− f (r)2)prd−2p−1l2p−3
)

dΩ = 0 (68)

and therefore the variation of the Hamiltonian charge corresponds to the variation of
the Enthalpy,

δ̂G(∂t)
∣∣
∂Σ∞

= δ̂M (69)

as expected for d = 2n.

5.7.2. For d = 2n + 1

The computations in this case are cumbersome which requires us to consider the
contribution of Equation (55) before taking the limit. Because of that, one can consider
writing the expression above in terms of the Noether charge, meaning Equation (A16).
This yields,

δ̂G(∂t)
∣∣
∂Σ∞

= δ̂(M + κγnΩ)−
∫

∂Σ∞
Iξ Θ′(δ̂e, δ̂ω, e, ω) (70)

where Θ′(δ̂e, δ̂ω, e, ω) was defined in Equation (48).
The explicit result will be discussed below for some relevant results.

5.8. The Horizon

To address the boundary conditions at the horizon one must reanalyze Equation (26).
Unlike the asymptotic region, at the horizon, the simplest condition that ensures Θ|∂ΣH

=0,
Equation (26), since ∂L/∂Rab is finite, is fixing δω|∂ΣH = 0. Now, considering the variation
along the parameter of the solution in Equation (49), this is given by:

δ̂ωab =
1
2

δab
01 δ̂

(
d
dr

f (r)2
)

dt− δab
0i δ̂ f (r)ẽi = 0, (71)
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and thus both f (r)2 and its derivative must be fixed along any trajectory in the space of
parameters of solutions. Fixing the derivative of f (r)2 corresponds to fixing the temperature.
On the other hand, δ̂ f 2(r) = 0 is to be understood as the relation between the variations
of the parameters of the solution, including horizon’s radius, such that for the new r′+ =
r+ + δ̂r+ f 2(r′+) = 0 is satisfied. In a matter of speaking, this corresponds to promoting
f (r+)2 → f 2(r+, M, l, . . .) = 0 subjected to:

δ̂ f 2(r) = 0 =
∂

∂r+
f 2(r)δ̂r+ +

∂

∂M
f 2(r)δ̂M +

∂

∂l
f 2(r)δ̂l + . . . = 0 (72)

This relation must be equivalent to the first law of the black hole thermodynamics de-
fined by Equation (22). Otherwise, the thermodynamic evolution of the system would be
inconsistent by having two different tangent vectors at each point.

Following with the construction, it is direct to evaluated Equation (54) subjected to
f (r)2 = 0 and δ̂ f (r)2 = 0. This yields:

δ̂g(∂t)
∣∣
∂ΣH

=
[(d−1)/2]

∑
p=0

αp

(
−l2p−2 p

(
d
dr

f (r+)2
)

γp δ̂(rd−2p
+ )

+
(
(2p− 2)(d− 2p)(γ)prd−2p−1

+

)
l2p−3δ̂l

)
dΩ (73)

In Equation (73), one recognizes that the component along δ̂r+ corresponds to the known
expression for Tδ̂S, where T = 1/(4π)(d f (r)2/dr)+ [29]. This can be expressed as:

Tδ̂S = T

(γ +
r2
+

l2

)k−1(d−2k−1

∑
i=0

ζiγ
prd−2(k+i+1)

+

)δ̂r+ (74)

where ζi are proportional to βi mentioned above in Equation (56). It is direct to show that
in even and odd dimensions, see Appendix A, this is equivalent to the usual expression
in [29,36]:

Tδ̂S = Tδ̂

(
2π
∫

∂ΣH

∂L
∂R01

)
. (75)

The second term in Equation (73) corresponds to the generalization of the Vδ̂P term
mentioned above. In this case, however, the connection with the cosmological constant and
the volume of the black hole is not direct as for GR in four dimensions. For simplicity, this
term will be called:

wδ̂l =
[(d−1)/2]

∑
p=0

αp

(
(2p− 2)(d− 2p)(γ)prd−2p−1

+

)
l2p−3δ̂l

=
[(d−1)/2]

∑
p=0

αp

(
(1− p)(d− 2p)(γ)prd−2p−1

+

)
l2p

︸ ︷︷ ︸
∼Ve f f

δ̂

(
1
l2

)
︸ ︷︷ ︸

P

(76)

∼ Ve f f dP

It is interesting to compare this with the results obtained in [50]. In the language of our
work, see Equation (76), the effective volume above has contributions coming from each of
the terms in Lovelock Lagrangian, and therefore, the conjugate thermodynamic variable to
the pressure P is constructed associated to all the terms in the Lovelock Lagrangian. This
differs from [50], where only the Einstein Hilbert contribution is conjugate to their pressure
P and the rest of the terms define additional conjugate variables. By the same token, this
effective volume also differs from the one obtained in [51], as can be checked explicitly in
the two examples displayed where the only contribution to the effective volume comes
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exclusively from the Einstein Hilbert term. Moreover, in [51] (the concept of) complexity,
see [52], is used to perform the computation of the effective volume. We can see another
different approach in [53], whose effective volume also differs from Equation (76).

One can notice that:

Ve f f = α0drd−1
+ Ω + Correction terms (77)

meaning that this effective volume has corrections to the usual black hole volume (∼ rd−1
+ ) in

powers of rd−2p−1
+ l2p, due to the presence of higher curvature terms. It is worth mentioning

that these corrections are such that p 6= 1 and d 6= 2p. Therefore, the Einstein Hilbert term
with p = 1 and the topological invariant terms with d = 2p do not represent this type of
correction. For the Einstein Hilbert theory (which consider p = 0 and p = 1), there are not
corrections because only the p = 0 term contributes to the effective volume, so this latter
coincides with the usual definition of volume.

To make this more explicit, it is worth writing Ve f f to its full extension:

Ve f f =
[(d−1)/2]

∑
p=0

[(d−1)/2]−k

∑
j=0

1
d− 2p

(
k

p− j

)
β j

(
(1− p)(d− 2p)(γ)prd−2p−1

+

)
l2p (78)

where β j are arbitrary coefficients. Equation (78) seems remarkable convoluted; however,
the expression presents a large number of cancellations due to:(

k
p− j

)
=

k
k + j− p

B−1(k + j− p) = 0 (79)

for any (k + j− p) < 1 integer.
To test the thermodynamic consequences of this result, some particular cases will be

discussed in the next section.

5.9. Summary of First Law of Thermodynamics

From the analysis above, see Equations (69), (70), (73) and (76), it can be observed that
in general the first law of thermodynamics presents contributions from infinity and from
the horizon, yielding for even dimensions:

δ̂M = Tδ̂S + Ve f f δ̂P (80)

and for odd dimensions:

δ̂M + δ̂(κγnΩ)−
∫

∂Σ∞
Iξ Θ′(δ̂e, δ̂ω, e, ω) = Tδ̂S + Ve f f δ̂P (81)

It must be stressed that the pressure can be defined consistently and universally as
δ̂P = δ̂(l−2).

Furthermore, the horizon is modified by the scale change, thus, the change of scale in-
troduces the effective volume Ve f f into the first law of thermodynamics. From Equation (77),
Ve f f can be viewed as the usual definition of thermodynamics volume plus corrections due
to the higher curvature terms. Thus, for the Einstein Hilbert theory, the effective volume
coincides with the usual definition of volume.

In the next section, we show the form (κγnΩ)−
∫

∂Σ∞
IξΘ′(δ̂e, δ̂ω, e, ω) explicitly.

6. Relevant Cases

In this section, some relevant cases will be discussed.

6.1. Einstein in d Dimensions

Probably the simplest example of the previous construction is GR in d > 3 dimensions.
In this case, α0 and α1 are the only two non-null coefficients and they are fixed such that
the EOM are given by:
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∂L
∂e

= β0

(
R +

e2

l2

)
ed−2

ld−1 = 0. (82)

The static solution is defined by:

f (r)2 = γ +
r2

l2 −
m

rd−3 (83)

where m = 2M(Ωβ0)
−1 with δ̂M the variation of the enthalpy. It is in fact direct to show

that in this case the method yields:

δ̂M−Mδ̂ ln
(

l
`

)
δd,2n+1 = Tδ̂

(
β0rd−2

+ Ω
)
+ β0(rd−1

+ Ω)δ̂

(
1
l2

)
. (84)

The second term on the left is a novelty that requires specific discussion. First, it must be
noticed that this additional term arises because of the vacuum energy in odd dimensions.
On top of that, it is good to remember that the EOM only presents an approximated
asymptotic (on-shell) AdS symmetry and thus one could speculate that this is connected
with a failure of an exact AdS symmetry in odd dimensions. Although these ideas are quite
compelling in the context of the AdS/CFT conjecture, where the vacuum energy indeed
has clear interpretation, at this point, this is purely speculative thinking. A deeper analysis
will be pursued in future works.

This new log term, in principle, modifies the usual thermodynamic evolution of
the system. ` has been introduced just to provide a dimensionless expression in ln and
represents a minimal radius for the possible AdS radii. One can read the usual entropy at
the horizon,

S ∼ β0rd−2
+ Ω, (85)

a pressure P = l−2 and an effective volume given by Ve f f ∼ rd−1
+ . The numerical factor can

be fixed by the definition of the gravitational constant in d dimensions β0.

6.2. Five Dimensional Einstein–Gauss–Bonnet Gravity

In [54], they restudied the static solution of the five-dimensional Lovelock gravity
equations of motion:

l2
(

5α0
e4

l4 + 3α1R
e2

l2 + α2R2
)
= l2

(
R +

e2

l2

)(
β1R + β0

e2

l2

)
= 0. (86)

This solution was originally found in [55]. In Schwarzschild coordinates (see Equation (49)),
this solution is defined by [54]:

f (r)2 = 1 +
r2

4α
− r2

4α

√
1 +

16αm
r4 + 4

αΛ
3

, (87)

where the coefficient are given by:

α =
l2β1

3!(β0 + β1)
, Λ = − 10β0

l2(β0 + β1)
and m =

M
2(β0 + β1)Ω

, (88)

These coefficients can be inverted into:

β0 = − Λl2

5!κ2 and β1 =
α

2l2κ2 , (89)

but restricted by β0 + β1 = (12κ2)−1. Here, κ2 = 8πG, with G the gravitational constant,
as defined in [54]. In this case, the vacuum energy is given by [56]:

E0 =
1
8

l2β0Ω (90)
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since the Noether charge is given by [57]:

Q(∂t) = M +
1
8

l2β0Ω (91)

The direct computation of Equation (70), in this case, yields:

δ̂G(∂t)
∣∣
∂Σ∞

= δ̂M + M
(

3β0 − 7β1

β0 − β1
δ̂

)
ln
(

l
`

)
, (92)

where δ̂M is to be considered as the variation of both the mass [56] but also of the enthalpy
of the solution. As previously, ` has been introduced to have a dimensionless expression on
ln and represents a minimal radius for the possible AdS radii. The presence of the variation
of ln(l/`), as mentioned above, can be argued is connected with the failure of a truly AdS
symmetry in the bulk (the equations only have an approximate asymptotic on-shell AdS
symmetry).

At the horizon, the presymptic of forms gives,

δ̂G(∂t)
∣∣
∂ΣH

= Tδ̂S + Ve f f δ̂P = T
(

β1r2
+ + 2β1l2 + β0r2

+

)
Ωδ̂r+ +

((
β0r4

+ + β1l4
)

Ω
)

δ̂

(
1
l2

)
(93)

whose first term coincides with the usual Wald’s expression, Equation (75), for the entropy.
Therefore, the first law of thermodynamics in this case is given by:

δ̂M + M
(

3β0 − 7β1

β0 − β1

)
δ̂ ln
(

l
`

)
= Tδ̂S +

((
β0r4

+ + β1l4
)

Ω
)

︸ ︷︷ ︸
Ve f f

δ̂

(
1
l2

)
(94)

The existence of Ve f f in this case can be considered as a contribution due to the change
acting on the horizon. This correction, however, differs from the volume computed for
generic Lovelock theories found in [58]. This effective volume can be understood as a type
of Van der Waals corrections to the volume. The definition of the pressure as P = l−2 is
feature that will be generic for the rest of the examples.

6.3. Born-Infeld

In this case d = 2n and the Lagrangian, once the regulator is added, has the form of a
perfect binomial:

LR = β0l2n−3
(

R +
e2

l2

)n

, (95)

and the EOM are:

l2n−5β0

(
R +

e2

l2

)n−1

e = 0 (96)

The solution in this case is defined by:

f (r)2 = γ +
r2

l2 −
(m

r

) 1
n−1 (97)

By identifying the Noether charge by:

Q(∂t) = M = H (98)

From this, it is direct to check explicitly that Tδ̂S coincides with the definition in Equation (75).
The wδ̂l is given in this case by:

wδ̂l = −β0l2n−3r+

(
γ +

r2
+

l2

)n−2(
(n− 2)γ−

r2
+

l2

)
δ̂

(
1
l2

)
(99)
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Once again, in this case, one can take Equation (99) in the form Vδ̂P with P = l−2 by
defining the effective volume,

Ve f f = β0l2n−3r+

(
γ +

r2
+

l2

)n−2(
r2
+

l2 − (n− 2)γ

)
. (100)

In this case, one can be confused because the effective volume becomes proportional to
volume for r+ � l, but this is not an adequate limit.

6.4. Pure Lovelock

Pure Lovelock theory corresponds to just considering a single term in the Lovelock
series plus the term associated with α0, meaning the cosmological constant. The EOM in
this case can be cast in the form,

l2s−3γs

(
Rs ±

( e
l

)2s
)

ed−2s−1 = 0, (101)

where αs = (d− 2s)−1γs and α0 = d−1γs, and therefore γs is an adjustment for α0.
As can be observed, this is an interesting example of how the Lovelock action gives rise

to solutions, see Equation (101), behaving for r → ∞ such as Schwarzschild solutions. This
only feature makes Pure Lovelock gravity remarkably interesting. Let us recall that the case
of interest has a ground state satisfying R + e2/l2 = 0. The double sign ± in Equation (101)
comes from the fact that, depending on s being an even or odd integer, either positive or
negative cosmological constant could give rise to solutions with an AdS asymptotic region.
The exact static solution for odd s = 2h + 1, which corresponds to negative cosmological
constant, can be written as:

f (r)odd = 1 +
r2

l2

(
1− m

rd−1

) 1
2h+1 (102)

whose asymptotic form is given by:

lim
r→∞

f (r)odd ≈ 1 +
r2

l2 −
1

2h + 1
m

l2rd−3 . (103)

with m > 0. On the other hand, for even s = 2h:

f (r)odd = 1 +
r2

l2

(
1 +

m
rd−1

) 1
2h (104)

and the asymptotic form is given by:

f (r)even ≈ 1 +
r2

l2 +
1

2h
m

l2rd−3 . (105)

with m > 0. Because of this and the lack of horizon in this case, only the thermodynamics
of odd s can be explored.

6.4.1. Even Dimensions with s Odd

In even dimensions, let us say that d = 2n with n ≥ 2, there is no vacuum energy and
thus the only contribution to the first law of thermodynamics arising from the horizon. For
odd s = 2h + 1 the Noether charge is given by:

md=2n
s=2h+1 =

M
(n− 1)Ωγ2h+1

(106)

where one can notice that this expression is independent of h. This is due to the contri-
butions from the conformal infinity that must correspond to those of the k = 1 (Einstein
gravity). At the horizon, the rest of the first law of thermodynamics is given by:
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δ̂G(ξ)
∣∣
H = Tδ̂S + Ve f f δ̂P (107)

where the entropy and the effective volume are given by:

S = α2h+1(2h + 1)

(
r2
+

l2

)n−2h−1

Ve f f = α0(2n)r2n−1
+ + α2h+1(2h)(4h + 2− 2n)r2n−4h−3

+ l4h+2 (108)

where, as mentioned above, αs = (d− 2s)−1γs and α0 = d−1γs. The expression for the
entropy is given by the Wald expression [29]. One can notice that the reason for the
correction term in the effective volume is the presence of the higher power of the Riemann
tensor in the action principle. The correction term is new respect to the volume computed
under a variation of parameters in reference [59].

6.4.2. Odd Dimension with s Odd

In this case, let us consider that d = 2n + 1. In this case, the contribution from infinity
is given by:

δ̂G(ξ)
∣∣
∞ = δ̂M + Mδ̂ ln

(
l
`

)
. (109)

On the other hand, from the horizon, δ̂G(ξ)
∣∣
H = Tδ̂S + Ve f f δ̂P, where the entropy and

volume takes the explicit form:

S = α2h+1(2h + 1)
( r+

l

)2n−4h−1

Ve f f = α0(2n + 1)r2n
+ + α2h+1(2h)(4h + 1− 2n)r2n−4h−2

+ l4h+2 (110)

Therefore, the new first law for this case is represented by:

δ̂M = Tδ̂S + Ve f f δ̂P−Mδ̂ ln
(

l
`

)
δd,2n+1 (111)

6.5. Chern–Simons Gravity

From the point of view of the equations above, this case merely corresponds to the
case in odd dimensions, d = 2n + 1, with k = n. However, in this case, the action principle
becomes invariant under the larger local AdS transformation, instead of only Lorentz
transformations, see, for instance [41]. In this case, m is given by:

m =
M

β0l22(n− 1)Ω
(112)

where β0 is a global constant to fix. The vacuum energy [49] is given by E0 = −l2n−2β0γn

as expected.
The variation of conserved charges at the conformal infinity is given by:

δ̂G(ξ)
∣∣
∞ = δ̂M. (113)

Here, we can notice the absence of any contribution related with a change of scale. One
can speculate that it is because of the local AdS symmetry of the action principle. The
contribution from the horizon is given by:

δ̂G(ξ)
∣∣
H = T[−nβ0γ(r2

+ + γl2)n−1]δ̂r+ + β0(r2
+− (n− 1)γl2)(r2

+ + γl2)n−1δ̂

(
1
l2

)
, (114)

where we can recognize the known value of the entropy for Chern–Simons. The second
contribution corresponds to the Ve f f dP term with:
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Ve f f = β0(r2
+ − (n− 1)γl2)(r2

+ + γl2)n−1 (115)

7. Conclusions and Prospects

In this work, we have studied the first law of thermodynamics in an alternative
way, so we have explored the consequences of scale transformations, which preserve the
form of the equations of Lovelock gravity whose solutions are asymptotic AdS spaces.
This change of scale have been expressed in terms of changes of the corresponding AdS
radius, l. This transformation introduces two additional terms in the first law of black
hole thermodynamics. One comes from the horizon and defines an effective volume Ve f f

and pressure P ≈ l−2. The second one from the conformal infinity in odd dimensions is
proportional to δ̂ ln (l).

With respect to the Ve f f dP term, its origin is clear. The horizon is modified by any
change of scale, and thus, an additional term in the first law of thermodynamics must
arise to compensate accordingly. However, it must be stressed that the universal P ∼
l−2, attained in this work is due to the formalism introduced and the condition that the
form Equation (30) be maintained. Conversely, Ve f f depends on the theory considered,
and coincides only with the usual definition of thermodynamic volume for the Einstein
Hilbert theory. One can interpret the effective volume as the EH (thermodynamic) volume
plus corrections due to the higher curvature terms, in complete analogy with the usual
interpretation of the entropy as the EH entropy plus corrections due to the higher curvature
terms presented. See, for instance [60]. It is interesting to compare our results with those
found in the literature based on variations of the cosmological constant. It is direct to
notice that even though a term VdP is obtained, the corresponding results for P and Ve f f
can differ. This potential difference can be tracked back to the variation of scale that was
set by preserving the form of Equation (30). To address the consequences, this difference
requires a thorough analysis of the thermodynamics evolution of this black hole. Phase
transitions, lsuch as the Hawking–Page one, are interesting problems that will be addressed
in future works.

A second additional correction to the first law arises for any Lovelock theory, but
Chern Simons, in odd dimensions with the form ∼Mδ̂ ln(l/`). The first thing to notice,
and emphasize, is that this is a general result independent of the theory considered and
only absent in Chern Simons.

The absence of the ∼ln(l/`) term for Chern Simons gravity allows us to speculate
about the meaning of the additional term for the rest of generic Lovelock theories in odd
dimensions. Unlike the rest of the Lovelock theories, Chern Simons gravity is a gauge
theory, in this case for the AdS group, and this enlarged local symmetry modifies the
physical meaning of the scale transformations in the bulk. For the rest of the Lovelock
theories, a local AdS symmetry only could emerge as an approximate on shell locally
asymptotic symmetry, and thus, one could speculate that the addition term is connected
with the failure of an exact AdS symmetry. This larger local symmetry imposes additional
constraints to be satisfied that, in turn, could be restricting the variation of the vacuum
energy such that its contribution to the first law of thermodynamics vanishes. Unfortunately,
neither the method developed in this work, nor the form of Mδ̂ ln(l/`), seems to provide
enough information to confirm any of this. Certainly, additional study, beyond a purely
thermodynamics framework, is required to establish a concrete connection between local
symmetries and the absence of the additional term.

As mentioned, this is a different approach in at least three different ways. The coupling
constant are varied such that the asymptotia be preserved. The thermodynamics is explored
by an improved version of the phase space analysis. These two fundamental differences,
we believe, are responsible for the arise of the new term. Another fundamental difference,
any other method does not considered variation along the regularized conserved charges.
For instance, Komar’s integrals are fundamentally divergent for ALAdS spaces and need a
regularization scheme to become finite. It is good to mention that the conserved charges
used in this work are actually generalization of the usual Komar’s integrals, in the sense
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that they are Noether charges. For example, the regularized method mentioned in [50]
differs from those that gave rise to the conserved charges mentioned in our work.

Furthermore, it is worth mentioning that the logarithmic term has a dependence on
the parameter l, which is a parameter of the equations of motion. Such dependence arises
of the variation of the vacuum energy, as we can see in Equation (70), where, following the
definitions of conserved charges used in this work, see for example [56,61], the vacuum
energy has a dependence on the parameters of the equations of motion, which coincide
with l for the Einstein Hilbert theory.

Before finishing, let us comment on some concrete prospects of this work. For Lovelock
theories, we have studied phase transitions in the extended phase space in several works
using different techniques, see, for example [16,62]. In doing that, it has been obtained that
their phase transitions are analogues to liquid/gas transitions in Van der Waals theory. In
reference [63], it was conjectured that in Lovelock theories, there could be n-tuple critical
points. This seems to be confirmed in [16], where, using results obtained in [50], they
obtained multiple critical points for charged solutions. In reference [64], it is argued that
the values of the critical exponents, for Lovelock gravity, can differ from those of a Van der
Waals gas. Now, in this still very open scenario, a natural next step is the analysis of phase
transitions in our framework. This is particularly relevant since a different expression for
the effective volume and a modified first law of thermodynamics have been obtained. In
particular, a couple of very relevant questions are raised by our results. First, are the phase
transitions still analogous to liquid/gas transitions in Van der Waals theory? Further, does
the number of critical points, with respect to the previous results, increase or decrease?
Finally, it seems quite interesting to reassert the Hawking–Page phase transition [15], given
the modified thermodynamics obtained in this work.
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Appendix A. Regulation

Appendix A.1. Even Dimensions

In this case, the term to be added is the Euler density in d = 2n dimensions, which can
be considered as merely the addition of the last term in the Lovelock Lagrangian. Notice
that Rn is a topological density and thus it does not alter the EOM of L. In this way,

L→ LR = L + α̃nRn (A1)

where α̃n is to be fixed by any of the three conditions mentioned above. For instance,
considering the improved action principle therefore,

δLR =
[(d−1)/2]

∑
p=0

pα̃pd(δ0ωRp−1ed−2p) + nα̃nd(δ0ωRn) + EOMeδ0e + EOMωδ0ω, (A2)
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and thus formally the boundary term can be written as:

ΘR = δ0ω

(
[(d−1)/2]

∑
p=0

pα̃pRp−1ed−2p + nα̃nRn−1

)
. (A3)

However, for an asymptotically (locally) AdS space of radius −l2 as x → R × ∂Σ∞ is
satisfied that e2 → −l2R. Therefore,

lim
x→R×∂Σ∞

ΘR = δ0ω

(
[(d−1)/2]

∑
p=0

pα̃p(−l2)n−p + nα̃n

)
Rn−1, (A4)

which implies that, provided δ0ω is finite, the boundary term vanishes if:

α̃n = − 1
n

[(d−1)/2]

∑
p=0

pα̃p(−l2)n−p, (A5)

and therefore, a proper action principle is at hand. In this way, we have obtained a new
boundary term, defined by:

ΘR = δ0ωab ∂LR

∂Rab , (A6)

which vanishes identically at R× ∂Σ∞, provided δω is arbitrary but finite. In the same
fashion, one can show that the action principle is also regularized by the introduction α̃nRn.
Roughly speaking, the Lagrangian:

lim
x→R×∂Σ∞

LR ≈
(

∑
p

α̃p(−l2)n−p
(

1− p
n

))
Rn (A7)

which vanishes for α̃p defined by Equation (31). Therefore, by the addition of α̃nRn the
divergences from the asymptotic AdS region has been removed from the action principle
and the new one is finite.

Appendix A.2. Odd Dimensions

For simplicity, the renormalization process in odd dimensions only will be sketched.
For further details, see [37,38,45,49]. Unlike even dimensions in this case, the regulation
process can be carried by a suitable boundary term at the asymptotic AdS region. For the
horizon, no additional term is necessary to be added.

The variation of the Lovelock action on shell can be written as:

δ0 ILL =
∫

∂M
l2n−1

(
n

∑
p=0

p(−1)2n−2p+1αp

)
δ0ωRn−1. (A8)

From this, it is straightforward to realize, as mentioned above, that there is not a proper
set of boundary conditions that define δILL = 0 as R diverges in the asymptotically AdS
region. This can be amended by the addition of the boundary term given by [45,65]:

IR =
∫

∂M∞
B2n = κ

∫
∂M∞

∫ 1

0

∫ t

0

(
Ke
(

R̃ + t2(K)2 + s2 e2

l2

)n−1)
dsdt (A9)

where R̃ and K stand for the Riemann two-form and extrinsic curvature one-form respec-
tively of the boundary ∂M∞ = R× ∂Σ∞. One must recall the Gauss Codazzi decomposi-
tion:

R̃ab + ((K)2)ab
∣∣∣
∂M∞

= Rab
∣∣∣
∂M∞

(A10)
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where Rab is the Riemann two form ofM. κ in Equation (A9) stands for a constant to be
determined. The variation of Equation (A9) yields:

δ0 IR = κ
∫

∂M∞

∫ 1

0
(eδ0K− δeK0)

(
R̃ + t2(K)2 + t2 e2

l2

)n−1

dt (A11)

+ κn
∫

∂M∞

∫ 1

0

(
eδ0K

(
R̃ + (K)2 + t2 e2

l2

)n−1)
dt

For an asymptotically local AdS space, as the boundary is approached, it is satisfied that
eδ0K− δ0eK → 0 and δK → δω|∂M. The fundamental key for the computation however, is
the fact that e2 → −l2R. Finally, these conditions allow us to express variation as:

δ0 IR = κn
∫

∂M∞
eδ0KRn−1

(∫ 1

0

(
1− t2

)n−1
)

dt. (A12)

In this way, the variation of I = ILL + IR:

δ0 I =
∫

∂M∞

(
δ0K

( e
l

)
Rn−1

)l2n−1
n

∑
p=0

p(−1)2n−2p+1αp + nlκ
Γ(n)
√

π

2Γ
(

n + 1
2

)
+ . . . (A13)

here, . . . stands for the integral of Equation (A8) on the horizon. This defines:

κ =
2l2n−2

n

(
n

∑
p=0

p(−1)2n−2pαp

)
Γ
(

n + 1
2

)
Γ(n)
√

π
(A14)

In doing this now, there is a proper action principle. The Noether charge in this case is
given by:

Q(ξ)∞ =
∫

∂Σ∞

(
Iξ ω

(
n

∑
p=0

pαpRp−1e2(n−p)+1

)
(A15)

+ κ Iξ

(∫ 1

0

∫ t

0
Ke
(

R̃ + t2(K)2 + s2 e2

l2

)n−1)
dsdt

)

The direct evaluation of this expression for ξ = ∂t on the static spaces considered yields
Equation (61).

To conclude this section, it is convenient to express the presymplectic form in term of
the regularized Noether charge and the variation of the action defined by boundary term
in Equation (A9). This yields:

δ̂G(ξ)
∣∣
∞ =

∫
∂Σ∞

δ̂Q(ξ)∞ + Iξ

(
κ
∫ 1

0
(eδ̂K− δ̂eK)

(
R̃ + t2(K)2 + t2 e2

l2

)n−1

dt

+2κ(n− 1)δ̂l
∫ 1

0

∫ 1

0
K
( e

l

)(
R̃ + t2(K)2 + s2 e2

l2

)n−1

dsdt (A16)

−2κ(n− 1)δ̂l
∫ 1

0

∫ 1

0
K
( e

l

)3
(

R̃ + t2(K)2 + s2 e2

l2

)n−3

dsdt

)
.
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