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An alternative to the Mahalanobis distance for determining
optimal correspondences in data association

Jose-Luis Blanco, Javier Gonzalez-Jiménez and Juaommfernandez-Madrigal

Abstract— The most common criteria for determining data association demonstrated. Consider the probability mass function @lethe
rely on minimizing the squared Mahalanobis distance (SMD) ktween possible associations; for a time stept, given knowledge about the

observations and predictions. We hold that the SMD is just a buristic, ;.. Al : ;
while the alternative matching likelihood (ML) is the optimal statistic joint vehicle-map state vectay; and the latest observatien, which

to be maximized. Thorough experiments undoubtedly confirm his idea, Tollows the conditional distribution”(n;|s, z;). By definition, the
with false positive reductions of up to 16%. most likely set of associations is the valuernf that maximizes this

Index Terms— SLAM, data association. distribution. Applying the Bayes rule over the observation

n
I. INTRODUCTION P(n¢|s:, z:) o W(Ztl&,m)
The problem of Simultaneous Localization and Mapping (SDAM o« plzi|se, ny) (1)

has been one of the most studied topics in mobile roboticagliine
last decade [1]-[4]. Maps of the robot environment learne§bAM using the fact that the a priori distribution of the assdocied not
can be roughly classified as either continuous representagsuch conditioned to any observation must be uniform, leading to a
as occupancy grid maps [5], elevation maps [6] or gas coratémm irrelevant constant terny. A natural and expected consequence of
maps [7]) or discrete (object-based) representations,pdeed of the equation above is that optimal correspondences are ttnad
a variable number of natural or artificitandmarkspresent in the “best explain” the observations.
environment. In this work we focus on this latter approacking a  If we let A/(z; u, ) denote the evaluation at of the probability
map of discrete elements has some advantages such as tiverelflensity function (pdf) of a multivariate Gaussian with mgarand
efficiency of graph SLAM [8] and EKF-like [9] algorithms in covariance matrixs, the observation likelihood in EKF-based or
comparison to alternatives for continuous maps — e.g. gagpimg 9raph SLAM can be denoted as:
with particle filters [10].

However, discrete maps introduce two hurdles: first, in ncases p(zt[st, ne) = N (ze; h(se, ne), S(ne)) (2)

sensors do not directly detect landmarks, thus an additidetaction . . . .
step must be introduced whose failure would severely degthd whereh(-) is the observation model that gives us the prediction vector
h,,, and S(n,) is its covarianck We will refer to Eq. (2) as the

overall mapping performance. Secondly, once a set of .O.bdervmatching likelihood(ML), since all the terms are known with the
landmarks is available from the sensor, they must be pairigd w . . -
those already in the map. This is tHata-associatio(DA) problem exception ofn,, the vector of the matching hypothesis.

L : . ' On the other hand, the SMD between observations and preakcti
which is the central concern of this work. for a aiven hvoothesis, is aiven by:

The DA problem can be stated as follows: at some time step 9 yp 1159 y:
and given the vector withV landmark observationg., compute D2 _ T S ) h 3
the N-length association vecton, which states to which map m(ne) = (2 —hn,) S(ne) ™ (20 — hn,) ®)
landmark does each observation corresponds (or whethes & i |t s straightforward to see that the SMD is one of the termghen

a point in theobservation spacevhose dimensionality depends ongs a negative log-likelinood:

the specific problem, e.g. two-dimensional in planar rabgaring
SLAM with point features [4], [11] and in Monocular SLAM [12] L
or one-d.imensi.onal in range-only SLAM [13], [14]. Each ok$le —logp(zi|st, ne) —10g{d70xp (—EDﬁf(nt))}
observation points must be paired with either one or none séta (2m)¢ |S(ne)|
of predictions or expected observation for each known landmark - (dlog 27 + D2, (ns) + log [S(ny)|) 4)
in the map. Given that the sensor model is stochastic and theth
vehicle pose and the map are represented as probabilitytidens
these predictions are probability distributions as wellypidally, where d represents the dimensionality of the vector. Since the
Gaussians. constant factor% becomes irrelevant while comparing ML values
As we will discuss in Section Il, the most popular method&r different correspondence hypotheses, we conveniefgfine the
for solving DA are the Nearest Neighbor (NN) [4] and the JointNLML (negative logarithm of the ML) as twice Eq. (4), thus:
Compatibility Branch and Bound (JCBB) [11] algorithms. As-d
scribed in the literature, these methods aim at estabjsthia most
likely pairings by minimizing the squared Mahalanobis aliste
(SMD) between thQ Observ'_atlons an_d their as§0_0|§1t¢_ad ik 1For an additive Gaussian noise sensor model with noise iemvar matrix
The central claim of this work is that minimizing the SMDR, this covariance becomd@@P,H ' + R with H the observation Jacobian
does not always lead to the most likely pairings, as can bdyeasand Py the vehicle-map joint covariance. In this work we will assuthat
R is either constant or depends on the predictiof), thus it will be
Authors are with the Department of System Engineering analways constant when evaluating a prediction against pieltpotentially-
Automation, University of Malaga. Email: joseluisblac@gmail.com, paired observations. However, our claims about ML and SMIDhstld if the
{igonzalez,jafma@ctima.uma.es model forR was to depend on the observation readiags

N | =

NLML(n;) = dlog2m + D3;(n;) +1log|S(n:)|  (5)
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terion to decide the observation-to-landmark associationly those
observations that, given a SMD threshold, clearly corredpo one
and only onemap landmark are paired, discarding those with multiple
potential pairings. This method works perfectly well foveanments
where the sensor noise plus the vehicle uncertainty areyaltyvalow
the typical distance between any pair of landmarks. Howetis
limit can be overcome with the more advanced techniquesisisd
below. Another peculiarity about [9] is that DA is performéual
the landmark space, that is, SMD is computed between ladmar
in the map and projections of the observations into that ridys
@ (b) approach has some disadvantages, such as the fact thabjdetipn
Fig. 1. A motivating example for this work. The values of thguared of opservation§ as Gaussians into the m,ap is not alwaySdRGHeq'
Mahalanobis distance (SMD) are compared to those of thetiiedagarithm  FOF instance, in Monocular SLAM the inverse sensor modelas n
of the matching likelihood (NLML) for two hypothetical sitions. In both well approximated by a Gaussian — although smart pararatiems
SMD and NLML, lower values mean “better” pairings. (a) Twosebvations alleviate the problem [17]. In addition, projecting the ehstions
are tested against a probabilistic prediction. In this daseminimum SMD intq the map necessarily introduces a correlation betwéerf them,
can be safely used to detect the most likely pairing. (b) Omeewvation is and also between them and the landmarks, via the vehicletaintg.
tested against two predictions. Here, minimizing SMD doesgive us the ! :
optimal pairing. In this situation, DA methods (specially those that consipént
densities [11]) have to deal with extra cross-covariancasenhich
can be avoided if DA is carried out in observation space. &foee,
Clearly, minimizing the SMD D3,(n;)) is not equivalent to it s not surprising that most recent works perform DA in alvagion
minimizing the NLML (or maximizing the ML). The other two space.
terms (the dimensionality term and the determinant of th@Gance The simplest DA method that deals with ambiguity (multiple
S:) can also change among different potential pairings ané theotential pairings for each observation) is the Nearestghtmr
contribution may make the difference between establisiiogect (NN) algorithm [4], which can be traced back to the targethiag
or wrong associations. literature [18]. This method works on each observation rethelently,
We can illustrate this discussion with the example in Figa)1( associating it to the prediction that, in theory, maximites likeli-
where two observations are compared to one prediction. i thhood of that individual observation. In practice, most veogpply
example, the same covarian® appears in both expressions of\N by using the SMD heuristic instead of the ML [4], [9]. The NN
the ML, thus it is justified to employ the SMD to decide themethod is able to cope with ambiguity, although its decisiquickly
correspondence, since the minima of SMD and NLML coincide. lhecome wrong as the level of noise in the system increases.
contrast, a situation more commonly found in SLAM is simitar  Syperior robustness can be achieved with batch DA methads, s

that depicted in Fig. 1(b), where one or more observatioest@be as the Joint Compatibility Branch and Bound (JCBB) alganith
tested against one or more predictions, thus Gaussiansdiffiéhent [11], which, in contrast to NN, also takes into account thessk

covariance matrices are involved. As shown in the figurehig ¢ase correlations of the predictions. Again in this case, theppsed
the SMD would recommend to associate the observation With method tries to minimize the joint SMD between the obseoveti
although the pairing withP, is more likely. and the predictions, in contrast to the maximization of the R
With this paper we make two contributions to the field of probaanother batch method is the Combined Constraint Data Aatioci
bilistic mobile robotics: (i) an in-depth discussion of thenciples (ccDA) [20], which is also able to perform global localizati of
that underlie the decisions made in DA, which is rarely found a mobile robot by searching in a graph containing all the mitae
the literature, and (ii) the proposal of the NLML as tbetimal pairwise correspondences.
statistic (by definition) to determine correspondences. As validated patg association is also present in those approaches to SLAM
below with experiments, using the NLML instead of the SMDuees  pased on Rao-Blackwellized Particle Filters (RBPF) [21jchs as
the average ratio of wrong correspondences in SLAM. Theltte§u  the implementation for landmark maps in [22] or the more adea
improvement becomes more relevant as the level of noise én thg|ution in [23]. Due to the properties of RBPFs, landmarkeach
sensor increases, which explains why the SMD has led to soetl g map hypothesis are uncorrelated, but it is still advisablegply a
results in the past for sensors with relatively low levelsoise (e.9. method such as JCBB instead of the simpler NN in order to cdfe w
[11]). ambiguity. Interestingly, optimal DA in the context of RBFSEAM
The rest of this paper is organized as follows. First, weewvihe was correctly stated to be the maximization of the ML [24] evéms
existing literature on DA in EKF-SLAM. Section Il is devateto  the heuristic technique of minimizing the SMD has dominatieel
comparing the theoretical performance of the expectedvi@haf |iterature on EKF-based SLAM.
SMD and the ML, and then Section IV summarizes the algorithms
for establishing optimal associations. Next we analyzectiraputa-
tional complexity of ML, while experimental results are pided in
Section VI.

[O;<=P:: SMD=2.82 NLML=4.45 | (best pairing) O~=P,: SMD=0.34 NLML=4.45
O;<>P.: SMD=10.3 NLML=8.17 [0,<>P.: SMD=1.08 NLML=3.62] tvest pairing)

I1l. ON THE USAGE OF THEMAHALANOBIS DISTANCE FOR DATA
ASSOCIATION

Looking for the set of optimal correspondenags implies max-
Il. DATA ASSOCIATION IN THE SLAM LITERATURE imizing the ML in Eqg. (1) or, taking logarithms, minimizindhé

The origin of the basic EKF-based approach to SLAM can bedoutNLML in Eq. (2). In this section we provide an insight into why
in the seminal paper by Smitt al. [15] which settled the bases for Minimizing the SMD has led to so many good results in theaiigne
stochastic mapping, but which did not mention the problendatt : ) ;

2To the best of our knowledge, the only mention to using thertically

agsouaﬂon. A decade after. this WOI’k: in the |nflgentlal qrapby “more correct” ML in the JCBB algorithm is a footnote on page i@ [19].
Dissanayaket al.[9], [16] which theoretically established that EKF-The present work is the first one to provide an experimentalsmement of
SLAM actually converges to a solution, we can witness a first ¢ the performance of each alternative.
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Fig. 2. Points representing the SMD and ML of a set2of 10 valid

correspondences evaluated during a simulation of 2D raegeng EKF-

SLAM for random maps (refer to Section VI). It is clear that madl

Mahalanobis distance is not a guarantee for a high likethwalue, since

correspondences within a wide range of ML may have the same &lue.

(e.g. [9], [11]), despite it not being the optimal statist@ur intention
is to avoid potential confusions in future research, sifee3MD in

the context of EKF-based SLAM has been sometimes referred to

a maximum likelihood statistic to determine associatiofis [
When considering potential pairings of one uncertain mtegt

against several observations, as depicted in Fig. 1(a), mee tFat

the NLML for each possible associatien is ML(n;) = dlog 27 +

to unnecessary errors.

We have evaluated the decisions between alternative caedid
from all the possible pairs among tBe10* measurements shown in
Fig. 2. Our results show that 11% of the decisions based on SMD
would be wrong, i.e. in those cases we haW§,(c1) < D3 (c2)
but NLML(c1) £ NLML(c2). The result strongly validates our
claim, but this particular figure should be taken just as kstilative
example; SMD-induced errors largely depend on the specifihd
problem being solved, the sensor model, the sparsity of ahd-I
marks, the noise levels and the path traversed by the robot.

IV. DETERMINING OPTIMAL CORRESPONDENCES

Given the set of predictions and the set of actual obsenstio
any solution to the DA problem must decide, for each indigidu
observation, whether it corresponds to a map landmark erdtriew
one, not previously observed. Each of these individualgies can
fall into one and only one of these categories:

« True positive:Observation correctly associated to its landmark

in the map.

« True negative:Observation correctly classified as new.

« False positive: Observation incorrectly associated to a non-

corresponding known landmark.

« False negativeObservation classified as a new landmark while

it actually corresponds to one already in the map.

One of the most challenging aspects of DA is that not all the
landmarks are observed simultaneously in all time stepsceng¢he

D7 (ni)+log |S| where bothi and the matrix inside the determinantneed to detect observations éw landmarks not observed before.

are constant over the candidate indekds this situation, minimizing
the SMD or the NLML areexactlyequivalent.

In contrast, if we consider another scenario such as thaginfb),
where one observation has multiple potential feasible iptieds,
these two criteria are not equivalent any more. This folléresn the
contribution of the determinant of the prediction covac@nwhich
models the different levels of uncertainty in each predittit is clear
that the greater the range of covariance determinants femmohg
the different predictions, the more different results via obtained
from the two statistics.

In our opinion, the fact that most of the prediction covacies have
comparable determinant values in 2D range-bearing EKFMN has
led to small errors attributable to using SMD instead of NLMh
experiments previously reported in the literature, thaserg might
perfectly have been masked among those naturally occurdirgy
to the stochastic nature of the decisions. To provide a datne
verification of this idea, we present in Fig. 2 a plot of NLML &MD

where each point representsvalid correspondence of a prediction

and the noisy observation of the corresponding landmarkn feo

series of simulations with known ground truth. If both measu

were exactly equivalent, the plot would describe a wellvdd| thin
trace. But that is clearly not the case: in general, NLML andDS
are correlated, but many correspondences with identicdD S8Mues
usually have very different likelihood values, i.e. anytie@ cut to
the graph will find a wide range of likelihood values.
Interpreting the criterion of minimizing the SMD under thghit
of these data we find that, indeed, a candidate pairingith a SMD
smaller than an alternative will be also,on average more likely:

D3/(c1) < Dis(c2) — E[NLML(e1)] < E[NLML(c2)]  (6)

If all the map landmarks were simultaneously observed atirak
steps, only true positives and false positives would be iblass
and we could then directly associate each observation tondst
likely landmark by optimizing a given measure (either SMDMir).
Actually, it is the possibility of some certain observagonot to
correspond to any known landmark, either for being a newrtearét
or a spurious, what forces us to introduce thresholdingyating, as
a first stage of any DA method.

In the following we describe the two stages of DA: (i) gating,
to determine potential pairings, and (ii) the resolutionaafibiguity
in the case of multiple compatible correspondences. Thindi®n
between SMD and NLML is relevant mainly in the latter.

A. The problem of gating

In all DA methods the set of potential pairings between obser
vations and predictions is firstly pruned by only considgrthose
whose SMD is below a given thresholfs/p. This method has
been only touched superficially in the literature despitendpehe
main responsible of all false negatives.

For the case of SMD, the threshold typically used is the guiased
inverse cumulative distribution function (cdﬁjc for any desired
confidencec level, e.g.95%. Two crucial remarks are relevant at
this point: (i) this confidence levet must not be confused with
the actual probability of accepting true positives (in fatt— ¢
describes the probability of accepting false negaticesditionedto
the assumption of a correct pairing), and (ii) although thdaslying
assumption that SMD values for valid correspondencesviciiahi-
squared distribution is very accurate, it is not theordfiaaxact: due
to errors in the reconstruction of landmark positions in ¢ésémated
map, the actual distribution for each landmark isan-centralchi-
square with unknown parameters. However, the central gl is

Therefore, if we only had the SMD, its minimizing would bea good model in most practical situations and, being praigmist

a good heuristic. However, provided that it is always pdesio

the best (and possibly the unique) approximation availébles.

directly evaluate the NLML at the same cost (see Section \@, w It is clear that there is no “perfect” (or “magic”) thresholchen

claim that employing the SMD to decide DA ssiboptimaland leads
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threshold will have an associated rate of errors, both fatgmtives 2) Methods considering the joint distributiorAnother family of
and false positives. We have numerically evaluated thenmbti methods reported in the literature takes into account ttiejdint
thresholds, for both SMD and NLML, from a data set with mitio distribution in Eq. (7). As can be expected, these apprcacie
of correct and incorrect potential pairings obtained framwuations. more computationally expensive but in turn can manage th@carity
Our results confirm that, obviously, the optimal threshalidgpend in DA more robustly than NN. Some of these techniques can even
on the robot path, the noise levels, etc. Moreover, we fourtdlmt handle the problem of global localization, that is, to rele a robot
the overall rate of misclassification has only a weak seiitgitto  without any prior belief for its pose. No description will lggven
these thresholds. In particular, any threshold in the rdages] for here of these methods, since they have been thoroughlysdisdu
the SMD or within[—1, 6] for the NLML leads to almost identical elsewhere [11], [19], [20], [25]. Those algorithms can bepkayed
resultd. Although optimal gating deserves further research, itrsee for minimizing the NLML instead of the SMD by just replacinbet
clear that the choice between NLML or SMD at this point is nogvaluation of the latter by Eq. (5).

more relevant for gating than the election of the threshdld. now In the next sections we will use JCBB [11] as the most popular
focus on the second stage of DA, which clearly encouragesshge representative of this family of DA methods. Experimentsfirmn
of NLML. that minimizing the SMD instead of the ML within this algdmih

undoubtedly also leads to suboptimal results.
B. Dealing with ambiguity

After gating, each observation has an associated set ohfzle V. COMPUTATIONAL COST OF THEML
individually compatiblg11] pairings. Empty sets can be assumed to
correspond to new landmarks, thus we ignore them in thevidligp
discussion. In most practical situations, all the remanéets will
comprise multiple candidates which must be resolved. Ewvethé
case where all observations have just one compatible pagach,
one should check whether all those pairings are mutuallypatifle.

We define the optimal correspondendgsas those that maximize

We compare next the computational complexities of evalgati
both the SMD and the NLML. As can be seen in Eq. (5), the
SMD appears in the expression of the NLML, thus we firstly désc
the calculation of the former. Starting with Eq. (3), we med as
follows:

the likelihood of the latest observatian: D2 = b)Y S z—h)=vT S v 10
M (z n) (z n) =¥ y (10)
5 LLT
n; = P See Eq. 1 ~ —1\r —1-~ 1 1
fe = orgmaxPlneles, ) (See Bq. ) - 'L HEY =@y L'y =a'q
= arg max p(z¢|st, ny) T
ng
= arg H},*}XN(ZtS h(se, 1), St) (7)  whereL is the lower triangular matrix obtained from the Cholesky

decomposition ofS, a transformation with a time complexity of
O(N?) for an N x N matrix, with N proportional to the number
of simultaneously-observed landmarks at a time step. Téteofethe
operations, that is, solvinfiq = y by back substitution and the dot
productq " q, have complexities 0D (N?) and O(N), respectively,
thus the overall complexity of computing the SMD is cubiciwihe
size of the observation vector.
n The relevant extra operation required for NLML is computthg
determinant ofS, as can be seen in Eq. (5). Since we already have
the Cholesky decomposition of this matrix, the determinzam be
obtained asS| = |[LL'| = |L|*, where|L| turns out to be the
product of the diagonal elements, that is,@(V) operation.

Therefore, we conclude that computing the NLML instead of
n, = {ni} = argmax p(z¢|st, ny) the SMD does not modify the computational complexity andyonl

i e ) ) introduces a very small overhead.
arg H}f:pr(szt, ny) (8)

Note that for each time step observationg; actually contain a
variable number of observations of individual landmarks, z; =
{zi}, each demanding a DA decisiorj. At this point, one can
follow one of the following two approaches.

1) The Nearest Neighbor methodhe Nearest Neighbor (NN)
method is an approximative approach that solves DA on aniohel
observation basis [4]. Under a probabilistic viewpointe lounda-
tion of this method can be seen as the consideration of nargi
distributions, ignoring all the cross-correlation terrfitien, the ML
distribution in NN is factored into the product of the ternos €ach
individual observationz::

Q

g . . VI. EXPERIMENTAL EVALUATION
thus each correspondence decisigrcan be obtained independently:

This section describes a series of experiments aimed aticindg
our previous discussion defending the usage of the NLMLeaw$tof

A7

Ay A arg n:gxp(zt|st7”t) the SMD in order to reduce the number of incorrect associatio
i g4 i e feature-based SLAM. We will focus on the particular case KFE
= arg mz}x/\/(zt; h(se,mt),St) 9 based SLAM P
7Lt .

As mentioned earlier, the implementation of NN found in the
SLAM literature does not actually optimize the likelihoadkqg. (9) A. SLAM in two synthetic environments
but the SMD which is only one of the terms involved — remember
Eq. (5). This practice will reveal as suboptimal in the ekpental
results presented later on.

In the first place, we have carried out a comprehensive caatipar
benchmark. The performance of DA can be only measured irstefm
correct or incorrect associations, thus we have relied owlsitions

3The interested reader can find the experimental data andre igumma- Where the real correspondences (ground truth) are avaitatd we
rizing them in the multimedia attachment can study how performance evolves for different levels afsse
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(a) Randomly-generated maps: DA vs. noise level (b) Square corridor map (8x8m): DA vs. noise level
100% ML better than SMD 100%
80% B ML equals SMD 80%

M SMD better than ML

60% 60%

40% 40%
20% 20%
0% 1 2 3 4 5 6 7 8 9 10 0% 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
(c) DA with JCBB: Random maps vs. noise level (d) DA with JCBB: Random maps vs. ratio of outliers

Fig. 3. Results obtained for (a) 1000 EKF-SLAM runs with mapsandomly-distributed landmarks and (b) 500 runs in aidortlike fixed map. Confidence
intervals (5%-95%) and mean value of the average ratio s¢ fpbsitives per time step for both scenarios. Please enihiicdifferent vertical scales. (c)—(d) Bar
graphs with the ratio of time steps at which DA criteria outpem or match to each other. The horizontal axes in (a)-goespond to different levels of noise in
the simulated sensors. The standard deviations of the mmgjeearing noises for each of the 10 casesa&rg, 4 = {1,4,7, 10,13, 16,19, 22, 25, 28} (cm)
and opeqring = {0.02,0.05,0.10,0.30, 0.50,0.75, 1.00, 1.25, 1.35, 1.45} (deg), respectively. The horizontal axis in (d) represents theraye number of
spurious readings per time step.

noise. The benchmark has been impleméehtedthe problem of 2D the “corridor-like” map than for random maps, which impligst
range-bearing SLAM [9], which dominates the literature oA B  the advantage of ML increases with the hardness of the DAgbein
SLAM. We evaluated the performance of four different DA noeth, solved. Interestingly, for very noisy environments thegesaf NLML
namely, NN and JCBB, each in two versions: one based on SMibth NN matches the performance of the much more complex JCBB
and another on ML. The four combinations have been testeddn talgorithm with the SMD criteria (see the right part of FigbB(
different scenarios that present different challenges Ao The first We also studied a number of other statistics for each see(surch
one consists of d2m x 12m map with 100 landmarks randomly as false negatives and errors in the vehicle pose) and thetefbf
distributed following a uniform distribution. The robotlfmvs a noise level in the vehicle odometry. All the results coresitlly show
8m x 8m square trajectory in this relatively-sparse scenariduting  a small but unquestionable better performance of NLML owdDS.
closing a loop once. In the second scenario the robot follewestly Focusing on the most relevant case, the usage of the JCBB
the same trajectory but in this case in a “corridor-like” magth  algorithm, we have plotted as vertical bars in Fig. 3(c) thgor of
landmarks intentionally positioned close to each other tes@nt time steps where: (i) the NLML criterion leads to a reductinrthe
a challenge to DA. In all cases the sensor has a field of view pfimber of false positives, (i) both NLML and SMD recommend
140 degrees and detects landmarks within a minimum and maximexactly the same associations and (i) SMD outperforms MLk
range of 0.15 and 5 meters, respectively. In all the experispeghe can be seen how for low levels of noise the dominant situdtican
threshold for gating pairings in the first stage of DA was setit equivalence of both criteria but for noisy sensors the NLMicdmes
99% confidence interval for SMD and t® for NLML. better than SMD up to in & 60% of the observations, i.e. the light-
The results of 1000 and 500 runs in the first and second sognatjray portion of the graph bars. In terms of false positiveurtion,
respectively, are summarized in Fig. 3(a)—(b). These séxa@e been NLML+JCBB reduces an average of 1% to ~ 8% of the overall
repeated for 10 different levels of sensor noise, represedny indices wrong associations with respect to SMD+JCBB.
running from 1 to 10 in the horizontal axes. In each run, a high
quality pseudo-random number generator [26] has been getlm ] ) )
simulate the system noises, initializing its seed to antidehstate B- Behavior against outliers
for each of the four methods in order to obtain a fair compuaris We also repeated the previous benchmark but, instead ofpivgee
In Fig. 3(a)—(b) we represent the false positives attainggdch over different levels of noise in the sensor, we investigale effects
method. As expected, JCBB performs, on average, better ttian of spurious readings, while keeping constant the sensopdachetry
simpler NN method. An observation validating our claim iat{Hor  errors.
either NN or JCBB, using the NLML improves the average result Again, we evaluated the same four DA techniques in two tyfies o
of the SMD version of the algorithm. The improvement is smaknvironments, the corridor-like scenario and the randorpsm@he
for low levels of noise but becomes more evident for more )ﬂOiSmprovement implied by the replacement of SMD with NLML is
systems. Another remark is that the improvement is morenp&® even more relevant here than in the previous benchmarksbésea
The si . . . we represent the behavior of MLML and SMD for the JCBB method
e simulator designed for this purpose is part of the open . A . .
source  MRPT project and is available for download, along hwitand the random maps as vertical bars in Fig. 3(d). The haatamis

instructions to reproduce the benchmark (refer to the meltia
attachment of this paper). For the program itself, refer to SGraphs for these and other statistics, as well as the raw ciatabe found
http://ww. nrpt.org/ Application: 2d- sl am deno. in the multimedia attachment.
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Fig. 4. Statistics about the error in the vehicle positignfar the different DA methods in the corridor-like scenaritorizontal axes stand for increasing
levels of sensor noise, with the same meaning than that of Figa) The mean and 5%-95% confidence intervals of the sdudhalanobis distance
between the EKF estimate of the vehicle 2D pose,(zgy, ¢), and the ground truth. (b) Visualization of the same daty éml the JCBB method and as
the percentage reduction entailed by using NLML instead MDSor DA.

now stands for different frequencies of outliers, and tlaistics are ~ We believe that it is not possible to categorically deteemiow
the result of more than 3000 runs for each DA method. false positives affect the error in the pose estimatesgsinis com-
The ratio of cases where SMD is preferable is here so reducgléx issue is determined by the sparsity of landmarks, theécific
that the corresponding bar segment is barely visible in tta@lgs. geometrical arrangement in the environment and, most itapty,
About in ~ 99% of the observations the NLML leads to identicalwhether wrong associations occur or not during the crititstants of
or better correspondences than SMD, with-at0% of them being a loop closure, in which case the negative effects would bgnified.
actually better. Furthermore, for the corridor-like saémahis ratio Therefore, the best we can do here is to provide an insighthen t
raises to over~ 60%, confirming once more that the advantage oéffects of DA on the vehicle error from our benchmarks, witho
NLML increases with the hardness of the DA problem. Theseltes pretending that the results could be extrapolated.
strongly support the main claim of this paper. Regarding ¢laeiction In order to numerically quantify the vehicle error we haveleated
of false positives, in this case NLML+JCBB reduces an averaly the Mahalanobis distance from the EKF estimate (includitsy i
~ 0% to ~ 16% of the overall wrong associations with respect taincertainty) to the known ground truth for the entire pathshe
SMD+JCBB. robot for all the simulation-based benchmarks above. Thenhave
computed the reduction in this error for the JCBB method betw
. using the SMD and the NLML. The most relevant conclusions we
C. SLAM with real data can obtain from our benchmarking are: (i) the error reducti®
The benchmarks above are based on a simulated sensor ietiyntlsomewhat small (only~ 0.2%) for the benchmarks with spurious
environments due to the need for a data association groutfdl tn  readings, (i) considerably more relevant (abeut1% to ~ 5%)
order to completely rule out the possibility of our simulatzeing for the benchmarks of noisy sensors and (iii) in any casegtie,
the source of any bias that favors NLML we also performed aithough small, typically grows as the hardness of the aasoes
analysis of 2D range-bearing EKF-based SLAM for a real ddtasdoes. As an example of the expected improvement we provigle th
This experiment employs the DLR dataset, released by JbKunh statistics in Fig. 4 for the particular case of the corritike-scenario.
and U. Frese [27], which includes the ground truth for theadat
association of each landmark observation. We selected @eseq VIl. DISCUSSION
of 634 odometry-observation pairs extracted from the “Dlatadet ) ) _ . _
number e”, taking care of including one loop clodure W!th this work we have _prowdeq a review of_thg literature on
The average number of false positives obtained for each ef IPA In ,SI,‘AM frqm the p.omt of view of the C”te”a, employed
four DA methods arel0.89%, 10.45%, 10.82% and8.02% for the 'oF deciding against multiple feasible, but mutually inquatible,

SMD+NN. NLML+NN. SMD+JCBB and NLML+JCBB methods. Pairings. Although there exists a sound statistic (the NQMb
respectively. Obviously, in this case a statistical corigoaris not in  9round this search for correspondences we found out that mos

order since there exists only one sequence of odometry arsbige prfeviOL(st (;N((j)_rks employed the Slr\]/IDdi_r;fstead. WS have al\L}S[(; 'CEdC vid
data. These results are in perfect concordance with aletbbgained & 'ounded discussion exposing the differences betweenNfiz &

in simulations: JCBB improves data association in comparte NN, the NLML’ includ_ing v_vhy the SMD isalm(_)stas good class!fier as th_e
as it does when using NLML instead of SMD. NLML in many situations. Comprehensive SLAM experimentshwi

both simulated and real data have verified that, indeed, shgauof
NLML reduces the ratio of false positives, potentially itaphic

D. Effects in vehicle positioning error errors for SLAM, for both NN and JCBB. The improvements are
0emall, but unquestionable.

Therefore, our conclusion is that SMD should not be employed
anymore when deciding data association: NLML always leads t
(statistically) better pairings, apart from being, cortoefly, a more
sound statistic. As it was also shown, its added computaltionst
with respect to SMD is negligible.

It would be interesting to see other authors verifying owgutes

6The obtained map, the estimated robot path, source codenatiddtions in the future, not only for 2D range-bearing SLAM, but for eth
to reproduce this experiment can be found in the multimetteclhment. problems which must cope with data association. From thaudgon

The main criteria to evaluate the reliability of a DA metho
should be the rate of false positives. All other statistias, false
negatives or vehicle positioning errors, are only a consege of
them. Nevertheless, an interesting question is that of att whtent
do in practice false positives affect the error in the vehjmbsitioning
whose estimation is, after all, one of the ultimate purpafeSLAM.

Draft version



Draft version — IEEE Transactions on Robotics, vol.28, nppl980-986, Aug. 2012. doi: 10.1109/TR0O.2012.2193706

in this paper, we predict that the improvement due to the NLMIL
be more evident for those problems where the determinantiheof
innovation covariance span over wider ranges.

Apart from these facts, the modification of existing DA algans
in order to employ the ML criteria opens at least two intérgst

new research fronts, which will be briefly mentioned here but

would deserve thorough investigations in the future. Birségarding

RBPF-based SLAM [21] with landmarks, dubbed FastSLAM [22f1")

[23], the existing methods solve DA at each particle indejeaily.
Provided that a method such as JCBB, when using ML, builds

tree where theN most likely correspondence hypotheses can be

efficiently retrieved, a natural extension to FastSLAM webbke the
replication of each particle into several ones, each aagrgidifferent

DA hypothesis. The key point of using ML instead of SMD here i§0]

that the ML value would seamlessly integrate into the comibor
of the weights for those new particles. Interestingly, fldisa would

be a dual version of the EKF-based (non RBPF) approach pedpo§21]

in [28].

A second interesting issue is the following. Any of the DA huts
discussed in section Il, when faced to two alternative nmiatch
hypotheses having a different number of pairings, alwag$eps the
one with more paired features. In general, this leads to geatsions
but one could devise an extra termymform distribution, that would
allow us to compare hypotheses with different numbers ofinzs
in a more probabilistically-grounded form. This term can dasily

added to NLML while cannot be integrated into SMD, limited to

Gaussian distributions.
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