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ABSTRACT 

This paper surveys and compares various strategies for processmg logic queries m rela- 
tional databases The survey and comparison 1s hmlted to the case of Horn Clauses with 
evaluable predicates but wrthout function symbols The paper 1s organized m three parts In 
the first part, we introduce the mam concepts and defimtrons In the second, we describe 
the vanous strategies For each strategy, we give Its mam charactenstms, Its apphcatron 
range and a detailed descnptron We also give an example of a query evaluatron The third 
part of the paper compares the strategies on performance grounds We first present a set of 
sample rules and queries which are used for the performance compansons, and then we 
characterize the data Finally, we give an analytrcal solution for each query/rule system 
Cost curves are plotted for specific configurations of the data 

1. Introduction 

The database commumty has recently mamfested a 
strong interest m the problem of evaluating “logic 
queries” agamst relational databases Thus interest 

1s motrvated by two convergmg trends (1) the 
desire to integrate database technology and 
artrficral mtelhgence technology 1 e , to extend 

database systems, to provrde them with the func- 

tionality of expert systems thus creating 

“knowledge base systems” and (11) the desrre to 
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integrate logic programming technology and data- 
base technology 1 e , to extend the power of the 
interface to the database system to that of a gen- 
eral purpose language The second goal 1s of a 
somewhat different nature and has found m its 
ranks proponents of oblect onented, functional and 
rmperatlve as well as logrc based programming 

languages The logic programmmg camp 1s relying 
on the fact that logic programmmg and relational 

calculus have the same underlying mathematrcal 
model, namely first order logic 

Of course, database researchers already know how 
to evaluate logic queries the view mechamsm, as 
offered by most relational systems, is a form of 
support of a restricted set of logic queries But 
those logic queries are restncted to be non- 
recursrve and the problem of effrclently supportmg 
recursrve queries is still open 

In the past five years, followmg the proneenng 
work by Chang, Shapiro and McKay, and Hen- 
schen and Naqvr, numerous strategies have been 
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proposed to deal with recursslon m loge quenes 

The posltlve side of this work 1s that there are a 
lot of algonthms offered to solve the problem The 
negative side 1s that we do not know how to make 

a choice of an algorithm It seems reasonable to 
say that all these strategies can only be compared 

on three grounds functlonahty (1 e , apphcatlon 
domam), performance and ease of lmplementatlon 
However, each of these algonthms IS described at a 
different level of detail, and It 1s sometlmes dlfflcult 
to understand their differences In fact, we shall 
clam later m this paper that some of them are 
mdeed ldentlcal Each comes with httle or no per- 
formance analysis, and the apphcatlon domam 1s 
not always easy to ldentlfy We try m this paper 
to evaluate these algorithms with respect to these 
three cnterla We describe all the algonthms at 
the same level of detail and demonstrate their 
behavior on common examples This IS not always 
easy to do since some of them are fairly well for- 
mahzed while others are merely sketched as an 
idea 

For each one of them, we state m simple terms the 
apphcatlon domain Finally, we eve a first simple 
comparison of the performance of these algonthms 
Choosing a simple set of typical queries, a simple 
characterlzatlon of the data and a simple cost func- 
tlon, we give an analytlcal evaluation of the cost of 

each strategy The results gve a first mslght mto 
the respective value of all the proposed strategies 

The rest of the paper IS organized as follows In 
section 2 we present our defimtlons and notations, 
and mtroduce the mam ideas In sectlon 3 we 
present the mam features of the strategies, and 
describe each one mdlvldually, and finally, m sec- 
tion 4, we present the performance evaluation 

methodology and results 

2. Logic Databases 

2.1. An Example 

Let us start by dlscussmg mformally an example 
Here IS what we call a “logic database” 

parent(cam,adam) 
parent(abel,adam) 
parent(cain,eve) 

parent(abel,eve) 
parent(sem,abel) 
ancestor(X,Y) - ancestor(X,Z),ancestor(Z,Y) 
ancestor(X,Y) - parent(X,Y) 
generatlon(adam,l) 
generatlon(X,I) - generatlon(Y, J), 

parent(X,Y), J=I-1 
generat:on(X,I) - generatlon(Y, J), 

parent(Y,X), J=I+l 

Note that this 1s a purely syntactic obJect In this 
database, we have a set of predicate or relation 
names (parent, ancestor and generation), a set of 
arlthmetlc predicates (I=J+l, I=J-1) and a set of 

constants (adam, eve, cam, sem and abel) Finally, 
we have a set of variables (X,Y and Z) The data- 
base consists of a set of sentences ending with a 
penod “parent(cam,adam)” IS a fact, and 
“ancestor(X,Y) - parent(X,Y)” is a rule 

Let us now associate a meaning mth the database 
We first associate with each constant an object 
from the real world thus, with “adam” we assocl- 
ate the mdlvldual whose name 1s “adam” Then, 
we associate with each anthmetlc predicate name 
the correspondmg anthmetlc operator Then we 
can Interpret mtmtlvely each fact and each rule 
For Instance we interpret “parent(cam,adam)” by 
saying that the predicate parent 1s true for the cou- 
ple (cam,adam), and we mterpret the rule 

ancestor(X,Y) - ancestor(X,Z), ancestor(Z,Y) 

by saymg that If there are three obJects X, Y and 
Z such that ancestor(X,Z) 1s true and ancestor(Z,Y) 
1s true then ancestor(X,Z) 1s true 

This leads to an mterpretatlon which associates 
with each predicate a set of tuples For Instance 
with the predicate ancestor we associate the 
interpretation 
(cam,eve), ( b 1 ‘(iamrdam)’ 

(abel,adam), 
a e ,eve , sem,abel), (sem,adam), 

(sem,eve)}, and with the predicate generation we 
associate the mterpretatlon {(adam,l), (eve,l), 
(cam,2), (abel,l), (sem,3)} 

The problem 1s to answer queries, given the logic 
database For mstance given a query of the form 
generatlon(sem,?) or ancestor(?,adam), how do we 

find the answer generatlon(sem,3) and 
{ancestor(cam,adam), ancestor(abel,adam), 
ancestor(sem,adam)}? 

Let us now formahze all the notions encountered m 
this example and define a logic database We first 

define it syntactlcally, then we attach an mterpre- 
tatlon to this syntax 

2.2. syntax of 8 Logic Database 

We first define four sets of names varrable names, 
constant names, predrcate or relataon names and 
evaluable predrcate names 

We adopt the Prolog conventlon of denotmg van- 
ables by strings of characters starting with an 
upper case letter and constants by strings of char- 
acters startmg with a lower case letter or mtegers 
For mstance Xl, Father and Y are vanables, while 
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John, salary and 345 a~ constants 

We use identifiers startmg with lower case letters 
for predicates names and relation names (evaluable 
and non-evaluable) 

We use the term relation (from database termmol- 
ogy) and pre&cate (from logic termmology) 
indifferently to represent the same object We shall 
however interpret them differently a relation will 
be interpreted by a set of tuples and a predicate by 
a true/false function There IS a fixed anty associ- 
ated with each relation/predicate 

The set of evaluable predicate names IS a subset of 
the set of predicate names We will not be con- 
cerned with their syntactic recognition, m the 
examples it will be clear from the name we use 
The mam examples of evaluable predicate names 
are arithmetic predicates For mstance, sum, 
difference and greater-than are examples of evalu- 
able predicates of arrty 3, 3 and 2 respectively, 
while parent and ancestor are non-evaluable predi- 
cates of anty 2 

A lateral is of the form p(tl,tl, ,tn) where p is a 

predicate name of anty n and each ti IS a constant 
or a variable For mstance father(johnX), 
ancestor(Y,Z), id(john,25,austm) and sum(X,Y,Z) 
are hterals An mstantrated literal is one which 
does not contam any variables For instance 
id(john,doe,25,austm) is an mstantrated literal, 

while father(john,Father) IS not 

We allow ourselves to write evaluable hterals using 

functions and equality for the purpose of clanty 
For mstance, Z = X+Y denotes sum(X,Y,Z), I = 
J+l denotes sum(J,l,I), and X > 0 denotes 

greater-than(X,O) 

If p(tl,t2, ,tn) is a literal, we call (tl,t2, ,tn) a 

tup1e 

A rule is a statement of the form 

P - ql,q2, ,qn 

where p and the qi’s are hterals such that the 

predicate name m p is a non-evaluable predicate 
p is called the head of the rule, and each of the 91’s 
is called a god The conjunction of the qi’s IS the 

body of the rule We have adopted the Prolog 

notation of representmg imphcation by ’ -’ and 

conjunction by ‘,’ For instance 

uncle(johnX) - brother(X,Y), parent(john,‘r) 

1s a rule with head “uncle(johnX)” and body 
“brother(X,Y), parent(john,Y)” 

A ground clause is a rule m which the body is 
empty A fact is a ground clause which contams 
no variables For instance 

loves(X,john) 
loves(mary,susan) 

are ground clauses, but only the second of these is 
a fact 

A database is a set of rules, note that this set is 
not ordered Given a database, we can partition it 

mto a set of facts and the set of all other rules 
The set of facts 1s called the eztensgonal database, 
and the set of all other rules is called the mten- 
saonal database 

2.2. Interpretation of a Logic Database 

Up to now our defimtions have been purely syntac- 
tical Let us now give an mterpretation of a da& 
base This will be done by associating with each 
relation name m the database a set of mstantiated 
tuples We first assume that with each evaluable 
predicate p is associated a set natural(p) of mstan- 
tiated tuples which we call its natural mterpretu- 
tron For mstance, with the predicate 8um M sss+ 
elated an mfimte set of all the btuples (x,y,z) of 
integers such that the sum of x and y is z In gen- 
eral the natural mterpretation of an evaluable 
predicate is mfimte 

Given a database, an mterpretatcon of this da& 
base is a mappmg which associates with each rela- 
tion name a set of mstantlated tuples 

A model of a database is an mterpretation I such 

that 

(1) for each evaluable predicate p, 
I(p) = natural(p), and, 

(2) for any rule, 

p(t) .- ql(tlMW), ,w(tn) 

for any mstantlatlon o of the varrables of the rule 
such that o(ti) IS m the interpretation of qi for all 1 

then u(t) is is m the mterpretation of p 

This IS simply a way of saying that, m a model, if 
the right hand side is true then the left hand side 
is also true This implies that for every fact p(x) 

of the database the tuple x belongs to the mterpre- 

tation of p 

Of course, for a given database there are many 
models The nice property of Horn Clauses 1s that 

among all these models there is a mammal one 
(munmal m the sense of set mclusion), which 1s the 
one we choose as the model of the database van 
Emden and Kowalski 761 Therefore from now on, 
when we talk about the model or the mterpretation 
of a database, we mean its mmlmal model 

Notice that because of the presence of evaluable 
arithmetic predicates the minimal model is, m gen- 
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eral, not fimte 

Let p be an n-ary predicate An adornment of p 1s 
a sequence a of length n of b’s and f’s [Ullman 851 
For mstance bbf 1s an adornment of a ternary 
pre&cate, and fbff 1s an adornment of predrcate of 
anty 4 An adornment IS to be Interpreted mtm- 

trvely as follows the r-th vanable of p 1s bound 
(respectrvely free) if the I-th element of a 1s b 
(respectrvely f) Let p(xl,x2, ,xn) be a literal, an 
adornment ala2 an of that hteral 1s an adornment 
of p such that 

(1) If x1 rs a constant then ar IS b, 

(ii) If xi = XJ then 81 = aJ 

We denote adornments by superscripts A query 
form IS an adorned predicate Examples of query 
forms are father*’ , rdb’lb 

A query rs a query form and an mstantlatlon of 
the bound vanables We denote It by an adorned 
hteral where all the bound posltlons are filled wrth 
the correspondmg constants and the free posltlons 
are filled by dlstmct free variables Therefore 
father*’ (John,X) and ld*f’* (John,X,Y,25) are 
quenes The dlstmctlon between quenes and query 

forms are that query forms are actually complied, 
and at run-trme then parameters will be mstan- 
tlated Notice that father(X,X) 1s not a query form 
in thrs formalism 

The answer to a query q(t) 1s the set 
{da(t)) ] o IS an mstantlatlon of t, and 

a(t) 1s m the mterpretatlon of q} 

2.4. Structuring and Representing the Data- 
base 

A predmate whrch only appears m the mtenslonal 
database 1s a dcrrved predicate A predicate whrch 
appears only m the extensional database or m the 

body of a rule rs a base predicate 

For performance reasons, it 1s good to decompose 
the database into a set of pure base predicates 
(which can then be stored using a standard DBMS) 
and a set of pure denved predmates Fortunately, 
such a decomposrtlon 1s always possrble, because 

every database can be rewntten as an “eqmvalent” 

database contaming only base and demed predr- 
c&es. By eqmvalent, we mean that all the predl- 

cate names of the ongnal database appear m the 

modified database and have the same mterpreta- 
tloll 

We obtcun this eqmvalent database m the followmg 
way: consider any p&mate p that rs nexther base 
nor derrved By defiaitron, we have a set of facts 
for p, and p appears on the left of some rules So 
we simply mtroduce a new predrcate p,ext and do 

the following 

(1) replace p by p-ext m each fact of p, 
(2) add a new rule of the form 

P(XWJ, ,a) - p-exWJ2, ,fi) 
where n IS the anty of p 

Example 

father(a,b) 
parent(b,c) 
grandfather(b,d) 

grandfather(X,Y) - father(X,Z),parent(Z,Y) 

becomes 

father(a,b) 
parent(b,c) 
grandfather-ext(b,d) 
grandfather(X,Y) - father(X,Z),parent(Z,Y) 
grandfather(X,Y) - grandfather-ext(X,Y) 

Most authors have chosen to descnbe a set of rules 
through some kmd of graph formalism Predmate 
Connectron Graphs, as presented m [McKay and 
Shapuo 811, represent the relatronshlp between 

rules and predicates Rule/goal graphs, as 
presented m [Ullman 851, carry more mformatlon 
because predicates and rules are adorned by then 
vsnable bmdmgs We have chosen here to keep the 
rule/goal graph termmology while usmg unadorned 
predicates 

The rule/goal graph has two sets of nodes square 
nodes which are associated with predicates, and 
oval nodes which are associated with rules If 
there IS a rule of the form 

r P - ~1~~2, ,pn 
m the mtenslonal database, then there 1s an arc 
gomg from node r to node p, and for each predl- 
cate pl there 1s an arc from node pl to node r 

Here 1s an example of an mtenslonal database For 
the sake of slmphclty, we have omitted the van- 

ables m the rules 

rl Pl *- P3,P4 
r2 P2 - P4,P5 
r3 P3 - PQ4,P3 
r4 P4 - P5,P3 
r5 P3 - PQ 
r6 p5 .- p5,p7 
r7 P5 *- ps 
r8 p7 :- p8,p8 

The rule/goal graph rs 
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1s lmear, wMe the rule 

ancestor(X,Y) - ancestor(X,Z),ancestor(Z,Y) 

1s not 

These defimtlons are fairly simple m the single rule 
context They are a little more involved m the con- 
text of a set of rules where properties have to be 
attached to predicates instead of rules Consider 
the following database 

p(X,Y) - bl(X,Z),q(Z,Y) 
@,Y) - ~(WM2@,Y 

Neither of the rules are recursive according to the 
above defimtlon, while clearly both premcates p 
and q are recursive 

We now come to the general defimtlons of recur- 
sion m the multirule context Let p and q be two 
predicates We say that p derrves q (denoted p + 
q) If It occurs m the body of a rule whose head 
predicate 1s q We define -++ to be the transltlve 
closure (not the reflexive transitive closure) of + 
A predicate p 1s sad to be recurme If p -++ p 
Two predicates p and q are mutually recumve If p 
++ q and q d+ p It can be easily shown that 
mutual recursion 1s an eqmvalence relation on the 
set of recursive predicates Therefore the set of 
recursive predicates can be decomposed mto dls- 
Jomt blocs of mutually recursive predicates 

Given a set of rules, we say that the rule 

P - pl,p2, ,pn 1s recurerve lff there exists pl m 
the body of the rule which 1s mutually recursive to 

P 

A recursive rule p - pl,p2, ,pn 1s lanear If there 1s 
one and only one pl m the body of the rule which 

1s mutually recursive to p A set of rules 1s fgnear 

If every recursive rule m it 1s linear For mstance, 

the following system IS linear 

I5 P2 iI Pl 

2.6. Recursion 

Recursion 1s often dlscussed m the single rule con- 
text For the purpose of clarity and slmphclty, let 
us first give some temporary defimtlons m this con- 
text We say that a rule 1s recursive If It 1s of the 
form 

p(t) - ,p(t’), 

For Instance the rule 

ancestor(X,Y) - ancestor(X,Z),parent(Z,Y) 

is recursive 

An interesting subcase 1s that of linear rules 
Lmear rules play an important role because (1) 
there 1s a belief that most “real life” recursive 
rules are mdeed linear, and (11) algorithms have 
been developed to handle them efflclently 

We say that a rule 1s linear If It 1s recursive, and 
the recursive predicate appears once and only once 
on the right This property 1s sometime referred to 

as regularity [Chang 811 We believe the term 
linear to be more appropnate, and we thmk that 
regularity should be kept for another concept 
(which 1s not defined here) 

For instance the rule 

%(XY) - P(X,~)>P(Y,Y%g(XK~) 

rl P(X,Y) - PlKZ),q(Z,Y) 
r2 q(XN - P(X,Z)>P2(Z,Y) 
r3 P(X,Y) - b3KY) 
r4 pl(X,Y) - bl(X,Z),pl(Z,Y) 
r5 pl(X,Y) - b4(X,Y) 
r6 pS(X,Y) - bB(X,Z),pB(Z,Y) 
r7 pL(X,Y) - b5(X,Y) 

The set of recursive predicates 1s {p,q,pl,p2}, the 

set of base predicates 1s {bl,b2,b3,b4,b5} The 
blocks of mutually recursive predicates are 
{[p,9],[pl],[p2]} The recursive rules are rl, r2, r4 
and 16, and the system 1s linear even though rules 
rl and r2 both have two recursive premcates on 
their nght 

We say that two recursive rules are mutually 
recursive lff the predicates m their heads are mutu- 

20 



ally recursive This defines an equivalence relation 
among the recursive rules 

Thus mutual recursion defines an equivalence class 
among recursive predicates and among the recur- 
sive rules, [Bancllhon 851 Therefore, it groups 
together all predicates which are mutually recur- 
sive to one another, 1 e which must be evaluated as 
a whole It also groups together all the rules which 

participate m evaluating those blocks of predicates 
Let us now see how this can be represented m the 
rule/goal graph We define the reduced rule/goal 
graph as follows 

Square nodes are sssoclated wth non-recursive 
pre&cates or with blocks of mutually recursive 
pre&cates and, oval nodes are associated with 
non-recursive rules or with blocks of mutually 
recursive rules The graph essentially describes the 
non-recursive part of the database by grouping 
together all the predicates which are mutually 
recursive to one another and lsolatmg the recursive 
parts For every non-recursive rule of the form r 
p - pl,p2, ,pn, there 1s an arc going from node r 
to node p (if p 1s non-recursive), or to node [p], 
which 1s the node representmg the set of predicates 

mutually recursive to p (If p 1s recursive) For each 
non-recursive predicate pi, there 1s an arc from the 
node pl to the node r, and for each recursive predl- 
cate PJ there is an arc gomg from [PJ] the node 
representmg the set of predicates mutually recur- 
sive to pJ 

Fmally, each bloc of recursive rules [r] 1s uniquely 
associated to a set of mutually recursive predicates 
[p], and we draw an arc from [p] to [r] and an arc 
from [r] to [p] We also draw an arc from q (If q 1s 

non-recursive) or from [ql (lf q is recursive) to [r] if 
there 1s a rule m [r] wluch has q m its body This 
groupmg of recursive predicates m blocks of 
strongly connected components 15 presented m 
morns et al 861 

Here 1s the representation of the previous database 

a ~7 -p8,p9 

A P2 c!l Pl 

2.6. Safety of Queries 

Given a query q m a database 
safe m D If the answer to q 

D, we say that q 1s 
1s fimte Obviously 

unsafe quenes are highly undesirable 

Sources of unsafeness are of two kmds 
(1) the evaluable anthmetlc predicates are mter- 

preted by mfimte tables Therefore they are unsafe 

by definition For mstance the query greater- 
than(27,X) 1s unsafe 

(11) rules with free vanables m the head which do 
not appear m the body are a source of unsafeness 
m the presence of evaluable anthmetlc predicates 
(the anthmetlc predicates provide an mfimte 
underlying domam, and the vanable from the head 
of the rule which does not appear on the nght 
ranges over that domam) Thus for mstance, m 
the system 

good-salary(X) - X > 100000 
hke(X,Y) - mce(X) 
mce(John) 

the query hke(John,X)? 1s unsafe because, m the 

mmlmal model of the database hke(John,x) 1s true 
for every mteger x Note that if the first rule was 
not there, hke(John,X)? would be safe and have 
answer hke(John,John) 

The problem of safety has received a lot of atten- 
tion recently [Afratl et al 86, Ullman 85, Zamolo 
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86) We shall not survey those results here but 
merely present some simple sufficient syntactic 

condltlons to guarantee safety A rule IS range tea- 

tncted If every variable of the head appears some- 
where m the body Thus m this system 

rl loves(X,Y) - nice(X) 
r2 loves(X,Y) - mce(X),human(Y) 

rl, which corresponds to “mce people love every- 
thmg”, 1s not range restricted whle r2, which 
corresponds to “nice people love all humans”, 1s 
Obviously, every ground rule which 1s not a fact 1s 
not range restncted For instance 

loves(john,X) 

1s not range restncted 

A set of rules IS range restricted If every rule m 
this set IS range restricted 

It 1s known (Relter 781 that If each evaluable predl- 
cate has a finite natural mterpretatlon, and if the 
set of rules B range restncted, then every query 
defined over this set of rules 1s safe This apphes 
obviously to the case where there are no evaluable 
predicates However, lf there are evaluable predl- 

cates with infinite natural mterpretatlons, safety 1s 

no longer assured We now present a simple 
suficlent condltlon for safety m the presence of 
such predicates 

A rule 1s strongly safe B (1) it 1s range restricted, 
and (2) every variable m an evaluable predicate 
term also appears m at least one base predicate 

For example, the rule 

well-pad(X) - has-salary(X,Y), Y > 1OOK 

1s strongly safe, whereas 

great-salary(X) - X > 1OOK 

15 not strongly safe 

A set of rules 1s strongly safe If every rule m this 
set Is strongly safe 

Any query defined over a set of strongly safe rules 
1s safe However, while this 1s a sufficient condltlon, 
It 1s not necessary We can develop better condl- 

tlons for testing safety, or leave It to the user to 

ensure that ha quenes are safe 

2.7. Effective computability. 

Safety, m general, does not guarantee that the 
query can be effectively computed Consider for 
instance 

pl(l,X,Y) - X>Y 

p2(X,Y,2) - X<Y 

P(X,Y) - Pl(X,Z,Z),P2(Z,Z,Y) 

The query p(X,Y) 1s safe (the answer 1s {p(l,2)}), 
but there 1s no safe computation for It 

However, strongly safe rules are guaranteed to be 
safe and safely computable 

In fact, while we might often be wllhng to let the 
user ensure that his quenes are safe, It IS desirable 
to ensure that the query can be computed without 
matenahzmg “mfimte” mtermedlate results We 

now present a su&lent condltlon for ensurmg this 

We first need some mformatlon about the way 
anthmetlc predicates can propagate bmdmgs So 
we characterize each anthmetlc predicate by a set 
of sajety dependenctee [Zamolo 861 A safety 
dependency 1s a couple (X -+ Y) where X IS a set of 
attributes and Y 1s a set of attributes It IS to be 
interpreted mtmtlvely as “If the values of the X 
attnbutes are fixed then there 1s a fimte number of 
values of the Y attnbutes associated with them” 

Therefore, while their semantics 1s different from 
that of functional dependencies, they behave m the 

same fashion (and have the same axlomatlzatlon) 
Of course, we assume that the natural mterpreta- 
tlon of the evaluable predicate satisfies the set of 
safety dependencies 

For instance, the ternary anthmetlc predicate 
“sum” has the safety dependencies 

y; + [;I 

(213) 7 (1) 

while the anthmetlc predicate “greater than” has 
only trivial safety dependencies 

Now consider a rule, and define each vanable m 
the body to be secure d it appears m a non- 
evaluable predicate m the body or if It appears m 
posltlon 1 m an evaluable predicate p and there IS a 
subset I of the variables of p which are secure and 
I +{1} Note that the defimtlon 1s recursive 

A rule 1s bottom-up ewahable d 

1 it 1s range restncted, and 

2 every variable m the body 1s secure 

For instance 

p(X,Y) - Y=X+1, X=Yl+Y2, p(Yl,Y2) 

1s bottom-up evaluable because (1) Yl and Y2 are 
secure (they appear m p which 1s non-evaluable), 
(u) m X=Yl+Y2, the safety dependency {Yl,Y2} 
-+ {X} holds, therefore X IS secure, and (III) m 
Y=X+l, the safety dependency {X} -+ {Y} holds, 
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therefore Y is secure 

On the contrary 

PKY) - n-Y19 q(Yl,Y) 

is not bottom-up evaluable because X IS not secure 

A set of rules is bottom-up evaluable if every rule 
m this set is bottom-up evaluable 

Any computation usmg only a set of bottom-up 
evaluable rules can be carried out without maten- 
ahzmg mfimte mtermediate results The computa- 
tion proceeds m a strictly bottom-up manner, usmg 
values for the body variables to produce values for 
the head variables The bottom-up evaluabihty cn- 
tenon ensures that the set of values for body van- 
ables 1s fimte at each step However, there may be 
an mfimte number of steps For example, if we 
repeatedly apply the bottom-up evaluable rule 
given above, at each step we have a finite number 
of values (m this case, a unique value) for Yl and 
Y2, and hence for X and Y However, we can apply 
the rule an mfimte number of times, producing new 
values for X and Y at each step 

3. The Strategies 

In the past five years, a large number of strategies 
to deal with Horn rules have been presented m the 
literature A strategy 1s defined by (1) an apphca- 
tlon domain (1 e , a class of rules for which it 
applies) and (11) an algorithm for replying to 
queries given such a set of rules 

In studying the strategies, we found that the 
methods were described at different levels of detail 
and usmg different formalisms, that they were 
sometimes very difficult to understand (and some- 
times were understood differently by subsequent 
authors), that the apphcation domain was not 
always very clearly defined, and that no perfor- 
mance evaluation was given for any of the stra- 
tegies, which left the choice of a given strategy 
completely open when the application domain was 
the same Finally, we found that some of the stra- 
tegies were m fact the same 

We thmk that the strategies should be compared 
accordmg to the followmg criteria (1) size of the 
apphcation domain, (the larger the better), (11) per- 
formance of the strategy, (the faster the better) 
and (m) ease of implementation (the simpler the 
better) While the last criterion IS somehow subJec- 
tive, the first two should be quantifiable In this 
section, we give a complete description of our 
understandmg of the strategies and of their apph- 
cation domams, and we demonstrate each one of 
them through an example As much as possible, we 
have tried to use the same example, except for 

some “speclahzed” strategies where we have picked 
a specific example which exhibits its typical 
behavior 

3.1. Characteristics of the Strategies 

3.1.1. Query Evshation vs. Query Opthi- 
58tion 

Let us first &stmgmsh between two approaches 
one first class of strategies consists of an actual 
query evaluation algorithm, 1 e a program which, 
given a query and a database, will produce the 
answer to the query We will call these method8 
Representatives of this class are Henechen-Naqur, 
Query/Subquery (QSQ) or Extensaon Table, 
APEX, Prolog, Narue Eualuat:on and Semt-Narue 

Eualuatron 

The strategies m the second class assume an under- 
lymg simple strategy (which is m fact naive or 
semi-naive evaluation) and optimize the rules to 
make their evaluation more efficient They can all 
be described as term rewrctcng systems These 
include Aho-Ullman, Countrng and Reuer8e Count- 
rng, h4agrc Set8 and Klfer-Lozanskrr 

Note that this dlstmction is somehow arbitrary 
each of the optirmzation strategies could be 
described as a method (when adding to it naive or 
semi-naive evaluation) However, this decomposi- 
tion has two advantages (1) It mrght make sense 
from an implementation point of view to realize 
the optimization strategies as term rewntmg sys 
terns on top of an underlying simpler method such 
as naive evaluation, and (11) from a pedagogical 
standpoint, they are much easier to understand 
this way, because presenting them as term rewnt- 
mg systems indeed captures their essence 

The subsequent characteristics only relate to pure 
methods 

3.1.2. Interpretation vs. Compilation 

A method can be waterpreted or compcled The 

notion is somehow fuzzy, and difficult to character- 
ize formally We say that the strategy 1s compiled 
if it consists of two phases (1) a compilation phase, 
which accesses only the mtensional database, and 
which generates an “obJect program” of some 
form, and (11) an execution phase, which executes 
the object program agamst the facts only A 
second charactenstic of compiled methods is that 
all the database query forms (1 e , the query forms 
on base relations which are directly sent to the 
DBMS) are generated during the compilation 
phase This condition is very important, because it 
allows the DBMS to precompile the the query 
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forms OtherwIse the database query forms are 

repetitively compiled by the DBMS durmg the exe- 
cution of the query, which 1s a time consummg 
operation If these two condltlons do not hold, we 
say that the strategy 1s mterpreted In this case, 
no oblect code IS produced and there 1s a fixed pro- 
gram, the “mterpreter”, which runs agamst the 
query, the set of rules and the set of facts 

3.1.8. Recursion vs. Iteration 

A rule processmg strategy can be recursgve or 
lteratrve It 1s iterative if the “target program” (m 

case of a compiled approach) or the “mterpreter” 

(m case of the interpreted approach) 1s lteratlve It 
1s recursive if this program IS recursive, i e , uses a 
stack as a control mechamsm Note that m the 
Iterative methods, the data we deal with 1s stat+ 
tally determined For mstance, d we use temporary 
relations to store mtermedlate results, there are a 
finite number of such temporary relations On the 
contrary, m recursive methods the number of tem- 
porary relations mamtmned by the system 1s 
unbounded 

3.1.4. Potentially Relevant Facts 

Let D be a database and q be a query A fact p(a) 
IS relevant to the query lff there exists a derlvatlon 

p(a) +* q(b) for some b m the answer set The 
notion of relevant fact was Introduced m [Lozmskn 
851, we use it here with a somewhat different mean- 

mg If we know all the relevant facts m advance, 
Instead of using the database to reply to the query, 
we can use the relevant part of the database only, 

thus cutting down on the set of facts to be pro- 
cessed A w&rent set of relevant facts 1s a set of 

facts such that replacing the database by this set 
of facts gives the same answer to the query 
Unfortunately, m general there does not exist a 
unique mmlmal set of facts as the followmg exam- 
ple shows 

suspect(X) - long-bar(X) 

suspect(X) - alien(X) 

long-halr(antome) 
ahen(antome) 

Mmlmal sets of facts with respect to the query 

suspect(X)? are {long-har(antome)} and 

{ahen(antome)} The second unfortunate thmg 
about relevant facts 1s that it 1s m general lmpossl- 
ble to find all the relevant facts m advance wlthout 
spendmg as much effort as m replying to the query 
Thus, all methods have a way of finding a super- 
set of relevant facts We call this set the set of 
potentrally relevant facto A set of potentially 
relevant facts 1s valad if It contams a sufficient set 

of relevant facts An obvious but not very 

interesting v&d set 1s the set of all facts of the 
database 

3.1.5. Top Down vs. Bottom Up 

Consider the followmg set of rules and the query 

ancestor(X,Y) - parent(X,Z), ancestor(Z,Y) 
ancestor(X,Y) - parent(X,Y) 
query(X) - ancestor(john,X) 

We can view each of these rules as productions m a 
grammar In this context, the database predicates 

(parent m this example) appear as terminal sym- 
bols, and the derived predicates (ancestor m this 

example) appear as the non-terminal symbols 
Fmally, to pursue the analogy, we shall take the 
dlstmgulshed symbol to be query(X) Of course, we 
know that the analogy does not hold totally, for 
two ressons (1) the presence of variables and con- 
stants m the hterals and (n) the lack of order 
between the hterals of a rule (for mstance 

“parent(X,Z), ancestor(Z,Y)” and “ancestor(Z,Y), 
parent(X,Z)” have the same meanmg) But we shall 
ignore these differences, and use the analogy mfor- 
mally 

Let us now consider the language generated by this 
“grammar” It consists of 

{parent(John,X), 
parent(John,X),parent(X,Xl), 
parent(john,X),parent(X,Xl),parent(Xl,X!i?), 

This language has two interesting propertles (I) It 
consists of first order sentences mvolvmg only base 
predicates, 1 e , each word of this language can be 

directly evaluated against the database, and (11) d 
we evaluate each word of this language against the 
database and take the union of all these results, we 
get the answer to the query 

There 1s a mmor problem here the language IS not 

fimte, and we would have to evaluate an infinite 
number of first order sentences To get out of this 
dlfflculty, we use termmatlon condltlons which tell 

us when to stop An example of such a termination 

condltlon 1s if one word of the language evaluates 
to the empty set, then all the subsequent words 

will also evaluate to the empty set, so we can stop 
generating new words Another example of a terml- 
natlon condltlon 1s if a word evaluates to a set of 
ttiples, and all these tuples are already m the 
evaluation of the words precedmg it, then no new 
tuple will ever be produced by the evaluation of 
any subsequent word, thus we can stop at this 

pomt 
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All query evaluation methods m fact do the follow- 

w3 

(1) generate the language, (11) while the language 1s 
generated, evaluate all Its sentences and (m) at 
each step, check for the termmatlon condltlon 

Therefore, there are essentially two classes of 
methods those which generate the language bot- 
tom up, and those which generate the language 
top-down The bottom-up strategies start from the 
termmals (1 e , the base relations) and keep assem- 
bhng them to produce non-termmals (1 e derived 
relations) until they generate the dlstmgulshed 
symbol (1 e , the query) The top-down strategies 
start from the dlstmgulshed symbol (the query) 
and keep expanding It by applying the rules to the 
non-termmals (derived relations) As we shall see, 
top-down strategies are often more efflclent because 
they “know” which query 1s bemg solved, but they 
are more complex Bottom up strategies are 
simpler, but they compute a lot of useless results 
because they do not know what query they are 
evaluating 

3.2. The Methods 

We shall use the same example for most of the 
methods The mtenslonal database and query are 

rl ancestor(X,Y) - parent(X,Z),ancestor(Z,Y) 
r2 ancestor(X,Y) - parent(X,Y) 
r3 query(X) - ancestor(aa,X) 

The extensional database w 

parent(a,aa) 
parent(a,ab) 
parent(aa,aaa) 

parent(aa,aab) 
parent(aaa,aaaa) 
parent(c,ca) 

3.2.1. Naive Evaluation 

Nave Evaluation 1s a bottom-up, compiled, Itera- 
tlve strategy 

Its apphcatlon domain 1s the set of bottom-up 
evaluable rules 

In a first phase, the rules which derive the query 
are compiled mto an iterative program The compl- 
latlon process uses the reduced rule/goal graph It 
first selects all the rules which derive the query A 
temporary relation 1s assigned to each denved 
pre&cate m this set of rules A statement which 
computes the value of the output predicate from 
the value of the mput pre&cates 1s associated with 
each rule node m the graph With each set of 
mutually recunlve rules, there 1s associated a loop 

which applies the rules m that set until no new 

tuple 1s generated Each temporary relation 1s ml- 
tlahzed to the empty set Then computation 
proceeds from the base predicates capturing the 
nodes of the graph 

In this example, the rules which derive the query 
are {rl, r2, r3}, and there are two temporary rela- 
tlons ancestor and query The method consists m 
applying r2 to parent, producing a new value for 
ancestor, then applying rl to ancestor until no new 
tuple 1s generated, then applying r3 

The object program is 

begin 
mltlahze ancestor to the empty set, 
evaluate (ancestor(X,Y) - parent(X,Y)), 
msert the result m ancestor, 
while “new tuples are generated” do 

begin 
evaluate (ancestor(X,Y) - parent(X,Z), 

ancestor(Z,Y)) 

using the current value of ancestor, 
insert the result m ancestor 
end, 

evaluate (query(X) - ancestor(aa$)), 
insert the result m query 
end 

The execution of the program agamst the data goes 

as follows 

Step 1 Apply rl 
The resulting state IS 
ancestor = {(a,aa), (a,ab), (aa,aaa), (aa,aab), 

(aaa,aaaa), (c,ca)} 

wry = 0 

Step 2 Apply r2 
The followmg new tuples are generated m 
ancestor {(a,aaa), (a,aab), (aa,aaaa)} 
And the resultmg state 1s 

ancestor = {(a,aa), (a,ab), (aa,aaa), (aa,aab), 
(aaa,aaaa), (c,ca), (a,aaa), (a,aab), (aa,aaaa)} 

query = 0 
New tuples have been generated so we contmue 

Step 3 Apply r2 
The followmg tuples are generated 

{(a+=), (a,aab), ( aa,aaaa), (a,aaaa)} 
The new state 1s 
ancestor = {(a+), (a,ab), (aa,aaa), (aa,aab), 

(=w-4, (d, (w-h (aeb), 
(=w4, (w-4) 

query = 0 
Because (a,aaaa) 1s new, we contmue 

Step 4 Apply r2 
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The followmg tuples are generated 

{(a,=4 (a,=b), bwaaa), h-41 
Because there are no new tuples, the state 
doea not change and we move to r3 

Step 5 Apply r3 
The followmg tuples are produced m query 
{(aa,aaa), (aa,aaaa)} and the new state 1s 
ancestor = {(a&, (a,ab), (aa,aaa), (aa,aab), 

(-v=4, (va), (a,=4 (a,=bh 
(w-4, b-4) 

query = {(aa,aaa), (aa,aaaa)} 
The algorithm terminates 

In this example, we note the followmg problems (1) 
the entire relation IS evaluated, 1 e , the set of 

potentially relevant facts IS the set of facts of the 
base predicates which denve the query, and (11) 
step 3 completely duplicates step 2 

Nave evaluation 1s the most widely described 
method m the hterature It has been presented m a 
number of papers under different forms The mfer- 
ence engine of SNIP, presented m [Shapiro and 
McKay 80, Shapiro et al 82, McKay and Shapiro 

811, 1s m fact an mterpreted version of nave 

evaluation The method described m [Chang 811, 
while based on a very mterestmg language para- 
digm and restncted to lmear systems, 1s a complied 
version of naive evaluation based on relatlonal 
algebra The method m [Marque-Pucheu 83, 
Marque-Pucheu et al 841 1s a complied version of 

naive evaluation usmg a different algebra of rela- 
tlons The method m [Bayer 851 1s another descnp- 
tlon of nave evaluation The framework presented 

m [Delobel 861 also uses nave evaluation as Its 
inference strategy SNIP IS, to our knowledge, the 
only exlstmg lmplementatlon m the general csse 

3.2.2. Semi-Naive Evaluation 

Senu-naive evaluation IS a bottom-up, complied 
and iterative strategy 

Its apphcatlon range IS the set of bottom-up evalu- 

able rules 

This method uses the same approach as naive 
evaluation, but tries to cut down on the number of 

duphcatlons It behaves exactly as nave evalua- 

tion, except for the loop mechanism where It tnes 
to be smarter 

Let us first try to give an idea of the method as an 
extension of nave evaluation Let p be a recursive 
predicate, consider a recursive rule having p as a 
head predicate and let us wnte this rule 

P - +(pl,~% ,pn,qW4 m4 

where # 1s a first order formula, pl,p2, ,pn are 

mutually recursive to p, and ql,q2, ,qm are base or 

derived predicates, which are not mutually recur 

sive to p 

In the naive evaluation strategy, all the ql’s are 
fully evaluated when we start computmg p and the 
pi’s On the other hand p and the pi’s are all 
evaluated mslde the same loop (together with the 
rest of predicates mutually recursive to p) 

Let pi be the value of the predicate PJ at the I-th 
lteratlon of the loop At this lteratlon, we compute 

4(~1(4,~2(1), ,pn(d,qW, n-4 

During that same lteratlon each PJ receives a set of 
new tuples Let us call this new set dpJ(l) Thus the 

value of PJ at the begmmng of step (l+l) 1s pi i- 

dpJ(i) (where + denotes union) 

At step (i+l) we evaluate 

4((pl(l)+dpW, ,b(l)+dpn(l)),ql, tqm), 

which, of course, recomputes the previous expres- 
sion (because 4 1s monotomc) 

The ideal however, 1s to compute only the new 

tuples 1 e the expression 

d4(pl(l),W(l), ,pn(l),dpn(l),ql, ,sm) = 

4((pl(l)+dpW hn(l)+dpn(lhq19 m-d 
- 4(pW, dlhql, ,qm) 

The basic prmclple of the semi-nave method IS the 
evaluation of the dlfferentml of 4 instead of the 
entire 4 at each step The problem 1s to come up 
with a first order expresslon for d4, which does not 

contam any difference operator Let us assume 
there 1s such an expression, and describe the algo- 
rithm With each recursive predicate p are assocl- 

ated four temporary relations p before, p after, 
dp before and dp after The obJect program for a 
loop 1s as follows 

while “the state changes” do 

begin 
for all mutually recursive predicates p do 

begin 
mltlahze dp after to the empty set, 
uutmhze p after to p before, 
end 

for each mutually recursive rule do 

begin 
evaluate d#(pl,dpl, ,pn,dpn,ql, ,qn) 

usmg the current values of 
pl before for pl and of dpl before for dpl, 
add the resultmg tuples to dp after, 
add the resulting tuples to p after 
end 

end 

All we have to do now IS provide a way to generate 
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d4 from #I The problem 1s not solved m &s 
entirety and only a number of transformations are 

known In [Bancdhon 851, some of them are given 
m terms of relational algebra 

It should be noted however, that for the method to 
work, the only property we have to guarantee 1s 
that 

W+W, ) - 4(pl, 1 G Wpl,dpL ) 
G #bl+dpl, ) 

Clearly, the closer ddhGb1, ) 1s to 
(4(pl+dpl, ) - d(pl, )), the better the optlmlza- 
tlon 1s In the worse case, where we use I$ for d#, 
sem-naive evaluation behaves as naive evaluation 
Here are some simple examples of rewnte rules 

if d(PA) = P(xnqw), 
then W(p,dp,q) = dp(X,Y),q(Y,Z) 

More generally when 4 1s hnear m p, the expression 
for dd ~3 obtamed by replacing p by dp 

if 9qPLP2) = Pl(W,P2W,Z), 
then Wp,dp) = plOC,Y),W(Y,Z) 

Note that this 1s not an exact dlfferentlal but a rea- 

sonable approxlmatlon 

The idea of semi-naive evaluation underhes many 
papers A complete descnptlon of the method 
based on relational algebra 1s given m [Bancllhon 
851 The idea 1s also present m [Bayer 851 

It should also be pomted out that, m the particular 
case of linear rules, because the dlfferentlal of 4(p) 
IS simply +(dp), it 18 sufficient to have an mference 
engine which only uses the new tuples Therefore 
many methods which are restncted to hnear rules 

do indeed use semi-naive evaluation Note also that 

when the rules are not linear, applying naive 
evaluation only to the “new tuples” 1s an mcorrect 

method (m the sense that It does not produce the 

whole answer to the query) This can be easily 
checked on the recursive rule 

ancestor(X,Y) - ancestor(X,Z),ancestor(Z,Y) 

In this case, if we only feed the new tuples at the 

next stage, the relation which we compute consists 
of the ancestors whose &stance to one another 1s a 
power of two 

To our knowledge, outside of the special case of 

linear rules, the method as a whole has not been 
implemented 

3.2.3. Iterative Query/Subquery 

Iterative Query/Subquery (QSQI) 1s an interpreted, 
top-down strategy 

Its apphcatlon domam 1s the set of range restncted 
rules wlthout evaluable predicates 

The method associates a temporary relation with 
every relation which derives the query, but the 
computation of the predicates denvmg the query IS 
done at run time QSQI also stores a set of quenes 
which are currently bemg evaluated When several 

queries correspond to the same query form, QSQI 
stores and executes them as a single oblect For 
mstance, if we have the queries p(a,X) and query 

p(b,X), we can view this as query p({a,b},X) We 
call such an obJect a generalczed query The state 

memorized by the algorithm 1s a couple <Q,R>, 
where Q 1s a set of generahzed queries, and R 1s a 
set of derived relations, together with their current 
values 

The iterative mterpreter 1s as follows 

Imtial state IS < {query(X)} ,{ } > 
while the state changes do 

for all generalized quenes m Q do 
for all rules whose head matches the 
generahzed query do 

begin 

umfy rule with the generahzed query, 
(1 e propagate the constants) 
this generates new generalized quenes 
for each derived predicate m the body 
by looking up the base relations, 
generate new tuples, (by replacmg 
each base predicate on the right by 
Its value and every denved predicates 
by Its current temporary value ) 
add these new tuples to R, 
add these new generahzed queries to Q 

end 

Let us now run this interpreter agamst our exam- 
ple logic database 

The uutml state 1s <{query(X)},{}> 

Step 1 

We try to solve query(X) Only rule r3 applies 
The umficatlon produces the generalized query 
ancestor( { aa},X) This generates temporary rela- 
tlons for query and ancestor unth empty set values 
Attempts at generatmg tuples for this generahzed 

query fail 

The new state vector 1s 

< {cluery(X),ancestor(aa~)}, 
{ancestor={},query={}}> 

Step 2 

A new generalized query has been generated, so we 
go on We try to evaluate each of the generahzed 
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queries query(X) does not give anythmg new, so 
we try ancestor( { aa} ,X) 
Using rule r2, and umfymg, we get parent(aaX) 
This is a base relation, so we can produce a set of 
tuples Thus we generate a value for ancestor 
which contams all the tuples of parent(aa,X) and 
the new state vector IS 

< {query(X),ancestor(aa,X)}, 
{ancestor={(aa,aaa),(aa,aab)},query={}}> 

We now solve ancestor(aa,X) usmg rl Unification 
produces the expression 

parent(aa,Z),ancestor(Z,Y) 

We try to generate new tuples from this expansion 
and the current ancestor value but get no tuples 
We also generate new generalized queries by look- 
mg up parent and mstantiatmg Z This produces 
the new expression 

parent(aa,{aaa,aab}) ,ancestor({aaa,aab},Z) 

This creates two new queries which are added to 
the generalized query and the new state is 

<{query(X),ancestor({aa,aaa),X)}, 
{ancestor={(aa,aaa),(aa,aab)},query={}}> 

Step 3 

New generalized quenes and new tuples have been 
generated so we contmue We first solve query(X) 
usmg r3 and get the value {(aa,aaa), (aa,aab)} for 
query The resultmg new state is 

< {query(X),ancestor({aa,aaa,aab},X)}, 
{ancestor={(aa,aaa),(aa,aab)}, 
query={(aa,aaa),(aa,aab))}> 

We now try to solve ancestor({aa,aaa,aab},X) 
Using r2, we get parent({aa,aaa,aab),X) which is a 
base relation and generates the followmg tuples m 
ancestor {(aa,aaa),(aa,aab),(aaa,aaaa)} This pro- 
duces the new state 

< {query(X),ancestor({aa,aaa,aab},X)}, 
{ancestor={(aa,aaa),(aa,aab),(aaa,aaaa)}, 

query={ (aa,aaa),(aa,aab)}} > 

We now solve ancestor({aa,aaa,aab},X)} using rl 
and we get p({ aa,aaa,aab},Z),ancestor(Z,Y) We 
bmd Z by gomg to the parent relation, and we get 

p({rta,aaa,aab),{aaa,aab,aaaa)), 
ancestor( { aaa,aab,aaaa} ,Y) 

This generates the new generahzed query 
ancestor( { aaa,aab,aaaa) ,Y) and the new state 

<{query(X),ancestor({aa,aaa,aab,aaaa},X)}, 
{ancestor={(aa,aaa),(aa,aab),(aaa,aaaa)}, 

query={(aa,aaa),(aa,aab)}}> 

Step 4 

A new generalized query has been generated, so we 
contmue Solvmg the ancestor quenes usmg r2 will 
not produce any new tuples, and solvmg it, with r3 
will not produce any new generalized query nor 
any tuples The algorithm termmates 

Concernmg the performance of the method, one 
can note that (1) the set of potentially relevant 
facts is better than for naive (m this example it is 
optimal), and (u) QSQI has the same duphcation 
problem as naive evaluation each step entirely 
duphcates the previous strategy 

Iterative Query/Subquery is presented m pieille 
85 and 861 To our knowledge it has not been 
implemented 

3.2.4. Recursive Query/Subquery or Exten- 
sion Tables 

Recursive Query/Subquery (QSQR) IS a top-down 
interpreted recursive strategy 

The apphcatlon domain is the set of range res- 
tricted rules without evaluable predicates 

It is of course a recursive version of the previous 
strategy As before, we mamtam temporary values 
of derived relations and a set of generahzed 
queries The state memorized by the algonthm is 
still a couple < Q,R > , where Q IS a set of general- 
ized queries and R is a set of denved relations 
together with their current values However, 
besides this explicit state, the recursion mechamsm 
stores at each level m the stack the tuples returned 
by the evaluation of the query, but this seems to 
have been solved reasonably m the existmg imple- 
mentation The algorithm uses a selection function 
which, given a rule, can choose the first and the 
next derived predicate m the body to be “solved” 

The recursive interpreter is as follows 

procedure evaluate(q) 
(* q is a generalized query *) 

begin 
while “new tuples are generated” do 

for all rules whose head matches the 
generalized query do 

begin 
umfy the rule with the generalized 
query, (1 e , propagate the constants) 
until there are no more derived predicate 
on the right do 

begin 
choose the first/next derived predicate 
accordmg to the selection function, 
generate the correspondmg generalized 
query, (This is done by replacing m the 
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rule each base predicate by its value 
and each previously solved derived 
predicate by Its current value) 
eliminate from that generalized query 
the queries that are already m Q, 
th:s produces a new generalized query q’, 
add q’ to Q, 
evaluate(q’) 
end, 

replace each evaluated predicate by its 
value and evaluate the generahzed query q, 
(This can be done m some order without 

waiting for all predicates to be evaluated ) 

add the results m R, 
return the results 
end 

end 
Imtlal state is < {query(X)} ,{ } > 
evaluate(query(X)) 

It IS important to note that this version of QSQ 1s 
very similar to Prolog It solves goals in a top- 
down fashion using recurslon, and It considers the 
hterals ordered m the rule (the order 1s defined by 
the selection function) The important differences 
with Prolog are (1) the method 1s set-at-a-time 
instead of tuple-at-a-time, through the generalized 
query concept, and (11) as pomted out m [Dietrich 
and Warren 861, the method uses a dynamic pro- 

grammmg approach of stormg the intermediate 
results and re-usmg them when needed This 

dynamic programmmg feature also solves the prob- 
lem of cycles m the facts while Prolog will run m 
an infinite loop m the presence of such cycles, 

QSQR will detect them and stop the computation 
when no new tuple 1s generated Thus, QSQR 1s 

complete over its apphcatlon domam whereas Pro- 

log is not 

Here 1s the ancestor example 

evaluate(query(X)) 
use rule r3 

query(X) - ancestor(aa,X) 
this generates the query ancestor( { aa},X) 

new state is 

<{ancest-({4,X), weryW)~~O> 
evaluate(ancestor((aa},X) 

Step 1 of the lteratlon 

use rule rl 
ancestor({aa},Y) - parent({aa},Z), 

ancestor(Z,Y) 
by lookmg up parent we get the 
bmdmgs {aaa,aab} for Z 
this generates the query 
ancestor({aaa,aab},X) 
new state is 

< {ancestor({aa,aaa,aab},X), query(X)},{} > 
eV8h8k? (ancestor({aaa,aab},X)) 
(this 1s a recursive call) 

Step 1 1 

use rl 

ancestor( {aaa,aab} ,Y) - 
parent({aaa,aab},Z),ancestor(Z,Y) 

by looking up parent we get the 
bmdmg {aaaa} for Z 

new state is 
< {ancestor({aa,aaa,aab,aaaa},X), 

~ueryw~o> 
evsluate(ancestor( { aaaa},X)) 

(this 1s a recursive call) 
Step 1 1 1 

use rl 

ancestor( { aaaa} ,Y) - 
parent({aaaa},Z),ancestor(Z,Y) 
by lookmg up parent we get no 
bmdmg for Z 
use r2 
ancestor( { aaaa} ,Y) - 

parent( { aaaa},Y) 
this falls to return any tuple 

end of evaluate( 
ancestor( { aaaa} ,X)) 

Step 1 1 2 
nothmg new 1s produced 
end ofevaluate( 

ancestor( { aaaa} ,Y)) 

use r2 
ancestor({aaa,aab},Y) - 

parent({aaa,aab},Y) 
this returns the tuple 
ancestor(aaa,aaaa) 
new state is 

< {ancestor({aa,aaa,aab,aaaa},X), 
query(X)}, {ancestor={(aaa,aaaa)}}> 
Step 1 2 
same as Step 1, nothmg new produced 
end ofevaluate( 

ancestor( { aaa,aab},X)) 
use rule r2 
ancestor({aa},X) - parent({aa},Y) 
returns the tuples 
ancestor(aa,aaa) and ancestor(aa,aab) 

new state is 
< {ancestor({aa,aaa,aab,aaaa},X), 

query(X)},{ancestor={(aaa,aaaa), 

(aa,aaa),(=+ab)))> 
Step 2 
nothmg new produced 
end ofev8lu8te({aa}~) 

generate tuples from r3 
new state 1s 
< {ancestor({aa,aaa,aab,aaaa},X), 
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query(X)},{ancestor={(aaa,aaaa), 

(aa,aaa),(aa,aab)),query=(aaa,aaaa), 

(=v4,(=,-b))) > 
end of evaluate(query(X)) 

Recursive Query/Subquery 1s described m plellle 

85 and 861 A compiled version has been ample- 
mented on top of the INGRES relational system 
plellle 861 In [Dletnch and Warren 851, along with 
a good survey of some of these strategies, a method 
called “extension tables” 1s presented It IS, up to a 
few deta&, the same method 

3.2.6. Henschen-Naqvi 

Henschen-Naqvl 1s a top-down, compiled and ltera- 
tlve method 

The apphcatlon domam 1s that of linear range res- 
tncted rules 

The method has a compllatlon phase which gen- 
erates an Iterative program That iterative pro- 
gram 1s then run agamst the data base The gen- 
eral strategy 1s fairly complex to understand, and 
we shall restnct ourselves to descnbmg It m the 
“typical case” which 1s 

P(X;Y) - up(XW),p(XQWdown(~,Y) 
PKY) - WX,Y) 

query(X) - p(G) 

Note that the relation names up and down are not 
to be confused with the notions “top-down” or 
“bottom-up”, which are charactenstlcs of evalua- 
tion strategies Let us introduce some simple nota- 
tion, which will make reading the algorithm much 
simpler Smce we are only dealing with binary rela- 

tions, we can view these as set-tiset mappings 
Thus, the relation r associates with each set A a 

set B, conslstmg of all the elements related to A by 

r We denote Ar the image of A by r, and we 
have 

A r = { y 1 r(x,y) and x E A} 

If we view relations as mappings, we can compose 

them, and we shall denote r s the composltlon of r 

and s Therefore 

A (r s) = (A r) s 

This approach 1s smular to the formahsm described 
m [Gardann and Mamdrevdle 861 We shall 

denote the composltlon of relation r n times with 
itself r’ Finally we shall denote set union by ‘+’ 
Once this notation 1s mtroduced, It 18 easy to see 

that the answer to the query s 

{a} flat + {a} up flat down 

+ {a} up up flat down down + 
+ {a} up’ flat down* + 

The state memonred by the algorithm 1s a couple 
<V,E>, where V 1s a the value of a unary relation 
and E 1s an expression At each step, usmg V and 
E, we compute some new tuples and compute the 
new values of V and E 

The lteratlve program 1s as follows 

V ={a), 
E = X, /* the empty string */ 
while “new tuples are generated m V” do 

begin 
/* produce some answer tuples */ 

answer = answer + V flat E, 
/* compute the new value */ 
v =vup, 
/* compute the new expression */ 
E = E 1 down, 

end 

Note that E 1s an ezpresaton, and 1s augmented 
each time around the loop by concatenating 
“ down” to it through the “cons” operator As can 
be seen from this program, at step 1, the value V 
represents {a} up’ and the expression E represents 
down’ Therefore the produced tuples are 

{a} up’ flat down’ 

This 1s not meant to be a complete descnptlon of 
the method, but a descnptlon of its behavior m the 
typical case 

The Henschen-Naqvl method 1s described m [Hen- 
schen and Naqvl 841 The method has been ample- 
mented m the case described here This lmplemen- 

tatlon can be found m [Laskowskl] An equivalent 
strategy 1s described usmg a different formahsm m 

[Gardann and Mamdrevllle 861 The performance 
of the strategy IS compared to Semi-Naive evalua- 

tion and another method (not described here) m 

[Han and Lu 861 

3.2.6. Prolog 

Prolog 1s a top-down, interpreted and recursive 

method 

The apphcatlon domain of Prolog 1s dlficult to 
state precisely (1) It 1s data dependent m the sense 
that the facts have to be acychc for the interpreter 
to terminate, and (11) there 1s no simple syntactic 
charactenzatlon of a termmatmg Prolog program 
The Job of charactenemg the “good” rules 1s left 

to the programmer 
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We consider its execution model to be well known 
and wdl not describe It In fact Prolog 1s a pro- 

gramming language and not a general strategy to 
evaluate Horn clauses We essentially mention 
Prolog for the sake of completeness and because It 
1s interesting to compare Its performance to the 
other strategies 

3.2.7. APEX 

APEX 1s a strategy which ES dlff&lt to categorize 
It 1s partly complied m the sense that a graph slml- 
lar to the predicate connection graph 1s produced 
from the rules, which takes care of some of the 
preprocessing needed for mterpretatlon It 1s not 
fully compiled m the sense that the program which 
runs against the database 1s still unique (but driven 
by the graph) It 15, however, clearly recursive, 
because the interpreter program 1s recursive 
Finally, it 15 partly top-down and partly bottom-up 
BS will be seen m the Interpreter 

The apphcatlon domam of APEX 1s the set of 
range restncted rules which contam no constants 
and no evaluable predicates 

The interpreter takes the form of a recursive pro- 
cedure, which, given a query, produces a set of 
tuples for this query It 1s m follows 

procedure solve(query,answer) 
begin 
answer = {}, 
if query q 1s on a base relation 
then evaluate q agamst the date base 

else 
begin 
select the relevant facts for q m the 
base predicates, 

put them m relevant, 
while new tuples are generated do 

begin 
for each rule do 
(this can be done m parallel) 

begin 
mstantlate the right predicates 
wth the relevant facts and produce 
tuples for the left predicate, 

add these tuples to the set of 

relevant facts, 

mltlahze the set of useful facts 
to the set of relevant facts, 
for each literal on the nght do 
(th:s can be done m parallel) 

begin 
for each matching relevant fact do 

begin 
plug the fact m the rule and 

propagate the constants, 

this generates a new rule and 

a new set of queries, 
for all these new queries q’ do 

begin 
solve(q’,answer(q’)) 
(this 1s the recurslon step) 
add answer(q’) 
to the useful facts 
end 

end 
mstantlate the right predicates 
with the useful facts, 
produce tuples for 
the left predicate, 
add these to the 

relevant facts, 
extract the answer to q from 
the relevant facts 
end 

end 
end 

end 
end, 
solve(query(X),answer) 

Let us now run this program agamst our ancestor 
example We cannot have a constant m the rules 
and we must modify our rule set and solve directly 
the query ancestor(aa,X) 

solve (ancestor(aa,X), answer) 
we first select the relevant base facts, 

relevant = {parent(aa,aaa),parent(aa,aab)}, 
we now start the mam lteratlon 

Step 1 
rule rl 
“ancestor(X,Y) - parent(X,Z), 

ancestor( Z,Y)” 
we cannot produce any new tuple 
form this rule because ancestor 
does not yet have any relevant fact 
useful = 
{parent(aa,aaa),parent(aa,aab)}, 
process parent(X,Z) 

use parent(aa,aaa) 
the new rule 1s 
“parent(aa,aaa),ancestor(aaa,Y)” 

solve(ancestor(aaa,Y),answerl) 

(this call 1s not described)) 
this returns 
(ancestor(aaa,aaaa)} 
which we add to useful 
useful = 
{parent(aa,aaa),parent(aa,aab), 
ancestor(aaa,aaaa)}, 
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use parent(aa,aab) 

the new rule 1s 

“parent(aa,aab),ancestor(aab,Y)” 
solve(ancestor(aab,Y),answer2) 

(tha call 1s not descnbed) 
this returns nothing 

process ancestor(Z,Y) 
we mstantlate parent and ancestor 
with the useful facts 

this produces ancestor(aa,aaaa) 
we add it to the relevant facts 
relevant = 
{parent(aa,aaa),parent(aa,aab), 
ancestor(aa,aaaa)}, 

rule r2 “ancestor(X,Y) - parent(X,Y)” 
using the relevant facts we produce 
{ancestor(aa,aaa),ancestor(aa,aab)} 
we add these to relevant 
relevant = 
{parent(aa,aaa),parent(aa,aab), 
ancestor(aa,aaa), ancestor(aa,aab), 
ancestor( aa,aaaa) } , 

this rule does not produce any subquery 

Step 2 
wdl not produce anythmg new, 
and so the algorithm stops 

The APEX method 1s described m [Lozmskn 85 
and 85a] The method has been implemented 

3.3. Optimization Strategies 

We now turn to the descrlptlon of the second class 
of strategies the optlmlzatlon strategies 

The mam drawbacks of the nitlve evaluation 

method are 

1 The potential set of 
relevant facts 1s too big (In other words, It 

does not make good use of the 

query bindings), and 
2 It generates a lot of duphcate computation 

A number of optlmlzatlon strategies have recently 
been proposed to overcome those two dlfflcultles 

3.3.1. Aho-Ulhnan 

Aho and Ullman [Aho and Ullman 791 present an 

algorithm for optlmlzmg recursive queries by com- 
mutmg selections with the least fixpomt operator 
(LFP) The mput 1s an expresslon 

oF(LFP(r=f(r)) 

where f(r) IS a monotomc relational algebra expres- 
sion (under the ordering of set mcluslon) and con- 

tams at most one occurrence of r The output 1s an 
equivalent expresslon where the selection has been 

pushed through as far as possible 

We introduce then notation and ideas through an 
example Consider 

4X,3 - GZ), P(Z,Y) 

,(X,Y - P(X,Y) 
q(x) - a(John,X) 

Aho-Ullman write this as 

~a,=lodLFP(a = a P U P)) 

In this defimtlon, a 1s a relation which IS defined by 
a jizpornt equation m relational algebra, and p 1s a 
base relation If we start with a empty and repeatr 

edly compute a usmg the rule a = a p U p, at 
some lteratlon, there 1s no change (since the rela- 
tion p 1s finite) Because the function used m the 
fixpomt equation 1s monotomc, this 1s the least 
fizpomt of the fixpomt equation [Tarski 551 It 1s 
the smallest relation a which sat&es the equation, 
1 e contams every tuple which can be generated by 
using the fixpomt rule, and no tuple which cannot 
The query 1s simply the selection a l=]ohn apphed 
to this relation Thus, the query 1s a selection 
applied to the transltlve closure of p 

We now describe how the Aho-Ullman algorithm 
optlmlzes this query We use ’ ’ to denote compo- 
sltlon, which 1s a Jam followed by projectmg out 
the Jam attnbutes We begin with the expression 

and by replacmg a by f(a) we generate 

%l=lohn(a P u d) 

By dlstrlbutmg the selection across the Jam, we get 

Qal=&da P) u %l=johnb) 

Since the selection m the first subexpresslon only 

mvolves the first attribute of a, we can rewrite it 

as 

%l=)ohn(a) P 

We observe that this contams the subexpresslon 

@il=,ohrda) 

which was the first expresslon m the series If we 

denote this by E, the desired optlmlzed expression 
1s then 

LFP(E = E P U %al=,ohnb)) 

This 1s equivalent to the Horn Clause query 

a(John,Y) - a(john,Z), p(Z,y) 

32 



abhn,Y) - pbhn,Y) 
q(x) - abhn,X) 

The essence of the strategy 1s to construct a senes 
of eqmvalent expressions startmg with the expres- 
sion b*(r) and repeatedly replacing the single 
occurrence of r by the expression f(r) Note that 
each of these expressions contains Just one 
occurrence of R In each of these expressions, we 
push the selection as far inside as possible Selec- 
tion distributes across union, commutes with 
another selection and can be pushed ahead of a 
prolectlon However, it dlstnbutes across a Carte- 
sian product Y X Z only if the selection applies to 
components from Just one of the two arguments Y 
and Z The algorithm falls to commute the selec- 
tion with the LFP operator if the (angle) 

occurrence of r 1s m one of the arguments of a 
Cartesian product across which we cannot dstn- 
bute the selection We stop when this happens or 
when we find an expression of the form h(g(gF(r))) 
and one of the previous expressions m the series IS 
of the form h(bF(r)) In the latter case, the 
equivalent expression that we are looking for 1s 

WJW=ds))), d an we have succeeded m pushing 
the selection ahead of the LFP operator 

We note m conclusion that the expression f(r) must 
contam no more than one occurrence of r For 
instance, the algorithm does not apply m this case 

~a,=,odLFP(a = a P u PN 

Aho and Ullman also present a similar strategy for 
commutmg proJections with the LFP operator, but 

we do not discuss it here 

3.3.2. Kiier-Lozinzkii 

The Klfer-Lozmsku algorithm 1s an extension of 
the Aho-Ullman algorithm described above How- 
ever, rules are represented as rule/goal graphs 

rather than as relational algebra expressions, and 

the strategy 1s described m terms of jilters which 
are applied to the arcs of the graph It 1s con- 

venient to think of the data as flowmg through the 
graph along the arcs A filter on an arc 1s a selec- 
tion which can be applied to the tuples flowing 

through that arc, and 1s used to reduce the number 
of tuples that are generated Transformmg a given 
rule/goal graph into an equivalent graph with 
(additional) filters on some arcs 1s equivalent to 
rewntmg the correspondmg set of rules 

The execution of a query starts with the nodes 
correspondmg to the base relations sending all their 

tuples through all arcs that leave them Each 
axiom node that receives tuples generates tuples 
for its head predicate and passes them on through 

all its outgoing arcs A relation node saves all new 
tuples that it receives and passes them on through 

its outgoing arcs Computation stops (with the 
answer being the set of tuples m the query node) 
when there 1s no more change m the tuples stored 
at the vaxlous nodes at some iteration We note 
that this 1s simply Semi-Naive evaluation 

Given filters on all the arcs leaving a node, we can 
‘push’ them through the node as follows If the 
node 1s a relation node, we simply place the dls- 
Junction of the filters on each mcommg arc If the 
node 1s an axiom node, we place on each mcommg 

arc the strongest consequence of the disjunction 
that can be expressed purely m terms of the varl- 
ables of the literal correspondmg to this arc 

The objective of the optimization algorithm 1s to 

place the “strongest” possible filters on each arc 

Starting with the filter which represents the con- 
stant m the query, it repeatedly pushes filters 
through the nodes at which the correspondmg arcs 
are incident Since the number of possible filters IS 
finite, this algorithm terminates It stops when 
further pushing of filters does not change the 
graph, and the graph at this point 1s equivalent to 
the original graph (although the graph at mter- 
mediate steps may not) Note that since the dls- 
Junction of ‘true’ with any predicate 1s ‘true’, if 
any arc m a loop B assigned the filter ‘true’, all 
arcs m the loop are subsequently assigned the filter 
‘true’ 

Consider the transltlve closure example that we 

optlmlzed using the Aho-Ullman algorithm We 
would represent it by the followmg axioms 

rl a(X,Y) - a(W), P(Z,Y) 

r2 a(X,Y - p(X,Y) 
r3 q(x) - a(John,X) 

Given below 1s the correspondmg system graph, 
before and after optlmlzatlon (We have omitted 

the variables m the axioms for clarity) 



Before 

After 

a r=John l=)ohn l=John 

\ 

J 
L 

We begm the optumzatlon by pushmg the selectron 
through the relation node a Thus the arcs from rl 

to a and from r2 to a both get the filter ‘l=John’ 
(We have slmphfied the conventions for keeping 
track of vanables - ‘1’ refers to the first attribute 
of the correspondmg head predicate) We then 
push these filters through the correspondmg axrom 
nodes, rl and r2 Pushmg ‘l=John’ through node 
r2 puts the filter ‘p r=John’ on the arc from p to 
r2 Pushing ‘l=John’ through node rl puts the 
filter ‘ar=~ohn’ on the arc from a to rl Note that 
rt does not put anything on the arc from p to rl 
(empty filters are eqmvalent to ‘true’) There are 
no arcs entermg p, and the filter on the arc from a 
to rl does not change the &sJunctlon of the filters 
on arcs leaving a (which 1s still ‘ar=~ohn’) So the 
algonthm terminates here 

The analogy wrth the Ahc&Jllman algorithm 1s 
easily seen when we recognize that a filter 1s a 

selectron, pushing through a relation node 1s drstn- 
butlon across a IJ and pushing through an axiom 

node rs dlstnbutlon across a Cartesran product In 

general, the optlmrzatrons achieved by the two 
algonthms are ldentlcal However, the Krfer- 
Lozmskn algonthm 1s more general m that rt suc- 
cessfully optimizes some expressions contammg 
more than one occurrence of the defined predicate 
An example 1s the expression 

usl=,ohn(LFP(a = (a p U a q U p))) 

The AhcAJllman algorithm does not apply m this 
case because there are two occurrences of R m 
f(R) The K f L 1 er- ozmsku algorithm optlmlzes this 
to 

LFp(k’al=,ohnb) P) u (asl=john(a) 9) 

u kal=,ohnb))) 

Essentmlly, rt improves upon the Aho-Ullman algo- 
rithm m that rt 1s able to dlstnbute selectron across 
some muons where both arguments contam r 

Further, the algorithm can work directly upon cer- 
tam mutually recursrve rules, for example 

rl r(X,Y) - b(X), s(X,Y) 

r2 s(X;Y) - c(X), r&Y) 
r3 q(x) - r(%ohn) 

Before applying the Aho-Ullman algorithm,, these 
rules must be rewritten ss follows 

rl r(X;Y) - b(X), 4% r(X;Y) 

r2 a(x) - r(x,John) 

Note that the Krfer-Lozmskn algorithm falls to 
optlmrze both 

~al=,ohn(LFP(a = a a U p)), and 

b,l=,Ohn(LFP(a = a p U p a U p)) 

3.3.3. Magic Sets 

The idea of the Magc Sets optlmlzatlon 1s to slmu- 
late the sideways passing of bmdmgs a la Prolog by 
the mtroductron of new rules This cuts down on 
the number of potentrally relevant facts 

The apphcatlon domam 1s the set of bottom-up 
evaluable rules 

We shall descnbe the strategy m detarl, usmg as an 
example a modified version of the same-generation 
rule set 

%(X’Y) - P(X,XP)‘P(Y’YP)‘sg(YP’XP) 

%(X’X) 
weryQ - sda,X) 

Note that m thus version the two vanables XF’ and 
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YP have been permuted Note also that the second 

rule is not range restricted The first step of the 

magic set transformation is the mtroduction of 
adornments and the generation of adorned rules 

Given a system of rules, the adorned rule system 
[Ullman 851 is obtained as follows 
For each rule r and for each adornment a of the 
premcate on the left, generate an adorned rule 
Deflne recursively an argument of a predrcate m 
the rule r to be dwtrngurehed [Henschen and Naqvl 
841 If either it is bound m the adornment a, or it is 
a constant, or it appears m a base predicate 
occurrence that has a distmgmshed variable 
Thus, the sources of bmdmgs are (1) the constants 
and (11) the bmdmgs m the head of the rule These 
bmdmgs are propagated through the base predi- 

cates If we consider each distmgulshed argument 
to be bound, this defines an adornment for each 
derived hteral on the nght The adorned rule is 
obtauied by replacmg each derived literal by its 
adorned version 

If we consider the rule 

%(X,Y) - P(X,~),P(Y;yP)2sg(YV@) 

with adornment bf on the head predicate, then X is 
distmguished because bound m sg(X,Y), XF’ is dis- 

tmgmshed because X is dlstmgulshed and p(X,XP) 
is a base predicate and these are the only dis- 
tmgmshed vanables Thus the new adorned rule is 

sgb’ KY) - P(X,~),P(Y;YP)tsgfb (YlV@ 

If we consider a set of rules, this process generates 

a set of adorned rules The set of adorned rules 
has size K R where R 1s the size of the origmal set 
of rules and K IS a factor exponential m the 
number of attnbutes per denved predicate So, for 
mstance, if every predicate has three attributes, 
then the adorned system is eight times larger than 
the ongmal system However, we do not need the 
entire adorned system and we only keep the 

adorned rules which denve the query In our 

example the reachable adorned system IS 

sgb’ (XY) - P(X,~),P(Y;yP),sg’* (Y%~) 
sgf b (X,y) - P(X,=),P(Y;YP)Jsgb’ (YC~) 

%“’ (X,x) 
sdb (X,x) 
query/ (X) - sgbf (a,X) 

Clearly, this new set of rules 1s equrvalent to the 
ongmal set m the sense that it will generate the 
same answer to the query 

The magic set optimlzatlon consists m generatmg 
from the given set of rules a new set of rules, 
which are eqmvalent to the ongmal set wrth 
respect to the query, and such that their bottom- 

up evaluation is more efficient This transformation 

is done as follows (1) for each occurrence of a 

derived predmate on the right of an adorned rule, 
we generate a magic rule (n) For each adorned 
rule we generate a modrfied rule 

Here is how we generate the magic rule (1) choose 
an adorned literal predicate p on the right of the 
adorned rule r, (11) erase all the other denved 
hterals on the right,, (111) m the denved predicate 
occurrence replace the name of the predicate by 
magic pa where a is the hteral adornment, and 
erase the non distmgurshed variables, (iv) erase all 
the non dlstmguished base predicates, (v) m the 
left hand side, erase all the non distmgmshed van- 
ables and replace the name of the predicate by 
magrc p l* ‘, where pl is the predicate on the left, 
and a’ is the adornment of the predicate pl, and 

finally (vi) exchange the two magic predicates 

For mstance the adorned rule 

sb’ W) - P(X,XQP(Y,YI%g’b (YI?@) 

generates the magic rule 

magic’ b (XP) - p(X,XP), magicbf (X) 

Note that the magic rules simulate the passmg of 
bound arguments through backward chanmg (We 
have dropped the suffix “sg” m naming the magic 
predicates smce it 1s clear from the context ) 

Here is how we generate the modified rule For 
each rule whose head IS p a, add on the nght hand 
side the predicate magrc p a(X) where X is the list 
of distmgulshed variables m that occurrence of p 
For mstance the adorned rule 

sgb’ (XN - P(X,~),P(Y;yP),sg~ b (YC=) 

generates the modified rule 

sgb’ (XV - p(X,~),p(Y,YP),maglcb’ (Xl, 
db (yww 

Fmally the complete modified set of rules for our 

example is 

magiJb (XP) - p(X,XP), magicbf (X) 

magic b’ Cyp) - p(Y,W,w.51cfb (Y) 
magicbf (a) 
sgbf (X,Yj - sgbf (X,Yj - 

p(X~),p(Y,~),mw~b’ (X)db WJW p(X~),p(Y,~),mw~b’ (X)db WJW 
sg’b(XY) - sg’b(XY) - 

~(~~),p(~,~),mw~~b Whb’ WP) d~~),p(~,Y%wiw~b Whbf WP) 
sgb’ (X,X) - magic sgb’ (X,X) - magic 
sg’ b (X,X) - magic sg’ b (X,X) - magic :: K; :: K; 

query f(xj - sgbf (aXj 

The idea of the magic set strategy was presented m 
[Banclhon et al 861 and the precise algorithm is 
described m [Bancilhon et al SSa] The “Alexan- 
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dre” strategy described m [Rohmer and Lescoeur 

851 appears to be based on the same Idea To our 
knowledge, the strategy 1s not implemented 

3.3.4. Counting and Reverse Counting. 

Countmg and Reverse Countmg are derived from 
the magic set optlmlzatlon strategy 

They apply under two condltlons (1) the data 1s 
acyclic and (11) there 15 at most one recursive rule 
for each predicate, and It 1s linear 

We first describe countmg usmg the “typical” sm- 
gle linear rule system 

P(X,Y) - fiat(X,Y) 

P(X,Y) - up(X,m),p(m,YV,down(W,Y) 

query(Y) - da,Y) 

The idea consists m mtroducmg magic sets (called 
couratrng sets) m which elements are numbered by 
their distance to the element a Remember that the 
magic set essentially marks all the up ancestors of 
a and then applies the rules m a bottom-up fashion 
to only the marked ancestors In the countmg stra- 
tegy, at the same time we mark the ancestors of 
John, we number them by their distance from a 
Then we can “augment” the p predicate by 
numbermg Its tuples and generate them by levels 
as follows 

countmg(a,O) 
countmg(X,I) -countmg(Y,J),up(Y,X),I=J+l 

p’(X,Y,I) - countmg(X,I),flat(X,Y) 

p’(X,Y,I) - countmg(X,I),up(X,XV’ 
p’(XU,YU, J),down(YU,Y),I= J-1 

query(X) - p’ta,KO) 

Thus at each step, instead of using the entire 
magc set, we only use the tuples of the correct 

level, thus mmlmlzmg the set of relevant tuples 

But m fact, it 1s useless to compute the first attn- 

bute of the p predicate Thus the system can be 
further optlmlzed mto 

countmg(a,O) 
countmg(X,I) -countmg(Y,J),up(Y,X),I=J+l 
p”(Y,I) - countmg(X,I),flat(X,Y) 
p”(Y,I) - p”(YU,J),down(W,Y),I=J-l,J>O 

weryO - p”(Y,O) 

It 1s interesting to notice that this new set of rules 

1s m fact slmulatmg a stack 

Reverse countmg 1s another vanatlon around the 

same idea It works as follow (1) first compute the 
magc set, then (n) for each element b m the mae;lc 
set number all its down descendants and Its up 

descendants and add to the answer all the down 
descendants having same number as a (because a 1s 
m the up descendants) This pves the followmg 

equivalent system 

magic(a) 
magic(Y) - magic(X),up(X,Y) 
des up(X,X,O) - magic(X) 
des down(X’,Y,O) - maglc(X’),flat(X’,Y) 
des up(X’,X,I) - des up(X’,Y, J), 

up(X,Y),I=J+l 
des down(X’,X,I) - des down(X’,Y, J), 

down(Y,X),I=J+l 
query(Y) - des up(X’,a,Y),des down(X’,Y,I) 

This can be slightly optlmlzed by hmltmg our- 
selves to the b’s which will Jam with flat and res- 
tnctmg the down de& to be m the magic set This 
generates the followmg system 

magic(a) 
magic(Y) - magic(X),up(X,Y) 
des up(X,X,O) - maglc(X),flat(X,Y) 
des down(X’,Y,O) - magic(X’),flat(X’,Y) 
des up(X’,X,I) - magc(X),des up(X’,Y, J), 

up(X,Y),I= J+l 
des down(X’,X,I) - des down(X’,Y, J), 

down(Y,X),I=J+l 
sg(a,Y) - des up(X’,a,Y),des down(X’,Y,I) 

Note that we still have the problem of a “late ter- 
mination” on down because we number all the 
descendants m down, even those of a lower genera- 

tion than a 

The idea of counting was presented m [Bancllhon 
et al 861 and a formal descnptlon of countmg and 
of an extension called “magic countmg” was 
presented m the single rule case m [Sacca and 
Zamolo 861 An extension to the fully general case 
of Horn Clauses with function symbols 1s described 
m [Sacca and Zamolo SSa] We did not cover this 
extension here Reverse countmg 1s described m 
[Bancllhon et al 861 They have not been ample- 

mented 

3.4. Summary of Strategy Characteristics. 

A summary of the charactenstlcs of each strategy 

1s presented m Table 1 
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Table 1: Summary of Strategy Characteristics 

Method 

Nitlve Evaluation 

Semi-Naive Evaluation 

Query/Subquery 

Query/Subquery 

APEX 

Prolog 

Henschen-Naqvl 

Aho-Ullman 

Klfer-Lozmskn 

Counting 

Magc Sets 

Applacatron Range 

Bottom-up Evaluable 

Bottom-up Evaluable 

Range Restricted 
No Arlthmetlc 

Range RestrIcted 
No Arlthmetlc 

Range Restricted 
No Arlthmetlc 
Constant Free 

User responsible 

Linear 

Strongly Linear 

Range Restricted 
No Arithmetic 

Strongly Linear 

Bottom-up evaluable 

4. Performance Comparisons 

In this section, we present the results of a com- 
parative performance evaluation of the various 
strategies To perform such a comparison we must 

(1) Choose a set of rules and queries which will 
represent our benchmark (2) Choose some test 
data which will represent our extenslonal database 

(3) Choose a cost function to measure the perfor- 

mance of each strategy (4) Evaluate the perfor- 

mance of each query agamst the extensional data- 
bases 

We first describe the four queries used as “typical” 
mtenslonal databases Then, we present our char- 

actenzatlon of the data Each relation 1s character- 

ized by four parameters and It 1s argued that a 
number of famlhar data structures, e g trees, can 
be described m this framework We describe our 
cost metric, which 1s the size of the mtermedlate 
results before duphcate ehmmatlon We present 
analytical cost functions for each query evaluation 
strategy on each query The cost functions are 
plotted for three sets of data - tree, inverted tree 

Top down va 

Bottom Up 

Bottom Up 

Bottom Up 

Top Down 

Top Down 

mxed 

Top Down 

Top Down 

Bottom Up 

Bottom Up 

Bottom Up 

Bottom Up 

Comprled us 

Interpreted 

Complied 

Complied 

Interpreted 

Interpreted 

Mixed 

Interpreted 

Compded 

Compded 

Compded 

Compded 

Complied 

Iteratrve v8 

Recurseve 

Iterative 

Iterative 

Iterative 

Recursive 

Recursive 

Recursive 

Iterative 

Iterative 

Iterative 

Iterative 

Iterative 

and cylinder We discuss these results mformally 

The performance issue was addressed mformally 
through the dlscusslon of a set of examples m [Ban- 
cllhon et al SSa] Han and Lu [Han and Lu 861 
have reported a study of the performance of a set 
of four evaluation strategies (mcludmg Naive and 
Henschen-Naqvl and two others not considered 
here) on the same generatlon example, usmg ran- 

domly generated data Their model 1s based on the 
selectlvlty of the Jam and select operations and the 
sizes of the data relations They consider both 
CPU and IO cost We have chosen to concentrate 
on one aspect of the problem, which 1s the number 
of successful firings (measured usmg the sizes of the 
intermediate relations) and have studied a wider 

range of strategies, queries and data 

4.1. Workload: Sample Intensional Data- 

bases and Queries 

Instead of generatmg a general mix, we have 
chosen four queries which have the properties of 
exerclzmg various important features of the stra- 
tegies We are fully aware of the fact that this set 
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is msufflclent to provrde a complete benchmark, 
but we view this work as a first step towards a 

better understandmg of the performance behavior 
of the various strategies 

The queries are three different versions of the 
ancestor query and a versron of the same- 
generation query The first one IS Just a classrcal 
ancestor rule and query with the first attrrbute 
bound 

Query 1 4XV - P(V) 
4w - PK%4Z#Y) 
wew0C) - a(John,X) 

Because most strategies are representation depen- 
dent, we have studied the same example with the 
second attrrbute bound mstead of the first This 
will allow us to determine which strategies can 
solve both cases 

The thud versron of the ancestor example specrlles 
ancestor usmg recursive doubhng This enables us 
to see how the strategies react to the non linear 
case This example bemg fully symmetnc, it is 
sufficrent to test rt wrth its first attribute bound 

Query 8 aoC,Y) - P&Y) 
4xY - 4X,Z),a(Z,Y) 
weryo() - a(JohnJX) 

Fmally to study somethmg more complex than 
transitrve closure, we have chosen a generalized 
version of the same generation example, bound on 
its first attribute 

4.2. Characteriaing Data: Sample Exten- 
sional Databases 

Because we decided on an analytical approach, we 
had to obtain tractable formulae for the cost of 
each strategy agamst each query Therefore, each 
relation must be characterized by a small set of 
parameters Fortunately, because of the choice of 
our workload, we can restrrct our attention to 
binary relatrons 

We represent every binary relation by a directed 
graph and vrew tuples as arcs and domam elements 
as nodes Nodes are arranged m layers and each 
arc goes from a node m one layer to a node m the 
next Note that m these graphs each node has at 

least one m-arc or one outrarc Nodes m the first 
layer have no mcommg arcs and nodes m the last 
layer have no outgoing arcs 

Let R be a binary relation and A be a set Recall 
that we denote by AR the set 

AR= {y )xEAandR(x,y)} 

We charactenze a binary relation R by 

(1) FR the fan-out factor, 
(2) DR the dupbcatron factor, 

(3) hR the her& and 
(4) bz the base 

FR and Dz are defined ss follows given a “ran- 
dom” set A of n nodes from R, the size of AR IS 
n Fz (We use ’ ’ here to denote multrphcation It 
should be clear from the context whether ’ ’ 
denotes multlplicatron or composrtron ) before 
duplicate ehmmatlon Dz IS the duphcatlon factor 
m AR, 1 e the ratio of the size of AR before and 
after duplicate elimmation Thus the size of AR 
after duplicate ehmmatron rs n FR /Dz 

We call ER = FR /Dz the czpansron factor of R 

The base bz is the number of nodes which do not 
have any antecedents The height hz rs the length 
of the longest cham m R 

When no confusron is possible, we shall srmply use 
F, D, h and b instead of FR ,DR ,hR and bR 

The typical structure cons&s of a number of 
layers There are (hR +l) layers of nodes m the 
structure, numbered from top to bottom (as 0 to 
h) There are bz nodes m level 0 

h 

This “parametnzed structure” 1s farrly general and 
can represent a number of typical configuratrons 
A binary balanced tree of height 11s defined 

by 
F=2, D=l, h=l, b=l 

The same binary tree upside down is defined 

by 
F=1/2, D=2, h=l, b=2’ 

A list of length 1 1s defined by 
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F=l, D=l, h=l, b=l 
A set of n hsts of length 1 IS defined by 

F=l, D=l, h=l, b=n 

A parent relation, where each person has two clul- 
dren and each child has two parents, 1s defined by 

F=2, D=2, h=number of generations, 
b=number of people of unknown parentage 

However, this formahsm does not represent cycles 

Nor does It represent short cuts, were a short cut IS 
the existence of two paths of different length going 
from one point to another Clearly, they would 

violate our assumption that nodes were arranged m 
layers mth arcs going from nodes m one layer to 
the next We also emphasize that we assume the 

data to be random, with a uniform dlstnbutlon 
Thus, the values F and D are average values 

Our assumption that the duphcatlon factor 1s 

mdependent of the size IS a very crude approxlma- 

tlon For instance it implies that if you start from 
one node you still generate some duphcates Obvl- 
ously the duphcatlon factor increases with the size 
of the start set Therefore, our approxlmatlon 
overestimates the number of duphcates However, 
It becomes reasonable as the size of the start set 
becomes large It 1s also dependent upon our 
assumption that the data IS random (with a um- 

form dlstnbutlon) and not regular 

Let us now turn to the problem of charactenzmg 

mter-relation relationships Let A and B be two 

sets The transfer ratto of A with respect to B, 

denoted TAB IS the number such that given a ran- 
dom set of n nodes m A, the size of A n B after 
duphcate ehmmatlon 1s n TAB Note that 0 5 T 

51 

This defimtlon can be extended to binary relations 

by consldenng only the columns of the relations 
We shall denote the I-th column of R by RI. Thus, 

given two binary relations R and S, the number of 
tuples m the (ternary) result of the Jam of R and S 
IS n TRssl, where n IS the number of tuples m R 

4.3. The Cost Metrics 

We have chosen for our cost measure the number 

of successful inferences performed by the system 

The simplest way to obtam this cost function IS to 

measure the size of the mtermedlate results before 

duphcate ehmmatlon 

Note that III this model the measure of complexity 
of the Join, the carteslan product, intersection and 
selection IS the size of the result, the measure of 
complexity of union IS the sum of the sizes of the 
arguments (each tuple present m both argument IS 
going to fire twrce), and the measure of complexity 
of proJectlon IS the size of the argument Readers 

famlhar with performance evaluation of relational 

quenes might be surprised by these measures How- 

ever, it 1s argued m [Banclhon 851 that they are 

meaningful In essence, our cost 15 a measure of one 
important factor m the performance of a query 
evaluation system, the number of successful finngs, 

rather than a measure of the actual run-time per- 
formance 

4.4. cost Evahation 

For each strategy and for each query, we have 

analytically evaluated the cost of computmg the 
given query using the given strategy The cost 1s 
expressed as a function of the data parameters F, 

D, h and b The formulae are hsted 111 Append= 1, 
and their denvatlons are contamed m [Bancllhon 

and Ramakmhnan 861 To compare these fanly 

complex formulae, we have plotted a number of 
curves, some of which are Included m Append= 2 

4.6. Graphical Comparison of the Costs 

The curves shown m Appendix 2 show the relative 
performance of the various strateges on each of 
the sample quenes for three sets of data They are 
relations m which the tuples are arranged m a tree 
structure, an mverted tree structure, and a 

“cylmder” A cylmder 1s a structure m which each 

layer has b nodes and each node has on the aver- 
age two mcommg and two outgomg arcs We 

present below a sample relation of each type 

Tree, S=Z D=l Inverted Tree, S=l, D4 

b=S 

h=3 

Cylinder, S=D=2 
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The choice of these structures was made m order 

to study the effects of uneven dlstnbutlon of the 

data and the effects of duphcatlon We have fixed 

the sizes of all relations at 100,000 tuples For the 

tree structure, we vary the shape by changing the 
fan-out F while keeping the number of arcs (which 
1s the number of tuples) constant Clearly, decreas- 
mg the fan-out mcreases the depth of the structure 

and vice-versa Bmllarly, the shape of the mverted 
tree 1s varied by varying the duphcatlon factor 
The shape of the cylinder 1s varied by varying the 
ratlo of breadth b to height h, agan keepmg the 
number of arcs constant 

For each query and data structure, we plot the cost 
of each strategy against the shape of the data 
(measured m terms of the parameter used to vary 
It) Thus, for each query, we plot cost vs F for the 
tree, cost vs D for the inverted tree, and cost vs 
b/h for the cylinder We do this for each strategy 
The cost 1s computed usmg the cost functions 
listed m the appendix We have often displayed a 
subset of the curves (for the same query and data 
structure) over a different range, to allow a better 
comparison 

For the ancestor queries, we plot the cost of each 
strategy for the cases when the parent relation has 

100,000 tuples and the data m it has the shape of a 
tree, an inverted tree and a cyhnder 

For the same generation example, we have 
assumed that the relations up and down are ldentl- 
cal and that the fan-out and duphcatlon for the 
relation flat are both equal to 1 We have also 
assumed that the transfer ratio from up to flat 1s 
equal to the transfer ratlo from flat to down We 
have assumed that all three relations (up, flat and 
down) have 100,000 tuples We plot the cost of 

each strategy as the shape of up and down vanes 

for a total of SIX cases the cases when the struc- 
ture 1s a tree, an inverted tree and a cylinder, with 

the transfer ratio equal to 1 and 0 01 (100% and 

1% respectively) 

4.6. Summary of the Curves 

There are several important points to be seen m 
the curves For a given query, there 1s a clear ord- 
ermg of the various strategies which usually holds 
over the entire range of data The difference m per- 

formance between strategies 1s by orders of magm- 
tude, which emphasizes the importance of chocsmg 
the right strategy The cost of the optimal strategy 
1s less than 10,000 m each of the quenes we have 
considered, over the entire range of data The size 
of the data 1s 100,000 tuples This indicates that 

recursive quenes can be implemented efficiently 

We present a summary of the ordering of the stra- 
tegies, as seen m the correspondmg curves We use 

<< to denote an order of magnitude or greater 
difference m performance, and for a given query, 
we list m parentheses those strategies that perform 
ldentlcally for all data We refer to the various 
strategies usmg the followmg acronyms for brevity 
HN (Henschen-Naqvl), C (Countmg), MS (Magic 

Sets), QSQR, QSQI, APEX, P (Prolog), SN (Semi- 
Naive), N (nave) and KL (Klfer-Lozmsku) 

Query 1 (Ancestor bj) 

Tree 
(HN,C) << (MS,QSQR,APEX) = P << 
QSQI << (SN,KL) << N 

Inverted tree 

(HN,C) << (MS,QSQR,AF’EX) << P << 
QSQI << (SN,KL) << N 

Cylinder 

(HN,C) << (MS,QSQR,APEX) << 
QSQI << (SN,KL) << N << P 

Query 2 (Ancestor jb) 

All data 

(HN,C) << (MS,QSQR,KL) << 
QSQI << APEX << SN << N = P 

Query 3 (Ancestor bf, non-hear) 

All data 

QSQR << QSQI << APEX << 
(SN,MS,KL) << N 

(HN, Countmg and Prolog do not apply) 

Query 4 (Same Generatton bj) 

Tree 
C << I-IN = (MS,QSQR,APEX) = P << 

QSQI << (SN,KL) << N 

Inverted tree 

C << HN = (MS,QSQR,APEX) << 
P << QSQI << (SNJU) << N 

Cylinder 

C << HN = (MS,QSQR,APEX) << 

QSQI << (SN,KL) << N << P 

To summarize the ancestor results, the following 
order 1s seen to hold for the ancestor queries 

(HN, C) << (MS, QSQR) << QSQI << 
APEX << SN << N 

There are some exceptions and addltlons to the 
above ordering In the non-linear case, Henschen- 
Naqvl and Countmg do not apply, and Magic Sets 
reduces to Semi-Nave Klfer-Lozmsku performs 
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hke Semi-Naive, except m the case where the 

second argument 1s bound, and m this case it per- 
forms hke QSQR APEX performs like QSQR m 
the case where the first argument IS bound Prolog 

performs poorly when It cannot propagate the con- 
,tant m the query (the case where the second argu- 
ment 1s bound), as expected When It can pro- 
pagate the constant, Its performance degrades shar- 
ply with duphcatlon, especially as the depth of the 
data structure mcreases This 1s readily seen from 
the curves for the cylinder 

To summanze the same generation results, we 
have 

C << I3N = (MS, QSQR, APEX) << 

QSQI << (SN, KL) << (P, N) 

Prolog behaves like QSQR when there 1s no duph- 
cation (tree) With duphcatlon, Its performance 
degrades so sharply with an increase m the depth 
of the data structure that we have classified It with 
Nave, although It performs better than Semi- 
Nave over a wide range 

4.7. Interpreting the Results 

These results mdlcate that the followmg three fac- 

tors greatly influence the performance 

1 The amount of duplrcatron of work, 
2 The size of the set of relevant facts, and 

3 The use of unary vs brnary intermediate 
relations 

By duphcatlon of work, we refer to the repeated 
firing of a rule on the same data This can occur 
due to duphcatlon m the data (e g Prolog), or due 

to an lteratlve control strategy that does not 
remember previous iinngs (e g QSQI and Naive) 
Relevant facts have been defined earlier, and their 

slgmficance m reducing the number of useless 
firings has been explained The third factor 1s hard 
to define precisely Strateges which only look at 

sets of nodes rather than sets of arcs perform 
better than those that look at sets of arcs, by an 
order of magnitude or more They are less gen- 

erally applicable smce this often mvolves a loss of 
mformatlon This usually leads to non-termmatlon 
unless the database has certam properties, such as 

hnearlty of rules and acychclty of the extensional 
database The followmg dlscusslon 1s intended to 
clarify these concepts, as well as to explam the per- 

formance of the various strategies m terms of these 
three factors 

4.7.1. The Ancestor Queries 

We begm by looking at the ancestor queries The 
effect of duphcatlon 1s seen by consldermg Prolog 
and QSQI, both of which do duplicate work, for 
different reasons When the first argument 1s 
bound, Prolog performs hke QSQR on a tree data 
structure, where exactly one arc enters each node 
(equivalently, there 1s exactly one way of deriving 
a given answer) With duphcatlon (1 e on the aver- 
age more than one arc enters a given node) perfor- 
mance degrades dramatically Prolog’s performance 
for the same query on a cylinder 1s comparable to 
Nave evaluation, a difference of several orders of 
magmtude’ We note that the set of relevant facts 
1s comparable m the two cases, bemg the set of 
nodes reachable from the node denoting the con- 
stant m the query (which will henceforth be 
referred to as the query node) However, m the 
case of the cylinder, these nodes can be reached 
along several paths and Prolog infers them afresh 
along each path QSQI performs duplicate compu- 
tation for a different reason, which 1s that its ltera- 
tlve control strategy does not remember previous 
firings Essentially, there are as many steps (execu- 
tions of the control loop) as the longest path from 
the query node, and all nodes reached by a path of 
length less than or equal to 1 are recomputed at all 
steps after the lth This can be seen by comparing 

QSQR and QSQI and noting that QSQI IS orders 

of magnitude worse m all cases QSQR uses the 
same set of relevant facts (the reachable nodes) 
and differs only m that It has a recursive control 
strategy that avoids precisely this duphcatlon 
Naive evaluation also does a lot of duplicate work, 
for the same reason as QSQI, 1 e , It does not 
remember previous firings Semi-Naive differs from 

Naive only m that It remembers all previous firings 
and does not repeat them Thus, the effect of 
duphcatlon can also be seen m the difference 
between Naive and Semi-Nave 

The effect of a smaller set of relevant facts can be 
seen m the vast difference between Magic Sets and 
Semi-Naive Magic Sets 1s simply Semi-Naive 
applied to the set of relevant facts, which 1s deter- 
mmed to be the set of reachable nodes except m 
the doubly recursive case In this case, the first 
phase of the Magic Sets strategy, which computes 
the set of relevant facts, fads and the Magic Sets 
strategy degenerates to Sent-Naive This effect can 
also be seen m the behavior of Prolog on a tree 
data structure (which means we eliminate the effect 
of duphcatlon) when the first argument IS free 
Prolog’s depth first strategy 1s unable to propagate 
the constant m the second argument of the query 
In other words, It must consider all facts m the 
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database, and its performance degrades by several 
orders of magnitude Srmllarly, the Klfer-Lozmsku 
strategy degenerates to Semr-Naive when the 
optrmrzatlon algonthm fads to push down the con- 
stant m the query We note that pushmg the con- 
stant (eqmvalently, the selectron that it represents) 
1s eqmvalent to cutting down on the number of 
relevant facts 

QSQR succeeds m restnctmg the set of relevant 
facts to the set of nodes reachable from the query 
node even m the non-linear versron of ancestor 
QSQI also succeeds m doing this, but performs a 
lot of duplicate computation The Magic Sets algo- 

nthm uses the entire parent relation for the set of 
relevant facts and so degenerates to Semr-Nave 
APEX, for reasons explamed below, also uses a 
much larger set of relevant facts So, although rt 
improves upon Semr-Narve computatron m thus 
case, It 1s much worse than QSQR Henschen- 
Naqvl and Countmg do not apply and Prolog does 
not termmate Thus QSQR rs the only strategy 
that succeeds m both restnctmg the set of relevant 
facts and avoldmg duphcate work It does this at 
the cost of lmplementmg the recursrve control, 
whrch 1s a cost that we do not understand at this 

stage 

The behavror of APEX &rstrates the mterestmg 
dlstmctlon between the set of relevant facts and 
the set of useful facts The first step m the APEX 
strategy 1s to find what APEX calls the set of 
relevant facts (whrch 1s actually a subset of the set 
of relevant facts as we have defined It, smce It does 
not include all facts than could denve an answer) 
In the ancestor examples, these are facts from the 
relation parent, and the finng of the first rule adds 

them to the ancestor relation Subsequently, these 
facts are substituted (m turn) mto both the parent 
and ancestor predicates m the body of the second 

rule Except m the first case, this leads to 
subquenes whose answers are not relevant For 

example, m the case where the second argument 1s 

bound to John, the set of relevant (a la APEX) 
facts 1s the set of facts p(X,John) By substltutmg 

these mto the parent predicate m the second rule, 
we generate the query a(John,?) This computes the 
ancestors of John, whereas the given query 

a(?,John) asks for the descendants of JO~II Thus IS 

because APEX does not make the dlstmctlon that 
facts of the form p(X,John) are relevant to the 
query a(?,John) only when substrtuted mto the 
ancestor predrcate m the second rule This 1s a dls- 
tmctlon that the Magic Sets strategy makes, and It 
thereby reduces the number of useless firmgs 

We now consider the thud factor, the arrty of the 
intermediate relations The two strategies which 

use unary mtermedrate relations are the Henschen- 
Naqvr and Countmg strategies In essence, at step 1 

they compute the set of relevant facts whrch IS at a 
drstance 1 from the query node Let us denote this 
set by Sr At the next step, they compute the set 
of those nodes m parent to whrch there IS an arc 
from a node m Sr Thus, they compute all nodes 
reachable from John, and further they compute 
each node at most D trmes where D 1s the duphca- 
tlon factor However, the unary relatrons strategy 
fads to termmate if the query node IS m a cycle 
Also, neither the Henschen-Naqvr nor the Countmg 
strategy applies when there are non-linear rules 

Magic Sets computes exactly the same set of 
relevant facts and does no duplicate work How- 
ever, m the second phase at step 1 rt computes all 
arcs m the transitive closure of parent (restricted 
to the set of relevant facts) of length 1 In partlcu- 
lar, thus includes all arcs of length 1 rooted at John 
This 1s the answer, and this 1s essentrally all that 
the more specmhzed methods, Henschen-Naqvl and 
Counting, compute Everything else that the 
Magrc Sets strategy does 1s useless computatron 
Thus, the cost of the Magic Sets strategy 1s the 
number of arcs m the transrtlve closure of the sub- 

tree rooted at John (1 e the subtree of nodes reach- 
able from John) 

The recursrve control of QSQR generates 
subquenes usmg precisely the nodes m set Sr at 
step 1, and the answer to each of these subquenes 
1s the set of all nodes m the subtree rooted at that 
node By mductlon, it IS easy to see that the total 
cost mvolved m computmg a query 1s the number 
of arcs m the transltlve closure of the subgraph 
rooted at that query node The intermediate rela- 

tlons here are the (binary) sets of answers to each 
subquery Thus seems to indicate the power of a 
recursrve control strategy since It succeeds m 
reducmg both the set of relevant facts and the 

amount of duplicate work 

4.7.2. The Same Generation Query 

We conclude thus drscussron by explarmng the per- 

formance of the vanous strategres m the same gen- 
eration query m terms of these three factors 
Countmg has the best performance smce It uses the 

smallest set of relevant facts (the nodes of up 
whrch are reachable from the query node), does not 
do duphcate computatron, and further, uses unary 
mtermedrate relations It executes the query m 
two phases In the first phase, at step 1, It com- 
putes the set of all nodes m up that are reachable 
from the query node via a path of length 1 In the 
second phase, rt first computes the nodes of down 
that are reachable from thus set via an arc of flat, 
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still retammg the distance of each set from the 

query node In subsequent iterations, it steps 
through down once each time, such that each node 
m a set that IS 1 steps away from the query node m 
up is the root of paths of length 1 m down 

Henschen-Naqvi uses the same set of relevant facts, 
and is a unary strategy, but it does a lot of duph- 
cate work It is a single phase algorithm, which 
does the same amount of work as the first phase of 
Countmg m computmg sets of up nodes along with 
their distances from the query node However, it 
steps through down 1 times for each set at a dls- 
tance 1 from the query node m up Smce it does not 
keep track of the work it does m step 1 at step i+l, 

it repeats a lot of the work m steppmg through 
dOtOtt 

The set of relevant facts for Magic Set, QSQR and 

APEX IS agam the set of up nodes reachable from 
the query node They do not perform duphcate 
computation However, they work with bmary rela- 
tions, m effect computing all paths with equal 
lengths m up and down hnked by a single arc m 
flat Thus, their performance is mfenor to that of 
Counting Our graphs show their performance to 
be identical to that of Henschen-Naqvi It is to be 

expected that they perform similarly smce the 
duphcate work done by Henschen-Naqvl 1s offset 
by the fact that they work with binary relations 
However, their performance 1s not really identical 

It appears to be so m our curves for two reasons 
The first IS our approximation of the number of 
arcs of length 1 to n(1) gsum(E,h-I) The second is 
the fact that we plot the curves for cases where up 
and down are identical Under these conditions, the 

expressions for the performance of these methods 

become identical 

QSQI is sumlar to QSQR except that at each step, 
it duplicates the work of the previous steps, and so 

it IS mfenor to Magic Set, QSQR and APEX 
Serm-Naive uses binary relations, and although it 
does not do duphcate work, this is outweighed by 
the fact that the set of relevant facts is all the 
nodes m up So it performs worse than QSQI 
Klfer-Lozmskn degenerates to Semi-Naive since the 
optimization strategy falls to make any improve- 
ments to the system graph Prolog is similar to 
QSQR when there is no duphcatlon m the data, 

but its cost increases exponentially with the depth 
of the data structure when there is duphcation 
Naive evaluation uses the entire set of nodes m up 
as relevant facts, does duphcate work smce it does 
not remember finngs, and uses bmary intermediate 
relations With the exception of Prolog over a cer- 
tam range, it is clearly the worst strategy 

Fmally, we note that when the transfer ratio T is 

0 01 (l%), the cost of computmg the answer by 
Naive or Semi-Naive evaluation is essentially that 
of computmg all arcs m the relation flat, and so 
the two methods perform almost identically 

4.8. Summary and Caveats 

Our conclusions may be summarized as follows 
1 For a given query, there is a clear ordermg of 
the strategies 
2 The more speclahzed strategies perform 
sigmficantly better 
3 Recursion IS a powerful control structure which 

reduces the number of relevant facts and ehm- 
mates duphcate work 

4 The choice of the nght strategy is critical smce 
the differences m performance are by orders of 
magmtude 
5 Three factors which greatly influence perfor- 
mance are (1) duphcatlon of work, (11) the set of 
relevant facts, and (m) the anty of the mtermedl- 
ate relations 

The results seem robust in that the performance of 
the various strategies usually differ by orders of 
magnitude, which allows a wide latitude for the 

approximations m the model and cost evaluation, 
Also, the curves rarely intersect, which means that 
the relative ordenng of the strategies is mamtamed 
m most cases over the entire range of data 

However, it must be emphasized that our cost 
function makes some crude approximations The 
cost of Jam IS hnear m the size of the result, a 
consequence of our using the size of mtermediate 
relations as the cost measure We also ignore the 

cost of disk accesses, and the cost of implementmg 
a recursive control strategy Our model suffers from 
the approximation that duplication is independent 
of the sue of the start set 

Fmally, our sample data and queries are hmlted, 
and the results must be extrapolated to other data 

and queries with caution, especially smce the 
results show some variance m the relative perfor- 
mance of the strategies for different sets of data 

and queries In particular, our benchmark IS hm- 
ited to the type of data and query where there IS a 
large amount of data and the size of the answer to 

the query is anaall This clearly favors the “smart” 
strategies and obscures, for instance, the fact that 
Semi-Naive performs as well as any other strategy 
when computmg the entire transitive closure of a 
relation [Bancdhon 851 Further, our data contams 
no cycles or shortcuts This IS an important hmi- 

tation smce it favours some of the speclahzed strs 
tegies For instance, there are cases where Count- 
mg performs worse than Magic Sets pancdhon et 
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al 861 This IS not shown by our results since these 

cases mvolve shortcuts m the data 

We have also assumed m this paper that methods 
should strive for generality, 1 e we have not 
addressed the problem of finding a set of speclal- 
lzed operators which would solve the “real life” 
cases of recursion Other authors have addressed 
this problem, mainly by concentratmg on the tran- 
sltlve closure operator [Valdunez and Boral 851 or 
extensions of it [Dayal et al 85, Rosenthal et al 

851 

6. Conclusions 

In this paper, we have given a description and 
comparative evaluation of the myor strategies for 

processmg logic queries without function symbols 

We have tried to identify the exact application 
domain for each method We have also tried to 
describe the strategies m a uniform manner Unfor- 
tunately, we have only been partially successful at 
that We have identified a set of maJor charactens- 
tics of the strategies method vs optimization stra- 
tegy, top-down vs bottom-up, recursive vs itera- 
tive and compiled vs interpreted But some of 
these charactenstlcs are somewhat arbitrary for 

the same strategy it IS sometimes possible to have 
a compiled or interpreted version For instance, we 
have presented a compiled version of naive evalua- 
tion, while SNIP is an interpreted version of it It 

seems also reasonable to design a compiled version 
of iterative QSQ We also argued that the dlstmc- 
tlon between optlmlzatlon strategy and method 
was mamly of a pedagogical interest However, the 
top-down vs bottom-up and recursive vs iterative 
dlstmctlon seems to capture mtrmslc properties of 
the strategies But we consider that the problem of 
finding a good taxonomy of strategies is still wide 

open 

We have presented a performance comparison of 
ten methods Even though the “benchmark” we 

have used is mcomplete, the cost measure too ele- 
mentary and the approximations crude, we found 
the results to be valuable The robustness of the 

results (at least on our workload), both m terms of 

the order of magnitude differences between the 
costs of the strategies and m terms of invariance of 

the results to the parameters which we varied, was 

a surpnse We have also been able to explain most 
of our results through three factors duplication, 
relevant facts and unary vs binary While the first 
two factors were well known, the third one came 
also as a surprise, even though it was probably 

already understood m [Sacca and Zamolo 861 
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Appendix 1: The Cost Functions 

We first explam the notation and termmology used 
m analytically derlvmg the cost functions We have 

derived expresslons for the cost of each strategy on 

each of the four queries we have defined We refer 
the reader to [Bancdhon and Ramakrlshnan 861 for 
the derlvatlon of these expressions 

We denote the number of nodes at level 1 m rela- 
tion R by nR (I), and the total number of arcs m R 

(which 1s the number of tuples m R) by AR Where 
no confusion 1s possible, we drop the subscript 

We denote the sum of the (h+l)st elements of the 
geometric series of ratlon E by gsum(E,h), thus 

gsum(E,h) = (1 + E -t- E2 + E3 + + Eh) 

We define the length of an arc m the transltlve clc+ 
sure of R (which we denote by R*) to be the length 
of the path of R that generates It (Note that this 
1s well defined because there are no short-cuts ) 

We denote by aR*(l) the number of arcs of length 
exactly 1 m R* Where the context IS clear, we 
write a(l) 
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a(l) = n(1) + n(l+l) + . f n(h) = n(1) gsum(E,h-1) 

We denote by h’ the average level 

h, =h- 
It denotes the mean level at which we pick a node, 
assummg nodes are umformly diitrlbuted We have 

actually defined h’ as the distance of the mean 

level from the highest level h for notational con- 
venience, since this IS a quantity we use exten- 

slvely . 

Query 1 (Ancestor.bf) 

1.1 Naruc euafuatron 

1 2 Semr-Narue Euakatron 

1.3 QSQ, Itcruttue 

1.4 QSQ, Recurswe 

1 5 Henschen-Naqw 

1 6 Prolog 

17APEx 

1 8 Kifer-Lozmskrl 

1 6 Magrc Seta 

1 10 Countmg 

Query 2 (AncestorA%) 

2 1 Narue eualuatron 

2 2 Semr-Narue Eualuatlon 

Dk(h-l+l).a(i) + E.gsum(E,h’-1) 
Pl 

Dka(l) + E gsum(E,h’-1) 
I==1 

E gsum(E,h’-1) + F 5 (h’-i+l) 1 El-’ 
P-1 

(F+E) gsum(E,h’-1) + Dg E’.gsum(E,h’-1) 
I==1 

(F+E) gsum(E,h’-1) 

gsum(F,h’) + E gsum(E,h’-1) + fi (F’ ) gsum(F,h ‘--I ) 
I=-1 

(F+E) gsum(E,h’-1) + D fi E’ gsum(E,h’-1) 
1-l 

Dka(l)+E gsum(E,h’-1) 
P-1 

(F+E) gsum(E,h’-1) + Dfi E’ gsum(E,h’-1) 
I==1 

(F+E) gsum(E,h’-1) 

D$(h-lfl) a(l) + (l/E) gsum(l/E,h-h’-1) 
i-1 

Dka(1) f (l/E) gsum(l/E,h-h’-1) 
1-l 
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2 3 QSQ, Itcrat:uc (l/E) gsum(l/E,h-h’-1) + D F:(h-h’-l+l) i (l/E)” 
I 

24 QSQ, R~cursrvc 1 + (l/E) gsum(l/E,h-h’-1) + F ‘5(1/E)’ gsum(l/E,h-h’-1) 
i-1 

t 5 Henschen-Naqv: 

2 6 Prolog 

(D+l/E) gsum(l/E,h-h’-1) 

(l/E) gsum(l/E,h-h’-1) + hn(~) gsum(F,h-1) 
i=l 

2 7APEX (l/E)(h”‘) (E gsum(E,h-1)+D fiEL gsum(E,h-1)) 
1-I 

2 8 K:fer-Lozmaktr 

2 9 Magw Seta 

(D+l/E) gsum(l/E, h-h’-1) 

1 + (l/E) gsum(l/E,h-h’-1) + F hs(l/E)i gsum(l/E,h-h’-1) 
l-1 

2 10 Corntmg @+1/E) gsum(l/E,h-h’-1) 

Query 3 (Aucestor.bf, Non-Linear Version) 

S 1 Narve evaluatron E gsum(E,h’-1) + D k(log(h/l)+l) (l-l) a(l) 
F-1 

3 2 Semr-Narve Evaluatron E gsum(E,h’-1) + D ?(I-1) a(i) 
I==1 

3 3 QSQ, Iteratrve E gsum(E,h’-1) + F 5 (h’-1+1) 1 El-’ 
111 

$4 QSQ, Recurerve F+E gsum(E,h’-l)+D’$ (1-l) E’ 
I==2 

3 5 Henschcn-Naqvl Does not apply 

3 6 Prolog 

37APhx 

Does not terminate 

E gsum(E,h’-1) + (l/E)‘-l” (D 5 (1-l) E’ gsum(E,h-i)) 
I==1 

+ E” (F~(I-1) (l/E)’ gsum(l/E,h-1)) 
G-1 

S 8 Krfer-Lormaklc E gsum(E,h’-1) + D~(I-1) a(l) 
1-l 

9 9 Magrc Sets E gsum(E,h’-1) + D fi(I-1) a(i) 
111 

3 10 Countmg Does not apply 
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Query 4 (Same Generstion.bl) 

In the following expressions, h ‘,P dOcpn - mm(h ‘ap,h ‘,&, and h,, bW,, - min(h,Phdor,J 

4 1 Naive cvaluatton 

‘JGp2/m 1 E/u T/u2(om 1 Fdorn ii+- @,, Edown) 
i-1 

4 3 QSQ, Itetatavc 

(h ‘.p down +l) Fjrot + 

T .,2/1atl F,, 3&- (h’,,~ro-1+1) Ej + 
i-1 

(h ‘sp down -l+l) E&.gsum(&.,,,,i-1) + 

4 4 QSQ, Recuratve 

F,, &sum(&,,h ‘.p-l) +E,, tw4Lp,h ‘.p-l) ‘JJ., 2 f I& 1 F/M + 

T sp2 trot 1 E/rot Tjwdoa 1 Deiotm 2 dor- EiP wm(E,,h Lp-l) EL + 
1-l 

T up2/1at1 %at T/m.dom 1 Fdotm 2 drrn (E,, &own)* 
1-l 

4 5 Henschen-Naqvc 

F,, gsum(Elph ‘sp-l) + 

UC, ‘bp2 /Iat 1 Ffrot + Kp2 flat I E/M %at2 doral Fdom E:p gS’d%on, l-l)) + 

T up2 /lot 1 Qat T/1.t2dows 1 Fdowm (Es, &non) 

4 6 Prolog 

twm(Fsp,h Lp- 1) +F., gsum(F.pJGp-l) Cp2 w 1 F/U + 

‘&z/w F /Iat Tfrotz doml i?- F$ gsum(Flp,h Lp--l) Ff,, + 
1=1 

‘Lpnfrsstl E/u T/uzdo.v.t Fdorm O&p km) 
111 
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/ 7APJ.m 

Fwgsum(E.p~h’.p-l) +E,,gsum(%,h’.,-1) T,p~i~d l F/M + 

‘&2/u 1 ha Twnrorr 1 D&m i?- EiP gsum(E.,h ‘.p-l) E!,, + 

i-1 

T sp211.t 1 E/rat T/1.t2~mm 1 Fd,, I?- @.p EdJ 
i-l 

4 8 Klfer-Loztnskri 

/ g Magic Set43 

F, gsu4Lp,h ‘.p-l) +E,,sum(E.p,h :,-I) T,, 2.f ~,,t 1 F/U + 

T l p2/1.t 1 E/r& T/uPL~~ 1 Ddms 2 ‘*rg Eip wum(E.,h k-1) EL. + 

Cl 

/ 10 Countrng 

F, gsum(E,h Lp-l) + 
‘Lp2/1d 1 F/U (l+E.+m4Q X,-l)) + 

fFd- Lp2/~at1E/rat T/~,miorrlDdor~ (Esp &orm~ + 
b-1 

T sp2/1.t1 E/u T/rtstzroa 1 Fdmss ii- &,.&o,) 

i=l 
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Appendix 2: The CUW~S 

A.M. Tree A.D?. Inverted traa 
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ns, tsar. AIU 

MN, C 

mo-’ 

ns, as* Ata 
M-- 

’ nn,c 

A. tb. Tree 



Sg.bf. tree. 1 - 1 Sg.bf. Cylinder. T * 1 
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So.bf. Cylinder, 


