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ABSTRACT In this article, we propose a Shewhart-type control chart for

monitoring changes in the process variability of a bivariate process. The

sample Gini mean differences based matrix jG� j is used as an estimate of

the population variance–covariance matrix R�. The newly proposed control

chart, denoted by jG� j-chart, is based on the generalized Gini mean differ-

ences jG� j. For the case of two correlated quality characteristics Y and X,

the design structure of the proposed jG� j-chart is developed assuming bivari-

ate normality of (Y, X). The performance of the proposed jG� j-chart is com-

pared with that of the jS�j-chart (a sample generalized variance based control

chart).

KEYWORDS average run length, control charts, generalized variance,

non-normality, normality, process variability

INTRODUCTION

Multivariate statistical process control (MSPC) is used to simultaneously

monitor multiple measurements from a process. Multiple process variables

might be measured such as temperatures, pressures, concentrations, flow

rates, voltages, et cetera. With multiple measurements, each can be moni-

tored in its own control chart. However, this has two disadvantages (see

Runger, 2007). One is that it is difficult to control the number of false alarms.

The other is that there are often important relations between the variables

that should be considered for MSPC. In a multivariate setup, the variance–

covariance matrix R� and the mean vector l are generally used to refer to

the spread and location parameters respectively of the distribution of a ran-

dom vector X . Note that we shall use the following manner of writing: an

italic character represents a univariate quantity; e.g., Y ; an underlined

character represents a vector; e.g., l
�
; a tilde under a character represents

a matrix; e.g., R�; jR�j represents the determinant of the matrix R�; and a hat

above a character represents an estimate; e.g., jR̂�R�j
1=2

.

Several papers are available in the quality control literature that provide

an extensive review of multivariate control charts (cf. Bersimis et al., 2007;

Lowry and Montgomery, 1995; Wierda, 1994; Yeh et al., 2006).

Multivariate control charts for controlling the process mean were

introduced by Hotelling (1947). Process variability is summarized in the
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variance–covariance matrix R�. There are two

single-number quantities for measuring the overall

variability of a set of multivariate data. These are

(1) the determinant of the variance–covariance

matrix, jR�j, which is called the generalized variance;

(2) the trace of the variance–covariance matrix, trR�,

which is the sum of the variances of the variables.

The issue of multivariate monitoring of process

variability is addressed by different researchers (cf.

Alt, 1985; Alt and Smith, 1988; Aparaisi et al., 1999,

2001; Khoo and Quah, 2004; Menzyfricke, 2007; Mont-

gomery and Wadsworth, 1972). Alt (1985) and Alt and

Smith (1988) gave different approaches for monitoring

variability of normally distributed quality characteris-

tics in a process, of which the sample generalized vari-

ance based control chart (i.e., the jS�j-chart) is the one

that is commonly used. The jS�j-chart is the standard

multivariate control chart for dispersion in statistical

software programs, like Minitab 15. In this article we

shall also use the generalized variance as a measure

of the process dispersion. Although the generalized

variance is a widely used measure of variability, it

can be misleading in some cases (cf. Lowry and

Montgomery, 1995). The reason is that the values of

the generalized variance do not represent unique

correlations for the underlying variables.

The focus of this article is on monitoring the varia-

bility parameter with respect to two correlated qual-

ity characteristics having a bivariate normal

distribution, following Alt (1985), Alt and Smith

(1988), Aparaisi et al. (1999), and Khoo and Quah

(2004). They have given a relationship between

jS�j
1=2 and jR�j

1=2 to develop the design structure of

the jS�j control chart, where jS�j
1=2 and jR�j

1=2 are the

square roots of the determinants. Under bivariate

normality A ¼ 2ðn� 1ÞjS�j
1=2=jR�j

1=2 has a chi-square

distribution with 2n� 4 degrees of freedom (cf.

Khoo and Quah, 2004). Based on this property the

probability and the 3-sigma limits based design struc-

ture for the jS�j -chart is easily obtained.

The jS�j-chart performs well when the vector X , of

the correlated quality characteristics of interest, fol-

lows a multivariate normal distribution. In cases of

contaminated multivariate normal distributions and

departures from multivariate normality, the jS�j-chart

loses its efficiency. To overcome these problems

with the jS�j-chart, this article proposes a Shewhart-

type control chart based on the sample Gini mean

differences based matrix, say G� , as an estimate of

the population variance-covariance matrix R�. The

generalized Gini mean differences, say jG� j, based

control chart, denoted by jG� j-chart, is proposed to

monitor the population-generalized variance jR�j.
The motivation for this is to obtain control limits that

are more robust so that these are less affected by

departures from normality. Note that Riaz and Saghir

(2007) proposed a Gini mean differences based uni-

variate control chart for monitoring the scale para-

meter of a normally distributed quality characteristic.

One may object that multivariate methods have

not gained much popularity on the shop floor. This

is probably due to an important drawback: the

interpretation of out-of-control situations signaled

by a multivariate chart is usually difficult and

involves further statistical evaluation of the data.

However, in chapters 7 and 8 in Mason and Young

(2002), one finds guidelines on interpretation multi-

variate control charts and interpretation after a signal.

Does et al. (1999) Woodall and Ncube (1985) and

demonstrate in their papers that simultaneous uni-

variate charts often perform as well as multivariate

charts. Note that we can always use univariate

control charts for variability as a supplement to any

control chart based on the generalized variance.

This article contains the following topics:

1. The design structure of the proposed jG� j-chart is

developed for the bivariate case assuming bivari-

ate normality. A comparison of the jG� j-chart is

made with the jS�j-chart in terms of average run

length (ARL).

2. The robustness against departures from bivariate

normality is examined on the design structures

of the jG� j- and jS�j-charts. To examine the robust-

ness of the design structures of the jG� j- and jS�j-
charts, the affected ARLs (i.e., when the parent

distribution is either bivariate t, bivariate chi

square or bivariate exponential) have been com-

pared with the respective original ARLs (i.e., when

the parent distribution is bivariate normal).

THE PROPOSED CONTROL CHART
(jG�j-CHART)

Let Y and X be two correlated quality characteris-

tics that follow a bivariate normal distribution;

i.e., ðY ;XÞ � N2ðl;R�Þ where l ¼ ly

lx

� �
and

M. Riaz and R. J. M. M. Does 64
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R� ¼
r2

y ryx

rxy r2
x

� �
(symbolically, the same may also be

written in another way as: ðY ;XÞ � N2ðly;lx;r
2
y;

r2
x; qyxÞÞ. The most commonly used measure of mul-

tivariate process variability is the variance-covariance

matrix R�. A single number representation for the

variation expressed by the matrix R� is its determi-

nant, known as the generalized variance. The popu-

lation generalized variance is denoted by jR� j and

our interest in this study lies in monitoring jR� j
1=2.

Let ðy1; x1Þ; ðy2; x2Þ; . . . ; ðyn; xnÞ be a random sam-

ple of size n from N2ðl;R�Þ, then the sample Gini

mean differences based matrix G� is defined as (cf.

David, 1968; Olkin and Yitzhaki, 1992; Riaz and

Saghir, 2007; Schechtman and Yitzhaki, 1987;

Yitzhaki, 2003):

G� ¼
G2

y Gyx

Gxy G2
x

" #
;

with

Gy ¼ ð
ffiffiffi
p
p

=2Þ4CovðY ; FðY ÞÞ
Gx ¼ ð

ffiffiffi
p
p

=2Þ4CovðX ; FðXÞÞ
Gyx ¼ ð

ffiffiffi
p
p

=2Þ4CovðY ; FðXÞÞGx

Gxy ¼ ð
ffiffiffi
p
p

=2Þ4CovðX ; FðY ÞÞGy

9>>>>>=
>>>>>;
; ½1�

where the symbols F and Cov represent the cumu-

lative distribution function and the covariance,

respectively. The sample versions of all the quanti-

ties in the formulas of Gy;Gx;Gyx, and Gxy are used

here. The generalized Gini mean differences,

denoted by jG� j, are defined as jG� j ¼ G2
y G2

x�
GyxGxy. The elements of the matrix G� estimate the

respective elements of the variance-covariance

matrix R�, and hence the quantity jG� j is used as

an estimate of the jR� j. In this study, the quantity

jG� j
1=2 is used for monitoring the quantity jR� j

1=2

and for developing the design structure of the pro-

posed jG� j-chart. The quantity jG� j
1=2 represents the

square root of the determinant of the Gini’s mean

differences based matrix G� .

To develop the design structure of the proposed

jG� j-chart, let B be a random variable that defines a

relationship between jG� j
1=2 and jR� j

1=2 as:

B ¼ 2ðn� 1ÞjG� j
1=2=jR� j

1=2; ½2�

The distributional behavior of B (in terms of its

mean, standard error, and quantile points) is

required for the development of the design structure

of the proposed jG� j-chart.

Some Distributional Results for the
Proposed jG� j-Chart

Assuming ðY ;XÞ � N2ðl;R�Þ, we consider here,

without loss of generality, a standard bivariate nor-

mal distribution (i.e., ðY ;XÞ � N2ð0; q�Þ where

0 ¼ 0
0

� �
and q

�
¼ 1 qyx

qxy 1

� �
Þ. When (Y, X) follow

a bivariate normal distribution, the distributional

behavior of B (cf. [2]) entirely depends on n. The dis-

tributional properties of the Gini mean differences–

based estimators have been discussed by different

researchers (cf. David, 1968; Lomnicki, 1952; Nair,

1936; Riaz and Saghir, 2007; Yitzhaki, 2003). From

Riaz and Saghir (2007) it follows that Gy is an

unbiased estimate of ry in the univariate case. They

recommended Gy mean of Gys computed from an

initial set of stable points for an unbiased estimation

of ry in the dispersion control charts.

However, the distributional behavior of G2
y G2

x�
GyxGxy; ðG2

y G2
x � GyxGxyÞ1=2 and hence B is not easy

to obtain analytically. Therefore, the Monte Carlo

simulation technique has been used to explore the

distributional behavior of B. ‘‘In practice, simulation

methods are often used to evaluate the expectation

of a statistic,’’ according to Ross (1990). A detailed

discussion regarding the number of simulations

required in control chart Monte Carlo simulation stu-

dies may be found in Schaffer and Kim (2007). They

examined recently published studies to develop

recommendations for the minimum number of repli-

cations necessary to reproduce the reported results

within a specified degree of accuracy. In many cases,

only 5,000 replications or fewer were required. In

general, the number of replications required to

reproduce the target ARL decreased as the shift size

increased.

Let b0, b1, and Ba, respectively, represent the

mean, standard deviation, and ath quantile point

(i.e., the point that has a% area below it is com-

pleted) of the distribution of B, which entirely

depends on n in the case of bivariate normality.

The values of b0, b1, and Ba have been obtained as

function of n using the simulation approach.

To conduct a Monte Carlo experiment, we have

generated 10,000 random samples, of a given size

n, from the standard bivariate normal distribution

without loss of generality. For each sample, we have

computed the values of the random variable B

65 Control Chart for Process Dispersion
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followed by its descriptive statistics to obtain b0, b1,

and Ba. To take care of random variability due to

simulation, we have repeated the above procedure

1,000 times. Based on these repeated computations

for b0, b1, and Ba, we have obtained the mean values

of these quantities and their standard errors to report

the precision of the results obtained for these quan-

tities (see Tables 1 and 2).

The standard errors for the results of each cell in

the aforementioned tables varied between 0.004

and 0.010. Similar results for b0, b1, and Ba can easily

be obtained for any value of n.

The quantities b0, b1, and Ba are needed to deter-

mine the control limits and the power of the pro-

posed jG� j-chart to detect shifts in the process jR� j
1=2.

Design Structure of the Proposed
jG� j-Chart

Let ljG� j
1=2 and rjG� j

1=2 denote the mean and the

standard deviation of the distribution of the sample

TABLE 1 Table of Coefficients for the jG
�
j-chart

n b0 b1

3 2.540 2.849

4 4.679 3.405

5 6.776 4.072

6 8.851 4.512

7 10.858 4.974

8 12.885 5.358

9 14.815 5.725

10 16.821 5.985

11 18.950 6.357

12 20.878 6.686

13 22.983 7.007

14 24.917 7.308

15 26.865 7.618

16 28.844 7.743

17 31.042 8.206

18 32.935 8.398

19 34.898 8.570

20 37.047 8.843

25 46.964 9.968

30 56.660 10.808

50 97.057 14.197

100 197.341 20.235

TABLE 2 Table of Quantile Points for the G�

����
����-chart

n B:001 B:005 B:01 B:050 B:100 B:200 B:800 B:900 B:950 B:990 B:995 B:999

3 0.000 0.000 0.000 0.000 0.000 0.000 4.410 6.375 8.188 12.104 14.305 19.278

4 0.000 0.000 0.000 0.000 1.027 1.849 7.107 9.094 11.134 15.652 17.412 21.044

5 0.000 0.000 0.000 1.692 2.361 3.389 9.758 12.174 14.400 19.510 21.651 27.436

6 0.000 1.231 1.658 2.938 3.762 5.010 12.310 14.892 17.314 22.606 24.703 29.601

7 1.418 2.130 2.618 4.152 5.166 6.629 14.695 17.615 20.258 25.271 27.882 33.086

8 2.081 3.067 3.762 5.538 6.661 8.340 16.915 19.962 22.884 28.305 30.632 36.631

9 3.222 4.183 4.692 6.914 8.226 9.930 19.245 22.605 25.398 31.652 33.788 37.680

10 4.162 5.421 6.136 8.302 9.772 11.688 21.595 24.862 27.752 33.302 35.728 41.954

11 5.269 6.764 7.408 9.796 11.381 13.558 24.125 27.399 30.391 36.475 39.158 45.084

12 6.220 7.652 8.284 11.175 12.950 15.159 26.113 29.820 32.892 39.544 41.873 50.238

13 7.477 8.925 9.777 13.001 14.706 16.936 28.518 32.390 35.551 42.328 45.756 51.836

14 8.019 10.055 10.988 14.164 16.129 18.782 30.765 34.578 38.032 45.066 48.304 53.984

15 9.215 11.485 12.490 15.724 17.663 20.314 32.895 37.082 40.693 47.285 50.755 57.828

16 10.118 12.659 13.732 17.401 19.401 22.225 35.063 39.175 42.447 50.137 52.501 58.772

17 12.452 13.936 15.225 19.073 21.124 24.036 37.678 41.952 45.625 53.463 56.285 62.545

18 12.790 15.274 16.545 20.407 22.770 25.732 39.679 44.083 47.760 55.685 58.716 66.116

19 13.935 16.676 17.981 21.886 24.339 27.572 41.780 46.021 50.107 57.509 60.643 67.891

20 15.623 18.082 19.497 23.799 26.284 29.424 44.225 48.851 52.523 60.557 63.878 69.943

25 22.580 24.882 26.628 31.837 34.830 38.376 55.018 59.892 64.477 73.740 77.247 84.813

30 30.033 32.451 34.017 39.669 43.328 47.588 65.568 70.709 75.584 84.809 88.465 97.046

50 58.195 63.378 66.201 74.642 79.084 84.759 108.858 115.514 121.197 133.191 136.646 145.487

100 140.972 149.265 154.062 165.363 172.214 180.193 213.957 223.752 231.553 248.164 255.027 271.299
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statistic jG� j
1=2, respectively. Applying expectations

to [2] gives:

EðBÞ ¼ Eð2ðn� 1ÞjG� j
1=2=jR� j

1=2Þ

¼ ð2ðn� 1Þ=jR� j
1=2ÞEðjG� j

1=2Þ

9>=
>;: ½3�

In [3], EðjG� j
1=2Þ can be replaced by its estimate

jG� j
1=2

(the mean of sample jG� j
1=2s), using an appro-

priate number of random samples, from the process
under study when the process is in the state of stat-
istical control (cf. Hillier, 1969; Yang and Hillier,

1970)). Thus, from [3] an estimate of jR� j
1=2, after

rearranging the terms, is given as:

j R̂R� j
1=2 ¼ 2ðn� 1Þ

jG� j
1=2

b0
: ½4�

The expression for j R̂R� j
1=2 given in [4] is useful for an

unbiased estimation of jR� j
1=2 using jG� j

1=2
and the

coefficient b0 provided in Table 1 as a function of n.
Also from [3] we have:

EðjG� j
1=2Þ ¼

b0jR� j
1=2

2ðn� 1Þ : ½5�

Replacing the estimate of jR� j
1=2 (given in [4]) in [5]

and simplification gives:

l̂ljG� j
1=2 ¼ jG� j

1=2
: ½6�

Also, taking the variance of B and then simplification

gives the expression for rB as:

rB ¼ 2ðn� 1ÞrjG� j1=2=jR� j
1=2; ½7�

Rearrangement of (7) yields the following result for

rjG� j
1=2 :

rjG� j
1=2 ¼

b1jR� j
1=2

2ðn� 1Þ : ½8�

Substituting the estimate for jR� j
1=2 given in [4] into

[8], the estimate for rjG� j
1=2 is given as:

r̂rjG� j
1=2 ¼

b1 jG� j
1=2

� �
b0

: ½9�

The expression in [9] is similar to the expression for

r̂rR of the R-chart as provided in Alwan (2000).

Parameters of the Proposed
jG� j-Chart

The central line (CL), lower control limit (LCL),

and upper control limit (UCL) are the three para-

meters of any Shewhart-type control chart. There

are two approaches to express these parameters;

namely, the probability limit approach and the

3-sigma limit approach. In case of an asymmetric

distributional behavior of a relevant estimator, the

probability limits approach is preferred. If the distri-

butional behavior of a relevant estimator is nearly

symmetric, then the 3-sigma limits approach is a

good alternative. In this article we use the probability

limits approach because of the asymmetric distribu-

tional behavior of the jG� j-chart.

Probability Limits Approach

The value jG� j
1=2

corresponds to the CL of the

proposed jG� j-chart. Assuming that the probability

of making a Type-I error is less than a specified

value, say a, the control limits (which are actually

the true probability limits) for the proposed jG� j-
chart are defined as:

LCL¼ jG� j
1=2
l with Fn jG� j

1=2 ¼ jG� j
1=2
l

� �
� al

UCL¼ jG� j
1=2
u with Fn jG� j

1=2 ¼ jG� j
1=2
u

� �
� 1� au

9>>>=
>>>;
;

½10�

where jG� j
1=2
l and jG� j

1=2
u are the quantile points of

the distribution of jG� j
1=2 below which the areas

are al and 1� au respectively, and a¼ al þ au and

FnðX ¼ xÞ represent the cumulative distribution

function of X at point x, for a given value of n.

Now using [2] and [4] in [10] and simplification

gives the following:

LCL¼jG� j
1=2
l ¼Bl jG� j

1=2
=b0 with FnðB¼BlÞ�al

UCL¼jG� j
1=2
u ¼Bu jG� j

1=2
=b0 with FnðB¼BuÞ�1�au

9>>=
>>;
½11�

Thus, the quantile points of the distribution of B, the

average of the sample jG� j
1=2s (i.e., jG�j

1=2), and the

values of b0 allow setting the true probability limits
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of the proposed jG� j-chart. Similarly, the 3-sigma

limits for the proposed jG� j-chart may easily be

defined using [6] and [9].

Once we have computed the control limits of the

proposed jG� j-chart for a given significance level by

either probability limits approach or the 3-sigma lim-

its approach, the sample statistic jG� j
1=2 is plotted

against the time order of the samples. If all of the

sample jG� j
1=2s lie within the control limits, there is

reasonable evidence to conclude that there is no shift

in the process jR� j
1=2 and that the process is stable.

Otherwise, some assignable cause(s) are at work

causing a shift in the process jR� j
1=2.

To address specifically small and moderate shifts:

(i) the runs rules (as discussed by Nelson, 1984)

may be supplemented to the basic structure of the

proposed jG� j-chart of this article, resulting into an

increased false alarm rate; (ii) EWMA and CUSUM

schemes may be developed based on the statistic

jG� j or jG� j
1=2 (cf. Woodall and Ncube, 1985).

For more than two correlated quality characteris-

tics, the design structure of the proposed jG� j-chart

may be extended on similar lines. For guidelines

regarding more than two correlated quality charac-

teristics of interest, see Gnanadesikan and Gupta

(1970) and Khoo and Quah (2004).

PERFORMANCE EVALUATIONS
AND COMPARISONS

In this section, the performance of the proposed

jG� j-chart given earlier is compared with that of the

j S� j-chart given in Khoo and Quah (2004). The com-

parisons are made for two different situations;

namely, the case of a bivariate normal distribution

and the case of non-normal bivariate distributions.

For comparison purposes, some selective cases of

shifts in the parameter values have been considered

and the average run length (ARL) has been com-

puted as the performance measure, as is usually

done in quality control literature for comparisons

among different methods (cf. Hawkins and

Maboudou, 2007; Khoo and Quah, 2004).

The Case of a Bivariate Normal
Distribution

The efficiency of the proposed jG� j-chart as com-

pared to that of the j S� j-chart has been examined

here for the case of a bivariate normal distribution,

using the ARL as a performance measure. Probability

limits of the jG� j-chart (cf. [11]) and the j S� j-chart

have been obtained for different combinations of a
and n. In addition, the ARLs for the two charts have

been computed. The ARLs for some values of n using

a¼ 0.005 are provided here in Tables 3 and 4 for

comparisons between the jG� j- and the j S� j-charts.

For the ARL computations, the shifts in jR� j
1=2 are

considered in terms of djR� j
1=2.

One may observe from these tables that (i) for

small values of n, the ARLs of the proposed jG� j-
chart are slightly less than those of the j S� j-chart for

small values of d, and the two ARLs almost coincide

when d increases; (ii) for large values of n, the ARLs

of the proposed jG� j-chart are almost the same as

those of the j S� j-chart for all the choices of d.

Thus, the proposed jG� j-chart is a competitor to

the j S� j-chart in case of a bivariate normal parent

population for detecting shifts in the process jR� j
1=2.

The Case of Non-Normal Bivariate

Distributions

Until now we have assumed that the samples are

drawn from a normal distribution. In case this is

not true, then an option is to employ a control chart

appropriately designed for some particular parent

distribution. But in practice, we prefer to have con-

trol chart structures that are not much affected by

the departures from normality. We examine here

departures from normality for our proposed jG� j-
chart and the traditional j S� j-chart. To study the effect

of non-normality, two situations are considered: one

by disturbing the symmetry and the other by disturb-

ing the kurtosis (peak) of the parent distribution.

For the case of disturbances in symmetry, we use

the bivariate exponential and bivariate chi-square

TABLE 3 ARL Values for the jG� j-Chart at a¼ 0.005 for the

Bivariate Normal Parent Distribution

d n¼ 5 n¼ 10 n¼ 20 n¼ 50

1.00 200.011 199.996 200.023 199.992

1.50 29.636 12.919 5.050 1.761

2.00 9.971 3.379 1.555 1.022

2.50 5.106 1.859 1.117 1.001

3.00 3.167 1.383 1.027 1.000

4.00 2.060 1.105 1.001 1.000
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distributions; for the case of disturbance in the

kurtosis we use the bivariate t distribution.

To examine the effect of departures from bivariate

normality, a bivariate random vector, say U, is simu-

lated 10,000 times from a bivariate exponential distri-

bution; a bivariate random vector, say V, is simulated

10,000 times from a bivariate t-distribution; and a

bivariate random vector, say W, is simulated 10,000

times from a bivariate chi-square distribution such

that the mean vectors and the variance-covariance

matrices of U, V, and W are the same as that of a com-

parable random vector from a bivariate normal distri-

bution. Then the calculations are carried out for the

charting characteristic B (cf. [2]) based on the simu-

lated random vectors U, V and W, and the distri-

bution of B is obtained for the three cases under

consideration. This is repeated 1,000 times and mean

values of the quantile points of the distribution B are

obtained. The rejection region for given a is decided,

using mean values of the quantile points of the distri-

butions of B derived from U, V, and W, by the prob-

ability limits approach and ARLs of the proposed

jG� j-chart are computed for different shifts in

the process jR� j
1=2 using the quantile points of

Table 2, which are obtained assuming bivariate nor-

mality. The same is done, along similar lines, for

TABLE 5 Original and Affected ARLs of the jG� j- and jS� j-Charts at a¼0.005 for n¼5

d G-chis5 S-chis5 G-chis20 S-chis20 G-Expo S-Expo G-t5 S-t5 G-t20 S-t20

1.00 200.020 200.033 199.998 199.990 200.013 199.999 199.989 200.041 200.015 200.020

1.50 63.291 122.768 41.017 49.428 270.270 1710.267 147.059 244.165 43.478 44.281

2.00 15.552 23.949 11.429 12.585 40.783 161.364 26.596 40.273 11.891 11.637

2.50 6.930 9.422 5.429 5.850 14.493 39.545 10.428 13.914 5.618 5.522

3.00 4.182 5.278 3.503 3.653 7.539 16.236 5.794 7.150 3.596 3.495

4.00 2.364 2.741 2.118 2.161 3.501 5.785 2.975 3.345 2.150 2.100

TABLE 4 ARL Values for the jS
�
j-Chart at a¼ 0.005 for the

Bivariate Normal Parent Distribution

d n¼ 5 n¼ 10 n¼ 20 n¼ 50

1.00 199.998 199.994 200.031 200.001

1.50 27.362 12.009 5.044 1.760

2.00 8.343 3.217 1.539 1.020

2.50 4.327 1.800 1.115 1.000

3.00 2.900 1.363 1.027 1.000

4.00 1.866 1.101 1.001 1.000

TABLE 6 Original and Affected ARLs of the jG� j- and jS� j-Charts at a¼0.005 for n¼10

d G-chis5 S-chis5 G-chis20 S-chis20 G-Expo S-Expo G-t5 S-t5 G-t20 S-t20

1.00 200.016 200.007 200.001 199.999 199.993 200.027 200.023 200.014 200.008 199.992

1.50 25.126 77.232 18.692 24.738 86.957 1846.092 73.421 663.600 16.795 18.576

2.00 4.895 9.559 4.163 4.860 9.372 70.218 8.741 36.843 3.934 4.119

2.50 2.354 3.503 2.132 2.300 3.517 13.102 3.387 8.472 2.043 2.082

3.00 1.600 2.069 1.505 1.582 2.090 5.077 2.026 3.747 1.474 1.488

4.00 1.169 1.306 1.142 1.166 1.314 2.019 1.297 1.730 1.132 1.138

TABLE 7 Original and Affected ARLs of the jG� j- and jS� j-Charts at a¼0.005 for n¼20

d G-chis5 S-chis5 G-chis20 S-chis20 G-Expo S-Expo G-t5 S-t5 G-t20 S-t20

1.00 200.018 200.023 200.015 199.994 200.021 200.016 200.013 200.022 199.990 200.008

1.50 7.257 45.109 5.857 7.351 8.772 456.192 11.236 426.376 5.631 6.475

2.00 1.791 3.974 1.640 1.778 1.927 13.010 2.142 12.548 1.622 1.691

2.50 1.176 1.634 1.139 1.171 1.214 2.958 1.271 2.902 1.134 1.151

3.00 1.004 1.184 1.033 1.043 1.055 1.569 1.072 1.553 1.003 1.037

4.00 1.004 1.019 1.003 1.003 1.005 1.075 1.006 1.073 1.002 1.003
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thej S� j-chart using the quantile points of a chi-square

distribution with 2n� 4 degrees of freedom for

comparison purposes.

Tables 5 through 8 provide the ARLs of the jG� j-
and j S� j-charts when the samples are generated from

the comparable bivariate exponential, t and chi-

square distributions, for some selective values of n

using a ¼ 0:005:

In the above tables, G(S)-Chi5, G(S)-Chi20, G(S)-

t5, G(S)-t20, and G(S)-Expo refer to the ARLs of the

jG� j (j S� j)-chart when the parent distributions are

bivariate chi-square with 5 (respectively 20) degrees

of freedom, bivariate t with 5 (respectively 20)

degrees of freedom, and bivariate exponential,

respectively.

From Tables 5 through 8 we may conclude that

the ARLs of the proposed jG� j-chart are less affected

by non-normality compared to those of the j S� j-
chart. A similar behavior is observed for the other

values of n. Thus, the proposed jG� j-chart provides

a reasonably robust design structure that can be used

even if the behavior of the correlated quality charac-

teristics ðY ;XÞ depart from normality.

An Interesting Phenomenon for the

Exponential Distribution

It has been observed that in the case of exponen-

tial distribution, the values of ARL increase instead of

decrease for small shifts (e.g., d¼ 1.5) for both jG� j-
and j S� j-charts. This increase in the ARL values is lar-

ger for the j S� j-chart compared to that of the jG� j-
chart, especially for small values of n, as is obvious

from Tables 5 through 7. A similar type of obser-

vation for the exponential distribution was also made

by Vermaat and Does (2006) in their study regarding

a semi-Bayesian method for Shewhart control charts.

Moreover, another aspect of the proposed jG� j-
chart is covered in Riaz (2008), which shows that

this proposed chart is not unduly affected by the

presence of contaminations (outliers and special

causes).

CONCLUSIONS

This article shows that the proposed jG� j-chart is a

satisfactory competitor to the j S� j-chart, in case of a

normal parent population. Moreover, the design

structure of the proposed jG� j-chart shows more

robust behavior compared to that of the j S� j-chart

against departures from normality.
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