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Abstract. The theory BV of bit-vectors, i.e. fixed-size arrays of bits equipped
with standard low-level machine instructions, is becoming very popular in formal
verification. Standard solvers for this theory are based on a bit-level encoding
into propositional logic and SAT-based resolution techniques. In this paper, we
investigate an alternative approach based on a word-level encoding into bounded
arithmetic and Constraint Logic Programming (CLP) resolution techniques. We
define an original CLP framework (domains and propagators) dedicated to bit-
vector constraints. This framework is implemented in a prototype and thorough
experimental studies have been conducted. The new approach is shown to per-
form much better than standard CLP-based approaches, and to considerably re-
duce the gap with the best SAT-based BV solvers.

1 Introduction

The first order theory of bit-vectors allows reasoning about variables interpreted over
fixed-size arrays of bits equipped with standard low-level machine instructions such
as machine arithmetic, bitwise logical instructions, shifts or extraction. An overview
of this theory can be found in Chapter 6 of [17]. The bit-vector theory, and especially
its quantifier-free fragment (denoted QFBV, or simply BV), is becoming increasingly
popular in automatic verification of both hardware [3,5] and software [6,8,9]. Most
successful BV solvers (e.g. [2,15,26]) rely on encoding the BV formula into an equi-
satisfiable propositional logic formula, which is then submitted to a SAT solver. The
encoding relies on bit-blasting: each bit of a bit-vector is represented as a proposi-
tional variable and BV operators are modelled as logical circuits. The main advantage
of the method is to ultimately rely on the great efficiency of modern DPLL-based SAT
solvers [21]. However, this approach has a few shortcomings. First, bit-blasting may re-
sult in very large SAT formulas, difficult to solve for the best current SAT solvers. This
phenomenon happens especially on “arithmetic-oriented” formulas. Second, the SAT-
solving process cannot rely on any information about the word-level structure of the
problem, typically missing simplifications such as arithmetic identities. State-of-the-art
approaches complement optimised bit-blasting [22] with word-level preprocessing [15]
and dedicated SAT-solving heuristics [26].
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Constraint Logic Programming. Constraint Logic Programming (CLP) over finite do-
mains can be seen as a natural extension of the basic DPLL procedure to the case of fi-
nite but non boolean domains, with an interleaving of propagation and search steps [11].
Intuitively, the search procedure explores exhaustively the tree of all partial valuations
of variables to find a solution. Before each labelling step, a propagation mechanism
narrows each variable domain by removing some inconsistent values. In the following,
constraints over bounded arithmetic are denoted by N

≤M . Given a theory T , CLP(T )
denotes CLP techniques designed to deal with constraints over T .

Alternative word-level (CLP-based) approach for BV. In order to keep advantage of
the high-level structure of the problem, a BV constraint can be encoded into a N

≤M

constraint using the standard (one-to-one) encoding between bit-vectors of size k and
unsigned integers less than or equal to 2k−1. A full encoding of BV requires non-linear
operators and case-splits [12,25,27]. At first sight, CLP(N≤M ) offers an interesting
framework for word-level solving of BV constraints, since non-linear operations and
case-splits are supported. However, there are two major drawbacks leading to poor per-
formance. Firstly, bitwise BV operators cannot be encoded directly and require a form
of bit-blasting. Secondly the encoding introduces too many case-splits and non-linear
constraints. Recent experiments show that the naive word-level approach is largely
outperformed by SAT-based approaches [23]. In the following, we denote by N

≤M
BV

bounded integer constraints coming from an encoding of BV constraints.

The problem. Our longstanding goal is to design an efficient word-level CLP-based
solver for BV constraints. In our opinion, such a solver could outperform SAT-based
approaches on arithmetic-oriented BV problems typically arising in software verifica-
tion. This paper presents a first step toward this goal. We design new efficient domains
and propagators in order to develop a true CLP(N≤M

BV ) solver, while related works rely
on standard CLP(N≤M ) techniques [12,25,27]. We also deliberately restrict our atten-
tion to the conjunctive fragment of BV in order to focus only on BV propagation issues,
without having to consider the orthogonal issue of handling formulas with arbitrary
boolean skeletons. Note that the conjunctive fragment does have practical interests of
its own, for example in symbolic execution [6,8].

Contribution. We rely on the CLP(N≤M ) framework developed in COLIBRI, the solver
integrated in the model-based testing tool GaTeL [20].

The main results of this paper are twofold. First, we set up the basic ingredients of
a dedicated CLP(N≤M

BV ) framework, avoiding both bit-blasting and non-linear encoding
into N

≤M . The paper introduces two main features: (1) N
≤M
BV -propagators for exist-

ing domains (union of intervals with congruence [18], denoted Is/C), and (2) a new
domain bit-list BL designed to work in combination with Is/C and BL-propagators.
While Is/C comes with efficient propagators on linear arithmetic constraints, BL is
equipped with efficient propagators on “linear” bitwise constraints, i.e. bitwise opera-
tions with one constant operand. Second, these ideas have been implemented in a pro-
totype on top of COLIBRI and thorough empirical evaluations have been performed.
Experimental results prove that dedicated Is/C-propagators and BL allow a signifi-
cant increase of performance compared to a direct CLP(N≤M ) approach, as well as
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considerably lowering the gap with state-of-the-art SAT-based approaches. Moreover,
the CLP(N≤M

BV )-based approach scales better than the SAT-based approach with the size
of bit-vector variables, and is superior on non-linear arithmetic problems.

Outline. The rest of the paper is structured as follows. Section 2 describes the rele-
vant background on BV and CLP, Sections 4 and 5 presents dedicated propagators and
domains, Section 6 presents experimental results and benchmarks. Section 7 discusses
related work and Section 8 provides a conclusion.

2 Background

2.1 Bit-Vector Theory

Variables in BV are interpreted over bit-vectors, i.e. fixed-size arrays of bits. Given a
bit-vector a, its size is denoted by Sa and its i-th bit is denoted by ai, a1 being the
least significant bit of a. A bit-vector a represents (and is represented by) a unique non-
negative integer between 0 and 2Sa −1 (power-two encoding) and also a unique integer
between −2Sa−1 and 2Sa−1 −1 (two’s complement encoding). The unsigned encoding
of a is denoted by �a�u. Common operators consist of: bitwise operators “and” (&),
“or” (|), “xor” (xor) and “not” (∼); bit-array manipulations such as left shift (�), un-
signed right shift (�u), signed right shift (�s), concatenation (::), extraction (a[i..j]),
unsigned and signed extensions (extu(a, i) and exts(a, i)); arithmetic operators (⊕,
�, ⊗, �u, modulo %u, <u, ≤u, ≥u, >u) with additional constructs for signed arith-
metic (�s, %s, <s, ≤s, ≥s, >s); and a case-split operator ite(cond, term1, term2).
The exact semantics of all operators can be found in [17]. The following provides only
a brief overview. Most operators have their intuitive meaning. Signed extension and
signed shift propagate the sign-bit of the operand to the result. Arithmetic operations
are performed modulo 2N , with N the size of both operands. Unsigned (resp. signed)
operations consider the unsigned (resp. signed) integer encoding.

Conjunctive fragment. This paper focuses on the conjunctive fragment of BV, i.e. no
other logical connector than ∧ is allowed.

2.2 Constraint Logic Programming

Let U be a set of values. A constraint satisfaction problem (CSP) over U is a triplet
R = 〈X ,D, C〉 where the domainD ⊆ U is a finite cartesian productD = d1×. . .×dn,
X is a finite set of variables x1, . . . , xn such that each variable xi ranges over di and
C is a finite set of constraints c1, . . . , cm such that each constraint ci is associated with
a set of solutions Lci ⊆ U . In the following, we consider only the case of finite do-
mains, i.e. U is finite. The set LR of solutions of R is equal to D ∩ ⋂

i Lci . A value
of xi participating in a solution of R is called a legal value, otherwise it is said to
be spurious. In other words, the set LR(xi) of legal values of xi in R is defined as
the i-th projection of LR. Let us also define Lc(xi) as the i-th projection of Lc, and
Lc,D(xi) = Lc(xi) ∩ di. The CLP approach follows a search-propagate scheme. Intu-
itively, propagation narrows the CSP domains, keeping all legal values of each variable
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but removing some of the spurious values. Formally, a propagator P refines a CSP
R = 〈X ,D, C〉 into another CSP R′ = 〈X ,D′, C〉 with D′ ⊆ D. Only the current
domain D is actually refined, hence we write P (D) for D′. A propagator P is correct
(or ensures correct propagation) if LR(x1) × . . . × LR(xn) ⊆ P (D) ⊆ D. The use of
correct propagators ensures that no legal value is lost during propagation, which in turn
ensures that no solution is lost, i.e. LR′ = LR. Usually, propagators are defined locally
to each constraint c. Such a propagator Pc is said to be locally correct over domain D
if Lc,D(x1) × . . . × Lc,D(xn) ⊆ Pc(D) ⊆ D. Local correctness implies correctness.
A constraint c over domain D is locally arc-consistent if for all i, Lc,D(xi) = Di. This
means that from the point of view of constraint c only, there is no spurious value in any
di. A CSP R is globally arc-consistent if all its constraints are locally arc-consistent. A
propagator is said to ensure local (global) arc-consistency if the resulting CSP is locally
(globally) arc-consistent. Such propagators are considered as an interesting trade-off
between large pruning and fast propagation.

2.3 Efficient CLP over Bounded Arithmetic

An interesting class of finite CSPs is the class of CSPs defined over bounded integers
(N≤M ). N

≤M problems coming from verification issues have the particularity to exhibit
finite but huge domains. Specific CLP(N≤M ) techniques have recently been developed
for such problems.

Abstract domains. Domains are not represented concretely by enumeration, they are
rather compactly encoded by a symbolic representation allowing efficient (but usu-
ally approximated) basic manipulations such as intersection and union of domains or
emptiness testing. Even though primarily designed for static analysis, abstract inter-
pretation [7] provides a convenient framework for abstract domains in CLP. An ab-
stract domain d#

x belonging to some complete lattice (A,�,�,�,⊥,�) is attached
to each variable x. This abstract domain defines a set of integers

�
d#

x

�
that must

over-approximate the set of legal values of x, i.e. LR(x) ⊆ �
d#

x

�
. The concretisation

function �·� must satisfy: a � b =⇒ �a� ⊆ �b� and �⊥� = ∅. Given an arbitrary set of
integers d, the minimal A-abstraction of d, denoted 〈d〉, is defined as the least element
d# ∈ A such that d ⊆ �

d#
�

. The existence of such an element follows from the lattice
completeness property. Several abstract domains can be combined with (finite) carte-
sian product, providing that the concretisation of the cartesian product is defined as the
intersection of concretisations of each abstract domain, and that abstract operations are
performed in component-wise fashion. Intervals I are a standard abstract domain for
N

≤M . The congruence domain C has been recently proposed [18].
In the context of CLP over abstract domains, it is interesting to consider new kinds

of consistency. Given a certain class of abstract domains A and a CSP R over abstract
domains d#

1, . . . , d
#

n ∈ A, a constraint c ∈ R over domain D is locally A-arc-
consistent if for all i,

�
d#

i

�
= Lc,D(xi). Intuitively, a propagator ensuring local A-

arc-consistency ensures local arc-consistency only for domains representable in A. The
constraint c is locally abstract A-arc-consistent if for all i,

�
d#

i

�
= �〈Lc,D(xi)〉�.

Intuitively, no more local propagation can be performed for c because of the limited
expressiveness of A.
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Other features for solving large CLP(N≤M ) problems. Other techniques for solv-
ing large N

≤M problems include global constraints to quickly detect unsatisfiability
(e.g. global difference constraint [14]) and restricted forms of rewriting rules (simpli-
fication rules) to dynamically perform syntactic simplifications of the CSP [13]. Note
that in that case, the formal framework for propagation presented so far must be modi-
fied to allow propagators to add and delete constraints.

3 Encoding BV into Non-linear Arithmetic

This section describes how to encode BV constraints into non-linear arithmetic prob-
lems. First, each bit-vector variable a is encoded as �a�u. Then BV constraints over
bit-vectors a, b, etc. are encoded as N

≤M constraints over integer variables �a�u, �b�u,
etc. Unsigned relational operators correspond exactly to those of integer arithmetic,
e.g. a ≤u b is equivalent to �a�u ≤ �b�u. Unsigned arithmetic operators can be en-
coded into non-linear arithmetic using the corresponding integer operator and a modulo
operation. For example, �a ⊕ b�u = (�a�u + �b�u) mod 2N , with N = Sa = Sb. Con-
catenation of a and b is encoded as �a�u × 2Sb + �b�u. Extraction can be viewed as a
concatenation of three variables. Unsigned extension just becomes an equality between
(integer) variables. Unsigned left and right shifts with a constant shift argument b are
handled respectively like multiplications and divisions by 2�b�u . Signed operators can
be encoded into unsigned operators, using case-splits (ite) based on operand signs (re-
call that a ≥s 0 iff a <u 2Sa−1). For example, the signed extension r = exts(a, k)
is encoded as ite(�a�u < 2Sa−1, �a�u , �a�u + 2k − 2Sa). Except for the bitwise “not”
operation ∼ which is efficiently encoded as �∼ x�u = 2Sx − 1 − �x�u, encoding other
bitwise operations requires a bit-blasting like method. For each BV variable a, this en-
coding introduces a new boolean variable per bit of a (denoted ai for bit i), a N-ary
consistency constraint relating the ai to �a�u:

∑N
i=1 ai × 2i−1 = �a�u and 3N ternary

constraints over bits of operands and results modelling the bit operation. For example,
the “and” operator on a single bit can be encoded with a × or a min operator.

This direct encoding suffers from at least two drawbacks. First, the size of the encod-
ing of bitwise constraints depends on the number of bits, adding both a linear number of
new variables, a linear number of ternary constraints and three N-ary constraints. Sec-
ond, the encoding introduces many constructs which are not well handled by current
CLP(N≤M ) solvers, such as case-splits and non-linear operations. Actually, only a very
small fragment of BV is encoded in an efficient manner for CLP(N≤M ): concatenation,
extraction, bitwise not, unsigned shifts and unsigned relational operators. Current state-
of-the-art CLP domains and propagators for N

≤M do not perform well for problems
typically coming from BV. For example, considering the constraint a ⊕ 3 = b with
a and b on 8 bits, domains da = [251..255] and db = [0..255], a perfect propagation
would reduce db to d′b = [0..2] ∪ [254..255], thus a perfect interval propagation cannot
do better than d′′b = [0..255], i.e. no spurious value is removed, keeping 250 spurious
values out of 256 possible values. The same problem occurs with signed operations. It
is thus not surprising that common CLP(N≤M ) solvers perform very badly on N

≤M
BV

problems, as experimentally shown in [23] and confirmed in Section 6.
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Our approach. Considering these different issues, we propose the following direc-
tions to design an efficient CLP(N≤M

BV ) framework. First, it seems mandatory to rely on
unions of intervals plus congruence (Is/C) rather than single intervals (plus congru-
ence). This is an original point of view in CLP, since COLIBRI [20] is the only CLP
solver based on unions of intervals. Second, we propose the two following improve-
ments: (1) the use of original Is/C-propagators designed for BV-constraints instead of
relying on combination of existing N

≤M propagators; and (2) a new domain BL to ef-
ficiently propagate information of bitwise operations without relying on bit-blasting in
order to complement Is/C, which is well suited for linear arithmetic. This CLP(N≤M

BV )
framework works as follows: each variable x has a numerical domain Is/C and a BL
domain, legal values for x being restricted to the intersection of the concretisations of
the two domains; each constraint has two associated finite sets of propagators: one for
Is/C and one for BL; domains can be synchronised together, i.e. specific propagators
are designed to propagate information from one domain to another.

4 Dedicated N
≤M
BV -Propagators for Is/C Domains

This section describes dedicated propagators for a CLP(N≤M
BV ) framework over Is/C

domains. The goal is to completely avoid bit-blasting and the introduction of additional
case-splits and non-linear constraints at the CLP level.

4.1 Propagators for Union of Intervals

Propagators for unsigned BV constraints are based on performing modular arithmetic
or integer arithmetic operations directly on single intervals, with forward and backward
propagation steps. These operations are extended to unions of intervals by distribution
over all pairs of intervals. Then, local propagators are defined by interleaving these
propagation steps until a local fixpoint is reached. For example, for constraint A⊕B =
R over N bits, the forward propagation step over single interval, denoted ⊕I , is defined
by (� denotes union of intervals with normalisation, without any approximation):

[m1..M1] ⊕I [m2..M2] = [m1 + m2..M1 + M2] if M1 + M2 < 2N

[m1 + m2 − 2N ..M1 + M2 − 2N ] if m1 + m2 ≥ 2N

[m1 + m2..2
N − 1] � [0..M1 + M2 − 2N ] otherwise

This definition is extended to unions of intervals ⊕Is by distribution and �Is is de-
fined similarly. Forward and backward propagation steps are defined as follows:

ρr : (d#
A, d#

B, d#
R) �→ (d#

A, d#
B, d#

A ⊕Is d#
B)

ρa : (d#
A, d#

B, d#
R) �→ (d#

R �Is d#
B, d#

B, d#
R)

ρb : (d#
A, d#

B, d#
R) �→ (d#

A, d#
R �Is d#

A, d#
R)

The propagator for ⊕ is then defined as a greatest fixpoint of all propagation steps:
νX.(ρa(X) � ρb(X) � ρr(X) � X)(X0). Existence follows from the Knaster-Tarski
theorem, effective computability comes from Kleene fixed-point theorem and domain
finiteness. It can be computed using the procedure presented in Figure 1.

Such propagators and domains are very well-suited to ⊕, �, unsigned comparisons,
unsigned extension and bitwise negation: they ensure local Is-arc consistency for these
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procedure propagate-add-is(IsA, IsB, IsR)

1: (d#
A, d#

B, d#
R) := (IsA, IsB, IsR)

2: d#
R := (d#

A ⊕Is d#
B) � d#

R;
3: d#

A := (d#
R �Is d#

B) � d#
A;

4: d#
B := (d#

R �Is d#
A) � d#

B ;
5: if (d#

A, d#
B , d#

R) �= (IsA, IsB, IsR) then
6: propagate-add-is(d#

A, d#
B , d#

R)
7: else return (d#

A, d#
B, d#

R)

Fig. 1. Is-propagator for constraint A ⊕ B = R

constraints. For signed operations, the main idea is to perform inside each propagation
step a case-split based on sign, compute interval propagation for each case and then join
all the results. Note that all these computations are performed locally to the propagators,
such that no extra variables nor constraints are added at the CLP level. Propagation steps
for signed extension are depicted in Figure 2.

procedure Propagator for exts(A,N’) = R
A: bit-vector of size N , R: bit-vector of size N ′ > N

Propagation steps
ρr : (d#

A, d#
R) �→ ((d#

A�[0..2N−1−1])�(d#
A�[2N−1 ..2N −1])+Is

(2N
′

−2N ), d#
R)

ρa : (d#
A, d#

R) �→ (d#
A, (d#

R � [0..2N−1 − 1]) �

(d#
R � [2N−1 + 2N

′

− 2N ..2N
′

− 1]) −Is
(2N

′

− 2N ))
propagator: νX.(ρa(X) � ρr(X) � X)(IsA, IsR).

Fig. 2. Is-propagator for constraint exts(A,N’) = R

Non-linear arithmetic, concatenation, extraction and shifts can be dealt with in the
same way. However only correct propagation is ensured. Propagators for &, | and xor
are tricky to implement without bit-blasting. Since BL-propagators (see Section 5) are
very efficient for linear bitwise constraints, only coarse but cheap Is-propagators are
considered here and the exact computation is delayed until both operands are instanti-
ated. Approximated propagation for & relies on the fact that r = a & b implies both
�r�u ≤ �a�u and �r�u ≤ �b�u. The same holds for | by replacing ≥ with ≤. No approx-
imate Is-propagator for xor is defined, relying only on BL, simplification rules (see
Section 4.2) and delayed exact computation.

Property 1. Is-propagators ensure local Is-arc-consistency for ⊕, �, comparisons,
extensions and bitwise not. Moreover, correct propagation is ensured for non-linear BV
arithmetic operators, shifts, concatenation and extraction.

Efficiency. While unions of intervals are more precise than single intervals, they can in
principle induce efficiency issues since the number of intervals could grow up to half
of the domain sizes. Note that it is always possible to bound the number of intervals in
a domain, adding an approximation step inside the propagators. Moreover, we did not
observe any interval blow-up during our experiments (see Section 6).
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4.2 Other Issues

Simplification rules. These rules perform syntactic simplifications of the CSP [13]. It is
different from preprocessing in that the rules can be fired at any propagation step. Rules
can be local to a constraint (e.g. rewriting A⊗ 1 = C into A = C) or global (syntactic
equivalence of constraints, functional consistency, etc.). Moreover, simplification rules
may rewrite signed constraints into unsigned ones (when signs are known) and N

≤M
BV -

constraints into N
≤M -constraints (when presence or absence of overflow is known).

The goal of this last transformation is to benefit both from the integer global difference
constraint and better congruence propagation on integer constraints.

Congruence domain. Since the new BL domain can already propagate certain forms
of congruence via the consistency propagators (see Section 5), only very restricted C-
propagators are considered for BV-constraints, based on parity propagation. However,
efficient C-propagation is performed when a BV-constraint is rewritten into a standard
integer constraint via simplification. Consistency between congruence domains and in-
terval domains (i.e. all bounds of intervals respect the congruence) is enforced in a
standard way with an additional consistency propagator [18].

5 New Domain: BitList BL
This section introduces the BitList domain BL, a new abstract domain designed to
work in synergy with intervals and congruences. Indeed, Is/C models well linear in-
teger arithmetic while BL is well-suited to linear bitwise operations (except for xor),
i.e. bitwise operations with one constant operand.

A BL is a fixed-size array of values ranging over {⊥, 0, 1, �}: these values are de-
noted �-bit in the following. Intuitively, given a BL bl = (bl1, . . . , blN ), bli = 0 forces
bit i to be equal to 0, bli = 1 forces bit i to be equal to 1, bli = � does not impose
anything on bit i and bli = ⊥ denotes an unsatisfiable constraint. The set {⊥, 0, 1, �}
is equipped with a partial order � defined by ⊥ � 0 � � and ⊥ � 1 � �. This order
is extended to BL in a bitwise manner. A non-negative integer k is in accordance with
bl (of size N ), denoted k � bl, if its unsigned encoding on N bits, denoted �k�

N
BV

satisfies �k�
N
BV � bl. The concretisation of bl, denoted �bl�, is defined as the set of all

(non-negative) integers k such that k � bl. As such, the concretisation of a BL contain-
ing ⊥ is the empty set. Join (resp. meet) operator � (resp. �) are defined on �-bits as
min and max operations over the complete lattice (⊥, 0, 1, �,�), and are extended in a
component-wise fashion to BL.

BL-propagators. Precise and cheap propagators can be obtained for all constraints
involving only local (bitwise) reasoning, i.e. bitwise operations, unsigned shifts, con-
catenation, extraction and unsigned extension. They can be solved with N independent
fixpoint computation on �-bit variables. BL-propagator for constraint A & B = R is
presented in Figure 3, where ∧� extends naturally ∧ over �-bits.

Signed shift and signed extension involve mostly local reasoning, however, non-local
propagation steps must be added to ensure that all �-bits of the result representing the
sign take the same value, and that signs of operands and results are consistent. As BL
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procedure Propagator for A & B = R
A, B, R bit-vectors of size N

At the �-bit level (ai, bi, ri being �-bit values)
ρr : (ai, bi, ri) �→ (ai, bi, ai ∧� bi)
ρa : (ai, bi, ri) �→ (ite(ri = 1, 1, ite(bi = 1, ri, ai)), bi, ri)
ρb : similar to ρa

propagator ρ� for �-bit: νX.(ρa(X) � ρb(X) � ρr(X) � X)(X0).
propagator for the constraint: perform ρ� in a component-wise manner

Fig. 3. BL-propagator for constraint A & B = R

cannot model equality constraints between unknown �-bit values, these propagators
ensure only local abstract BL-arc-consistency. The same idea holds for comparisons.
Propagators are simple and cheap: for A ≤u B, propagate the longest consecutive se-
quence of 1s (resp. 0s) starting from the most significant �-bit from A to B (resp. B to
A). Again, these propagators ensure only local abstract BL-arc-consistency.

Arithmetic constraints involve many non-local reasoning and intermediate results.
Moreover backward propagation steps are difficult to define. Thus, this work focuses
only on obtaining cheap and correct propagation. Propagators for non-linear arithmetic
use a simple forward propagation step (no fixpoint) based on a circuit encoding of the
operations interpreted on �-bit values. Propagators for ⊕ and � are more precise since
they use a complete forward propagation and some limited backward propagation. The
BL-propagator for ⊕ is depicted in Figure 4. An auxiliary BL representing the carry
is introduced locally to the propagator and the approach relies on the standard circuit
encoding for ⊕: N local equations ri = ai xor bi xor ci to compute the result, and
N non-local equations for carries ci+1 = (ai ∧ bi) ∨ (ai ∧ ci) ∨ (bi ∧ ci). Note that
the local equations are easy to invert thanks to properties of xor. Information in the
BL is propagated from least significant bit to most significant bit (via the carry). A
maximal propagation would require also a propagation in the opposite way. However,
experiments show that this alternative is expensive without any clear positive impact.
All these operations may appear to be a form of bit-blasting, but the encoding is used
only locally to the propagator and no new variables are added.

Property 2. BL-propagators ensure local BL-arc-consistency for bitwise constraints,
unsigned shifts, unsigned extension, concatenation and restriction. BL-propagators en-
sure local abstract BL-arc-consistency for signed shift, signed extension and all com-
parisons. Finally, BL-propagators are correct for all arithmetic constraints.

Ensuring consistency between Is/C and BL. Specific propagators are dedicated to
enforce consistency between the numerical domain Is/C and the BL domain. Let us
consider a variable x with domains bl, Is = ∪j [mj ..Mj ] and congruence (c, M) in-
dicating that x ≡ c mod M . Information can be propagated from BL to Is/C in two
ways, one for intervals and one for congruence. First, it is easy to compute an inter-
val Ib = [mb..Mb] such that �bl�u ⊆ Ib, mb � bl and Mb � bl: to compute m
(resp. M ), just replace all � values in bl with a 0 (resp. 1). The domain Is can then
be refined to Is � Ib. Second, if seq is the longest sequence of well-defined (i.e. 0
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A, B, R: bitlist
let N be the size of A, B and B

1: (A′, B′, R′) := (A, B, R)
2: C := � � � . . . � 0 /* bit-vector of size N+1 */
3: for i = 1 to N do
4: R′

i := (A′

i xor� B′

i xor� C′

i) � R′

i

5: A′

i := (R′

i xor� B′

i xor� C′

i) � A′

i

6: B′

i := (A′

i xor� R′

i xor� C′

i) � B′

i

7: C′

i := (A′

i xor� B′

i xor� R′

i) � C′

i

8: C′

i+1 := ((A′

i ∧� B′

i) ∨� (A′

i ∧� C′

i) ∨� (B′

i ∧� C′

i)) � C′

i+1.
9: end for

10: return (A′, B′, R′)

B
Fig. 4. BL-propagator for constraint A ⊕ B = R

or 1) least significant �-bits of bl, one can infer a congruence constraint on x such that
x ≡ �seq�u mod 2size(seq) . For example, if bl = �1�101 (on 6 bits), then x ≡ 5 mod 8,
and x ∈ [21..61]. Information can also be propagated from intervals and congruences
to BL: if (c, M) is such that M is equal to some 2k then the k least bits of bl can be
replaced by the encoding of c on k bits. Moreover, let k′ be the smallest integer such
that the maximal bound IM of I satisfies IM ≤ 2k′

. Then the most significant bits of
rank greater than k′ of bl must be replaced by 0s. These consistency propagators do not
impose that all interval bounds in Is satisfy the BL constraint. This situation can be
detected and it is always possible to increment/decrement the min/max-bound values
until a value suiting both Is/C and BL is reached. However, experiments (not reported
in this paper) suggest that it is too expensive to be worthwhile.

6 Experiments

This section presents an empirical evaluation of the techniques developed so far. These
experiments have two goals. The first goal (Goal 1) is to assess the practical benefit
of the new CLP(N≤M

BV ) framework, if any, compared to off-the-shelf CLP solvers and
straightforward non-linear encoding. To this end, a comparison is performed between
non-linear integer encoding for some well-known CLP solvers and a prototype imple-
menting our results. All tools are compared on a common set of search heuristics to
evaluate the stability of the results w.r.t. the search heuristic. The second goal (Goal 2)
is to compare the current best SAT-based approaches and the best CLP-based approach
identified above. We focus on quantifying the gap between the two approaches, com-
paring the benefits of each approach on different classes of constraints and evaluating
scalability issues w.r.t. domain sizes (i.e. bit-width).

CLP(N≤M
BV ) implementation. COLIBRI is a CLP(N≤M ) solver integrated in the

model-based testing tool GaTeL [20]. It provides abstract numerical domains (unions of
intervals, congruence), propagators and simplification rules for all common arithmetic
constraints and advanced optimisations like global difference constraint [14]. COLIBRI
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is written in Eclipse [1], however it does not rely on the CLP(N≤M ) library Eclipse/IC.
Our own prototype is written on top of COLIBRI (version v2007), adding the BL do-
main and all BL- and Is/C-propagators described in sections 4 and 5. The following
implementation choices have been made: (1) for Is domains the number of intervals
is limited to 500; (2) the consistency propagator between Is/C and BL is approxi-
mated: only inconsistent singleton are removed from Is. Four different searches have
been implemented (min, rand, split, smart). The three first searches are basic dfs
with value selection based on the minimal value of the domain (min), a random value
(rand) or splitting the domain in half (split). The smart search is an enhancement
of min: the search selects at each step the most constrained variable for labelling ; after
one unsuccessful labelling, the variable is put in quarantine: its domain is split and it
cannot be labelled anymore until all non labelled variables are in quarantine.

Experimental setting. All problems are conjunctive QFBV formulas (including ite op-
erators). There are two different test benches. The first one (T1) is a set of 164 problems
coming from the standard SMT benchmark repository [24] or automatically generated
by the test generation tool OSMOSE [6]. (T1) is intended to compare tool performance
on a large set of medium-sized examples. Problems involve mostly 8-bit and 32-bit
width bit-vectors and range from small puzzles of a few dozen operators to real-life
problems with 20,000 operators and 1,700 variables. (T1) is partitioned into a roughly
equal number of bitwise problems, linear arithmetic problems and non-linear arithmetic
problems. There are also roughly as many SAT instances as UNSAT instances. The sec-
ond test bench (T2) is a set of 87 linear and non-linear problems taken from (T1) and
automatically extended to bit-width of 64, 128, 256 and 512 (difficulty of the prob-
lem may be altered). (T2) is intended to compare scalability on arithmetic constraints
w.r.t. the domain size.

Competing tools are described hereafter. Our own prototype comes in 3 versions,
depending on domains and propagators used: COL (COLIBRI version v2007 with
non-linear encoding), COL-D (COLIBRI v2007 with dedicated Is/C-propagators) and
COL-D-BL (COL-D with BL). A new version of COLIBRI (v2009) with better support
for non-linear arithmetic is also considered (COL-2009). The other CLP solvers are the
standard tools GNU Prolog [10], Eclipse/IC [1], Choco [16] and Abscon [19]. GNU
Prolog and Eclipse/IC use single interval domains while Choco and Abscon represent
domains by enumeration. GNU Prolog and Eclipse/IC are used with built-in dfs-min,
dfs-random and dfs-split heuristics. Choco and Abscon are used with settings of the
CLP competition. Selected SAT-based solvers are STP [15] (winner of the 2006 SMT-
BV competition [24]), Boolector [2] (winner 2008) and MathSat [4] (winner 2009). We
take the last version of each tool.

All experiments were performed on a PC Intel 2Ghz equipped with 2GBytes of
RAM. Time out is set up to 20s for (T1) and 50s for (T2).

Results. A problem with all the CLP solvers we have tried except COLIBRI is that
they may report overflow exception when domain values are too large: integer values
are limited to 224 in GNU Prolog, between 224 and 232 in Choco and Abscon and 253

in Eclipse/IC. In particular, GNU Prolog and ABSCON report many bugs due to over-
flows in internal computations. Moreover, Choco and Abscon are clearly not designed
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for large domains and perform very poorly on our examples, confirming previous exper-
imental results [23]. Thus, we report in the following only results of Eclipse/IC. Results
are presented in Table 1 (a) (T1) and (c) (T2). A detailed comparison of COLIBRI-D-
BL-smart, STP, Boolector and MathSat can be found in Table 1 (b).

A few remarks about the results. First, Eclipse/IC performs surprisingly better than
the standard version of COLIBRI. Actually, the non-linear encoding of BV problems
prevents most of the optimisations of COLIBRI to succeed, since they target linear in-
teger arithmetic. However, COLIBRI v2009 with optimised propagators for non-linear
arithmetic performs much better than Eclipse/IC. Second, MathSat appears to be less
efficient than Boolector and STP, which is rather surprising since it won the 2009 SMT
competition. Recall that we consider only conjunctive problems and that our test bench
exhibits a large proportion of (non-linear) arithmetic problems.

A few remarks about our implementation. (1) We did not observe any interval blow-
up during computation, even when setting up a larger limit (2000 intervals per domain).
(2) We have implemented a full consistency propagation between domains Is/C and
BL as described in Section 5: it appears to be less efficient than the restricted consis-
tency propagation described earlier in this section.

Comments. Goal 1. It is clear from Table 1 that the CLP(N≤M
BV ) framework devel-

oped so far allows a significant improvement compared to the standard CLP(N≤M )
approach with non-linear encoding. Actually, our complete CLP(N≤M

BV ) solver with
smart search is able to solve 1.7x more examples in 2.4x less time than Eclipse/IC,
and 3x more examples in 3.5x less time than standard COLIBRI. Additional interesting
facts must be highlighted:

– Each new feature allows an additional improvement: COL-D-BL performs better
than COL-D which performs better than COL. Moreover, this improvement is ob-
served for each of the four heuristics considered here.

– The smart search permits an additional gain only when dedicated propagators are
used. It does not add anything to the standard version of COLIBRI.

– Every enhanced version of COLIBRI (v2007) performs better than Eclipse/IC and
COLIBRI v2009.

Goal 2. According to (T1), global performance of our prototype lies within those of
MathSat and STP in both number of successes and computation time, Boolector being
a step ahead of the other three tools. Surprisingly, our prototype performs better than
the BV-winner 2009, but worse than the BV-winner 2006. We can then conclude that, at
least for medium-sized conjunctive problems, CLP can compete with current SAT-based
approaches. Considering results by category (Table 1 (b)), our prototype is the best on
non-linear UNSAT problems and very efficient on non-linear SAT problems (Boolector
solves one more example, but takes 1.5x more time). Finally, considering results from
T2 and Table 1 (c), CLP(N≤M

BV ) scales much better than SAT-based approaches on arith-
metic problems: the number of time outs and computation time is almost stable between
64-bit and 512-bit. STP reports very poor scalability. Here, MathSat both performs and
scales much better than the other SAT-based tools. Note that due to the automatic scal-
ing of examples, many LA SAT problems are turned into LA UNSAT problems where
MathSat is much better.
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Table 1. Experimental results

Tool Category Time # success

Eclipse/IC-min N
≤M 1760 78/164

Eclipse/IC-rand N
≤M 2040 72/164

Eclipse/IC-split N
≤M 1750 79/164

COL-min N
≤M 2436 43/164

COL-rand N
≤M 2560 36/164

COL-split N
≤M 2550 40 /164

COL-smart N
≤M 2475 40/164

COL-2009-min N
≤M 1520 89/164

COL-2009-rand N
≤M 1513 89/164

COL-2009-split N
≤M 1682 85/164

COL-2009-smart N
≤M 1410 95/164

COL-D-min N
≤M

BV
1453 94/164

COL-D-rand N
≤M

BV
1392 96/164

COL-D-split N
≤M

BV
1593 89/164

COL-D-smart N
≤M

BV
893 125 /164

COL-D-BL-min N
≤M

BV
1174 108/164

COL-D-BL-rand N
≤M

BV
1116 111/164

COL-D-BL-split N
≤M

BV
1349 103/164

COL-D-BL-smart N
≤M

BV
712 138/164

MathSat SAT 794 128/164

STP SAT 618 144/164

Boolector SAT 291 157/164

(a) T1: Time and #successes
Time out = 20s

category COL-D-BL STP Boolect MathSat
smart

BW SAT 30 (30/30) 2 (30/30) 0 (30/30) 2 (30/30)
BW UNSAT 3 (30/30) 12 (30/30) 0 (30/30) 4 (30/30)
LA SAT 164 (28/30) 88 (30/30) 9 (30/30) 303 (15/30)
LA UNSAT 360 (7/25) 68 (25/25) 42 (23/25) 223 (16/25)
NLA SAT 148 (23/29) 357 (13/29) 220 (24/29) 221 (18/29)
NLA UNSAT 7 (20/20) 82 (16/20) 20 (20/20) 41 (19/20)
Total 712 (138/164) 589 (145/164) 291 (157/164) 794 (128/164)

(b) T1: Time and # successes for Time out=20s
(BW: bitwise LA: linear arith. NLA: non-linear arith.)

bit-width 64 128 256 512
COL-D-BL-smart 8 TO, 443s 10 TO, 500s 10 TO, 503s 10 TO, 510s
STP 10 TO, 1093s 17 TO, 2054s 27 TO, 3500s 35 TO, 3686s
Boolector 2 TO, 213s 6 TO, 385s 8 TO, 656s 16 TO, 1056s
MathSat 2 TO, 180s 2 TO, 308s 2 TO, 379s 2 TO, 545s

(c) T2: #TO and time, Time out = 50s
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7 Related Work

Word-level BV solving has already been investigated through translations into non-
linear arithmetic [12,25,27]. On the one hand, none of these works consider specific
resolution techniques: they all rely on standard approaches for integer arithmetic. On
the other hand, these encodings require bit-blasting at least for bitwise operations which
leads to large formulas. Experiments are performed only with very low bit-width (4 or
8) and no experimental comparison with SAT-based solvers is conducted. The work
reported in [5] presents many similarities with this paper. In particular, the authors de-
scribe a dedicated domain similar to BL and they advocate the use of dedicated propa-
gators for domain I (single interval). There are several significant differences with our
own work. First, our experiments demonstrate that more elaborated domains are nec-
essary to gain performance. Second, their dedicated domains and propagators are not
described, they do not seem to handle signed operations and it is not clear whether or
not they rely on bit-blasting for bitwise operations. Moreover, issues such as consis-
tency or efficiency are not discussed. Third, there is no empiric evaluation against other
approaches. Finally, experimental results reported in [23] confirm our own experiments
concerning SAT-based approaches and traditional CLP(N≤M )-based approaches.

8 Conclusion

Ideas presented in this paper allow a very significant improvement of word-level CLP-
based BV solving, considerably lowering the gap with SAT-based approaches and even
competing with them on some particular aspects (non-linear BV arithmetic, scalabil-
ity). There is still room for improvement on both the search aspect and the propaga-
tion aspect. And there remain many challenging issues: the best SAT-based approaches
are still ahead on arbitrary conjunctive QFBV formulas, and formulas with arbitrary
boolean skeletons and array operations should be investigated as well.

Acknowledgements. We are very grateful to Bruno Marre and Benjamin Blanc for
developing COLIBRI, as well as for many insightful comments and advices.
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