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An alternative to the Mahalanobis distance for determining
optimal correspondences in data association

Jose-Luis Blanco, Javier González-Jiménez and Juan-Antonio Fernández-Madrigal

Abstract— The most common criteria for determining data association
rely on minimizing the squared Mahalanobis distance (SMD) between
observations and predictions. We hold that the SMD is just a heuristic,
while the alternative matching likelihood (ML) is the optimal statistic
to be maximized. Thorough experiments undoubtedly confirm this idea,
with false positive reductions of up to 16%.

Index Terms— SLAM, data association.

I. I NTRODUCTION

The problem of Simultaneous Localization and Mapping (SLAM)
has been one of the most studied topics in mobile robotics during the
last decade [1]–[4]. Maps of the robot environment learned by SLAM
can be roughly classified as either continuous representations (such
as occupancy grid maps [5], elevation maps [6] or gas concentration
maps [7]) or discrete (object-based) representations, comprised of
a variable number of natural or artificiallandmarkspresent in the
environment. In this work we focus on this latter approach. Using a
map of discrete elements has some advantages such as the relative
efficiency of graph SLAM [8] and EKF-like [9] algorithms in
comparison to alternatives for continuous maps – e.g. grid mapping
with particle filters [10].

However, discrete maps introduce two hurdles: first, in mostcases
sensors do not directly detect landmarks, thus an additional detection
step must be introduced whose failure would severely degrade the
overall mapping performance. Secondly, once a set of observed
landmarks is available from the sensor, they must be paired with
those already in the map. This is thedata-association(DA) problem,
which is the central concern of this work.

The DA problem can be stated as follows: at some time stept,
and given the vector withN landmark observationszt, compute
the N -length association vectornt which states to which map
landmark does each observation corresponds (or whether it is a
new landmark not observed before). Each landmark observation is
a point in theobservation spacewhose dimensionality depends on
the specific problem, e.g. two-dimensional in planar range-bearing
SLAM with point features [4], [11] and in Monocular SLAM [12],
or one-dimensional in range-only SLAM [13], [14]. Each of these
observation points must be paired with either one or none of aset
of predictions, or expected observation for each known landmark
in the map. Given that the sensor model is stochastic and boththe
vehicle pose and the map are represented as probability densities,
these predictions are probability distributions as well – typically,
Gaussians.

As we will discuss in Section II, the most popular methods
for solving DA are the Nearest Neighbor (NN) [4] and the Joint-
Compatibility Branch and Bound (JCBB) [11] algorithms. As de-
scribed in the literature, these methods aim at establishing the most
likely pairings by minimizing the squared Mahalanobis distance
(SMD) between the observations and their associated predictions.

The central claim of this work is that minimizing the SMD
does not always lead to the most likely pairings, as can be easily
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demonstrated. Consider the probability mass function overall the
possible associationsnt for a time stept, given knowledge about the
joint vehicle-map state vectorst and the latest observationzt, which
follows the conditional distributionP (nt|st, zt). By definition, the
most likely set of associations is the value ofnt that maximizes this
distribution. Applying the Bayes rule over the observationzt:

P (nt|st, zt) ∝
✘
✘
✘
✘✿

η
P (nt|st)p(zt|st,nt)

∝ p(zt|st,nt) (1)

using the fact that the a priori distribution of the associations not
conditioned to any observation must be uniform, leading to an
irrelevant constant termη. A natural and expected consequence of
the equation above is that optimal correspondences are those that
“best explain” the observations.

If we let N (x;µ,Σ) denote the evaluation atx of the probability
density function (pdf) of a multivariate Gaussian with meanµ and
covariance matrixΣ, the observation likelihood in EKF-based or
graph SLAM can be denoted as:

p(zt|st,nt) = N (zt;h(st,nt),S(nt)) (2)

whereh(·) is the observation model that gives us the prediction vector
hnt

, andS(nt) is its covariance1. We will refer to Eq. (2) as the
matching likelihood(ML), since all the terms are known with the
exception ofnt, the vector of the matching hypothesis.

On the other hand, the SMD between observations and predictions
for a given hypothesisnt is given by:

D
2

M (nt) = (zt − hnt
)⊤ S(nt)

−1 (zt − hnt
) (3)

It is straightforward to see that the SMD is one of the terms inthe
expression of the previous ML, as can be verified expanding Eq. (2)
as a negative log-likelihood:

− log p(zt|st,nt) = − log

{

1
√

(2π)d |S(nt)|
exp

(

−
1

2
D2

M (nt)

)}

=
1

2

(
d log 2π +D2

M (nt) + log |S(nt)|
)

(4)

where d represents the dimensionality of thezt vector. Since the
constant factor1

2
becomes irrelevant while comparing ML values

for different correspondence hypotheses, we convenientlydefine the
NLML (negative logarithm of the ML) as twice Eq. (4), thus:

NLML(nt) = d log 2π +D
2

M (nt) + log |S(nt)| (5)

1For an additive Gaussian noise sensor model with noise covariance matrix
R, this covariance becomesHPkH

⊤ +R with H the observation Jacobian
andPk the vehicle-map joint covariance. In this work we will assume that
R is either constant or depends on the predictionh(·), thus it will be
always constant when evaluating a prediction against multiple potentially-
paired observations. However, our claims about ML and SMD still hold if the
model forR was to depend on the observation readingszt.
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(a) (b)

Fig. 1. A motivating example for this work. The values of the squared
Mahalanobis distance (SMD) are compared to those of the negative logarithm
of the matching likelihood (NLML) for two hypothetical situations. In both
SMD and NLML, lower values mean “better” pairings. (a) Two observations
are tested against a probabilistic prediction. In this casethe minimum SMD
can be safely used to detect the most likely pairing. (b) One observation is
tested against two predictions. Here, minimizing SMD does not give us the
optimal pairing.

Clearly, minimizing the SMD (D2

M (nt)) is not equivalent to
minimizing the NLML (or maximizing the ML). The other two
terms (the dimensionality term and the determinant of the covariance
St) can also change among different potential pairings and their
contribution may make the difference between establishingcorrect
or wrong associations.

We can illustrate this discussion with the example in Fig. 1(a),
where two observations are compared to one prediction. In this
example, the same covarianceS appears in both expressions of
the ML, thus it is justified to employ the SMD to decide the
correspondence, since the minima of SMD and NLML coincide. In
contrast, a situation more commonly found in SLAM is similarto
that depicted in Fig. 1(b), where one or more observations are to be
tested against one or more predictions, thus Gaussians withdifferent
covariance matrices are involved. As shown in the figure, in this case
the SMD would recommend to associate the observation withP1

although the pairing withP2 is more likely.
With this paper we make two contributions to the field of proba-

bilistic mobile robotics: (i) an in-depth discussion of theprinciples
that underlie the decisions made in DA, which is rarely foundin
the literature, and (ii) the proposal of the NLML as theoptimal
statistic (by definition) to determine correspondences. As validated
below with experiments, using the NLML instead of the SMD reduces
the average ratio of wrong correspondences in SLAM. The resulting
improvement becomes more relevant as the level of noise in the
sensor increases, which explains why the SMD has led to such good
results in the past for sensors with relatively low levels ofnoise (e.g.
[11]).

The rest of this paper is organized as follows. First, we review the
existing literature on DA in EKF-SLAM. Section III is devoted to
comparing the theoretical performance of the expected behavior of
SMD and the ML, and then Section IV summarizes the algorithms
for establishing optimal associations. Next we analyze thecomputa-
tional complexity of ML, while experimental results are provided in
Section VI.

II. DATA ASSOCIATION IN THE SLAM LITERATURE

The origin of the basic EKF-based approach to SLAM can be found
in the seminal paper by Smithet al. [15] which settled the bases for
stochastic mapping, but which did not mention the problem ofdata
association. A decade after this work, in the influential papers by
Dissanayakeet al. [9], [16] which theoretically established that EKF-
SLAM actually converges to a solution, we can witness a first cri-

terion to decide the observation-to-landmark associations: only those
observations that, given a SMD threshold, clearly correspond to one
and only onemap landmark are paired, discarding those with multiple
potential pairings. This method works perfectly well for environments
where the sensor noise plus the vehicle uncertainty are always below
the typical distance between any pair of landmarks. However, this
limit can be overcome with the more advanced techniques discussed
below. Another peculiarity about [9] is that DA is performedin
the landmark space, that is, SMD is computed between landmarks
in the map and projections of the observations into that map.This
approach has some disadvantages, such as the fact that the projection
of observations as Gaussians into the map is not always well-defined.
For instance, in Monocular SLAM the inverse sensor model is not
well approximated by a Gaussian – although smart parameterizations
alleviate the problem [17]. In addition, projecting the observations
into the map necessarily introduces a correlation between all of them,
and also between them and the landmarks, via the vehicle uncertainty.
In this situation, DA methods (specially those that consider joint
densities [11]) have to deal with extra cross-covariance terms which
can be avoided if DA is carried out in observation space. Therefore,
it is not surprising that most recent works perform DA in observation
space.

The simplest DA method that deals with ambiguity (multiple
potential pairings for each observation) is the Nearest Neighbor
(NN) algorithm [4], which can be traced back to the target tracking
literature [18]. This method works on each observation independently,
associating it to the prediction that, in theory, maximizesthe likeli-
hood of that individual observation. In practice, most works apply
NN by using the SMD heuristic instead of the ML [4], [9]. The NN
method is able to cope with ambiguity, although its decisions quickly
become wrong as the level of noise in the system increases.

Superior robustness can be achieved with batch DA methods, such
as the Joint Compatibility Branch and Bound (JCBB) algorithm
[11], which, in contrast to NN, also takes into account the cross-
correlations of the predictions. Again in this case, the proposed
method tries to minimize the joint SMD between the observations
and the predictions, in contrast to the maximization of the ML 2.
Another batch method is the Combined Constraint Data Association
(CCDA) [20], which is also able to perform global localization of
a mobile robot by searching in a graph containing all the potential
pairwise correspondences.

Data association is also present in those approaches to SLAM
based on Rao-Blackwellized Particle Filters (RBPF) [21], such as
the implementation for landmark maps in [22] or the more advanced
solution in [23]. Due to the properties of RBPFs, landmarks in each
map hypothesis are uncorrelated, but it is still advisable to apply a
method such as JCBB instead of the simpler NN in order to cope with
ambiguity. Interestingly, optimal DA in the context of RBPFSLAM
was correctly stated to be the maximization of the ML [24], whereas
the heuristic technique of minimizing the SMD has dominatedthe
literature on EKF-based SLAM.

III. O N THE USAGE OF THEMAHALANOBIS DISTANCE FOR DATA

ASSOCIATION

Looking for the set of optimal correspondencesn̂t implies max-
imizing the ML in Eq. (1) or, taking logarithms, minimizing the
NLML in Eq. (2). In this section we provide an insight into why
minimizing the SMD has led to so many good results in the literature

2To the best of our knowledge, the only mention to using the theoretically
“more correct” ML in the JCBB algorithm is a footnote on page 38 in [19].
The present work is the first one to provide an experimental measurement of
the performance of each alternative.
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Fig. 2. Points representing the SMD and ML of a set of2 · 104 valid
correspondences evaluated during a simulation of 2D range-bearing EKF-
SLAM for random maps (refer to Section VI). It is clear that a small
Mahalanobis distance is not a guarantee for a high likelihood value, since
correspondences within a wide range of ML may have the same SMD value.

(e.g. [9], [11]), despite it not being the optimal statistic. Our intention
is to avoid potential confusions in future research, since the SMD in
the context of EKF-based SLAM has been sometimes referred toas
a maximum likelihood statistic to determine associations [4].

When considering potential pairings of one uncertain prediction
against several observations, as depicted in Fig. 1(a), we find that
the NLML for each possible associationni is ML(ni) = d log 2π+
D2

M (ni)+log |S| where bothd and the matrix inside the determinant
are constant over the candidate indexesi. In this situation, minimizing
the SMD or the NLML areexactlyequivalent.

In contrast, if we consider another scenario such as that in Fig. 1(b),
where one observation has multiple potential feasible predictions,
these two criteria are not equivalent any more. This followsfrom the
contribution of the determinant of the prediction covariance, which
models the different levels of uncertainty in each prediction. It is clear
that the greater the range of covariance determinants foundamong
the different predictions, the more different results willbe obtained
from the two statistics.

In our opinion, the fact that most of the prediction covariances have
comparable determinant values in 2D range-bearing EKF-SLAM has
led to small errors attributable to using SMD instead of NLML. In
experiments previously reported in the literature, these errors might
perfectly have been masked among those naturally occurringdue
to the stochastic nature of the decisions. To provide a quantitative
verification of this idea, we present in Fig. 2 a plot of NLML vs. SMD
where each point represents avalid correspondence of a prediction
and the noisy observation of the corresponding landmark from a
series of simulations with known ground truth. If both measures
were exactly equivalent, the plot would describe a well-defined, thin
trace. But that is clearly not the case: in general, NLML and SMD
are correlated, but many correspondences with identical SMD values
usually have very different likelihood values, i.e. any vertical cut to
the graph will find a wide range of likelihood values.

Interpreting the criterion of minimizing the SMD under the light
of these data we find that, indeed, a candidate pairingc1 with a SMD
smaller than an alternativec2 will be also,on average, more likely:

D
2

M (c1) < D
2

M (c2) → E[NLML(c1)] < E[NLML(c2)] (6)

Therefore, if we only had the SMD, its minimizing would be
a good heuristic. However, provided that it is always possible to
directly evaluate the NLML at the same cost (see Section V), we
claim that employing the SMD to decide DA issuboptimaland leads

to unnecessary errors.
We have evaluated the decisions between alternative candidates

from all the possible pairs among the2 ·104 measurements shown in
Fig. 2. Our results show that∼ 11% of the decisions based on SMD
would be wrong, i.e. in those cases we haveD2

M (c1) < D2

M (c2)
but NLML(c1) ≮ NLML(c2). The result strongly validates our
claim, but this particular figure should be taken just as an illustrative
example; SMD-induced errors largely depend on the specific SLAM
problem being solved, the sensor model, the sparsity of the land-
marks, the noise levels and the path traversed by the robot.

IV. D ETERMINING OPTIMAL CORRESPONDENCES

Given the set of predictions and the set of actual observations,
any solution to the DA problem must decide, for each individual
observation, whether it corresponds to a map landmark or it is a new
one, not previously observed. Each of these individual decisions can
fall into one and only one of these categories:

• True positive:Observation correctly associated to its landmark
in the map.

• True negative:Observation correctly classified as new.
• False positive:Observation incorrectly associated to a non-

corresponding known landmark.
• False negative:Observation classified as a new landmark while

it actually corresponds to one already in the map.

One of the most challenging aspects of DA is that not all the
landmarks are observed simultaneously in all time steps, hence the
need to detect observations ofnew landmarks not observed before.
If all the map landmarks were simultaneously observed at alltime
steps, only true positives and false positives would be possible,
and we could then directly associate each observation to itsmost
likely landmark by optimizing a given measure (either SMD orML).
Actually, it is the possibility of some certain observations not to
correspond to any known landmark, either for being a new landmark
or a spurious, what forces us to introduce thresholding, orgating, as
a first stage of any DA method.

In the following we describe the two stages of DA: (i) gating,
to determine potential pairings, and (ii) the resolution ofambiguity
in the case of multiple compatible correspondences. The distinction
between SMD and NLML is relevant mainly in the latter.

A. The problem of gating

In all DA methods the set of potential pairings between obser-
vations and predictions is firstly pruned by only considering those
whose SMD is below a given thresholdTSMD. This method has
been only touched superficially in the literature despite being the
main responsible of all false negatives.

For the case of SMD, the threshold typically used is the chi-squared
inverse cumulative distribution function (cdf)χ2

d,c for any desired
confidencec level, e.g.95%. Two crucial remarks are relevant at
this point: (i) this confidence levelc must not be confused with
the actual probability of accepting true positives (in fact, 1 − c

describes the probability of accepting false negatives,conditionedto
the assumption of a correct pairing), and (ii) although the underlying
assumption that SMD values for valid correspondences follow a chi-
squared distribution is very accurate, it is not theoretically exact: due
to errors in the reconstruction of landmark positions in theestimated
map, the actual distribution for each landmark is anon-centralchi-
square with unknown parameters. However, the central chi-square is
a good model in most practical situations and, being pragmatic, is
the best (and possibly the unique) approximation availableto us.

It is clear that there is no “perfect” (or “magic”) thresholdwhen
performing DA gating, neither for the SMD nor for the ML:any
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threshold will have an associated rate of errors, both falsenegatives
and false positives. We have numerically evaluated the optimal
thresholds, for both SMD and NLML, from a data set with millions
of correct and incorrect potential pairings obtained from simulations.
Our results confirm that, obviously, the optimal thresholdsdepend
on the robot path, the noise levels, etc. Moreover, we found out that
the overall rate of misclassification has only a weak sensitivity to
these thresholds. In particular, any threshold in the range[9, 16] for
the SMD or within [−1, 6] for the NLML leads to almost identical
results3. Although optimal gating deserves further research, it seems
clear that the choice between NLML or SMD at this point is not
more relevant for gating than the election of the threshold.We now
focus on the second stage of DA, which clearly encourages theusage
of NLML.

B. Dealing with ambiguity

After gating, each observation has an associated set of potential,
individually compatible[11] pairings. Empty sets can be assumed to
correspond to new landmarks, thus we ignore them in the following
discussion. In most practical situations, all the remaining sets will
comprise multiple candidates which must be resolved. Even in the
case where all observations have just one compatible pairing each,
one should check whether all those pairings are mutually compatible.

We define the optimal correspondencesn̂t as those that maximize
the likelihood of the latest observationzt:

n̂t = argmax
nt

P (nt|st, zt) (See Eq. 1)

= argmax
nt

p(zt|st,nt)

= argmax
nt

N (zt;h(st,nt),St) (7)

Note that for each time stept, observationszt actually contain a
variable number of observations of individual landmarks, i.e. zt =
{
zit
}

i
, each demanding a DA decisionni

t. At this point, one can
follow one of the following two approaches.

1) The Nearest Neighbor method:The Nearest Neighbor (NN)
method is an approximative approach that solves DA on an individual
observation basis [4]. Under a probabilistic viewpoint, the founda-
tion of this method can be seen as the consideration of marginal
distributions, ignoring all the cross-correlation terms.Then, the ML
distribution in NN is factored into the product of the terms for each
individual observationzit:

n̂t =
{

n̂
i
t

}

i
= argmax

nt

p(zt|st,nt)

≈ argmax
nt

∏

i

p(zit|st, n
i
t) (8)

thus each correspondence decisionni
t can be obtained independently:

n̂
i
t ≈ argmax

ni
t

p(zit|st, n
i
t)

= argmax
ni
t

N (zit;h
i(st, n

i
t),S

i
t) (9)

As mentioned earlier, the implementation of NN found in the
SLAM literature does not actually optimize the likelihood in Eq. (9)
but the SMD which is only one of the terms involved – remember
Eq. (5). This practice will reveal as suboptimal in the experimental
results presented later on.

3The interested reader can find the experimental data and a figure summa-
rizing them in the multimedia attachment

2) Methods considering the joint distribution:Another family of
methods reported in the literature takes into account the full joint
distribution in Eq. (7). As can be expected, these approaches are
more computationally expensive but in turn can manage the ambiguity
in DA more robustly than NN. Some of these techniques can even
handle the problem of global localization, that is, to relocalize a robot
without any prior belief for its pose. No description will begiven
here of these methods, since they have been thoroughly discussed
elsewhere [11], [19], [20], [25]. Those algorithms can be employed
for minimizing the NLML instead of the SMD by just replacing the
evaluation of the latter by Eq. (5).

In the next sections we will use JCBB [11] as the most popular
representative of this family of DA methods. Experiments confirm
that minimizing the SMD instead of the ML within this algorithm
undoubtedly also leads to suboptimal results.

V. COMPUTATIONAL COST OF THEML

We compare next the computational complexities of evaluating
both the SMD and the NLML. As can be seen in Eq. (5), the
SMD appears in the expression of the NLML, thus we firstly discuss
the calculation of the former. Starting with Eq. (3), we proceed as
follows:

D
2

M = (z− hn)
⊤
S
−1 (z− hn)

︸ ︷︷ ︸

ỹ

= ỹ
⊤

S
︸︷︷︸

LL⊤

−1
ỹ (10)

= (ỹ⊤
L

⊤−1

)(L−1
ỹ) = (L−1

ỹ)⊤ (L−1
ỹ)

︸ ︷︷ ︸

q

= q
⊤
q

whereL is the lower triangular matrix obtained from the Cholesky
decomposition ofS, a transformation with a time complexity of
O(N3) for an N × N matrix, with N proportional to the number
of simultaneously-observed landmarks at a time step. The rest of the
operations, that is, solvingLq = ỹ by back substitution and the dot
productq⊤q, have complexities ofO(N2) andO(N), respectively,
thus the overall complexity of computing the SMD is cubic with the
size of the observation vector.

The relevant extra operation required for NLML is computingthe
determinant ofS, as can be seen in Eq. (5). Since we already have
the Cholesky decomposition of this matrix, the determinantcan be
obtained as|S| =

∣
∣LL⊤

∣
∣ = |L|2, where |L| turns out to be the

product of the diagonal elements, that is, anO(N) operation.
Therefore, we conclude that computing the NLML instead of

the SMD does not modify the computational complexity and only
introduces a very small overhead.

VI. EXPERIMENTAL EVALUATION

This section describes a series of experiments aimed at confirming
our previous discussion defending the usage of the NLML instead of
the SMD in order to reduce the number of incorrect associations in
feature-based SLAM. We will focus on the particular case of EKF-
based SLAM.

A. SLAM in two synthetic environments

In the first place, we have carried out a comprehensive comparative
benchmark. The performance of DA can be only measured in terms of
correct or incorrect associations, thus we have relied on simulations
where the real correspondences (ground truth) are available and we
can study how performance evolves for different levels of sensor
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Fig. 3. Results obtained for (a) 1000 EKF-SLAM runs with mapsof randomly-distributed landmarks and (b) 500 runs in a corridor-like fixed map. Confidence
intervals (5%–95%) and mean value of the average ratio of false positives per time step for both scenarios. Please, notice the different vertical scales. (c)–(d) Bar
graphs with the ratio of time steps at which DA criteria outperform or match to each other. The horizontal axes in (a)–(c) correspond to different levels of noise in
the simulated sensors. The standard deviations of the rangeand bearing noises for each of the 10 cases are:σrange = {1, 4, 7, 10, 13, 16, 19, 22, 25, 28}(cm)
andσbearing = {0.02, 0.05, 0.10, 0.30, 0.50, 0.75, 1.00, 1.25, 1.35, 1.45}(deg), respectively. The horizontal axis in (d) represents the average number of
spurious readings per time step.

noise. The benchmark has been implemented4 for the problem of 2D
range-bearing SLAM [9], which dominates the literature on DA in
SLAM. We evaluated the performance of four different DA methods,
namely, NN and JCBB, each in two versions: one based on SMD
and another on ML. The four combinations have been tested in two
different scenarios that present different challenges to DA. The first
one consists of a12m × 12m map with 100 landmarks randomly
distributed following a uniform distribution. The robot follows a
8m×8m square trajectory in this relatively-sparse scenario, including
closing a loop once. In the second scenario the robot followsexactly
the same trajectory but in this case in a “corridor-like” map, with
landmarks intentionally positioned close to each other to present
a challenge to DA. In all cases the sensor has a field of view of
140 degrees and detects landmarks within a minimum and maximum
range of 0.15 and 5 meters, respectively. In all the experiments, the
threshold for gating pairings in the first stage of DA was set to a
99% confidence interval for SMD and to0 for NLML.

The results of 1000 and 500 runs in the first and second scenario,
respectively, are summarized in Fig. 3(a)–(b). These series have been
repeated for 10 different levels of sensor noise, represented by indices
running from 1 to 10 in the horizontal axes. In each run, a high-
quality pseudo-random number generator [26] has been employed to
simulate the system noises, initializing its seed to an identical state
for each of the four methods in order to obtain a fair comparison.

In Fig. 3(a)–(b) we represent the false positives attained by each
method. As expected, JCBB performs, on average, better thanthe
simpler NN method. An observation validating our claim is that, for
either NN or JCBB, using the NLML improves the average results
of the SMD version of the algorithm. The improvement is small
for low levels of noise but becomes more evident for more noisy
systems. Another remark is that the improvement is more patent for

4The simulator designed for this purpose is part of the open
source MRPT project and is available for download, along with
instructions to reproduce the benchmark (refer to the multimedia
attachment of this paper). For the program itself, refer to
http://www.mrpt.org/Application:2d-slam-demo.

the “corridor-like” map than for random maps, which impliesthat
the advantage of ML increases with the hardness of the DA being
solved. Interestingly, for very noisy environments the usage of NLML
with NN matches the performance of the much more complex JCBB
algorithm with the SMD criteria (see the right part of Fig. 3(b)).

We also studied a number of other statistics for each scenario (such
as false negatives and errors in the vehicle pose) and the effects of
noise level in the vehicle odometry. All the results consistently show
a small but unquestionable better performance of NLML over SMD5.

Focusing on the most relevant case, the usage of the JCBB
algorithm, we have plotted as vertical bars in Fig. 3(c) the ratio of
time steps where: (i) the NLML criterion leads to a reductionin the
number of false positives, (ii) both NLML and SMD recommend
exactly the same associations and (iii) SMD outperforms NLML. It
can be seen how for low levels of noise the dominant situationis an
equivalence of both criteria but for noisy sensors the NLML becomes
better than SMD up to in a∼ 60% of the observations, i.e. the light-
gray portion of the graph bars. In terms of false positive reduction,
NLML+JCBB reduces an average of∼ 1% to ∼ 8% of the overall
wrong associations with respect to SMD+JCBB.

B. Behavior against outliers

We also repeated the previous benchmark but, instead of sweeping
over different levels of noise in the sensor, we investigated the effects
of spurious readings, while keeping constant the sensor andodometry
errors.

Again, we evaluated the same four DA techniques in two types of
environments, the corridor-like scenario and the random maps. The
improvement implied by the replacement of SMD with NLML is
even more relevant here than in the previous benchmarks. As above,
we represent the behavior of MLML and SMD for the JCBB method
and the random maps as vertical bars in Fig. 3(d). The horizontal axis

5Graphs for these and other statistics, as well as the raw data, can be found
in the multimedia attachment.

Draft version



Draft version – IEEE Transactions on Robotics, vol.28, no.4, pp.980-986, Aug. 2012. doi: 10.1109/TRO.2012.2193706 6

�� ✁ ✂✄☎✄✆✄✝✞✟✠✡ ☛✠✡☞✄✝✌✍

�� ✁ ✂✄☞✌☎✠✝✎ ✆✠✏✍✆✠☎✞✞☛

✑✒✓✓ ✁ ✂✄☎✄✆✄✝✞✟✠✡ ☛✠✡☞✄✝✌✍

✑✒✓✓ ✁ ✂✄☞✌☎✠✝✎ ✆✠✏✍✆✠☎✞✞☛

✔✕✖

✗

✗✕✖

✖

✖✕✖

✘
✙
✚✘
✛
✜
✢
✣✚
✛
✣✤
✥
✦
✤
✧★
✩✦
✪
✘
✫
✦

✬ ✭ ✔ ✗ ✖ ✮ ✯ ✰ ✱ ✬✲

✬

✬✕✖

✭

✭✕✖

✔

✳
✴
✵
✶✚
✘
✷
✪
✘
✫✦
✦
✫✣
✧✷
✸
✣✦
✣✘

(a)

�✁

�✂

✄

☎
✆
✆
✝✞
✟
✠
✡
✝☛
☞✠
✠
✌✌
✍
✌

✂ ✁ ✎ ✏ ✑ ✒ ✓ ✔ ✕ ✂✄
�✓

�✒

�✑

�✏

�✎

☎
✡
✖
✞
✗
✠
✘✙
✚
✛✌
✍
✜
✢
✣
✤
✥✦
☎
✆
✆
✧✍
✣
★
✥✦
☎

(b)

Fig. 4. Statistics about the error in the vehicle positioning for the different DA methods in the corridor-like scenario. Horizontal axes stand for increasing
levels of sensor noise, with the same meaning than that of Fig. 3. (a) The mean and 5%-95% confidence intervals of the squared Mahalanobis distance
between the EKF estimate of the vehicle 2D pose, i.e.(x, y, φ), and the ground truth. (b) Visualization of the same data only for the JCBB method and as
the percentage reduction entailed by using NLML instead of SMD for DA.

now stands for different frequencies of outliers, and the statistics are
the result of more than 3000 runs for each DA method.

The ratio of cases where SMD is preferable is here so reduced
that the corresponding bar segment is barely visible in the graphs.
About in ∼ 99% of the observations the NLML leads to identical
or better correspondences than SMD, with a∼ 40% of them being
actually better. Furthermore, for the corridor-like scenario this ratio
raises to over∼ 60%, confirming once more that the advantage of
NLML increases with the hardness of the DA problem. These results
strongly support the main claim of this paper. Regarding thereduction
of false positives, in this case NLML+JCBB reduces an average of
∼ 0% to ∼ 16% of the overall wrong associations with respect to
SMD+JCBB.

C. SLAM with real data

The benchmarks above are based on a simulated sensor in synthetic
environments due to the need for a data association ground truth. In
order to completely rule out the possibility of our simulator being
the source of any bias that favors NLML we also performed an
analysis of 2D range-bearing EKF-based SLAM for a real dataset.
This experiment employs the DLR dataset, released by J. Kurlbaum
and U. Frese [27], which includes the ground truth for the data
association of each landmark observation. We selected a sequence
of 634 odometry-observation pairs extracted from the “DLR dataset
number e”, taking care of including one loop closure6.

The average number of false positives obtained for each of the
four DA methods are10.89%, 10.45%, 10.82% and 8.02% for the
SMD+NN, NLML+NN, SMD+JCBB and NLML+JCBB methods,
respectively. Obviously, in this case a statistical comparison is not in
order since there exists only one sequence of odometry and sensory
data. These results are in perfect concordance with all those obtained
in simulations: JCBB improves data association in comparison to NN,
as it does when using NLML instead of SMD.

D. Effects in vehicle positioning error

The main criteria to evaluate the reliability of a DA method
should be the rate of false positives. All other statistics,as false
negatives or vehicle positioning errors, are only a consequence of
them. Nevertheless, an interesting question is that of at what extent
do in practice false positives affect the error in the vehicle positioning
whose estimation is, after all, one of the ultimate purposesof SLAM.

6The obtained map, the estimated robot path, source code and instructions
to reproduce this experiment can be found in the multimedia attachment.

We believe that it is not possible to categorically determine how
false positives affect the error in the pose estimates, since this com-
plex issue is determined by the sparsity of landmarks, theirspecific
geometrical arrangement in the environment and, most importantly,
whether wrong associations occur or not during the criticalinstants of
a loop closure, in which case the negative effects would be magnified.
Therefore, the best we can do here is to provide an insight on the
effects of DA on the vehicle error from our benchmarks, without
pretending that the results could be extrapolated.

In order to numerically quantify the vehicle error we have evaluated
the Mahalanobis distance from the EKF estimate (including its
uncertainty) to the known ground truth for the entire paths of the
robot for all the simulation-based benchmarks above. Then,we have
computed the reduction in this error for the JCBB method between
using the SMD and the NLML. The most relevant conclusions we
can obtain from our benchmarking are: (i) the error reduction is
somewhat small (only∼ 0.2%) for the benchmarks with spurious
readings, (ii) considerably more relevant (about∼ 1% to ∼ 5%)
for the benchmarks of noisy sensors and (iii) in any case, thegain,
although small, typically grows as the hardness of the associations
does. As an example of the expected improvement we provide the
statistics in Fig. 4 for the particular case of the corridor-like scenario.

VII. D ISCUSSION

With this work we have provided a review of the literature on
DA in SLAM from the point of view of the criteria employed
for deciding against multiple feasible, but mutually incompatible,
pairings. Although there exists a sound statistic (the NLML) to
ground this search for correspondences we found out that most
previous works employed the SMD instead. We have also provided
a founded discussion exposing the differences between the SMD and
the NLML, including why the SMD isalmostas good classifier as the
NLML in many situations. Comprehensive SLAM experiments with
both simulated and real data have verified that, indeed, the usage of
NLML reduces the ratio of false positives, potentially catastrophic
errors for SLAM, for both NN and JCBB. The improvements are
small, but unquestionable.

Therefore, our conclusion is that SMD should not be employed
anymore when deciding data association: NLML always leads to
(statistically) better pairings, apart from being, conceptually, a more
sound statistic. As it was also shown, its added computational cost
with respect to SMD is negligible.

It would be interesting to see other authors verifying our results
in the future, not only for 2D range-bearing SLAM, but for other
problems which must cope with data association. From the discussion
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in this paper, we predict that the improvement due to the NLMLwill
be more evident for those problems where the determinants ofthe
innovation covariance span over wider ranges.

Apart from these facts, the modification of existing DA algorithms
in order to employ the ML criteria opens at least two interesting
new research fronts, which will be briefly mentioned here but
would deserve thorough investigations in the future. Firstly, regarding
RBPF-based SLAM [21] with landmarks, dubbed FastSLAM [22],
[23], the existing methods solve DA at each particle independently.
Provided that a method such as JCBB, when using ML, builds a
tree where theN most likely correspondence hypotheses can be
efficiently retrieved, a natural extension to FastSLAM would be the
replication of each particle into several ones, each carrying a different
DA hypothesis. The key point of using ML instead of SMD here is
that the ML value would seamlessly integrate into the computation
of the weights for those new particles. Interestingly, thisidea would
be a dual version of the EKF-based (non RBPF) approach proposed
in [28].

A second interesting issue is the following. Any of the DA methods
discussed in section II, when faced to two alternative matching
hypotheses having a different number of pairings, always prefers the
one with more paired features. In general, this leads to gooddecisions
but one could devise an extra term, auniformdistribution, that would
allow us to compare hypotheses with different numbers of pairings
in a more probabilistically-grounded form. This term can beeasily
added to NLML while cannot be integrated into SMD, limited to
Gaussian distributions.
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