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Abstract

Motivated by Torabi and Hedesh (2012), we propose a gamma ex-
tended family of distributions with two extra generator parameters.
We present some special models and study general mathematical prop-
erties like asymptotes and shapes, ordinary and incomplete moments,
generating and quantile functions, probability weighted moments, mean
deviations, Bonferroni and Lorenz curves, asymptotic distributions of
the extreme values, Shannon entropy, Rényi entropy, reliability and or-
der statistics. The method of maximum likelihood is used to estimate
the model parameters and the observed information matrix is deter-
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the proposed distribution. The usefulness of the new models is proved
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1. Introduction

The statistics literature is �lled with hundreds of continuous univariate distributions,
see Johnson et al. (1994, 1995). Adding parameters to a well-established distribution is
a time honored device for obtaining more �exible new classes of distributions. Recent
developments have been made to de�ne new generated families to control skewness and
kurtosis through the tail weights and provide great �exibility in modeling skewed data in
practice, including the two-piece approach introduced by Hansen (1994) and the genera-
tors pioneered by Eugene et al. (2002), Cordeiro and de Castro (2011) and Alexander et
al. (2012). Many subsequent papers apply these techniques to induce skewness into well-
known symmetric distributions like the symmetric Student t; see, Aas and Ha� (2006),
for a review.

We study several general mathematical properties of the new gamma extended (�GE�
for short) family of distributions. This family is motivated by the work of Torabi and
Hedesh (2012). It is also important to mention that the proofs of the results presented
in this paper follow similar lines of those ones by Nadarajah et al. (2015), although their
model is completely di�erent from that one discussed in this paper.

The proposed family can extend several common models such as the normal, Weibull,
log-normal, gamma and Gumbel distributions by adding two extra generator parameters.
Indeed, for any baseline G distribution, we can de�ne the associated gamma extended-G

(�GE-G�) distribution. The main characteristics of the GE family, like moments and
generating and quantile functions, have tractable mathematical properties. The role of
the generator parameters has been investigated and is related to the skewness and kurtosis
of the generated distribution. In fact, the proposed family is a modi�ed version of the
class studied by Zografos and Balakrishnan (2009) (�ZB�) and Ristic and Balakrishnan
(2012), although both generators are based on the same gamma model. The GE family
can be constructed as follows. Let W (x) be any continuous cumulative distribution
function (cdf) de�ned on a �nite or an in�nite interval. The cdf of the ZB class of
distributions (for α > 0) is given by

F (x) =
1

Γ(α)

∫ − log[1−W (x)]

0

tα−1 e−tdt, x ∈ R,(1.1)

where Γ(α) =
∫∞
0
ta−1 e−tdt denotes the gamma function. We note that W (x) is the

parent cdf in the formulation of the ZB class. In a slightly di�erent way, we rede�ne
W (x) as a function of the parent cdf G(x; τ ) (x ∈ R) by

W (x) = 1− exp
{
− G(x; τ )

Ḡ(x; τ )

}
,(1.2)

where τ denotes the vector of unknown parameters and G(x; τ ) = 1 − G(x; τ ) is the
parent survival function. By substituting (1.2) in equation (1.1) and adding an extra
scale parameter β > 0, the GE-G cdf is given by

F (x) =
γ
(
α, βG(x; τ )/G(x; τ )

)
Γ(α)

=
βα

Γ(α)

∫ G(x;τ )/G(x;τ )

0

tα−1 e−βtdt,(1.3)

where γ(α, z) =
∫ z
0
tα−1 e−tdt denotes the incomplete gamma function.

Henceforth, equation (1.3) is called the GE-G distribution, although it was named
before by the gamma generated-G distribution (Torabi and Hedesh, 2012). We adopt the
�rst name since (1.1) is usually called the gamma generated-G model (Nadarajah et al.,
2015). If we set β = 1 in (1.3), we obtain the Torabi and Hedesh's (2012) model, which
is a special case of the proposed family.

We now provide a simple interpretation of the cdf (1.3). Let G(x; τ )/G(x; τ ) be
the odds ratio of a baseline random variable. Consider that the variability of the
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odds, represented by X, has a gamma distribution with shape parameter α and scale
parameter β. The probability of the odds be less than x is given by P (X ≤ x) =∫ G(x;τ )/G(x;τ )

0
tα−1 e−βtdt, which is identical to (1.3).

Let g(x; τ ) = dG(x; τ )/dx. The probability density function (pdf) corresponding to
(1.3) becomes

f(x) =
βα

Γ(α)

Gα−1(x; τ )

G
α+1

(x; τ )
exp

{
−βG(x; τ )

G(x; τ )

}
g(x; τ ).(1.4)

The GE-G distribution has the same parameters of the G model plus two additional
parameters α and β. These parameters control both skewness and kurtosis of f(x) as
shown in the plots of Section 4. They are highly signi�cant in most �tted GE models
given in Section 9. For α = β = 1, F (x) → G(x) when x → −∞ (or x → 0) depending
if the support of g(x) is the real line (or positive real). The GE-G distribution reduces
to the classical gamma distribution with parameters α and β when G(x) = x/(1 + x).
Henceforth, a random variable X with density function (1.4) is denoted by X ∼GE-
G(α, β, τ ).

The hazard rate function (hrf) of X, de�ned by the ratio of the pdf and survival
function f(x)/[1− F (x)], is given by

τ(x) =
βαGα−1(x; τ ) g(x; τ )

G
α+1

(x; τ )
[
Γ(α)− γ

(
α, βG(x; τ )/G(x; τ )

)] exp

{
− βG(x)

G(x; τ )

}
.(1.5)

Each new GE-G distribution can be obtained from a speci�ed G distribution. From
the statistical modeling point of view, the GE-G distribution has three important aspects.
First, its additional parameters α and β have clear interpretations. Let QG(u) = G−1(u)
be the baseline quantile function (qf). Second, if W has a gamma (α, β) distribution and

the parameters of the baseline G model is τ , then the random variable X = QG
(

W
1+W

)
has the GE-G density (1.4). Third, the reverse is also true. If X has the GE-G density

(1.4), then G(X)/G(X) follows the gamma (α, β) distribution. Evidently, the GE-G dis-
tribution will be most tractable when both functions G(x) and g(x) have simple analytic
expressions.

The aim of this paper is to derive several mathematical properties of (1.3) and (1.4)
in the most simple, explicit and general forms. We obtain general expressions for the
shape and asymptotic properties of (1.3), (1.4) and (1.5), ordinary and incomplete mo-
ments, moment generating function (mgf), qf, probability weighted moments (PWMs),
mean deviations, Bonferroni and Lorenz curves, asymptotic distribution of the extreme
values, Shannon entropy, Rényi entropy, reliability and general properties of the order
statistics. The rest of the paper is organized as follows. In Section 2, we present some
new distributions. A range of mathematical properties of the GE-G model (1.4) is inves-
tigated in Sections 3 to 6. Some inferential tools are discussed in Section 7. In Section 8,
we provide a generalization of regression models (including the case of censoring) based
on the GE family. The �exibility of the new models are proved empirically by means
of three applications to real data in Section 9. We also investigate the performance of
the maximum likelihood estimators (MLEs) through a simulation study. Finally, some
conclusions and future work are noted in Section 10.

2. Special GE distributions

The GE family density (1.4) allows for greater �exibility of its tails and can be widely
applied in many areas of engineering and biology. In this section, we present and study
some special cases of this family because it extends several widely-known distributions
in the literature. Its density function will be most tractable when G(x; τ ) and g(x; τ )
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have simple analytic expressions.

2.1. Gamma extended Weibull (GE-W) distribution. If G(x; τ ) is the Weibull
cdf with scale parameter δ > 0 and shape parameter λ > 0, where τ = (λ, δ)T , say
G(x; τ ) = 1− exp{−(δx)λ}, the GE-W density function (for x > 0) reduces to

f(x) =
λ δλ βα xλ−1 exp{α (δx)λ}
Γ(α) [1− exp{−(δx)λ}]1−α exp

{
−β
[
1− exp{−(δx)λ}

]
exp{−(δx)λ}

}
.(2.1)

Figure 1 displays some possible shapes of the GE-W density function.
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Figure 1. Plots of the GE-W density function for some parameter
values. (a) For di�erent values of α, δ with β = 1.5 and λ = 0.5. (b)
For di�erent values of β, λ with α = 1.5 and δ = 1.5. (c) For di�erent
values of α, β and λ with δ = 1.5.

2.2. Gamma extended normal (GE-N) distribution. The GE-N distribution is
de�ned from (1.4) by taking G(x; τ ) and g(x; τ ) to be the cdf and pdf of the normal
N(µ, σ2) distribution, where τ = (µ, σ)T . Its density function becomes

f(x) =
βα

Γ(α)

Φ
(
x−µ
σ

)α−1

[
1− Φ

(
x−µ
σ

)]α+1 exp

 −βΦ
(
x−µ
σ

)
1− Φ

(
x−µ
σ

)
 φ

(x− µ
σ

)
,(2.2)

where x ∈ R, µ ∈ R is a location parameter, σ > 0 is a scale parameter, α and β
are shape and scale parameters, and φ(·) and Φ(·) are the pdf and cdf of the standard
normal distribution, respectively. A random variable with density (2.2) is denoted by
X ∼ GE-N(α, β, µ, σ2). For µ = 0 and σ = 1, we obtain the GE-standard normal (GE-
SN) distribution. Plots of the GE-N density function for selected parameter values are
displayed in Figure 2.
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Figure 2. Plots of the GE-N density function for some parameter
values. (a) For di�erent values of α, β and µ with σ = 1. (b) For
di�erent values of α and µ with β = 1.5 and σ = 2.5. (c) For di�erent
values of β and σ with α = 1.5 and µ = 0.

2.3. Gamma extended log-normal (GE-LN) distribution. Let G(x; τ ) be the log-

normal distribution with cdf G(x; τ ) = 1 − Φ
(
− log(x)+µ

σ

)
for x > 0, σ > 0 and µ ∈ R,

where τ = (µ, σ)T . The GE-LN density function (for x > 0) reduces to

f(x) =
βα√

2π σ Γ(α)x
exp

{
− 1

2

[− log(x) + µ

σ

]2} [1− Φ
(
− log(x)+µ

σ

)]α−1

Φ
(
− log(x)+µ

σ

)α+1

× exp

−β
[
1− Φ

(
− log(x)+µ

σ

)]
Φ
(
− log(x)+µ

σ

)
 .

Figure 3 displays plots of the GE-LN density function for some parameter values.

2.4. Gamma extended Gumbel (GE-Gu) distribution. Consider the Gumbel dis-
tribution with location parameter µ ∈ R and scale parameter σ > 0, τ = (µ, σ)T , with
cdf (for x ∈ R) G(x; τ ) = 1 − exp

[
− exp

(
x−µ
σ

)]
. The mean and variance are equal to

µ − γσ and π2σ2/6, respectively, where γ is the Euler's constant (γ ≈ 0.57722). The
GE-Gu density function reduces to

f(x) =

{
1− exp

[
− exp

(
x−µ
σ

)]}α−1{
exp

[
− exp

(
x−µ
σ

)]}α+1 exp

{
−
β
{

1− exp
[
− exp

(
x−µ
σ

)]}{
exp

[
− exp

(
x−µ
σ

)]} }

× βα

σΓ(α)
exp

[(x− µ
σ

)
− exp

(x− µ
σ

)]
.(2.3)

Plots of (2.3) for some parameter values are given in Figure 4.

2.5. Gamma extended log-logistic (GE-LL) distribution. The pdf and cdf of the
log-logistic (LL) distribution are (for x, α, λ > 0)

g(x; τ ) =
λ

δλ
xλ−1

[
1 +

(x
δ

)]−2

and G(x; τ ) = 1−
[
1 +

(x
δ

)λ]−1

,
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Figure 3. Plots of the GE-LN density function for some parameter
values. (a) For di�erent values of α and β with µ = 0 and σ = 1.
(b) For di�erent values of α and µ with β = 1.5 and σ = 1. (c) For
di�erent values of α, β and σ with µ = 0.
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Figure 4. Plots of the GE-Gu density function for some parameter
values. (a) For di�erent values of α and β with µ = 0 and σ = 1.
(b) For di�erent values of α and µ with β = 1.5 and σ = 1. (c) For
di�erent values of β and σ with α = 1.5 µ = 0.

respectively, where τ = (λ, δ)T . Inserting these expressions in (1.4) gives the GE-LL
density function (for x > 0)

f(x) =

λβα xλ−1

{
1−

[
1 +

(
x
δ

)λ]−1
}α−1

δλΓ(α)
[
1 +

(
x
δ

) ]2 [
1 +

(
x
δ

)λ]−(α+1)
exp

−
β

{
1−

[
1 +

(
x
δ

)λ]−1
}

[
1 +

(
x
δ

)λ]−1

 .

Plots of the GE-LL density function for selected parameter values are displayed in Figure
5.
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Figure 5. Plots of the GE-LL density function for some parameter
values. (a) For di�erent values of α, β with λ = 1.5 and δ = 2.5. (b)
For di�erent values of α, λ with β = 1.5 and δ = 2.5. (c) For di�erent
values of α, β and δ with λ = 1.5.

3. Useful expansions

Some useful expansions for (1.3) and (1.4) can be derived using the concept of ex-
ponentiated distributions. For an arbitrary baseline cdf G(x), a random variable Y is
said to have the exponentiated-G (�Exp-G�) distribution with power parameter a > 0,
say Y ∼Exp-G(a), if its pdf and cdf are

ha(x) = aGa−1(x)g(x)(3.1)

and

Ha(x) = Ga(x),(3.2)

respectively. The properties of exponentiated distributions have been studied by many
authors in recent years, see Mudholkar and Srivastava (1993) for exponentiated Weibull,
Gupta and Kundu (1999) for exponentiated exponential, Nadarajah (2005) for exponen-
tiated Gumbel, Kakde and Shirke (2006) for exponentiated log-normal, and Nadarajah
and Gupta (2007) for exponentiated gamma distributions.

By expanding the exponential in (1.4), we have

f(x) = g(x)
∞∑
k=0

ck
G(x)k+α−1

[1−G(x)]k+α+1
,

where ck = (−1)kβk+α/[Γ(α) k!] for k = 0, 1, . . . Using the power series (for ρ > 0)

(1− z)−ρ =

∞∑
j=0

Γ(ρ+ j)

Γ(ρ) j!
zj ,(3.3)

which holds for z ∈ (0, 1), f(x) can be expressed as

f(x) =

∞∑
k,j=0

dk,j hα+k+j(x).(3.4)
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Here, hα+k+j(x) denotes the Exp-G(α+ k+ j) density function and the coe�cients dk,j
(which depend only on the generator parameters) are given by

dk,j =
(−1)k βk+α Γ(α+ k + j)

Γ(α+ k + 1) Γ(α) k! j!
.

Equation (3.4) reveals that the GE-G density function is a linear mixture of Exp-G
density functions. Then, some structural properties of the new family can be obtained
by knowing those of the Exp-G family. See, for example, Mudholkar et al. (1996) and
Nadarajah and Kotz (2006), among others.

Integrating (3.4), it follows the cdf of X

F (x) =

∞∑
k,j=0

dk,j Hα+k+j(x),(3.5)

where Hα+k+j(x) denotes the cdf of the Exp-G(α+ k + j) distribution. Equations (3.4)
and (3.5) are the main results of this section.

3.1. Asymptotes and shapes. The asymptotes of (1.3), (1.4) and (1.5) when x →
−∞,∞ are given by

F (x) ∼ βα

Γ(α+ 1)
Gα(x) as x→ −∞,

1− F (x) ∼ βα−1

Γ(α)
G

1−α
(x) exp

{
− β

G(x)

}
as x→∞,

f(x) ∼ βα

Γ(α)
Gα−1(x) exp {−βG(x)} g(x) as x→ −∞,

f(x) ∼ βα

Γ(α)
G
−α−1

(x) exp

{
− β

G(x)

}
g(x) as x→∞,

τ(x) ∼ βα

Γ(α)
Gα−1(x) exp {−βG(x)} g(x) as x→ −∞, and

τ(x) ∼ βG−2
(x) as x→∞.

Then, the cdf of the GE-G distribution is proportional to the αth power of G(x) for
very large negative x. The hrf of the GE-G distribution is inversely proportional to the
square of G(x) for very large x.

The shapes of (1.4) and (1.5) can be described analytically. The critical points of the
pdf are the roots of the equation:

df(x)

dx
=

(α− 1)g(x)

G(x)
+

(α+ 1)g(x)

G(x)
+
β g(x)

G
2
(x)

+
g′(x)

g(x)
= 0.(3.6)

There may be more than one root to (3.6). If x = x0 is a root of (3.6) then it corresponds
to a local maximum if df(x)/dx > 0 for all x < x0 and df(x)/dx < 0 for all x > x0. It
corresponds to a local minimum if df(x)/dx < 0 for all x < x0 and df(x)/dx > 0 for all
x > x0. It corresponds to a point of in�exion if either df(x)/dx > 0 for all x 6= x0 or
df(x)/dx < 0 for all x 6= x0.
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The critical points of the hrf are the roots of the equation:

dτ(x)

dx
=

(α− 1) g(x)

G(x)
+

(α+ 1) g(x)

G(x)
+
β g(x)

G
2
(x)

+
g′(x)

g(x)

+
βαGα−1(x)

G
α+1

(x)
[
Γ(α)− γ

(
α, βG(x)/G(x)

)] exp

{
−βG(x)

G(x)

}
= 0.(3.7)

There may be more than one root to (3.7). If x = x0 is a root of (3.7) then it corresponds
to a local maximum if dτ(x)/dx > 0 for all x < x0 and dτ(x)/dx < 0 for all x > x0. It
corresponds to a local minimum if dτ(x)/dx < 0 for all x < x0 and dτ(x)/dx > 0 for all
x > x0. It corresponds to a point of in�exion if either dτ(x)/dx > 0 for all x 6= x0 or
dτ(x)/dx < 0 for all x 6= x0.

Equations (3.6) and (3.7) should be solved numerically and their roots depend on
several aspects: the forms of the baseline pdf and cdf, the baseline parameters and the
extra parameters α and β. The number of roots can be seen in a case-by-case basis, which
is not included in the main objectives of this paper. Although these equations cannot
be solved analytically, the numerical roots can be determined by using Newton-Raphson
type algorithms.

4. Moments

Hereafter, let Yk,j ∼Exp-G(α+ k+ j). A �rst general formula for the nth moment of
X can be obtained from (3.4) as

µ′n = E(Xn) =

∞∑
k,j=0

dk,j E(Y nk,j).(4.1)

Expressions for moments of several exponentiated distributions are given by Nada	rajah
and Kotz (2006), which can be used to obtain µ′n. We now provide an application of (4.1)

by taking the baseline Weibull cdf G(x) = 1 − e−(δx)λ introduced in Section 2.1. The
corresponding Exp-Weibull (Exp-W) density function with positive power parameter a
is given by

f(x) = aλ δλ xλ−1 e−(δx)λ [1− e−(δx)λ ]a−1.(4.2)

The nth moment of (4.2), say ρn, is given by (Cordeiro et al., 2013)

ρn = δ−n Γ(n/λ+ 1)
∞∑
r=0

wr
(r + 1)n/λ

,(4.3)

where

wr =
a

(r + 1)

∞∑
i=0

(−1)i+r
(
a(i+ 1)− 1

r

)
.

Combining (4.1) and (4.3), we obtain

µ′n = δ−n Γ(n/λ+ 1)
∞∑

k,j,r,i=0

(−1)i+r (α+ k + j)
(
(α+k+j)(i+1)−1

r

)
dk,j

(r + 1)n/λ+1
.(4.4)

A second general formula for µ′n follows from (3.4) and the baseline qf QG(x) = G−1(x).
We can write

µ′n =

∞∑
k,j=0

(α+ k + j) dk,j τ(n, α+ k + j − 1),(4.5)
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where

τ(n, a) =

∫ ∞
−∞

xnG(x)a g(x)dx =

∫ 1

0

QG(u)n uadu.(4.6)

The ordinary moments of several GE distributions can be determined directly from
equations (4.5) and (4.6). Here, we provide three examples. First, the moments of the
GE-exponential (with parameter λ > 0) distribution are given by

µ′n = n!λn
∞∑

k,j,m=0

(−1)n+m (α+ k + j)

(
α+ k + j − 1

m

)
dk,j

(m+ 1)n+1 .

Second, for the GE-Pareto distribution, where the baseline cdf is G(x) = 1− (1 + x)−ν ,
we have (for ν > 0)

µ′n =
∞∑

k,j,m=0

(−1)n+m (α+ k + j)

(
n

m

)
B(α+ k + j − 1, 1−mν−1) dk,j ,

where B(a, b) =
∫ 1

0
ta−1 (1 − t)b−1dt represents the beta function. Third, for the GE-

standard logistic, where G(x) = (1 + e−x)−1, we obtain using a result in Prudnikov et al.

(1986, Section 2.6.13, equation 4) (for t < 1)

µ′n =

∞∑
k,j=0

(α+ k + j) dk,j

(
∂

∂t

)n
B(t+ α+ k + j, 1− t)

∣∣∣∣
t=0

.

Next, the central moments (µn) and cumulants (κn) of X follow as

µn =

n∑
k=0

(−1)k
(
n

k

)
µ′k1 µ′n−k and κn = µ′n −

n−1∑
k=1

(
n− 1

k − 1

)
κk µ

′
n−k,

respectively, where κ1 = µ′1, κ2 = µ′2 − µ′21 , etc. The skewness γ1 = κ3/κ
3/2
2 and

kurtosis γ2 = κ4/κ
2
2 of X can be evaluated from the ordinary moments. For the GE-W

distribution (by taking λ = 0.2 and δ = 1.5), the plots of the skewness and kurtosis
as functions of α for some values of β, and as functions of β for some values of α, are
displayed in Figures 6 and 7, respectively. For �xed β, when α increases, the skewness
curve �rst decreases to a minimum value and then increases, whereas the kurtosis curve
always decreases. For �xed α, when β increases, the skewness curve always decreases,
whereas the kurtosis curve rapidly decreases and then increases steadily.

For empirical purposes, the shape of many distributions can be usefully described by
the incomplete moments. These moments play an important role for measuring inequa-
lity, for example, income quantiles and Lorenz and Bonferroni curves, which depend
upon the incomplete moments of a distribution. The nth incomplete moment of X can
be expressed as

mn(y) =

∫ y

−∞
xn f(x)dx =

∞∑
k,j=0

(α+ k + j) dk,j

∫ G(y)

0

QG(u)n uα+k+j−1 du.(4.7)

The integral in (4.7) can be evaluated for most baseline G distributions. In fact, we can
use power series methods which are at the heart of many aspects of applied mathema-
tics and statistics. If the function QG(u) does not have a closed-form expression, it can
usually be expressed as a power series

QG(u) =

∞∑
i=0

ai u
i,(4.8)
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Figure 6. Skewness and kurtosis of the GE-W distribution as func-
tions of α for some values of β.
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Figure 7. Skewness and kurtosis of the GE-W distribution as func-
tions of β for some values of α.

where the coe�cients ai are suitably chosen real numbers. For several important distri-
butions, such as the normal, Student t, gamma and beta distributions, QG(u) does not
have closed-form but it can be written as in (4.8). For example, for the standard normal
distribution, the coe�cients ai are given by

ai = (2π)i/2
∞∑
m=i

(
−1

2

)m−j (
m

i

)
pi,

where the quantities pi are de�ned by pi = 0 (for i = 0, 2, 4, . . .) and pi = q(i−1)/2 (for
i = 1, 3, 5, . . .), and the q′ks are calculated recursively from

qk+1 =
1

2(2k + 3)

k∑
r=0

(2r + 1)(2k − 2r + 1)qr qk−r
(r + 1)(2r + 1)

.

Here, q0 = 1, q1 = 1/6, q2 = 7/120, q3 = 127/7560, . . .
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We use throughout a result of Gradshteyn and Ryzhik (2000, Section 0.314) for a
power series raised to a positive integer n

QG(u)n =

(
∞∑
i=0

ai u
i

)n
=

∞∑
i=0

cn,i u
i,(4.9)

where the coe�cients cn,i (for i = 1, 2, . . .) are easily obtained from the recurrence equa-
tion

(4.10) cn,i = (ia0)−1
i∑

m=1

[m(n+ 1)− i] am cn,i−m,

and cn,0 = an0 . The coe�cient cn,i can be determined from cn,0, . . . , cn,i−1 and hence
from the quantities a0, . . . , ai. Equations (4.9) and (4.10) are used throughout this paper.
The coe�cient cn,i can be given explicitly in terms of the coef�cients ai's, although it is
not necessary for programming numerically our expansions in any algebraic or numerical
software. Thus, we obtain the incomplete moments of X from (4.7) as

mn(y) =

∞∑
k,j,i=0

(α+ k + j) dk,j cn,iG(y)α+k+j+i

(α+ k + j + i)
.(4.11)

The nth descending factorial moment of X is

µ′(n) = E(X(n)) = E [X(X − 1)× · · · × (X − n+ 1)] =

n∑
k=0

s(n, k)µ′k,

where

s(r, k) =
1

k!

[
dk

dxk
x(r)

]
x=0

is the Stirling number of the �rst kind which counts the number of ways to permute a
list of r items into k cycles. So, we can obtain the factorial moments from the ordinary
moments given before. Other kinds of moments such L-moments may also be obtained
in closed-form, but we consider only the previous moments for reasons of space.

5. Generating function

In this section, we provide two general formulae for the mgf M(t) = E(et X) of X. A
�rst formula for M(t) follows from (3.4) as

M(t) =

∞∑
k,j=0

dk,jMk,j(t),(5.1)

where Mk,j(t) is the mgf of Yk,j . Thus, M(t) can be determined from the generating
function of the Exp-G distribution. We now provide an application of (5.1) by considering
again the Weibull baseline distribution with parameters λ and δ (see Section 5). The
mgf of the Exp-W distribution with power parameter α+ k + j is given by

Mk,j(t) =

∞∑
r=0

v
(r)
k,j Ir(t),(5.2)

where v
(r)
k,j = λ δλ (α+ k + j)

∑∞
i=0(−1)i+r

(
(α+k+j)(i+1)−1

r

)
, δr = δ (r + 1)1/λ and

Ir(t) =

∫ ∞
0

xλ−1 exp{t x− (δr x)λ}dx.

Cordeiro et al. (2013) derived two di�erent formulae for Ir(t), which hold for: (i) λ > 1
or (ii) for λ = p/q, where p ≥ 1 and q ≥ 1 are co-prime integers. The �rst representation
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for Ir(t) is obtained using the Wright generalized hypergeometric function (Wright, 1935)
given by

pΨq

[
(α1, A1) , · · · , (αp, Ap)
(β1, B1) , · · · , (βq, Bq)

; x

]
=

∞∑
n=0

p∏
j=1

Γ(αj +Aj n)

q∏
j=1

Γ(βj +Bj n)

xn

n!
.

The Wright function exists if 1 +
∑q
j=1Bj −

∑p
j=1Aj > 0. We have

Ir(t) =

∞∑
m=0

tm

m!

∫ ∞
0

xm+λ−1 exp{−(δrx)λ}dx =
1

λ δλr

∞∑
m=0

tm

δmr m!
Γ(mλ−1 + 1)

=
1

λ δλr
1Ψ0

[
(1, λ−1)
− ;

t

δr

]
.(5.3)

Using equations (5.1), (5.2) and (5.3), we obtain (if λ > 1)

M(t) = λ−1
∞∑

k,j,r=0

dk,j v
(r)
k,j

δλr
1Ψ0

[
(1, λ−1)
− ;

t

δr

]
.(5.4)

A second representation for Ir(t) is based on the Meijer G-function (Gradshteyn and
Ryzhik, 2000; Section 9.3) de�ned by

Gm,np,q

(
x

∣∣∣∣ a1, . . . , apb1, . . . , bq

)
=

1

2πi

∫
L

m∏
j=1

Γ (bj + t)

n∏
j=1

Γ (1− aj − t)

p∏
j=n+1

Γ (aj + t)

p∏
j=m+1

Γ (1− bj − t)
x−tdt,

where i =
√
−1 is the complex unit and L denotes an integration path. This function

contains many integrals with elementary and special functions (Prudnikov et al., 1986).

From the result exp{−g(x)} = G1,0
0,1

(
g(x) | −

0

)
for an arbitrary function g(·), Ir(t)

becomes

Ir(t) =

∫ ∞
0

xλ−1 exp{sx− (δrx)λ}dx =

∫ ∞
0

xλ−1 exp(sx)G1,0
0,1

(
δλr x

λ
∣∣∣ −

0

)
dx.

Next, we assume that λ = p/q, where p ≥ 1 and q ≥ 1 are co-prime integers. Note that
this condition for calculating the integral Ir(t) is not restrictive since every real number
can be approximated by a rational number. Using equation (2.24.1.1) in Prudnikov et

al. (1986, volume 3), we obtain

Ir(t) =
pp/q−1/2(−t)−p/q

(2π)(p+q)/2−1
Gp,qq,p

(
δqrp

p+q

(−t)pq2q

∣∣∣∣ q−p
pq
, 2q−p

pq
, . . . , pq−p

pq

0, 1
q
, . . . , q−1

q

)
.(5.5)

From equations (5.1), (5.2) and (5.5), we can obtain M(t) for the GE-W distribution.
A second general formula for M(t) can be derived from (3.4) as

M(t) =
∞∑

k,j=0

(α+ k + j) dk,j ρ(t, α+ k + j − 1),(5.6)

where ρ(t, a) follows from the baseline qf QG(u) as

ρ(t, a) =

∫ ∞
−∞

etx G(x)a g(x)dx =

∫ 1

0

exp {t QG(u)} uadu.(5.7)
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We can obtain the mgf's of several GE distributions from equations (5.6) and (5.7).
For example, the generating functions of the GE-exponential (with parameter λ and for
t < λ−1), GE-Pareto (with parameter ν > 0) and GE-standard logistic (for t < 1) are
given by

M(t) =

∞∑
k,j=0

(α+ k + j)B(α+ k + j, 1− λt) dk,j ,

M(t) = e−t
∞∑

k,j,m=0

(α+ k + j)B(α+ k + j, 1−mν−1) dk,j
tm

m!

and

M(t) =

∞∑
k,j=0

(α+ k + j)B(t+ α+ k + j, 1− t) dk,j ,

respectively.

6. Other measures

In this section, we calculate the following measures: qf, PWMs, mean deviations,
extreme values, entropies, reliability and order statistics for the GE-G distribution.

6.1. Quantile function. Let γ−1(α, u) be the inverse of the incomplete gamma func-
tion γ(α, u). By inverting F (x) = u, the GE-G qf can be expressed in terms of QG(u)
and γ−1(α, u) (for 0 < u < 1) as

F−1(u) = QG

(
γ−1(α, uΓ(α))

β + γ−1(α, uΓ(α))

)
.(6.1)

Let Q−1(α, u) be the inverse function of Q(α, u) = 1− γ(α, u)/Γ(α). For further details,
see
http://functions.wolfram.com/GammaBetaErf/InverseGammaRegularized/.
We can write

F−1(u) = QG

(
Q−1(α, 1− u)

β +Q−1(α, 1− u)

)
.(6.2)

Quantiles of interest can be obtained from (6.2) by substituting appropriate values for
u. In particular, the median of X is obtained when u = 1/2. We can also use (6.2) for
simulating GE-G random variables by setting U as a uniform random variable in the unit
interval [0, 1].

The asymptotes of (6.2) can be based on known properties of Q−1(α, u). Using the
inverse of the regularized gamma function ‖ we obtain as u→ 0,

Q−1(α, 1− u) ∼ −(1− α)W−1

(
− (1− u)1/(α−1) Γ(α)1/(α−1)

(α− 1)

)
,

where W−1(x) denotes the product log function. It gives the principal solution w in
w ew = x. This function is implemented in Mathematica as ProductLog[x].

Again from the above site, we have when u→ 1

Q−1(α, 1− u) ∼
[
−(1− u)1/α Γ1/α(α+ 1) +

(1− u)2 Γ2/α(α+ 1)

(α+ 1)

]
.

‖http://functions.wolfram.com/GammaBetaErf/InverseGammaRegularized/06/02/01/
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If V is a gamma random variable with shape parameter α and unit scale parameter,
the qf of V , say QV (u), admits a power series expansion given by

QV (u) = Q−1(α, 1− u) =

∞∑
i=0

mi [Γ(α+ 1)u]i/a,

where m0 = 0, m1 = 1 and any coe�cient mi+1 (for i ≥ 1) can be determined by the
cubic recurrence equation

mi+1 =
1

i (α+ i)

{
i∑

r=1

i−s+1∑
s=1

s (i− r − s+ 2)mrmsmi−r−s+2

−∆(i)

i∑
r=2

r [r − α− (1− α)(i+ 2− r)] mrmi−r+2

}
,

where ∆(i) = 0 if i < 2 and ∆(i) = 1 if i ≥ 2. The �rst few coe�cients arem2 = 1/(α+1),

m3 = (3α+ 5)/[2(α+ 1)2(α+ 2)], . . . Let gi = mi Γ(α+ 1)i/α (for i ≥ 0) and z = u1/α.
We obtain a power series for F−1(u) from equation (6.2)

F−1(u) = QG

( ∑∞
i=0 gi z

i

β +
∑∞
i=0 gi z

i

)
.

Using the ratio of two power series (for b0 6= 0)∑∞
n=0 an x

n∑∞
n=0 bn x

n
=

∞∑
n=0

dn x
n,

where d0 = a0/b0 and dn = b−1
0 (an −

∑n
r=1 br cn−r) (for n = 1, 2, . . .), we can rewrite

F−1(u) as

F−1(u) = QG

(
∞∑
n=1

dn u
n/α

)
,(6.3)

where dn = β−1 (gn −
∑n
r=1 gr dn−r) for n ≥ 1. Then, d1 = β−1g1, d2 = β−2(βg2 − g21),

etc.
Hence, equation (6.3) reveals that the GE-G qf can be expressed as the baseline qf

applied to a power series. This expansion holds for any GE-G model. For the great
majority of distributions, the baseline qf can be written as a power series and therefore
the GE-G qf can also be expressed in this way.

6.2. Probability weighted moments. A useful mathematical quantity is the (n, s)th
PWM of X de�ned by κn,s = E{Xn F (X)s} for n, s = 0, 1, . . . We can obtain from
equations (1.3) and (1.4) by setting G(x) = u

κn,s =
βα

Γ(α)s+1

∫ 1

0

QG(u)n
uα−1

(1− u)α+1
exp

[
− β u

(1− u)

] [
γ

(
α,

β u

(1− u)

)]s
du.

The power series for the incomplete gamma function raised to an integer power s can be
written as [

γ

(
α,

β u

(1− u)

)]s
=

[
∞∑
p=0

(−β u)p

(1− u)p (α+ p) p!

]s
.

From equation (4.9), we have[
∞∑
p=0

(−β u)p

(1− u)p (α+ p) p!

]s
=

∞∑
p=0

cs,p
up

(1− u)p
,(6.4)
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where cs,0 = α−s and cs,p =
α

p

p∑
m=1

(−β)m [m (s+ 1)− p]
(α+m)m!

cs,p−m,

for p = 1, 2, . . . By expanding the exponential quantity in the last expression for κn,s and
using (6.4), we obtain

κn,s =
βα

Γ(α)s+1

∞∑
p,r=0

(−β)r cs,p
r!

∫ 1

0

QG(u)n
uα+p+r−1

(1− u)α+p+r+1
du.

From expansion (3.3), we have

κn,s =
βα

Γ(α)s+1

∞∑
p,r,j=0

(−β)r Γ(α+ p+ r + j + 1) cs,p
Γ(α+ p+ r + 1) r!æ!

τ(n, α+ p+ r + j − 1),(6.5)

where τ(n, α+ p+ r + j − 1) is given by (4.6).
Equation (6.5) can be applied for most baseline G distributions to derive explicit

expressions for κn,s. It is the main result of this section.

6.3. Mean deviations. The mean deviations about the mean (δ1 = E(|X − µ′1|)) and
about the median (δ2 = E(|X −M |)) of X are given by

δ1 = 2µ′1 F (µ′1)− 2m1(µ′1) and δ2 = µ′1 − 2m1(M),(6.6)

respectively, where µ′1 = E(X), F (µ′1) is evaluated from (1.3), M = Median(X) is the
median given in Section 7 and m1(z) =

∫ z
−∞ x f(x)dx is the �rst incomplete moment

given by (4.7) with n = 1.
Next, we provide two alternative expressions for δ1 and δ2. An explicit expression for

m1(z) can be derived from (3.3) as

m1(z) =

∞∑
k,j=0

dk,j Jk,j(z),(6.7)

where

Jk,j(z) =

∫ z

−∞
xhα+k+j(x)dx.(6.8)

Equation (6.8) is the basic quantity to determine the mean deviations of the Exp-G
distributions. The mean deviations in (6.6) depend only on the mean deviations of the
Exp-G distribution. So, alternative representations for δ1 and δ2 are given by

δ1 = 2µ′1F
(
µ′1
)
− 2

∞∑
k,j=0

dk,j Jk,j
(
µ′1
)

and δ2 = µ′1 − 2

∞∑
k,j=0

dk,j Jk,j(M).

We provide a simple application of (6.7) and (6.8) for the GE-W distribution. The
Exp-W density function with power parameter α + k + j is obtained from (4.2) with
a = α+ k + j. Then,

Jk,j(z) = λ (α+ k + j) δλ
∫ z

0

xλ e−(δx)λ [1− e−(δx)λ ]α+k+j−1dx

= λ δλ (α+ k + j)

∞∑
r=0

(−1)r
(
α+ k + j − 1

r

) ∫ z

0

xλ e−(r+1)(δx)λdx.
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The last integral is given by the incomplete gamma function and then the mean deviations
for the GE-W distribution can be obtained immediately from

m1(z) = δ−1
∞∑

k,j,r=0

(−1)r (α+ k + j) dk,j

(r + 1)1+1/λ

(
α+ k + j − 1

r

)
γ
(

1 + λ−1, (r + 1)(δz)λ
)
.

A second general formula for m1(z) can be derived by setting u = G(x) in (3.4)

m1(z) =

∞∑
k,j=0

(α+ k + j) dk,j Tk,j(z),(6.9)

where

Tk,j(z) =

∫ G(z)

0

QG(u)uα+k+j−1du(6.10)

is a simple integral de�ned from the baseline qf QG(u).
In a similar manner, the mean deviations of any GE-G distribution can be computed

from equations (6.9)-(6.10). For example, the mean deviations of the GE-exponential
(with parameter λ), GE-Pareto (with ν > 0) and GE-standard logistic distributions can
be determined (using the generalized binomial expansion) from the functions

Tk,j(z) = λ−1 Γ(α+ k + j − 1)

∞∑
m=0

(−1)m (1− e−mλz)

Γ(α+ k + j − 1−m) (m+ 1)!
,

Tk,j(z) =

∞∑
m=0

m∑
r=0

(−1)m
(
α+ k + j

m

)(
m

r

)
(1− rν)

z1−rν

and

Tk,j(z) =
1

Γ(k + j)

∞∑
m=0

(−1)m Γ(α+ k + j +m) (1− e−mz)

(m+ 1)!
,

respectively.
Applications of these equations can be given to obtain Bonferroni and Lorenz curves

de�ned for a given probability π by B(π) = m1(q)/(πµ′1) and L(π) = m1(q)/µ′1, respec-
tively, where µ′1 = E(X) and q = F−1(π) is the qf of the GE-G distribution at π given
by (6.1) or (6.2).

6.4. Extreme values. If X = (X1 + · · ·+Xn)/n denotes the mean of a random sample

from (1.4), then by the usual central limit theorem
√
n(X−E(X))/

√
V ar(X) approaches

the standard normal distribution as n → ∞ under suitable conditions. Sometimes one
would be interested in the asymptotics of the extreme values Mn = max(X1, . . . , Xn)
and mn = min(X1, . . . , Xn).

First, suppose that G belongs to the max domain of attraction of the Gumbel extreme
value distribution. Then by Leadbetter et al. (1987, Chapter 1), there must exist a
strictly positive function, say h(t), such that

lim
t→∞

1−G(t+ xh(t))

1−G(t)
= e−x
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for every x ∈ R. But, using (3.6), we note that

lim
t→∞

1− F (t+ xh(t))

1− F (t)
= lim

t→∞

{
1−G(t)

1−G(t+ xh(t))

}α−1

× exp

{
β

G(t)
− β

G (t+ xh(t))

}
= exp {(α− 1)x}

for every x ∈ R. Provided that α < 1, it follows by Leadbetter et al. (1987, Chapter
1) that F also belongs to the max domain of attraction of the Gumbel extreme value
distribution with

lim
n→∞

Pr {an (Mn − bn) ≤ x} = exp {− exp (−(α− 1)x)}

for some suitable norming constants an > 0 and bn.
Second, suppose that G belongs to the max domain of attraction of the Fréchet extreme

value distribution. Then by Leadbetter et al. (1987, Chapter 1), there must exist a β < 0
such that

lim
t→∞

1−G(tx)

1−G(t)
= xβ

for every x > 0. But, using (3.6), we note that

lim
t→∞

1− F (tx)

1− F (t)
= lim

t→∞

{
1−G(t)

1−G(tx)

}α−1

exp

{
β

G(t)
− β

G (tx)

}
= lim

t→∞

{
1−G(t)

1−G(tx)

}α−1

= xβ(α−1)

for every x > 0. Provided that α > 1, it follows by Leadbetter et al. (1987, Chapter
1) that F also belongs to the max domain of attraction of the Fréchet extreme value
distribution with

lim
n→∞

Pr {an (Mn − bn) ≤ x} = exp(−xβ(α−1))

for some suitable norming constants an > 0 and bn.
Third, suppose that G belongs to the max domain of attraction of the Weibull extreme

value distribution. Then by Leadbetter et al. (1987, Chapter 1), there must exist a c > 0,
such that

lim
t→−∞

G(tx)

G(t)
= xc

for every x < 0. But, using (3.6), we note that

lim
t→−∞

F (tx)

F (t)
= lim
t→−∞

{
G(tx)

G(t)

}α
= xcα.

So, it follows by Leadbetter et al. (1987, Chapter 1) that F also belongs to the max
domain of attraction of the Weibull extreme value distribution with

lim
n→∞

Pr {an (Mn − bn) ≤ x} = exp {−(−x)cα}

for some suitable norming constants an > 0 and bn.
The same argument applies to min domains of attraction. That is, F belongs to the

same min domain of attraction as that of G.
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6.5. Entropies. An entropy is a measure of variation or uncertainty of a random vari-
able X. Two popular entropy measures are the Rényi and Shannon entropies. The Rényi
entropy of a random variable with pdf f(x) is de�ned by

IR(c) =
1

(1− c) log

(∫ ∞
−∞

f(x)c dx

)
for c > 0 and c 6= 1. The Shannon entropy of a random variable X is de�ned by
IS = E{− log[f(X)]}. It is a special case of the Rényi entropy when c ↑ 1. Next, we
derive expressions for the Rényi and Shannon entropies of X. From equation (1.4) and
using similar algebraic developments that lead to (3.4), we can write

f(x)c =

∞∑
k,j=0

ek,j G(x)c(k+α−1)+j g(x)c,

where

ek,j =
(−1)k ck βc α+k Γ(c[k + α+ 1] + j)

Γ(c[k + α+ 1]) Γ(α)c k! j!

Then, the Rényi entropy of X becomes

IR(c) =
1

(1− c)

∞∑
k,j=0

ek,j log(Kk,j),

where

Kk,j =

∫ ∞
−∞

G(x)c(k+α−1)+j g(x)cdx

can be determined from the baseline G distribution at least numerically.
The Shannon entropy can be obtained by limiting c ↑ 1 in the last equation. However,

it is easier to derive an expression for IS from its de�nition. We have

IS = α log(β)− log[Γ(α)] + (α− 1)E{log[G(X)]}
+ (α+ 1)E{log[1−G(X)]}+ 1− (β + 1)E[G(X)] + E{log[g(X)]}.

Using the series expansion for E{log[1−G(X)]}, we obtain

IS = α log(β)− log[Γ(α)] + (α− 1)E{log[G(X)]}

− (α+ 1)

∞∑
r=1

E[G(X)]r

r
+ 1− (β + 1)E[G(X)] + E{log[g(X)]}.(6.11)

The three expectations in (6.11) can be evaluated numerically given G(·) and g(·).
From equation (3.4), they are given by

E[G(X)r] =

∞∑
k,j=0

dk,j

∫ ∞
0

G(x)α+k+j−1 g(x)dx =

∞∑
k,j=0

dk,j
α+ k + j

,

E{log[G(X)]} =

∞∑
k,j=0

dk,j

∫ 1

0

uα+k+j−1 log(u) du = −
∞∑

k,j=0

dk,j
(α+ k + j)2

and

E{log[g(X)]} =

∞∑
k,j=0

(α+ k + j) dk,j

∫ ∞
0

log[g(x)]G(x)α+k+j−1 g(x) dx,
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respectively. The last of these representations can also be expressed in terms of the
baseline qf as

E{log[g(X)]} =

∞∑
k,j=0

(α+ k + j) dk,j

∫ 1

0

log [g (QG(u))] uα+k+j−1 du.

The last integral can be determined for most baseline distributions using a power series
expansion for QG(u).

6.6. Reliability. We derive the reliability, R = Pr(X2 < X1), when
X1 ∼GE-G(α1, β1, θ) and X2 ∼GE-G(α2, β2, θ) are independent random variables. Prob-
abilities of this form have many applications especially in engineering concepts. Let fi
denote the pdf of Xi and Fi denote the cdf of Xi. By using the representations (3.4) and
(3.5), we can write after some algebra

R =

∞∑
j,k,l,m=0

d
(1)
j,k d

(2)
l,m

(α1 + α2 + k + j + l +m)
,

where d
(1)
j,k and d

(2)
l,m are obtained from the coe�cients in (3.4) with α = α1 and α = α2,

respectively. In the very special case α1 = α2 and β1 = β2, we have R = 1/2.

6.7. Order statistics. Order statistics make their appearance in many areas of sta-
tistical theory and practice. Suppose X1, . . . , Xn is a random sample from the GE-G
distribution. Let Xi:n denote the ith order statistic. From equations (1.3) and (1.4), the
pdf of Xi:n can be expressed as

fi:n(x) = K

n−i∑
m=0

(−1)m
(
n− i
m

)
f(x)F i+m−1(x)

=
βα

Γ(α)2

n−i∑
m=0

(−1)m
(
n− i
m

)
Gα−1(x)

G
α+1

(x)

× exp

{
−βG(x)

G(x)

}
γ

(
α, β

G(x

G(x)

)i+m−1

g(x),

where K = n!/[(i − 1)! (n − i)!]. Using equations (3.3) and (6.4) and expanding the
exponential function, we obtain

fi:n(x) =
βα

Γ(α)2

∞∑
r,p,j=0

(−β)r Γ(r + p+ j) dp,i:n
Γ(r + p) j!

hr+p+j+1(x),(6.12)

where

dp,i:n =

n−i∑
m=0

(−1)m
(
n− i
m

)
ci+m−1,p,

hr+p+j+1(x) is the Exp-G density function with power parameter r + p + j + 1 and

ci+m−1,p is de�ned in equation (6.4) for p ≥ 1 and ci+m−1,0 = α−(i+m−1).
Equation (6.12) is the main result of this section. It reveals that the GE-G order

statistics is a triple linear mixture of Exp-G density functions. So, several mathematical
quantities for the GE-G order statistics like ordinary, incomplete and factorial moments,
mgf, mean deviations and several others can be obtained from those quantities of the
Exp-G distributions.
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7. Maximum likelihood estimation

In this section, we determine the MLEs of the GE-G parameters from complete samples
only. Let x1, . . . , xn be a random sample of size n from the GE-G(α, β, τT )T distribution.
The log-likelihood function for the vector of parameters θ = (α, β, τT )T can be expressed
as

l(θ) = n t(α, β) + (α− 1)

n∑
i=1

log[G(xi; τ )]− (α+ 1)

n∑
i=1

log[1−G(xi; τ )]

− β

n∑
i=1

G(xi; τ )

[1−G(xi; τ )]
+

n∑
i=1

log[g(xi; τ )],

where t(α, β) = α log(β)− log[Γ(α)].
The score functions for the parameters α, β and τ are given by

Uα(θ) = n log(β)− ψ(α) +

n∑
i=1

log[G(xi; τ )]−
n∑
i=1

log[1−G(xi; τ )],

Uβ(θ) =
nα

β
−

n∑
i=1

G(xi; τ )

[1−G(xi; τ )]
,

Uτ (θ) = (α− 1)

n∑
i=1

[Ġ(xi; τ )]τ
G(xi; τ )

+ (α− 1)

n∑
i=1

[Ġ(xi; τ )]τ
[1−G(xi; τ )]

− β

n∑
i=1

[Ġ(xi; τ )]τ
[1−G(xi; τ )]2

+

n∑
i=1

[ġ(xi; τ )]τ
g(xi; τ )

,

where

[ġ(xi; τ )]τ =
dg(xi; τ )

dτ
, [Ġ(xi; τ )]τ =

dG(xi; τ )

dτ
,

and ψ(·) is the digamma function.

The MLE θ̂ of θ is determined by solving the nonlinear likelihood equations Uα(θ) = 0,
Uβ(θ) = 0 and Uτ (θ) = 0. These equations cannot be solved analytically and suitable
statistical software is required to solve them numerically. We can use iterative techniques

such as a Newton-Raphson type algorithm to evaluate θ̂. We employ here the numerical
NLMixed procedure in SAS.

Under general regularity conditions, the asymptotic distribution of (θ̂ − θ) is
Np+2(0, I(θ)−1), where I(θ) is the expected information matrix and p is the number
of parameters of the baseline distribution given by the dimension of the vector τ . The

multivariate normal Np+2(0, J(θ̂)−1) distribution, where I(θ) is replaced by J(θ̂), i.e.,

the observed information matrix evaluated at θ̂, can be used to construct approximate
con�dence intervals for the parameters.

8. Regression models

In many practical applications, the lifetimes are a�ected by explanatory variables like
cholesterol level, blood pressure, weight and many others. Parametric models to estimate
univariate survival functions and for censored data regression problems are widely used.
A regression model that provides a good �t to lifetime data tends to yield more precise
estimates of the quantities of interest.

Let X be a random variable having the pdf (1.4). A class of regression models for
location and scale is characterized by the fact that the random variable Y = log(X) has
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a distribution with location parameter µ(v) dependent only on the explanatory variable
vector v and scale parameter σ. Then, we can write

Y = µ(v) + σZ,

where σ > 0 and Z has the distribution which does not depend on v. The random
variable Y (for y ∈ R) has density function given by

f(y) =
βα

σΓ(α)

Gα−1

(
y − µ(v)

σ

)
G
α+1

(
y − µ(v)

σ

) exp

−
βG

(
y − µ(v)

σ

)
G

(
y − µ(v)

σ

)
 g

(
y − µ(v)

σ

)
.

For illustrative purposes, let X be a random variable having the GE-W density func-
tion de�ned in Section 2.1. The random variable Y = log(X), re-parameterized in terms
of µ = − log(δ) and σ = λ−1, has density function given by

f(y) =
βα

σ Γ(α)

exp
[(
y−µ
σ

)
+ α exp

(
y−µ
σ

)]{
1− exp

[
− exp

(
y−µ
σ

)]}1−α
× exp

(
−β
{

1− exp[− exp
(
y−µ
σ

)
]
}

exp[− exp
(
y−µ
σ

)
]

)
,(8.1)

where α > 0 and β > 0 are shape parameters, µ ∈ R is the location parameter and σ > 0
is the scale parameter.

We refer to equation (8.1) as the log-gamma extended Weibull (LGE-W) distribu-
tion, say Y ∼ LGE-W(α, β, µ, σ). If X ∼ GE-W(α, β, λ, δ), then Y = log(X) ∼
LGE-W(α, β, µ, σ). The survival function corresponding to (8.1) is given by

S(y) =
1

Γ(α)
γ

(
α, β

{
1− exp

[
− exp

(
y−µ
σ

)]
exp

[
− exp

(
y−µ
σ

)] })
.(8.2)

Next, we de�ne the standardized random variable Z = (Y −µ)/σ with density function

f(z) =
βα

Γ(α)

exp [z + α exp (z)]

{1− exp [− exp (z)]}1−α
exp

(
−β {1− exp[− exp (z)]}

exp[− exp (z)]

)
.(8.3)

Further, we propose a linear location-scale regression model linking the response vari-
able yi and the explanatory variable vector vTi = (vi1, . . . , vip) as follows

(8.4) yi = vTi τ + σ zi, i = 1, . . . , n,

where the random error zi has density function (8.3), τ = (τ1, . . . , τp)
T , σ > 0, α > 0

and β > 0 are unknown parameters. The parameter vi = vTi τ is the location of yi. The
location parameter vector v = (v1, . . . , vn)T is represented by a linear model v = Vτ ,
where V = (v1, . . . ,vn)T is a known model matrix. The LGE-W model (8.4) opens new
possibilities for �tted many di�erent types of data.

Consider a sample (y1,v1), . . . , (yn,vn) of n independent observations, where each
random response is de�ned by yi = min{log(xi), log(ci)}. We assume non-informative
censoring such that the observed lifetimes and censoring times are independent. Let
F and C be the sets of individuals for which yi is the log-lifetime or log-censoring,
respectively. Conventional likelihood estimation techniques can be applied here. The
log-likelihood function for the vector of parameters θ = (α, β, σ, τT )T from model (8.4)

has the form l(θ) =
∑
i∈F

li(θ) +
∑
i∈C

l
(c)
i (θ), where li(θ) = log[f(yi)], l

(c)
i (θ) = log[S(yi)],
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f(yi) is the density (8.1) and S(yi) is the survival function (8.2). The total log-likelihood
function for θ reduces to

l(θ) = r α log β − n log Γ(α) +
∑
i∈F

zi − (1− α)
∑
i∈F

log {1− exp [− exp (zi)]}

+
∑
i∈F

α exp (zi) +
∑
i∈F

(
−β {1− exp[− exp (zi)]}

exp[− exp (zi)]

)
+
∑
i∈C

log γ

(
α, β

{
1− exp [− exp (zi)]

exp [− exp (zi)]

})
,(8.5)

where r is the number of uncensored observations (failures). The MLE θ̂ of the vector
of unknown parameters can be obtained by maximizing the log-likelihood (8.5). We use

the NLMixed procedure in SAS to calculate the estimate θ̂. Initial values for β and σ
are taken from the �t of the log-Weibull regression model with α = 0 and β = 1.

The elements of the (p+3)×(p+3) observed information matrix−L̈(θ), say−Lαα,−Lαβ ,
−Lασ,−Lατj ,−Lββ ,−Lβσ,−Lβτj ,−Lσσ,−Lστj and −Lβjβs (j, s = 1, . . . , p) have to be
evaluated numerically. Inference on θ can be conducted based on the approximate multi-

variate normal Np+3(0,−L̈(θ̂)−1) distribution for θ̂. Further, we can use likelihood ratio
statistics for comparing the LGW-LL model with some of its sub-models.

9. Simulation and applications

In this section, we use three real data sets to compare the �ts of the EG distributions
with others commonly used lifetime models. In each case, the parameters are estimated
by maximum likelihood (Section 7) using the NLMixed subroutine in SAS. The goodness-
of-�t statistics like Akaike Information Criterion (AIC), Consistent Akaike Information
Criterion (CAIC) and Bayesian Information Criterion (BIC) are adopted to compare the
�tted models. The lower the values of these criteria are, the better the �t.

Note that over-parametrization is penalized in these criteria, so that the two additional
parameters in the EG model do not necessarily lead to smaller values of these statistics.
The performance of the MLEs are also investigated by a simulation study in this section.

9.1. Simulation. We simulate the GE-N(α = 0.5, 1.5, β = 0.5, 1.5, µ = 0, σ = 1) dis-
tribution from equation (6.1) by using a random variable U having a uniform distribution
in (0, 1). We simulate n= 50, 150 and 300 variates and, for each replication, we evaluate

the MLEs α̂, β̂, µ̂ and σ̂. We repeat this process 1, 000 times and determine the average
estimates (AEs), biases and means squared errors (MSEs). The results are reported in
Table 1.

The results of the simulations in Table 1 indicate that the MSEs of the AEs of α,
β, µ and σ decay toward zero as the sample size increases, as expected under �rst-
order asymptotic theory. The mean estimates of the parameters tend to be closer to
the true parameter values when n increases. This fact supports that the asymptotic
normal distribution provides an adequate approximation to the �nite sample distribution
of the MLEs. The normal approximation can be oftentimes improved by making bias
adjustments to these estimators. Approximations to these biases in simple models may
be obtained analytically. Bias correction typically does a very good job for correcting
the MLEs. However, it may either increase the MSEs. Whether bias correction is useful
in practice depends basically on the shape of the bias function and on the variance of
the MLE. In order to improve the accuracy of the MLEs using analytical bias reduction
one needs to obtain several cumulants of log likelihood derivatives which are notoriously
cumbersome for the proposed model.
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Table 1. The AEs, biases and MSEs based on 1,000 simulations of
the GE-N distribution when α = 0.5, 1.5, β = 0.5, 1.5, µ=0 and σ=1,
and n=50, 150 and 300.

α = 0.5 β = 0.5 α = 1.5 β = 0.5

n Parameter AE Bias MSE Parameter AE Bias MSE

50 α 0.5899 0.0899 1.1686 α 2.4349 0.9349 59.4752
β 0.7696 0.2696 15.7511 β 1.3614 0.8614 23.5048
µ -0.1785 -0.1785 1.1247 µ 0.0648 0.0648 1.6424
σ 0.9219 -0.0781 0.4925 σ 0.9647 -0.0353 0.8442

150 α 0.5301 0.0301 0.4575 α 1.4681 -0.0319 1.5254
β 0.5567 0.0567 1.3133 β 0.6290 0.1290 0.5052
µ -0.0826 -0.0826 0.5164 µ 0.0379 0.0379 0.6298
σ 0.9528 -0.0472 0.2200 σ 0.9431 -0.0569 0.1798

300 α 0.5251 0.0251 0.1235 α 1.3811 -0.1189 0.4938
β 0.5095 0.0095 0.1383 β 0.5443 0.0443 0.1341
µ -0.0653 -0.0653 0.3011 µ 0.0472 0.0472 0.3334
σ 0.9851 -0.0149 0.1130 σ 0.9392 -0.0608 0.0833

α = 0.5 β = 1.5 α = 1.5 β = 1.5

50 α 1.6051 1.1051 16.8536 α 3.8309 2.3309 152.9058
β 5.1946 3.6946 370.4755 β 5.1753 3.6753 280.2779
µ -0.1195 -0.1195 2.9737 µ -0.1236 -0.1236 2.2642
σ 1.2683 0.2683 2.1531 σ 1.1595 0.1595 1.5969

150 α 0.7366 0.2366 0.9104 α 1.9205 0.4205 11.8999
β 1.8741 0.3741 5.8935 β 2.1430 0.6430 15.0843
µ -0.1750 -0.1750 0.7025 µ -0.0871 -0.0871 0.7450
σ 1.0410 0.0410 0.4205 σ 1.0302 0.0302 0.3466

300 α 0.6822 0.1822 0.8578 α 1.6240 0.1240 1.5137
β 1.6979 0.1979 2.9542 β 1.6953 0.1953 1.6989
µ -0.1514 -0.1514 0.5375 µ -0.0615 -0.0615 0.4016
σ 1.0441 0.0441 0.2981 σ 0.9998 -0.0002 0.1611

9.2. Application 1: Carbon monoxide data. For the GE-W model given by (2.1)
we work with carbon monoxide (CO) measurements made in several brands of cigarettes
in 1998. The data have been collected by the Federal Trade Commission (FTC), an inde-
pendent agency of the United States Government, whose main mission is the promotion
of consumer protection. For three decades the FTC regularly has released reports on
the nicotine and tar content of cigarettes. The reports indicate that nicotine levels, on
average, had remained stable since 1980, after falling in the preceding decade. The data
include records of measurements of CO contents, in milligrams, in cigarettes of several
brands. The CO data set can be found at http://home.att.net/ rdavis2/cigra.html.

Recently, various authors developed more properties and applications of the beta
Weibull (BW) (Famoye et al., 2005) distribution in survival analysis and reliability, for
example, Ortega et al. (2011) introduced the log-beta Weibull regression model based
on the BW distribution, Cordeiro et al. (2013) studied some mathematical properties
of the BW distribution and Ortega et al. (2012) proposed the negative binomial-beta
Weibull regression model for studying the recurrence of prostate cancer and to predict the
cure fraction for patients with clinically localized prostate cancer treated by open radical
prostatectomy. The four-parameter BW distribution (Famoye et al., 2005) (a > 0, b > 0,
α > 0 and γ > 0) has density function given by (for x > 0)

f(x) =
γ(1/α)γ

B(a, b)
xγ−1exp{−b(x/α)γ}[1− exp{−(x/α)γ}]a−1,(9.1)
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where a and b are two extra shape parameters to the Weibull distribution to govern
skewness and kurtosis. Another important characteristic of the BW distribution is that
it contains, as special models, the exponentiated exponential (Gupta and Kundu, 1999)
(for b = γ = 1) and exponentiated Weibull (EW) (Mudholkar et al., 1996) (for b = 1)
distributions and some other distributions.

Next, we �t the GE-W, BW, EW and Weibull models to the CO data. The MLEs of
the parameters (the standard errors are given in parentheses) and the values of the AIC,
CAIC and BIC statistics are listed in Table 2, thus indicating that the GE-W gives a
better �t than the Weibull model. Comparing the statistics in Tables 2, we can verify
that the GE-W distribution is a very competitive model to lifetime data. In fact, the
GE-W distribution is a very good alternative model to the BW and EW distributions.
Since the values of the statistics above are smaller for the GE-W distribution compared
to those values of the other models, the new distribution is a more suitable model to
explain these data.

Table 2. MLEs of the GE-W and Weibull models and some criteria
for the carbon monoxide data.

Model α β λ δ AIC CAIC BIC

GE-W 0.7301 0.000517 0.5985 2.0548 1922.7 1922.8 1938.1
(0.3565) (0.000367) (0.3597) (1.1734)

Weibull 1 1 2.9783 0.07959 1993.4 1993.4 2001.1
- - (0.1345) (0.001494)

a b α γ AIC CAIC BIC

BW 0.3081 0.06441 7.5373 4.5942 1930.1 1930.2 1945.5
(0.04337) (0.02214) (0.7844) (0.2797)

EW 0.3381 1 15.6257 6.2558 1947.5 1947.6 1959.0
(0.02127) - (0.2489) (0.1130)

More information is provided by a visual comparison of the histogram of the data with
the �tted density functions. The plots of the �tted GE-W and Weibull density functions
are displayed in Figure 8a. In order to assess if the model is appropriate, the plots of the
�tted GE-W and Weibull cumulative distributions and the empirical cdf are displayed in
Figure 8b. We conclude that the GE-W distribution provides a good �t to these data.

9.3. Application 2: Fibre data. In this section, we use an uncensored data set on the
strengths of 1.5 cm glass �bres, measured at the National Physical Laboratory, England.
For more details, see, for example, Smith and Naylor (1987) and Cordeiro and Lemonte
(2011). Unfortunately, the units of measurement are not given in the paper. For the �bre
data, we compare the �tted GE-LN, GE-LL, LN and LL distributions. An alternative
model to these data is the Birnbaum-Saunders (BS) distribution. There are various
extensions of this lifetime distribution.

More recently, Cordeiro and Lemonte (2011) proposed the β-Birnbaum-Saunders (β-
BS) distribution for fatigue life modeling. They investigated various properties of the
β-BS model including expansions for the moments, generating function, mean deviations,
density function of the order statistics and their moments. The pdf of β-BS and BS
distribution are given by

f(x) =
κ(α, β)

B(a, b)
x−3/2 (x+ β) exp

{
−τ(x/β)/(2α2)

}
Φ(v)a−1 {1− Φ(v)}b−1, x > 0,
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Figure 8. (a) Fitted GE-W and Weibull densities for the CO data.
(b) Estimated GE-W and Weibull cumulative distributions for the CO
data.

and

f(x) = κ(α, β)x−3/2 (x+ β) exp{−τ(x/β)/(2α2)}, x > 0,

respectively.
The MLEs of the parameters (with standard errors) and the AIC, CAIC and BIC

measures for the models are displayed in Table 3. Since the values of these statistics
are smaller for the GE-LN and GE-LL distributions compared to those values of other
models, the distributions in the new family seem to be more adequate models to explain
these data. Then, these distributions can be considered very good alternative models to
the β-BS distribution.

More information is provided by a visual comparison of the the �tted density functions
to the histogram of the data. The plots of the �tted GE-LN and LN density functions
are displayed in Figure 9a. Similarly, the plots of the �tted GE-LL and LL density
functions are given in Figure 9b. We conclude that the GE-LN and GE-LL distributions
can provide good �ts to these data. Overall, the GE-LN model is the best choice.

9.4. Application 3: Voltage data. Lawless (2003) reported an experiment in which
specimens of solid epoxy electrical-insulation were studied in an accelerated voltage life
test. The sample size is n = 60, the percentage of censored observations is 10% and are
considered three levels of voltage 52.5, 55.0 and 57.5. The variables involved in the study
are: xi - failure times for epoxy insulation specimens (in min); ci - censoring indicator
(0 =censoring, 1 =lifetime observed); vi1 - voltage (kV).

Now, we present results by �tting the model

yi = τ0 + τ1vi1 + σzi,

where the random variable Yi follows the LGE-W distribution given in (8.1). The MLEs
of the model parameters, the asymptotic standard errors of these estimates and the
values of the measures AIC, CAIC and BIC to compare the LGE-W and log-Weibull
(LW) regression models are listed in Table 4.

From the �gures in Table 4, we conclude that the �tted LGE-W regression model
has the lowest AIC, CAIC and BIC values compared with those values of the �tted LW
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Table 3. MLEs of the model parameters for the �bres data and infor-
mation criteria.

Model α β µ σ AIC CAIC BIC

GE-LN 1.5634 0.03054 -0.8056 0.6007 35.0 35.9 42.7
(0.6231) (0.0190) (0.3276) (0.2167)

LN 1 1 0.3347 0.2657 47.7 47.9 51.6
- - (0.03721) (0.02631)

α β δ λ AIC CAIC BIC

GE-LL 0.8439 1.4517 1.7321 5.7819 35.4 36.2 43.1
(0.4095) (0.1541) (0.1762) (1.7454)

LL 1 1 1.4566 7.5388 40.8 41.1 44.7
- - (0.04564) (0.9255)

a b α β AIC CAIC BIC

β-BS 0.3638 7857.5658 1.0505 30.4783 37.5 38.4 45.3
(0.0709) (3602.2) (0.0101) (0.5085)

BS 1 1 0.2699 1.3909 48.4 48.6 52.2
- - (0.0267) (0.0521)
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Figure 9. For the �bre data: (a) Fitted GE-LN and LN pdf. (b)
Fitted GE-LL and LL pdf.

model. Figure 10 provides the plots of the estimated survival function and estimated cdf
of the LGE-W distribution. These plots indicate this regression model provides a good
�t to these data.

10. Conclusions

We propose a new gamma generated family of distributions with two additional pa-
rameters, which can include as special cases several classical continuous distributions. For
any parent continuous distribution G, we can de�ne the corresponding gamma extended-
G (�GE-G�) class with two extra positive parameters. We give some of its special models.
We demonstrate that its density function is a linear mixture of exponentiated G den-
sities. Explicit expressions for the ordinary and incomplete moments, generating and
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Table 4. MLEs of the parameters to the voltage data, the correspond-
ing SEs (given in parentheses), p-values in [·] and the statistics AIC,
CAIC and BIC.

Model α β σ τ0 τ1 AIC CAIC BIC

LGE-W 81.891 298.900 9.320 31.859 -0.219 168.6 169.8 179.1
(0.081) (33.045) (0.778) (3.730) (0.058)

[<0.0001] [0.0003]

LW - - 0.845 22.000 -0.274 173.4 173.8 179.7
(0.090) (3.046) (0.055)

[<0.0001] [<0.0001]
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Figure 10. Estimated LGE-W and LW survival function and empiri-
cal survival for the voltage data.

quantile functions, mean deviations, Bonferroni and Lorenz curves, probability weighted
moments, Shannon and Rényi entropies, reliability and order statistics are derived for
any GE-G distribution. The model parameters are estimated by maximum likelihood and
we investigate the accuracy of the estimators through a simulation study. We propose a
new regression model based on the logarithm of the GE-G distribution. The usefulness
of the new models is illustrated using classical goodness-of-�t statistics by means of three
real data sets The proposed models provide a rather �exible mechanism for �tting a wide
spectrum of real data sets.
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