
An Amateur’s Introduction

to

Recursive Query Processing Strategies

Francots Banctlhon (1)
Raghu Ramakrrshnan (1,2)

1 MCC
9430 Research Blvd
Austin, Texas 78759

2 Umverslty of Texas at Austin
Austin, Texas 78712

ABSTRACT

This paper surveys and compares various strategies for processmg logic queries m rela-
tional databases The survey and comparison 1s hmlted to the case of Horn Clauses with
evaluable predicates but wrthout function symbols The paper 1s organized m three parts In
the first part, we introduce the mam concepts and defimtrons In the second, we describe
the vanous strategies For each strategy, we give Its mam charactenstms, Its apphcatron
range and a detailed descnptron We also give an example of a query evaluatron The third
part of the paper compares the strategies on performance grounds We first present a set of
sample rules and queries which are used for the performance compansons, and then we
characterize the data Finally, we give an analytrcal solution for each query/rule system
Cost curves are plotted for specific configurations of the data

1. Introduction

The database commumty has recently mamfested a
strong interest m the problem of evaluating “logic
queries” agamst relational databases Thus interest

1s motrvated by two convergmg trends (1) the
desire to integrate database technology and
artrficral mtelhgence technology 1 e , to extend

database systems, to provrde them with the func-

tionality of expert systems thus creating

“knowledge base systems” and (11) the desrre to

PermIssion to copy wlthout fee all or part of this matcnal 1s granted
provided that the copies are not made or dlstrlbuted for direct
commercial advantage, the ACM copyrtght notice and the tttle of the
pubhcatlon and its date appear, and nottce IS gtven that copymg IS by
pe.rmlsslon of the Assoclatlon for Computmg Machmery To copy
otherwlse, or to repubhsh, requtres a fee and/or specific permission

0 1986 ACM 0-89791-191-1/86/0500/0016 $00 75

integrate logic programming technology and data-
base technology 1 e , to extend the power of the
interface to the database system to that of a gen-
eral purpose language The second goal 1s of a
somewhat different nature and has found m its
ranks proponents of oblect onented, functional and
rmperatlve as well as logrc based programming

languages The logic programmmg camp 1s relying
on the fact that logic programmmg and relational

calculus have the same underlying mathematrcal
model, namely first order logic

Of course, database researchers already know how
to evaluate logic queries the view mechamsm, as
offered by most relational systems, is a form of
support of a restricted set of logic queries But
those logic queries are restncted to be non-
recursrve and the problem of effrclently supportmg
recursrve queries is still open

In the past five years, followmg the proneenng
work by Chang, Shapiro and McKay, and Hen-
schen and Naqvr, numerous strategies have been

16

proposed to deal with recursslon m loge quenes

The posltlve side of this work 1s that there are a
lot of algonthms offered to solve the problem The
negative side 1s that we do not know how to make

a choice of an algorithm It seems reasonable to
say that all these strategies can only be compared

on three grounds functlonahty (1 e , apphcatlon
domam), performance and ease of lmplementatlon
However, each of these algonthms IS described at a
different level of detail, and It 1s sometlmes dlfflcult
to understand their differences In fact, we shall
clam later m this paper that some of them are
mdeed ldentlcal Each comes with httle or no per-
formance analysis, and the apphcatlon domam 1s
not always easy to ldentlfy We try m this paper
to evaluate these algorithms with respect to these
three cnterla We describe all the algonthms at
the same level of detail and demonstrate their
behavior on common examples This IS not always
easy to do since some of them are fairly well for-
mahzed while others are merely sketched as an
idea

For each one of them, we state m simple terms the
apphcatlon domain Finally, we eve a first simple
comparison of the performance of these algonthms
Choosing a simple set of typical queries, a simple
characterlzatlon of the data and a simple cost func-
tlon, we give an analytlcal evaluation of the cost of

each strategy The results gve a first mslght mto
the respective value of all the proposed strategies

The rest of the paper IS organized as follows In
section 2 we present our defimtlons and notations,
and mtroduce the mam ideas In sectlon 3 we
present the mam features of the strategies, and
describe each one mdlvldually, and finally, m sec-
tion 4, we present the performance evaluation

methodology and results

2. Logic Databases

2.1. An Example

Let us start by dlscussmg mformally an example
Here IS what we call a “logic database”

parent(cam,adam)
parent(abel,adam)
parent(cain,eve)

parent(abel,eve)
parent(sem,abel)
ancestor(X,Y) - ancestor(X,Z),ancestor(Z,Y)
ancestor(X,Y) - parent(X,Y)
generatlon(adam,l)
generatlon(X,I) - generatlon(Y, J),

parent(X,Y), J=I-1
generat:on(X,I) - generatlon(Y, J),

parent(Y,X), J=I+l

Note that this 1s a purely syntactic obJect In this
database, we have a set of predicate or relation
names (parent, ancestor and generation), a set of
arlthmetlc predicates (I=J+l, I=J-1) and a set of

constants (adam, eve, cam, sem and abel) Finally,
we have a set of variables (X,Y and Z) The data-
base consists of a set of sentences ending with a
penod “parent(cam,adam)” IS a fact, and
“ancestor(X,Y) - parent(X,Y)” is a rule

Let us now associate a meaning mth the database
We first associate with each constant an object
from the real world thus, with “adam” we assocl-
ate the mdlvldual whose name 1s “adam” Then,
we associate with each anthmetlc predicate name
the correspondmg anthmetlc operator Then we
can Interpret mtmtlvely each fact and each rule
For Instance we interpret “parent(cam,adam)” by
saying that the predicate parent 1s true for the cou-
ple (cam,adam), and we mterpret the rule

ancestor(X,Y) - ancestor(X,Z), ancestor(Z,Y)

by saymg that If there are three obJects X, Y and
Z such that ancestor(X,Z) 1s true and ancestor(Z,Y)
1s true then ancestor(X,Z) 1s true

This leads to an mterpretatlon which associates
with each predicate a set of tuples For Instance
with the predicate ancestor we associate the
interpretation
(cam,eve), (b 1 ‘(iamrdam)’

(abel,adam),
a e ,eve , sem,abel), (sem,adam),

(sem,eve)}, and with the predicate generation we
associate the mterpretatlon {(adam,l), (eve,l),
(cam,2), (abel,l), (sem,3)}

The problem 1s to answer queries, given the logic
database For mstance given a query of the form
generatlon(sem,?) or ancestor(?,adam), how do we

find the answer generatlon(sem,3) and
{ancestor(cam,adam), ancestor(abel,adam),
ancestor(sem,adam)}?

Let us now formahze all the notions encountered m
this example and define a logic database We first

define it syntactlcally, then we attach an mterpre-
tatlon to this syntax

2.2. syntax of 8 Logic Database

We first define four sets of names varrable names,
constant names, predrcate or relataon names and
evaluable predrcate names

We adopt the Prolog conventlon of denotmg van-
ables by strings of characters starting with an
upper case letter and constants by strings of char-
acters startmg with a lower case letter or mtegers
For mstance Xl, Father and Y are vanables, while

17

John, salary and 345 a~ constants

We use identifiers startmg with lower case letters
for predicates names and relation names (evaluable
and non-evaluable)

We use the term relation (from database termmol-
ogy) and pre&cate (from logic termmology)
indifferently to represent the same object We shall
however interpret them differently a relation will
be interpreted by a set of tuples and a predicate by
a true/false function There IS a fixed anty associ-
ated with each relation/predicate

The set of evaluable predicate names IS a subset of
the set of predicate names We will not be con-
cerned with their syntactic recognition, m the
examples it will be clear from the name we use
The mam examples of evaluable predicate names
are arithmetic predicates For mstance, sum,
difference and greater-than are examples of evalu-
able predicates of arrty 3, 3 and 2 respectively,
while parent and ancestor are non-evaluable predi-
cates of anty 2

A lateral is of the form p(tl,tl, ,tn) where p is a

predicate name of anty n and each ti IS a constant
or a variable For mstance father(johnX),
ancestor(Y,Z), id(john,25,austm) and sum(X,Y,Z)
are hterals An mstantrated literal is one which
does not contam any variables For instance
id(john,doe,25,austm) is an mstantrated literal,

while father(john,Father) IS not

We allow ourselves to write evaluable hterals using

functions and equality for the purpose of clanty
For mstance, Z = X+Y denotes sum(X,Y,Z), I =
J+l denotes sum(J,l,I), and X > 0 denotes

greater-than(X,O)

If p(tl,t2, ,tn) is a literal, we call (tl,t2, ,tn) a

tup1e

A rule is a statement of the form

P - ql,q2, ,qn

where p and the qi’s are hterals such that the

predicate name m p is a non-evaluable predicate
p is called the head of the rule, and each of the 91’s
is called a god The conjunction of the qi’s IS the

body of the rule We have adopted the Prolog

notation of representmg imphcation by ’ -’ and

conjunction by ‘,’ For instance

uncle(johnX) - brother(X,Y), parent(john,‘r)

1s a rule with head “uncle(johnX)” and body
“brother(X,Y), parent(john,Y)”

A ground clause is a rule m which the body is
empty A fact is a ground clause which contams
no variables For instance

loves(X,john)
loves(mary,susan)

are ground clauses, but only the second of these is
a fact

A database is a set of rules, note that this set is
not ordered Given a database, we can partition it

mto a set of facts and the set of all other rules
The set of facts 1s called the eztensgonal database,
and the set of all other rules is called the mten-
saonal database

2.2. Interpretation of a Logic Database

Up to now our defimtions have been purely syntac-
tical Let us now give an mterpretation of a da&
base This will be done by associating with each
relation name m the database a set of mstantiated
tuples We first assume that with each evaluable
predicate p is associated a set natural(p) of mstan-
tiated tuples which we call its natural mterpretu-
tron For mstance, with the predicate 8um M sss+
elated an mfimte set of all the btuples (x,y,z) of
integers such that the sum of x and y is z In gen-
eral the natural mterpretation of an evaluable
predicate is mfimte

Given a database, an mterpretatcon of this da&
base is a mappmg which associates with each rela-
tion name a set of mstantlated tuples

A model of a database is an mterpretation I such

that

(1) for each evaluable predicate p,
I(p) = natural(p), and,

(2) for any rule,

p(t) .- ql(tlMW), ,w(tn)

for any mstantlatlon o of the varrables of the rule
such that o(ti) IS m the interpretation of qi for all 1

then u(t) is is m the mterpretation of p

This IS simply a way of saying that, m a model, if
the right hand side is true then the left hand side
is also true This implies that for every fact p(x)

of the database the tuple x belongs to the mterpre-

tation of p

Of course, for a given database there are many
models The nice property of Horn Clauses 1s that

among all these models there is a mammal one
(munmal m the sense of set mclusion), which 1s the
one we choose as the model of the database van
Emden and Kowalski 761 Therefore from now on,
when we talk about the model or the mterpretation
of a database, we mean its mmlmal model

Notice that because of the presence of evaluable
arithmetic predicates the minimal model is, m gen-

18

eral, not fimte

Let p be an n-ary predicate An adornment of p 1s
a sequence a of length n of b’s and f’s [Ullman 851
For mstance bbf 1s an adornment of a ternary
pre&cate, and fbff 1s an adornment of predrcate of
anty 4 An adornment IS to be Interpreted mtm-

trvely as follows the r-th vanable of p 1s bound
(respectrvely free) if the I-th element of a 1s b
(respectrvely f) Let p(xl,x2, ,xn) be a literal, an
adornment ala2 an of that hteral 1s an adornment
of p such that

(1) If x1 rs a constant then ar IS b,

(ii) If xi = XJ then 81 = aJ

We denote adornments by superscripts A query
form IS an adorned predicate Examples of query
forms are father*’ , rdb’lb

A query rs a query form and an mstantlatlon of
the bound vanables We denote It by an adorned
hteral where all the bound posltlons are filled wrth
the correspondmg constants and the free posltlons
are filled by dlstmct free variables Therefore
father*’ (John,X) and ld*f’* (John,X,Y,25) are
quenes The dlstmctlon between quenes and query

forms are that query forms are actually complied,
and at run-trme then parameters will be mstan-
tlated Notice that father(X,X) 1s not a query form
in thrs formalism

The answer to a query q(t) 1s the set
{da(t))] o IS an mstantlatlon of t, and

a(t) 1s m the mterpretatlon of q}

2.4. Structuring and Representing the Data-
base

A predmate whrch only appears m the mtenslonal
database 1s a dcrrved predicate A predicate whrch
appears only m the extensional database or m the

body of a rule rs a base predicate

For performance reasons, it 1s good to decompose
the database into a set of pure base predicates
(which can then be stored using a standard DBMS)
and a set of pure denved predmates Fortunately,
such a decomposrtlon 1s always possrble, because

every database can be rewntten as an “eqmvalent”

database contaming only base and demed predr-
c&es. By eqmvalent, we mean that all the predl-

cate names of the ongnal database appear m the

modified database and have the same mterpreta-
tloll

We obtcun this eqmvalent database m the followmg
way: consider any p&mate p that rs nexther base
nor derrved By defiaitron, we have a set of facts
for p, and p appears on the left of some rules So
we simply mtroduce a new predrcate p,ext and do

the following

(1) replace p by p-ext m each fact of p,
(2) add a new rule of the form

P(XWJ, ,a) - p-exWJ2, ,fi)
where n IS the anty of p

Example

father(a,b)
parent(b,c)
grandfather(b,d)

grandfather(X,Y) - father(X,Z),parent(Z,Y)

becomes

father(a,b)
parent(b,c)
grandfather-ext(b,d)
grandfather(X,Y) - father(X,Z),parent(Z,Y)
grandfather(X,Y) - grandfather-ext(X,Y)

Most authors have chosen to descnbe a set of rules
through some kmd of graph formalism Predmate
Connectron Graphs, as presented m [McKay and
Shapuo 811, represent the relatronshlp between

rules and predicates Rule/goal graphs, as
presented m [Ullman 851, carry more mformatlon
because predicates and rules are adorned by then
vsnable bmdmgs We have chosen here to keep the
rule/goal graph termmology while usmg unadorned
predicates

The rule/goal graph has two sets of nodes square
nodes which are associated with predicates, and
oval nodes which are associated with rules If
there IS a rule of the form

r P - ~1~~2, ,pn
m the mtenslonal database, then there 1s an arc
gomg from node r to node p, and for each predl-
cate pl there 1s an arc from node pl to node r

Here 1s an example of an mtenslonal database For
the sake of slmphclty, we have omitted the van-

ables m the rules

rl Pl *- P3,P4
r2 P2 - P4,P5
r3 P3 - PQ4,P3
r4 P4 - P5,P3
r5 P3 - PQ
r6 p5 .- p5,p7
r7 P5 *- ps
r8 p7 :- p8,p8

The rule/goal graph rs

19

1s lmear, wMe the rule

ancestor(X,Y) - ancestor(X,Z),ancestor(Z,Y)

1s not

These defimtlons are fairly simple m the single rule
context They are a little more involved m the con-
text of a set of rules where properties have to be
attached to predicates instead of rules Consider
the following database

p(X,Y) - bl(X,Z),q(Z,Y)
@,Y) - ~(WM2@,Y

Neither of the rules are recursive according to the
above defimtlon, while clearly both premcates p
and q are recursive

We now come to the general defimtlons of recur-
sion m the multirule context Let p and q be two
predicates We say that p derrves q (denoted p +
q) If It occurs m the body of a rule whose head
predicate 1s q We define -++ to be the transltlve
closure (not the reflexive transitive closure) of +
A predicate p 1s sad to be recurme If p -++ p
Two predicates p and q are mutually recumve If p
++ q and q d+ p It can be easily shown that
mutual recursion 1s an eqmvalence relation on the
set of recursive predicates Therefore the set of
recursive predicates can be decomposed mto dls-
Jomt blocs of mutually recursive predicates

Given a set of rules, we say that the rule

P - pl,p2, ,pn 1s recurerve lff there exists pl m
the body of the rule which 1s mutually recursive to

P

A recursive rule p - pl,p2, ,pn 1s lanear If there 1s
one and only one pl m the body of the rule which

1s mutually recursive to p A set of rules 1s fgnear

If every recursive rule m it 1s linear For mstance,

the following system IS linear

I5 P2 iI Pl

2.6. Recursion

Recursion 1s often dlscussed m the single rule con-
text For the purpose of clarity and slmphclty, let
us first give some temporary defimtlons m this con-
text We say that a rule 1s recursive If It 1s of the
form

p(t) - ,p(t’),

For Instance the rule

ancestor(X,Y) - ancestor(X,Z),parent(Z,Y)

is recursive

An interesting subcase 1s that of linear rules
Lmear rules play an important role because (1)
there 1s a belief that most “real life” recursive
rules are mdeed linear, and (11) algorithms have
been developed to handle them efflclently

We say that a rule 1s linear If It 1s recursive, and
the recursive predicate appears once and only once
on the right This property 1s sometime referred to

as regularity [Chang 811 We believe the term
linear to be more appropnate, and we thmk that
regularity should be kept for another concept
(which 1s not defined here)

For instance the rule

%(XY) - P(X,~)>P(Y,Y%g(XK~)

rl P(X,Y) - PlKZ),q(Z,Y)
r2 q(XN - P(X,Z)>P2(Z,Y)
r3 P(X,Y) - b3KY)
r4 pl(X,Y) - bl(X,Z),pl(Z,Y)
r5 pl(X,Y) - b4(X,Y)
r6 pS(X,Y) - bB(X,Z),pB(Z,Y)
r7 pL(X,Y) - b5(X,Y)

The set of recursive predicates 1s {p,q,pl,p2}, the

set of base predicates 1s {bl,b2,b3,b4,b5} The
blocks of mutually recursive predicates are
{[p,9],[pl],[p2]} The recursive rules are rl, r2, r4
and 16, and the system 1s linear even though rules
rl and r2 both have two recursive premcates on
their nght

We say that two recursive rules are mutually
recursive lff the predicates m their heads are mutu-

20

ally recursive This defines an equivalence relation
among the recursive rules

Thus mutual recursion defines an equivalence class
among recursive predicates and among the recur-
sive rules, [Bancllhon 851 Therefore, it groups
together all predicates which are mutually recur-
sive to one another, 1 e which must be evaluated as
a whole It also groups together all the rules which

participate m evaluating those blocks of predicates
Let us now see how this can be represented m the
rule/goal graph We define the reduced rule/goal
graph as follows

Square nodes are sssoclated wth non-recursive
pre&cates or with blocks of mutually recursive
pre&cates and, oval nodes are associated with
non-recursive rules or with blocks of mutually
recursive rules The graph essentially describes the
non-recursive part of the database by grouping
together all the predicates which are mutually
recursive to one another and lsolatmg the recursive
parts For every non-recursive rule of the form r
p - pl,p2, ,pn, there 1s an arc going from node r
to node p (if p 1s non-recursive), or to node [p],
which 1s the node representmg the set of predicates

mutually recursive to p (If p 1s recursive) For each
non-recursive predicate pi, there 1s an arc from the
node pl to the node r, and for each recursive predl-
cate PJ there is an arc gomg from [PJ] the node
representmg the set of predicates mutually recur-
sive to pJ

Fmally, each bloc of recursive rules [r] 1s uniquely
associated to a set of mutually recursive predicates
[p], and we draw an arc from [p] to [r] and an arc
from [r] to [p] We also draw an arc from q (If q 1s

non-recursive) or from [ql (lf q is recursive) to [r] if
there 1s a rule m [r] wluch has q m its body This
groupmg of recursive predicates m blocks of
strongly connected components 15 presented m
morns et al 861

Here 1s the representation of the previous database

a ~7 -p8,p9

A P2 c!l Pl

2.6. Safety of Queries

Given a query q m a database
safe m D If the answer to q

D, we say that q 1s
1s fimte Obviously

unsafe quenes are highly undesirable

Sources of unsafeness are of two kmds
(1) the evaluable anthmetlc predicates are mter-

preted by mfimte tables Therefore they are unsafe

by definition For mstance the query greater-
than(27,X) 1s unsafe

(11) rules with free vanables m the head which do
not appear m the body are a source of unsafeness
m the presence of evaluable anthmetlc predicates
(the anthmetlc predicates provide an mfimte
underlying domam, and the vanable from the head
of the rule which does not appear on the nght
ranges over that domam) Thus for mstance, m
the system

good-salary(X) - X > 100000
hke(X,Y) - mce(X)
mce(John)

the query hke(John,X)? 1s unsafe because, m the

mmlmal model of the database hke(John,x) 1s true
for every mteger x Note that if the first rule was
not there, hke(John,X)? would be safe and have
answer hke(John,John)

The problem of safety has received a lot of atten-
tion recently [Afratl et al 86, Ullman 85, Zamolo

21

86) We shall not survey those results here but
merely present some simple sufficient syntactic

condltlons to guarantee safety A rule IS range tea-

tncted If every variable of the head appears some-
where m the body Thus m this system

rl loves(X,Y) - nice(X)
r2 loves(X,Y) - mce(X),human(Y)

rl, which corresponds to “mce people love every-
thmg”, 1s not range restricted whle r2, which
corresponds to “nice people love all humans”, 1s
Obviously, every ground rule which 1s not a fact 1s
not range restncted For instance

loves(john,X)

1s not range restncted

A set of rules IS range restricted If every rule m
this set IS range restricted

It 1s known (Relter 781 that If each evaluable predl-
cate has a finite natural mterpretatlon, and if the
set of rules B range restncted, then every query
defined over this set of rules 1s safe This apphes
obviously to the case where there are no evaluable
predicates However, lf there are evaluable predl-

cates with infinite natural mterpretatlons, safety 1s

no longer assured We now present a simple
suficlent condltlon for safety m the presence of
such predicates

A rule 1s strongly safe B (1) it 1s range restricted,
and (2) every variable m an evaluable predicate
term also appears m at least one base predicate

For example, the rule

well-pad(X) - has-salary(X,Y), Y > 1OOK

1s strongly safe, whereas

great-salary(X) - X > 1OOK

15 not strongly safe

A set of rules 1s strongly safe If every rule m this
set Is strongly safe

Any query defined over a set of strongly safe rules
1s safe However, while this 1s a sufficient condltlon,
It 1s not necessary We can develop better condl-

tlons for testing safety, or leave It to the user to

ensure that ha quenes are safe

2.7. Effective computability.

Safety, m general, does not guarantee that the
query can be effectively computed Consider for
instance

pl(l,X,Y) - X>Y

p2(X,Y,2) - X<Y

P(X,Y) - Pl(X,Z,Z),P2(Z,Z,Y)

The query p(X,Y) 1s safe (the answer 1s {p(l,2)}),
but there 1s no safe computation for It

However, strongly safe rules are guaranteed to be
safe and safely computable

In fact, while we might often be wllhng to let the
user ensure that his quenes are safe, It IS desirable
to ensure that the query can be computed without
matenahzmg “mfimte” mtermedlate results We

now present a su&lent condltlon for ensurmg this

We first need some mformatlon about the way
anthmetlc predicates can propagate bmdmgs So
we characterize each anthmetlc predicate by a set
of sajety dependenctee [Zamolo 861 A safety
dependency 1s a couple (X -+ Y) where X IS a set of
attributes and Y 1s a set of attributes It IS to be
interpreted mtmtlvely as “If the values of the X
attnbutes are fixed then there 1s a fimte number of
values of the Y attnbutes associated with them”

Therefore, while their semantics 1s different from
that of functional dependencies, they behave m the

same fashion (and have the same axlomatlzatlon)
Of course, we assume that the natural mterpreta-
tlon of the evaluable predicate satisfies the set of
safety dependencies

For instance, the ternary anthmetlc predicate
“sum” has the safety dependencies

y; + [;I

(213) 7 (1)

while the anthmetlc predicate “greater than” has
only trivial safety dependencies

Now consider a rule, and define each vanable m
the body to be secure d it appears m a non-
evaluable predicate m the body or if It appears m
posltlon 1 m an evaluable predicate p and there IS a
subset I of the variables of p which are secure and
I +{1} Note that the defimtlon 1s recursive

A rule 1s bottom-up ewahable d

1 it 1s range restncted, and

2 every variable m the body 1s secure

For instance

p(X,Y) - Y=X+1, X=Yl+Y2, p(Yl,Y2)

1s bottom-up evaluable because (1) Yl and Y2 are
secure (they appear m p which 1s non-evaluable),
(u) m X=Yl+Y2, the safety dependency {Yl,Y2}
-+ {X} holds, therefore X IS secure, and (III) m
Y=X+l, the safety dependency {X} -+ {Y} holds,

22

therefore Y is secure

On the contrary

PKY) - n-Y19 q(Yl,Y)

is not bottom-up evaluable because X IS not secure

A set of rules is bottom-up evaluable if every rule
m this set is bottom-up evaluable

Any computation usmg only a set of bottom-up
evaluable rules can be carried out without maten-
ahzmg mfimte mtermediate results The computa-
tion proceeds m a strictly bottom-up manner, usmg
values for the body variables to produce values for
the head variables The bottom-up evaluabihty cn-
tenon ensures that the set of values for body van-
ables 1s fimte at each step However, there may be
an mfimte number of steps For example, if we
repeatedly apply the bottom-up evaluable rule
given above, at each step we have a finite number
of values (m this case, a unique value) for Yl and
Y2, and hence for X and Y However, we can apply
the rule an mfimte number of times, producing new
values for X and Y at each step

3. The Strategies

In the past five years, a large number of strategies
to deal with Horn rules have been presented m the
literature A strategy 1s defined by (1) an apphca-
tlon domain (1 e , a class of rules for which it
applies) and (11) an algorithm for replying to
queries given such a set of rules

In studying the strategies, we found that the
methods were described at different levels of detail
and usmg different formalisms, that they were
sometimes very difficult to understand (and some-
times were understood differently by subsequent
authors), that the apphcation domain was not
always very clearly defined, and that no perfor-
mance evaluation was given for any of the stra-
tegies, which left the choice of a given strategy
completely open when the application domain was
the same Finally, we found that some of the stra-
tegies were m fact the same

We thmk that the strategies should be compared
accordmg to the followmg criteria (1) size of the
apphcation domain, (the larger the better), (11) per-
formance of the strategy, (the faster the better)
and (m) ease of implementation (the simpler the
better) While the last criterion IS somehow subJec-
tive, the first two should be quantifiable In this
section, we give a complete description of our
understandmg of the strategies and of their apph-
cation domams, and we demonstrate each one of
them through an example As much as possible, we
have tried to use the same example, except for

some “speclahzed” strategies where we have picked
a specific example which exhibits its typical
behavior

3.1. Characteristics of the Strategies

3.1.1. Query Evshation vs. Query Opthi-
58tion

Let us first &stmgmsh between two approaches
one first class of strategies consists of an actual
query evaluation algorithm, 1 e a program which,
given a query and a database, will produce the
answer to the query We will call these method8
Representatives of this class are Henechen-Naqur,
Query/Subquery (QSQ) or Extensaon Table,
APEX, Prolog, Narue Eualuat:on and Semt-Narue

Eualuatron

The strategies m the second class assume an under-
lymg simple strategy (which is m fact naive or
semi-naive evaluation) and optimize the rules to
make their evaluation more efficient They can all
be described as term rewrctcng systems These
include Aho-Ullman, Countrng and Reuer8e Count-
rng, h4agrc Set8 and Klfer-Lozanskrr

Note that this dlstmction is somehow arbitrary
each of the optirmzation strategies could be
described as a method (when adding to it naive or
semi-naive evaluation) However, this decomposi-
tion has two advantages (1) It mrght make sense
from an implementation point of view to realize
the optimization strategies as term rewntmg sys
terns on top of an underlying simpler method such
as naive evaluation, and (11) from a pedagogical
standpoint, they are much easier to understand
this way, because presenting them as term rewnt-
mg systems indeed captures their essence

The subsequent characteristics only relate to pure
methods

3.1.2. Interpretation vs. Compilation

A method can be waterpreted or compcled The

notion is somehow fuzzy, and difficult to character-
ize formally We say that the strategy 1s compiled
if it consists of two phases (1) a compilation phase,
which accesses only the mtensional database, and
which generates an “obJect program” of some
form, and (11) an execution phase, which executes
the object program agamst the facts only A
second charactenstic of compiled methods is that
all the database query forms (1 e , the query forms
on base relations which are directly sent to the
DBMS) are generated during the compilation
phase This condition is very important, because it
allows the DBMS to precompile the the query

23

forms OtherwIse the database query forms are

repetitively compiled by the DBMS durmg the exe-
cution of the query, which 1s a time consummg
operation If these two condltlons do not hold, we
say that the strategy 1s mterpreted In this case,
no oblect code IS produced and there 1s a fixed pro-
gram, the “mterpreter”, which runs agamst the
query, the set of rules and the set of facts

3.1.8. Recursion vs. Iteration

A rule processmg strategy can be recursgve or
lteratrve It 1s iterative if the “target program” (m

case of a compiled approach) or the “mterpreter”

(m case of the interpreted approach) 1s lteratlve It
1s recursive if this program IS recursive, i e , uses a
stack as a control mechamsm Note that m the
Iterative methods, the data we deal with 1s stat+
tally determined For mstance, d we use temporary
relations to store mtermedlate results, there are a
finite number of such temporary relations On the
contrary, m recursive methods the number of tem-
porary relations mamtmned by the system 1s
unbounded

3.1.4. Potentially Relevant Facts

Let D be a database and q be a query A fact p(a)
IS relevant to the query lff there exists a derlvatlon

p(a) +* q(b) for some b m the answer set The
notion of relevant fact was Introduced m [Lozmskn
851, we use it here with a somewhat different mean-

mg If we know all the relevant facts m advance,
Instead of using the database to reply to the query,
we can use the relevant part of the database only,

thus cutting down on the set of facts to be pro-
cessed A w&rent set of relevant facts 1s a set of

facts such that replacing the database by this set
of facts gives the same answer to the query
Unfortunately, m general there does not exist a
unique mmlmal set of facts as the followmg exam-
ple shows

suspect(X) - long-bar(X)

suspect(X) - alien(X)

long-halr(antome)
ahen(antome)

Mmlmal sets of facts with respect to the query

suspect(X)? are {long-har(antome)} and

{ahen(antome)} The second unfortunate thmg
about relevant facts 1s that it 1s m general lmpossl-
ble to find all the relevant facts m advance wlthout
spendmg as much effort as m replying to the query
Thus, all methods have a way of finding a super-
set of relevant facts We call this set the set of
potentrally relevant facto A set of potentially
relevant facts 1s valad if It contams a sufficient set

of relevant facts An obvious but not very

interesting v&d set 1s the set of all facts of the
database

3.1.5. Top Down vs. Bottom Up

Consider the followmg set of rules and the query

ancestor(X,Y) - parent(X,Z), ancestor(Z,Y)
ancestor(X,Y) - parent(X,Y)
query(X) - ancestor(john,X)

We can view each of these rules as productions m a
grammar In this context, the database predicates

(parent m this example) appear as terminal sym-
bols, and the derived predicates (ancestor m this

example) appear as the non-terminal symbols
Fmally, to pursue the analogy, we shall take the
dlstmgulshed symbol to be query(X) Of course, we
know that the analogy does not hold totally, for
two ressons (1) the presence of variables and con-
stants m the hterals and (n) the lack of order
between the hterals of a rule (for mstance

“parent(X,Z), ancestor(Z,Y)” and “ancestor(Z,Y),
parent(X,Z)” have the same meanmg) But we shall
ignore these differences, and use the analogy mfor-
mally

Let us now consider the language generated by this
“grammar” It consists of

{parent(John,X),
parent(John,X),parent(X,Xl),
parent(john,X),parent(X,Xl),parent(Xl,X!i?),

This language has two interesting propertles (I) It
consists of first order sentences mvolvmg only base
predicates, 1 e , each word of this language can be

directly evaluated against the database, and (11) d
we evaluate each word of this language against the
database and take the union of all these results, we
get the answer to the query

There 1s a mmor problem here the language IS not

fimte, and we would have to evaluate an infinite
number of first order sentences To get out of this
dlfflculty, we use termmatlon condltlons which tell

us when to stop An example of such a termination

condltlon 1s if one word of the language evaluates
to the empty set, then all the subsequent words

will also evaluate to the empty set, so we can stop
generating new words Another example of a terml-
natlon condltlon 1s if a word evaluates to a set of
ttiples, and all these tuples are already m the
evaluation of the words precedmg it, then no new
tuple will ever be produced by the evaluation of
any subsequent word, thus we can stop at this

pomt

24

All query evaluation methods m fact do the follow-

w3

(1) generate the language, (11) while the language 1s
generated, evaluate all Its sentences and (m) at
each step, check for the termmatlon condltlon

Therefore, there are essentially two classes of
methods those which generate the language bot-
tom up, and those which generate the language
top-down The bottom-up strategies start from the
termmals (1 e , the base relations) and keep assem-
bhng them to produce non-termmals (1 e derived
relations) until they generate the dlstmgulshed
symbol (1 e , the query) The top-down strategies
start from the dlstmgulshed symbol (the query)
and keep expanding It by applying the rules to the
non-termmals (derived relations) As we shall see,
top-down strategies are often more efflclent because
they “know” which query 1s bemg solved, but they
are more complex Bottom up strategies are
simpler, but they compute a lot of useless results
because they do not know what query they are
evaluating

3.2. The Methods

We shall use the same example for most of the
methods The mtenslonal database and query are

rl ancestor(X,Y) - parent(X,Z),ancestor(Z,Y)
r2 ancestor(X,Y) - parent(X,Y)
r3 query(X) - ancestor(aa,X)

The extensional database w

parent(a,aa)
parent(a,ab)
parent(aa,aaa)

parent(aa,aab)
parent(aaa,aaaa)
parent(c,ca)

3.2.1. Naive Evaluation

Nave Evaluation 1s a bottom-up, compiled, Itera-
tlve strategy

Its apphcatlon domain 1s the set of bottom-up
evaluable rules

In a first phase, the rules which derive the query
are compiled mto an iterative program The compl-
latlon process uses the reduced rule/goal graph It
first selects all the rules which derive the query A
temporary relation 1s assigned to each denved
pre&cate m this set of rules A statement which
computes the value of the output predicate from
the value of the mput pre&cates 1s associated with
each rule node m the graph With each set of
mutually recunlve rules, there 1s associated a loop

which applies the rules m that set until no new

tuple 1s generated Each temporary relation 1s ml-
tlahzed to the empty set Then computation
proceeds from the base predicates capturing the
nodes of the graph

In this example, the rules which derive the query
are {rl, r2, r3}, and there are two temporary rela-
tlons ancestor and query The method consists m
applying r2 to parent, producing a new value for
ancestor, then applying rl to ancestor until no new
tuple 1s generated, then applying r3

The object program is

begin
mltlahze ancestor to the empty set,
evaluate (ancestor(X,Y) - parent(X,Y)),
msert the result m ancestor,
while “new tuples are generated” do

begin
evaluate (ancestor(X,Y) - parent(X,Z),

ancestor(Z,Y))

using the current value of ancestor,
insert the result m ancestor
end,

evaluate (query(X) - ancestor(aa$)),
insert the result m query
end

The execution of the program agamst the data goes

as follows

Step 1 Apply rl
The resulting state IS
ancestor = {(a,aa), (a,ab), (aa,aaa), (aa,aab),

(aaa,aaaa), (c,ca)}

wry = 0

Step 2 Apply r2
The followmg new tuples are generated m
ancestor {(a,aaa), (a,aab), (aa,aaaa)}
And the resultmg state 1s

ancestor = {(a,aa), (a,ab), (aa,aaa), (aa,aab),
(aaa,aaaa), (c,ca), (a,aaa), (a,aab), (aa,aaaa)}

query = 0
New tuples have been generated so we contmue

Step 3 Apply r2
The followmg tuples are generated

{(a+=), (a,aab), (aa,aaaa), (a,aaaa)}
The new state 1s
ancestor = {(a+), (a,ab), (aa,aaa), (aa,aab),

(=w-4, (d, (w-h (aeb),
(=w4, (w-4)

query = 0
Because (a,aaaa) 1s new, we contmue

Step 4 Apply r2

25

The followmg tuples are generated

{(a,=4 (a,=b), bwaaa), h-41
Because there are no new tuples, the state
doea not change and we move to r3

Step 5 Apply r3
The followmg tuples are produced m query
{(aa,aaa), (aa,aaaa)} and the new state 1s
ancestor = {(a&, (a,ab), (aa,aaa), (aa,aab),

(-v=4, (va), (a,=4 (a,=bh
(w-4, b-4)

query = {(aa,aaa), (aa,aaaa)}
The algorithm terminates

In this example, we note the followmg problems (1)
the entire relation IS evaluated, 1 e , the set of

potentially relevant facts IS the set of facts of the
base predicates which denve the query, and (11)
step 3 completely duplicates step 2

Nave evaluation 1s the most widely described
method m the hterature It has been presented m a
number of papers under different forms The mfer-
ence engine of SNIP, presented m [Shapiro and
McKay 80, Shapiro et al 82, McKay and Shapiro

811, 1s m fact an mterpreted version of nave

evaluation The method described m [Chang 811,
while based on a very mterestmg language para-
digm and restncted to lmear systems, 1s a complied
version of naive evaluation based on relatlonal
algebra The method m [Marque-Pucheu 83,
Marque-Pucheu et al 841 1s a complied version of

naive evaluation usmg a different algebra of rela-
tlons The method m [Bayer 851 1s another descnp-
tlon of nave evaluation The framework presented

m [Delobel 861 also uses nave evaluation as Its
inference strategy SNIP IS, to our knowledge, the
only exlstmg lmplementatlon m the general csse

3.2.2. Semi-Naive Evaluation

Senu-naive evaluation IS a bottom-up, complied
and iterative strategy

Its apphcatlon range IS the set of bottom-up evalu-

able rules

This method uses the same approach as naive
evaluation, but tries to cut down on the number of

duphcatlons It behaves exactly as nave evalua-

tion, except for the loop mechanism where It tnes
to be smarter

Let us first try to give an idea of the method as an
extension of nave evaluation Let p be a recursive
predicate, consider a recursive rule having p as a
head predicate and let us wnte this rule

P - +(pl,~% ,pn,qW4 m4

where # 1s a first order formula, pl,p2, ,pn are

mutually recursive to p, and ql,q2, ,qm are base or

derived predicates, which are not mutually recur

sive to p

In the naive evaluation strategy, all the ql’s are
fully evaluated when we start computmg p and the
pi’s On the other hand p and the pi’s are all
evaluated mslde the same loop (together with the
rest of predicates mutually recursive to p)

Let pi be the value of the predicate PJ at the I-th
lteratlon of the loop At this lteratlon, we compute

4(~1(4,~2(1), ,pn(d,qW, n-4

During that same lteratlon each PJ receives a set of
new tuples Let us call this new set dpJ(l) Thus the

value of PJ at the begmmng of step (l+l) 1s pi i-

dpJ(i) (where + denotes union)

At step (i+l) we evaluate

4((pl(l)+dpW, ,b(l)+dpn(l)),ql, tqm),

which, of course, recomputes the previous expres-
sion (because 4 1s monotomc)

The ideal however, 1s to compute only the new

tuples 1 e the expression

d4(pl(l),W(l), ,pn(l),dpn(l),ql, ,sm) =

4((pl(l)+dpW hn(l)+dpn(lhq19 m-d
- 4(pW, dlhql, ,qm)

The basic prmclple of the semi-nave method IS the
evaluation of the dlfferentml of 4 instead of the
entire 4 at each step The problem 1s to come up
with a first order expresslon for d4, which does not

contam any difference operator Let us assume
there 1s such an expression, and describe the algo-
rithm With each recursive predicate p are assocl-

ated four temporary relations p before, p after,
dp before and dp after The obJect program for a
loop 1s as follows

while “the state changes” do

begin
for all mutually recursive predicates p do

begin
mltlahze dp after to the empty set,
uutmhze p after to p before,
end

for each mutually recursive rule do

begin
evaluate d#(pl,dpl, ,pn,dpn,ql, ,qn)

usmg the current values of
pl before for pl and of dpl before for dpl,
add the resultmg tuples to dp after,
add the resulting tuples to p after
end

end

All we have to do now IS provide a way to generate

26

d4 from #I The problem 1s not solved m &s
entirety and only a number of transformations are

known In [Bancdhon 851, some of them are given
m terms of relational algebra

It should be noted however, that for the method to
work, the only property we have to guarantee 1s
that

W+W,) - 4(pl, 1 G Wpl,dpL)
G #bl+dpl,)

Clearly, the closer ddhGb1,) 1s to
(4(pl+dpl,) - d(pl,)), the better the optlmlza-
tlon 1s In the worse case, where we use I$ for d#,
sem-naive evaluation behaves as naive evaluation
Here are some simple examples of rewnte rules

if d(PA) = P(xnqw),
then W(p,dp,q) = dp(X,Y),q(Y,Z)

More generally when 4 1s hnear m p, the expression
for dd ~3 obtamed by replacing p by dp

if 9qPLP2) = Pl(W,P2W,Z),
then Wp,dp) = plOC,Y),W(Y,Z)

Note that this 1s not an exact dlfferentlal but a rea-

sonable approxlmatlon

The idea of semi-naive evaluation underhes many
papers A complete descnptlon of the method
based on relational algebra 1s given m [Bancllhon
851 The idea 1s also present m [Bayer 851

It should also be pomted out that, m the particular
case of linear rules, because the dlfferentlal of 4(p)
IS simply +(dp), it 18 sufficient to have an mference
engine which only uses the new tuples Therefore
many methods which are restncted to hnear rules

do indeed use semi-naive evaluation Note also that

when the rules are not linear, applying naive
evaluation only to the “new tuples” 1s an mcorrect

method (m the sense that It does not produce the

whole answer to the query) This can be easily
checked on the recursive rule

ancestor(X,Y) - ancestor(X,Z),ancestor(Z,Y)

In this case, if we only feed the new tuples at the

next stage, the relation which we compute consists
of the ancestors whose &stance to one another 1s a
power of two

To our knowledge, outside of the special case of

linear rules, the method as a whole has not been
implemented

3.2.3. Iterative Query/Subquery

Iterative Query/Subquery (QSQI) 1s an interpreted,
top-down strategy

Its apphcatlon domam 1s the set of range restncted
rules wlthout evaluable predicates

The method associates a temporary relation with
every relation which derives the query, but the
computation of the predicates denvmg the query IS
done at run time QSQI also stores a set of quenes
which are currently bemg evaluated When several

queries correspond to the same query form, QSQI
stores and executes them as a single oblect For
mstance, if we have the queries p(a,X) and query

p(b,X), we can view this as query p({a,b},X) We
call such an obJect a generalczed query The state

memorized by the algorithm 1s a couple <Q,R>,
where Q 1s a set of generahzed queries, and R 1s a
set of derived relations, together with their current
values

The iterative mterpreter 1s as follows

Imtial state IS < {query(X)} ,{ } >
while the state changes do

for all generalized quenes m Q do
for all rules whose head matches the
generahzed query do

begin

umfy rule with the generahzed query,
(1 e propagate the constants)
this generates new generalized quenes
for each derived predicate m the body
by looking up the base relations,
generate new tuples, (by replacmg
each base predicate on the right by
Its value and every denved predicates
by Its current temporary value)
add these new tuples to R,
add these new generahzed queries to Q

end

Let us now run this interpreter agamst our exam-
ple logic database

The uutml state 1s <{query(X)},{}>

Step 1

We try to solve query(X) Only rule r3 applies
The umficatlon produces the generalized query
ancestor({ aa},X) This generates temporary rela-
tlons for query and ancestor unth empty set values
Attempts at generatmg tuples for this generahzed

query fail

The new state vector 1s

< {cluery(X),ancestor(aa~)},
{ancestor={},query={}}>

Step 2

A new generalized query has been generated, so we
go on We try to evaluate each of the generahzed

37

queries query(X) does not give anythmg new, so
we try ancestor({ aa} ,X)
Using rule r2, and umfymg, we get parent(aaX)
This is a base relation, so we can produce a set of
tuples Thus we generate a value for ancestor
which contams all the tuples of parent(aa,X) and
the new state vector IS

< {query(X),ancestor(aa,X)},
{ancestor={(aa,aaa),(aa,aab)},query={}}>

We now solve ancestor(aa,X) usmg rl Unification
produces the expression

parent(aa,Z),ancestor(Z,Y)

We try to generate new tuples from this expansion
and the current ancestor value but get no tuples
We also generate new generalized queries by look-
mg up parent and mstantiatmg Z This produces
the new expression

parent(aa,{aaa,aab}) ,ancestor({aaa,aab},Z)

This creates two new queries which are added to
the generalized query and the new state is

<{query(X),ancestor({aa,aaa),X)},
{ancestor={(aa,aaa),(aa,aab)},query={}}>

Step 3

New generalized quenes and new tuples have been
generated so we contmue We first solve query(X)
usmg r3 and get the value {(aa,aaa), (aa,aab)} for
query The resultmg new state is

< {query(X),ancestor({aa,aaa,aab},X)},
{ancestor={(aa,aaa),(aa,aab)},
query={(aa,aaa),(aa,aab))}>

We now try to solve ancestor({aa,aaa,aab},X)
Using r2, we get parent({aa,aaa,aab),X) which is a
base relation and generates the followmg tuples m
ancestor {(aa,aaa),(aa,aab),(aaa,aaaa)} This pro-
duces the new state

< {query(X),ancestor({aa,aaa,aab},X)},
{ancestor={(aa,aaa),(aa,aab),(aaa,aaaa)},

query={ (aa,aaa),(aa,aab)}} >

We now solve ancestor({aa,aaa,aab},X)} using rl
and we get p({ aa,aaa,aab},Z),ancestor(Z,Y) We
bmd Z by gomg to the parent relation, and we get

p({rta,aaa,aab),{aaa,aab,aaaa)),
ancestor({ aaa,aab,aaaa} ,Y)

This generates the new generahzed query
ancestor({ aaa,aab,aaaa) ,Y) and the new state

<{query(X),ancestor({aa,aaa,aab,aaaa},X)},
{ancestor={(aa,aaa),(aa,aab),(aaa,aaaa)},

query={(aa,aaa),(aa,aab)}}>

Step 4

A new generalized query has been generated, so we
contmue Solvmg the ancestor quenes usmg r2 will
not produce any new tuples, and solvmg it, with r3
will not produce any new generalized query nor
any tuples The algorithm termmates

Concernmg the performance of the method, one
can note that (1) the set of potentially relevant
facts is better than for naive (m this example it is
optimal), and (u) QSQI has the same duphcation
problem as naive evaluation each step entirely
duphcates the previous strategy

Iterative Query/Subquery is presented m pieille
85 and 861 To our knowledge it has not been
implemented

3.2.4. Recursive Query/Subquery or Exten-
sion Tables

Recursive Query/Subquery (QSQR) IS a top-down
interpreted recursive strategy

The apphcatlon domain is the set of range res-
tricted rules without evaluable predicates

It is of course a recursive version of the previous
strategy As before, we mamtam temporary values
of derived relations and a set of generahzed
queries The state memorized by the algonthm is
still a couple < Q,R > , where Q IS a set of general-
ized queries and R is a set of denved relations
together with their current values However,
besides this explicit state, the recursion mechamsm
stores at each level m the stack the tuples returned
by the evaluation of the query, but this seems to
have been solved reasonably m the existmg imple-
mentation The algorithm uses a selection function
which, given a rule, can choose the first and the
next derived predicate m the body to be “solved”

The recursive interpreter is as follows

procedure evaluate(q)
(* q is a generalized query *)

begin
while “new tuples are generated” do

for all rules whose head matches the
generalized query do

begin
umfy the rule with the generalized
query, (1 e , propagate the constants)
until there are no more derived predicate
on the right do

begin
choose the first/next derived predicate
accordmg to the selection function,
generate the correspondmg generalized
query, (This is done by replacing m the

28

rule each base predicate by its value
and each previously solved derived
predicate by Its current value)
eliminate from that generalized query
the queries that are already m Q,
th:s produces a new generalized query q’,
add q’ to Q,
evaluate(q’)
end,

replace each evaluated predicate by its
value and evaluate the generahzed query q,
(This can be done m some order without

waiting for all predicates to be evaluated)

add the results m R,
return the results
end

end
Imtlal state is < {query(X)} ,{ } >
evaluate(query(X))

It IS important to note that this version of QSQ 1s
very similar to Prolog It solves goals in a top-
down fashion using recurslon, and It considers the
hterals ordered m the rule (the order 1s defined by
the selection function) The important differences
with Prolog are (1) the method 1s set-at-a-time
instead of tuple-at-a-time, through the generalized
query concept, and (11) as pomted out m [Dietrich
and Warren 861, the method uses a dynamic pro-

grammmg approach of stormg the intermediate
results and re-usmg them when needed This

dynamic programmmg feature also solves the prob-
lem of cycles m the facts while Prolog will run m
an infinite loop m the presence of such cycles,

QSQR will detect them and stop the computation
when no new tuple 1s generated Thus, QSQR 1s

complete over its apphcatlon domam whereas Pro-

log is not

Here 1s the ancestor example

evaluate(query(X))
use rule r3

query(X) - ancestor(aa,X)
this generates the query ancestor({ aa},X)

new state is

<{ancest-({4,X), weryW)~~O>
evaluate(ancestor((aa},X)

Step 1 of the lteratlon

use rule rl
ancestor({aa},Y) - parent({aa},Z),

ancestor(Z,Y)
by lookmg up parent we get the
bmdmgs {aaa,aab} for Z
this generates the query
ancestor({aaa,aab},X)
new state is

< {ancestor({aa,aaa,aab},X), query(X)},{} >
eV8h8k? (ancestor({aaa,aab},X))
(this 1s a recursive call)

Step 1 1

use rl

ancestor({aaa,aab} ,Y) -
parent({aaa,aab},Z),ancestor(Z,Y)

by looking up parent we get the
bmdmg {aaaa} for Z

new state is
< {ancestor({aa,aaa,aab,aaaa},X),

~ueryw~o>
evsluate(ancestor({ aaaa},X))

(this 1s a recursive call)
Step 1 1 1

use rl

ancestor({ aaaa} ,Y) -
parent({aaaa},Z),ancestor(Z,Y)
by lookmg up parent we get no
bmdmg for Z
use r2
ancestor({ aaaa} ,Y) -

parent({ aaaa},Y)
this falls to return any tuple

end of evaluate(
ancestor({ aaaa} ,X))

Step 1 1 2
nothmg new 1s produced
end ofevaluate(

ancestor({ aaaa} ,Y))

use r2
ancestor({aaa,aab},Y) -

parent({aaa,aab},Y)
this returns the tuple
ancestor(aaa,aaaa)
new state is

< {ancestor({aa,aaa,aab,aaaa},X),
query(X)}, {ancestor={(aaa,aaaa)}}>
Step 1 2
same as Step 1, nothmg new produced
end ofevaluate(

ancestor({ aaa,aab},X))
use rule r2
ancestor({aa},X) - parent({aa},Y)
returns the tuples
ancestor(aa,aaa) and ancestor(aa,aab)

new state is
< {ancestor({aa,aaa,aab,aaaa},X),

query(X)},{ancestor={(aaa,aaaa),

(aa,aaa),(=+ab)))>
Step 2
nothmg new produced
end ofev8lu8te({aa}~)

generate tuples from r3
new state 1s
< {ancestor({aa,aaa,aab,aaaa},X),

29

query(X)},{ancestor={(aaa,aaaa),

(aa,aaa),(aa,aab)),query=(aaa,aaaa),

(=v4,(=,-b))) >
end of evaluate(query(X))

Recursive Query/Subquery 1s described m plellle

85 and 861 A compiled version has been ample-
mented on top of the INGRES relational system
plellle 861 In [Dletnch and Warren 851, along with
a good survey of some of these strategies, a method
called “extension tables” 1s presented It IS, up to a
few deta&, the same method

3.2.6. Henschen-Naqvi

Henschen-Naqvl 1s a top-down, compiled and ltera-
tlve method

The apphcatlon domam 1s that of linear range res-
tncted rules

The method has a compllatlon phase which gen-
erates an Iterative program That iterative pro-
gram 1s then run agamst the data base The gen-
eral strategy 1s fairly complex to understand, and
we shall restnct ourselves to descnbmg It m the
“typical case” which 1s

P(X;Y) - up(XW),p(XQWdown(~,Y)
PKY) - WX,Y)

query(X) - p(G)

Note that the relation names up and down are not
to be confused with the notions “top-down” or
“bottom-up”, which are charactenstlcs of evalua-
tion strategies Let us introduce some simple nota-
tion, which will make reading the algorithm much
simpler Smce we are only dealing with binary rela-

tions, we can view these as set-tiset mappings
Thus, the relation r associates with each set A a

set B, conslstmg of all the elements related to A by

r We denote Ar the image of A by r, and we
have

A r = { y 1 r(x,y) and x E A}

If we view relations as mappings, we can compose

them, and we shall denote r s the composltlon of r

and s Therefore

A (r s) = (A r) s

This approach 1s smular to the formahsm described
m [Gardann and Mamdrevdle 861 We shall

denote the composltlon of relation r n times with
itself r’ Finally we shall denote set union by ‘+’
Once this notation 1s mtroduced, It 18 easy to see

that the answer to the query s

{a} flat + {a} up flat down

+ {a} up up flat down down +
+ {a} up’ flat down* +

The state memonred by the algorithm 1s a couple
<V,E>, where V 1s a the value of a unary relation
and E 1s an expression At each step, usmg V and
E, we compute some new tuples and compute the
new values of V and E

The lteratlve program 1s as follows

V ={a),
E = X, /* the empty string */
while “new tuples are generated m V” do

begin
/* produce some answer tuples */

answer = answer + V flat E,
/* compute the new value */
v =vup,
/* compute the new expression */
E = E 1 down,

end

Note that E 1s an ezpresaton, and 1s augmented
each time around the loop by concatenating
“ down” to it through the “cons” operator As can
be seen from this program, at step 1, the value V
represents {a} up’ and the expression E represents
down’ Therefore the produced tuples are

{a} up’ flat down’

This 1s not meant to be a complete descnptlon of
the method, but a descnptlon of its behavior m the
typical case

The Henschen-Naqvl method 1s described m [Hen-
schen and Naqvl 841 The method has been ample-
mented m the case described here This lmplemen-

tatlon can be found m [Laskowskl] An equivalent
strategy 1s described usmg a different formahsm m

[Gardann and Mamdrevllle 861 The performance
of the strategy IS compared to Semi-Naive evalua-

tion and another method (not described here) m

[Han and Lu 861

3.2.6. Prolog

Prolog 1s a top-down, interpreted and recursive

method

The apphcatlon domain of Prolog 1s dlficult to
state precisely (1) It 1s data dependent m the sense
that the facts have to be acychc for the interpreter
to terminate, and (11) there 1s no simple syntactic
charactenzatlon of a termmatmg Prolog program
The Job of charactenemg the “good” rules 1s left

to the programmer

30

We consider its execution model to be well known
and wdl not describe It In fact Prolog 1s a pro-

gramming language and not a general strategy to
evaluate Horn clauses We essentially mention
Prolog for the sake of completeness and because It
1s interesting to compare Its performance to the
other strategies

3.2.7. APEX

APEX 1s a strategy which ES dlff< to categorize
It 1s partly complied m the sense that a graph slml-
lar to the predicate connection graph 1s produced
from the rules, which takes care of some of the
preprocessing needed for mterpretatlon It 1s not
fully compiled m the sense that the program which
runs against the database 1s still unique (but driven
by the graph) It 15, however, clearly recursive,
because the interpreter program 1s recursive
Finally, it 15 partly top-down and partly bottom-up
BS will be seen m the Interpreter

The apphcatlon domam of APEX 1s the set of
range restncted rules which contam no constants
and no evaluable predicates

The interpreter takes the form of a recursive pro-
cedure, which, given a query, produces a set of
tuples for this query It 1s m follows

procedure solve(query,answer)
begin
answer = {},
if query q 1s on a base relation
then evaluate q agamst the date base

else
begin
select the relevant facts for q m the
base predicates,

put them m relevant,
while new tuples are generated do

begin
for each rule do
(this can be done m parallel)

begin
mstantlate the right predicates
wth the relevant facts and produce
tuples for the left predicate,

add these tuples to the set of

relevant facts,

mltlahze the set of useful facts
to the set of relevant facts,
for each literal on the nght do
(th:s can be done m parallel)

begin
for each matching relevant fact do

begin
plug the fact m the rule and

propagate the constants,

this generates a new rule and

a new set of queries,
for all these new queries q’ do

begin
solve(q’,answer(q’))
(this 1s the recurslon step)
add answer(q’)
to the useful facts
end

end
mstantlate the right predicates
with the useful facts,
produce tuples for
the left predicate,
add these to the

relevant facts,
extract the answer to q from
the relevant facts
end

end
end

end
end,
solve(query(X),answer)

Let us now run this program agamst our ancestor
example We cannot have a constant m the rules
and we must modify our rule set and solve directly
the query ancestor(aa,X)

solve (ancestor(aa,X), answer)
we first select the relevant base facts,

relevant = {parent(aa,aaa),parent(aa,aab)},
we now start the mam lteratlon

Step 1
rule rl
“ancestor(X,Y) - parent(X,Z),

ancestor(Z,Y)”
we cannot produce any new tuple
form this rule because ancestor
does not yet have any relevant fact
useful =
{parent(aa,aaa),parent(aa,aab)},
process parent(X,Z)

use parent(aa,aaa)
the new rule 1s
“parent(aa,aaa),ancestor(aaa,Y)”

solve(ancestor(aaa,Y),answerl)

(this call 1s not described))
this returns
(ancestor(aaa,aaaa)}
which we add to useful
useful =
{parent(aa,aaa),parent(aa,aab),
ancestor(aaa,aaaa)},

31

use parent(aa,aab)

the new rule 1s

“parent(aa,aab),ancestor(aab,Y)”
solve(ancestor(aab,Y),answer2)

(tha call 1s not descnbed)
this returns nothing

process ancestor(Z,Y)
we mstantlate parent and ancestor
with the useful facts

this produces ancestor(aa,aaaa)
we add it to the relevant facts
relevant =
{parent(aa,aaa),parent(aa,aab),
ancestor(aa,aaaa)},

rule r2 “ancestor(X,Y) - parent(X,Y)”
using the relevant facts we produce
{ancestor(aa,aaa),ancestor(aa,aab)}
we add these to relevant
relevant =
{parent(aa,aaa),parent(aa,aab),
ancestor(aa,aaa), ancestor(aa,aab),
ancestor(aa,aaaa) } ,

this rule does not produce any subquery

Step 2
wdl not produce anythmg new,
and so the algorithm stops

The APEX method 1s described m [Lozmskn 85
and 85a] The method has been implemented

3.3. Optimization Strategies

We now turn to the descrlptlon of the second class
of strategies the optlmlzatlon strategies

The mam drawbacks of the nitlve evaluation

method are

1 The potential set of
relevant facts 1s too big (In other words, It

does not make good use of the

query bindings), and
2 It generates a lot of duphcate computation

A number of optlmlzatlon strategies have recently
been proposed to overcome those two dlfflcultles

3.3.1. Aho-Ulhnan

Aho and Ullman [Aho and Ullman 791 present an

algorithm for optlmlzmg recursive queries by com-
mutmg selections with the least fixpomt operator
(LFP) The mput 1s an expresslon

oF(LFP(r=f(r))

where f(r) IS a monotomc relational algebra expres-
sion (under the ordering of set mcluslon) and con-

tams at most one occurrence of r The output 1s an
equivalent expresslon where the selection has been

pushed through as far as possible

We introduce then notation and ideas through an
example Consider

4X,3 - GZ), P(Z,Y)

,(X,Y - P(X,Y)
q(x) - a(John,X)

Aho-Ullman write this as

~a,=lodLFP(a = a P U P))

In this defimtlon, a 1s a relation which IS defined by
a jizpornt equation m relational algebra, and p 1s a
base relation If we start with a empty and repeatr

edly compute a usmg the rule a = a p U p, at
some lteratlon, there 1s no change (since the rela-
tion p 1s finite) Because the function used m the
fixpomt equation 1s monotomc, this 1s the least
fizpomt of the fixpomt equation [Tarski 551 It 1s
the smallest relation a which sat&es the equation,
1 e contams every tuple which can be generated by
using the fixpomt rule, and no tuple which cannot
The query 1s simply the selection a l=]ohn apphed
to this relation Thus, the query 1s a selection
applied to the transltlve closure of p

We now describe how the Aho-Ullman algorithm
optlmlzes this query We use ’ ’ to denote compo-
sltlon, which 1s a Jam followed by projectmg out
the Jam attnbutes We begin with the expression

and by replacmg a by f(a) we generate

%l=lohn(a P u d)

By dlstrlbutmg the selection across the Jam, we get

Qal=&da P) u %l=johnb)

Since the selection m the first subexpresslon only

mvolves the first attribute of a, we can rewrite it

as

%l=)ohn(a) P

We observe that this contams the subexpresslon

@il=,ohrda)

which was the first expresslon m the series If we

denote this by E, the desired optlmlzed expression
1s then

LFP(E = E P U %al=,ohnb))

This 1s equivalent to the Horn Clause query

a(John,Y) - a(john,Z), p(Z,y)

32

abhn,Y) - pbhn,Y)
q(x) - abhn,X)

The essence of the strategy 1s to construct a senes
of eqmvalent expressions startmg with the expres-
sion b*(r) and repeatedly replacing the single
occurrence of r by the expression f(r) Note that
each of these expressions contains Just one
occurrence of R In each of these expressions, we
push the selection as far inside as possible Selec-
tion distributes across union, commutes with
another selection and can be pushed ahead of a
prolectlon However, it dlstnbutes across a Carte-
sian product Y X Z only if the selection applies to
components from Just one of the two arguments Y
and Z The algorithm falls to commute the selec-
tion with the LFP operator if the (angle)

occurrence of r 1s m one of the arguments of a
Cartesian product across which we cannot dstn-
bute the selection We stop when this happens or
when we find an expression of the form h(g(gF(r)))
and one of the previous expressions m the series IS
of the form h(bF(r)) In the latter case, the
equivalent expression that we are looking for 1s

WJW=ds))), d an we have succeeded m pushing
the selection ahead of the LFP operator

We note m conclusion that the expression f(r) must
contam no more than one occurrence of r For
instance, the algorithm does not apply m this case

~a,=,odLFP(a = a P u PN

Aho and Ullman also present a similar strategy for
commutmg proJections with the LFP operator, but

we do not discuss it here

3.3.2. Kiier-Lozinzkii

The Klfer-Lozmsku algorithm 1s an extension of
the Aho-Ullman algorithm described above How-
ever, rules are represented as rule/goal graphs

rather than as relational algebra expressions, and

the strategy 1s described m terms of jilters which
are applied to the arcs of the graph It 1s con-

venient to think of the data as flowmg through the
graph along the arcs A filter on an arc 1s a selec-
tion which can be applied to the tuples flowing

through that arc, and 1s used to reduce the number
of tuples that are generated Transformmg a given
rule/goal graph into an equivalent graph with
(additional) filters on some arcs 1s equivalent to
rewntmg the correspondmg set of rules

The execution of a query starts with the nodes
correspondmg to the base relations sending all their

tuples through all arcs that leave them Each
axiom node that receives tuples generates tuples
for its head predicate and passes them on through

all its outgoing arcs A relation node saves all new
tuples that it receives and passes them on through

its outgoing arcs Computation stops (with the
answer being the set of tuples m the query node)
when there 1s no more change m the tuples stored
at the vaxlous nodes at some iteration We note
that this 1s simply Semi-Naive evaluation

Given filters on all the arcs leaving a node, we can
‘push’ them through the node as follows If the
node 1s a relation node, we simply place the dls-
Junction of the filters on each mcommg arc If the
node 1s an axiom node, we place on each mcommg

arc the strongest consequence of the disjunction
that can be expressed purely m terms of the varl-
ables of the literal correspondmg to this arc

The objective of the optimization algorithm 1s to

place the “strongest” possible filters on each arc

Starting with the filter which represents the con-
stant m the query, it repeatedly pushes filters
through the nodes at which the correspondmg arcs
are incident Since the number of possible filters IS
finite, this algorithm terminates It stops when
further pushing of filters does not change the
graph, and the graph at this point 1s equivalent to
the original graph (although the graph at mter-
mediate steps may not) Note that since the dls-
Junction of ‘true’ with any predicate 1s ‘true’, if
any arc m a loop B assigned the filter ‘true’, all
arcs m the loop are subsequently assigned the filter
‘true’

Consider the transltlve closure example that we

optlmlzed using the Aho-Ullman algorithm We
would represent it by the followmg axioms

rl a(X,Y) - a(W), P(Z,Y)

r2 a(X,Y - p(X,Y)
r3 q(x) - a(John,X)

Given below 1s the correspondmg system graph,
before and after optlmlzatlon (We have omitted

the variables m the axioms for clarity)

Before

After

a r=John l=)ohn l=John

\

J
L

We begm the optumzatlon by pushmg the selectron
through the relation node a Thus the arcs from rl

to a and from r2 to a both get the filter ‘l=John’
(We have slmphfied the conventions for keeping
track of vanables - ‘1’ refers to the first attribute
of the correspondmg head predicate) We then
push these filters through the correspondmg axrom
nodes, rl and r2 Pushmg ‘l=John’ through node
r2 puts the filter ‘p r=John’ on the arc from p to
r2 Pushing ‘l=John’ through node rl puts the
filter ‘ar=~ohn’ on the arc from a to rl Note that
rt does not put anything on the arc from p to rl
(empty filters are eqmvalent to ‘true’) There are
no arcs entermg p, and the filter on the arc from a
to rl does not change the &sJunctlon of the filters
on arcs leaving a (which 1s still ‘ar=~ohn’) So the
algonthm terminates here

The analogy wrth the Ahc&Jllman algorithm 1s
easily seen when we recognize that a filter 1s a

selectron, pushing through a relation node 1s drstn-
butlon across a IJ and pushing through an axiom

node rs dlstnbutlon across a Cartesran product In

general, the optlmrzatrons achieved by the two
algonthms are ldentlcal However, the Krfer-
Lozmskn algonthm 1s more general m that rt suc-
cessfully optimizes some expressions contammg
more than one occurrence of the defined predicate
An example 1s the expression

usl=,ohn(LFP(a = (a p U a q U p)))

The AhcAJllman algorithm does not apply m this
case because there are two occurrences of R m
f(R) The K f L 1 er- ozmsku algorithm optlmlzes this
to

LFp(k’al=,ohnb) P) u (asl=john(a) 9)

u kal=,ohnb)))

Essentmlly, rt improves upon the Aho-Ullman algo-
rithm m that rt 1s able to dlstnbute selectron across
some muons where both arguments contam r

Further, the algorithm can work directly upon cer-
tam mutually recursrve rules, for example

rl r(X,Y) - b(X), s(X,Y)

r2 s(X;Y) - c(X), r&Y)
r3 q(x) - r(%ohn)

Before applying the Aho-Ullman algorithm,, these
rules must be rewritten ss follows

rl r(X;Y) - b(X), 4% r(X;Y)

r2 a(x) - r(x,John)

Note that the Krfer-Lozmskn algorithm falls to
optlmrze both

~al=,ohn(LFP(a = a a U p)), and

b,l=,Ohn(LFP(a = a p U p a U p))

3.3.3. Magic Sets

The idea of the Magc Sets optlmlzatlon 1s to slmu-
late the sideways passing of bmdmgs a la Prolog by
the mtroductron of new rules This cuts down on
the number of potentrally relevant facts

The apphcatlon domam 1s the set of bottom-up
evaluable rules

We shall descnbe the strategy m detarl, usmg as an
example a modified version of the same-generation
rule set

%(X’Y) - P(X,XP)‘P(Y’YP)‘sg(YP’XP)

%(X’X)
weryQ - sda,X)

Note that m thus version the two vanables XF’ and

34

YP have been permuted Note also that the second

rule is not range restricted The first step of the

magic set transformation is the mtroduction of
adornments and the generation of adorned rules

Given a system of rules, the adorned rule system
[Ullman 851 is obtained as follows
For each rule r and for each adornment a of the
premcate on the left, generate an adorned rule
Deflne recursively an argument of a predrcate m
the rule r to be dwtrngurehed [Henschen and Naqvl
841 If either it is bound m the adornment a, or it is
a constant, or it appears m a base predicate
occurrence that has a distmgmshed variable
Thus, the sources of bmdmgs are (1) the constants
and (11) the bmdmgs m the head of the rule These
bmdmgs are propagated through the base predi-

cates If we consider each distmgulshed argument
to be bound, this defines an adornment for each
derived hteral on the nght The adorned rule is
obtauied by replacmg each derived literal by its
adorned version

If we consider the rule

%(X,Y) - P(X,~),P(Y;yP)2sg(YV@)

with adornment bf on the head predicate, then X is
distmguished because bound m sg(X,Y), XF’ is dis-

tmgmshed because X is dlstmgulshed and p(X,XP)
is a base predicate and these are the only dis-
tmgmshed vanables Thus the new adorned rule is

sgb’ KY) - P(X,~),P(Y;YP)tsgfb (YlV@

If we consider a set of rules, this process generates

a set of adorned rules The set of adorned rules
has size K R where R 1s the size of the origmal set
of rules and K IS a factor exponential m the
number of attnbutes per denved predicate So, for
mstance, if every predicate has three attributes,
then the adorned system is eight times larger than
the ongmal system However, we do not need the
entire adorned system and we only keep the

adorned rules which denve the query In our

example the reachable adorned system IS

sgb’ (XY) - P(X,~),P(Y;yP),sg’* (Y%~)
sgf b (X,y) - P(X,=),P(Y;YP)Jsgb’ (YC~)

%“’ (X,x)
sdb (X,x)
query/ (X) - sgbf (a,X)

Clearly, this new set of rules 1s equrvalent to the
ongmal set m the sense that it will generate the
same answer to the query

The magic set optimlzatlon consists m generatmg
from the given set of rules a new set of rules,
which are eqmvalent to the ongmal set wrth
respect to the query, and such that their bottom-

up evaluation is more efficient This transformation

is done as follows (1) for each occurrence of a

derived predmate on the right of an adorned rule,
we generate a magic rule (n) For each adorned
rule we generate a modrfied rule

Here is how we generate the magic rule (1) choose
an adorned literal predicate p on the right of the
adorned rule r, (11) erase all the other denved
hterals on the right,, (111) m the denved predicate
occurrence replace the name of the predicate by
magic pa where a is the hteral adornment, and
erase the non distmgurshed variables, (iv) erase all
the non dlstmguished base predicates, (v) m the
left hand side, erase all the non distmgmshed van-
ables and replace the name of the predicate by
magrc p l* ‘, where pl is the predicate on the left,
and a’ is the adornment of the predicate pl, and

finally (vi) exchange the two magic predicates

For mstance the adorned rule

sb’ W) - P(X,XQP(Y,YI%g’b (YI?@)

generates the magic rule

magic’ b (XP) - p(X,XP), magicbf (X)

Note that the magic rules simulate the passmg of
bound arguments through backward chanmg (We
have dropped the suffix “sg” m naming the magic
predicates smce it 1s clear from the context)

Here is how we generate the modified rule For
each rule whose head IS p a, add on the nght hand
side the predicate magrc p a(X) where X is the list
of distmgulshed variables m that occurrence of p
For mstance the adorned rule

sgb’ (XN - P(X,~),P(Y;yP),sg~ b (YC=)

generates the modified rule

sgb’ (XV - p(X,~),p(Y,YP),maglcb’ (Xl,
db (yww

Fmally the complete modified set of rules for our

example is

magiJb (XP) - p(X,XP), magicbf (X)

magic b’ Cyp) - p(Y,W,w.51cfb (Y)
magicbf (a)
sgbf (X,Yj - sgbf (X,Yj -

p(X~),p(Y,~),mw~b’ (X)db WJW p(X~),p(Y,~),mw~b’ (X)db WJW
sg’b(XY) - sg’b(XY) -

~(~~),p(~,~),mw~~b Whb’ WP) d~~),p(~,Y%wiw~b Whbf WP)
sgb’ (X,X) - magic sgb’ (X,X) - magic
sg’ b (X,X) - magic sg’ b (X,X) - magic :: K; :: K;

query f(xj - sgbf (aXj

The idea of the magic set strategy was presented m
[Banclhon et al 861 and the precise algorithm is
described m [Bancilhon et al SSa] The “Alexan-

35

dre” strategy described m [Rohmer and Lescoeur

851 appears to be based on the same Idea To our
knowledge, the strategy 1s not implemented

3.3.4. Counting and Reverse Counting.

Countmg and Reverse Countmg are derived from
the magic set optlmlzatlon strategy

They apply under two condltlons (1) the data 1s
acyclic and (11) there 15 at most one recursive rule
for each predicate, and It 1s linear

We first describe countmg usmg the “typical” sm-
gle linear rule system

P(X,Y) - fiat(X,Y)

P(X,Y) - up(X,m),p(m,YV,down(W,Y)

query(Y) - da,Y)

The idea consists m mtroducmg magic sets (called
couratrng sets) m which elements are numbered by
their distance to the element a Remember that the
magic set essentially marks all the up ancestors of
a and then applies the rules m a bottom-up fashion
to only the marked ancestors In the countmg stra-
tegy, at the same time we mark the ancestors of
John, we number them by their distance from a
Then we can “augment” the p predicate by
numbermg Its tuples and generate them by levels
as follows

countmg(a,O)
countmg(X,I) -countmg(Y,J),up(Y,X),I=J+l

p’(X,Y,I) - countmg(X,I),flat(X,Y)

p’(X,Y,I) - countmg(X,I),up(X,XV’
p’(XU,YU, J),down(YU,Y),I= J-1

query(X) - p’ta,KO)

Thus at each step, instead of using the entire
magc set, we only use the tuples of the correct

level, thus mmlmlzmg the set of relevant tuples

But m fact, it 1s useless to compute the first attn-

bute of the p predicate Thus the system can be
further optlmlzed mto

countmg(a,O)
countmg(X,I) -countmg(Y,J),up(Y,X),I=J+l
p”(Y,I) - countmg(X,I),flat(X,Y)
p”(Y,I) - p”(YU,J),down(W,Y),I=J-l,J>O

weryO - p”(Y,O)

It 1s interesting to notice that this new set of rules

1s m fact slmulatmg a stack

Reverse countmg 1s another vanatlon around the

same idea It works as follow (1) first compute the
magc set, then (n) for each element b m the mae;lc
set number all its down descendants and Its up

descendants and add to the answer all the down
descendants having same number as a (because a 1s
m the up descendants) This pves the followmg

equivalent system

magic(a)
magic(Y) - magic(X),up(X,Y)
des up(X,X,O) - magic(X)
des down(X’,Y,O) - maglc(X’),flat(X’,Y)
des up(X’,X,I) - des up(X’,Y, J),

up(X,Y),I=J+l
des down(X’,X,I) - des down(X’,Y, J),

down(Y,X),I=J+l
query(Y) - des up(X’,a,Y),des down(X’,Y,I)

This can be slightly optlmlzed by hmltmg our-
selves to the b’s which will Jam with flat and res-
tnctmg the down de& to be m the magic set This
generates the followmg system

magic(a)
magic(Y) - magic(X),up(X,Y)
des up(X,X,O) - maglc(X),flat(X,Y)
des down(X’,Y,O) - magic(X’),flat(X’,Y)
des up(X’,X,I) - magc(X),des up(X’,Y, J),

up(X,Y),I= J+l
des down(X’,X,I) - des down(X’,Y, J),

down(Y,X),I=J+l
sg(a,Y) - des up(X’,a,Y),des down(X’,Y,I)

Note that we still have the problem of a “late ter-
mination” on down because we number all the
descendants m down, even those of a lower genera-

tion than a

The idea of counting was presented m [Bancllhon
et al 861 and a formal descnptlon of countmg and
of an extension called “magic countmg” was
presented m the single rule case m [Sacca and
Zamolo 861 An extension to the fully general case
of Horn Clauses with function symbols 1s described
m [Sacca and Zamolo SSa] We did not cover this
extension here Reverse countmg 1s described m
[Bancllhon et al 861 They have not been ample-

mented

3.4. Summary of Strategy Characteristics.

A summary of the charactenstlcs of each strategy

1s presented m Table 1

36

Table 1: Summary of Strategy Characteristics

Method

Nitlve Evaluation

Semi-Naive Evaluation

Query/Subquery

Query/Subquery

APEX

Prolog

Henschen-Naqvl

Aho-Ullman

Klfer-Lozmskn

Counting

Magc Sets

Applacatron Range

Bottom-up Evaluable

Bottom-up Evaluable

Range Restricted
No Arlthmetlc

Range RestrIcted
No Arlthmetlc

Range Restricted
No Arlthmetlc
Constant Free

User responsible

Linear

Strongly Linear

Range Restricted
No Arithmetic

Strongly Linear

Bottom-up evaluable

4. Performance Comparisons

In this section, we present the results of a com-
parative performance evaluation of the various
strategies To perform such a comparison we must

(1) Choose a set of rules and queries which will
represent our benchmark (2) Choose some test
data which will represent our extenslonal database

(3) Choose a cost function to measure the perfor-

mance of each strategy (4) Evaluate the perfor-

mance of each query agamst the extensional data-
bases

We first describe the four queries used as “typical”
mtenslonal databases Then, we present our char-

actenzatlon of the data Each relation 1s character-

ized by four parameters and It 1s argued that a
number of famlhar data structures, e g trees, can
be described m this framework We describe our
cost metric, which 1s the size of the mtermedlate
results before duphcate ehmmatlon We present
analytical cost functions for each query evaluation
strategy on each query The cost functions are
plotted for three sets of data - tree, inverted tree

Top down va

Bottom Up

Bottom Up

Bottom Up

Top Down

Top Down

mxed

Top Down

Top Down

Bottom Up

Bottom Up

Bottom Up

Bottom Up

Comprled us

Interpreted

Complied

Complied

Interpreted

Interpreted

Mixed

Interpreted

Compded

Compded

Compded

Compded

Complied

Iteratrve v8

Recurseve

Iterative

Iterative

Iterative

Recursive

Recursive

Recursive

Iterative

Iterative

Iterative

Iterative

Iterative

and cylinder We discuss these results mformally

The performance issue was addressed mformally
through the dlscusslon of a set of examples m [Ban-
cllhon et al SSa] Han and Lu [Han and Lu 861
have reported a study of the performance of a set
of four evaluation strategies (mcludmg Naive and
Henschen-Naqvl and two others not considered
here) on the same generatlon example, usmg ran-

domly generated data Their model 1s based on the
selectlvlty of the Jam and select operations and the
sizes of the data relations They consider both
CPU and IO cost We have chosen to concentrate
on one aspect of the problem, which 1s the number
of successful firings (measured usmg the sizes of the
intermediate relations) and have studied a wider

range of strategies, queries and data

4.1. Workload: Sample Intensional Data-

bases and Queries

Instead of generatmg a general mix, we have
chosen four queries which have the properties of
exerclzmg various important features of the stra-
tegies We are fully aware of the fact that this set

37

is msufflclent to provrde a complete benchmark,
but we view this work as a first step towards a

better understandmg of the performance behavior
of the various strategies

The queries are three different versions of the
ancestor query and a versron of the same-
generation query The first one IS Just a classrcal
ancestor rule and query with the first attrrbute
bound

Query 1 4XV - P(V)
4w - PK%4Z#Y)
wew0C) - a(John,X)

Because most strategies are representation depen-
dent, we have studied the same example with the
second attrrbute bound mstead of the first This
will allow us to determine which strategies can
solve both cases

The thud versron of the ancestor example specrlles
ancestor usmg recursive doubhng This enables us
to see how the strategies react to the non linear
case This example bemg fully symmetnc, it is
sufficrent to test rt wrth its first attribute bound

Query 8 aoC,Y) - P&Y)
4xY - 4X,Z),a(Z,Y)
weryo() - a(JohnJX)

Fmally to study somethmg more complex than
transitrve closure, we have chosen a generalized
version of the same generation example, bound on
its first attribute

4.2. Characteriaing Data: Sample Exten-
sional Databases

Because we decided on an analytical approach, we
had to obtain tractable formulae for the cost of
each strategy agamst each query Therefore, each
relation must be characterized by a small set of
parameters Fortunately, because of the choice of
our workload, we can restrrct our attention to
binary relatrons

We represent every binary relation by a directed
graph and vrew tuples as arcs and domam elements
as nodes Nodes are arranged m layers and each
arc goes from a node m one layer to a node m the
next Note that m these graphs each node has at

least one m-arc or one outrarc Nodes m the first
layer have no mcommg arcs and nodes m the last
layer have no outgoing arcs

Let R be a binary relation and A be a set Recall
that we denote by AR the set

AR= {y)xEAandR(x,y)}

We charactenze a binary relation R by

(1) FR the fan-out factor,
(2) DR the dupbcatron factor,

(3) hR the her& and
(4) bz the base

FR and Dz are defined ss follows given a “ran-
dom” set A of n nodes from R, the size of AR IS
n Fz (We use ’ ’ here to denote multrphcation It
should be clear from the context whether ’ ’
denotes multlplicatron or composrtron) before
duplicate ehmmatlon Dz IS the duphcatlon factor
m AR, 1 e the ratio of the size of AR before and
after duplicate elimmation Thus the size of AR
after duplicate ehmmatron rs n FR /Dz

We call ER = FR /Dz the czpansron factor of R

The base bz is the number of nodes which do not
have any antecedents The height hz rs the length
of the longest cham m R

When no confusron is possible, we shall srmply use
F, D, h and b instead of FR ,DR ,hR and bR

The typical structure cons&s of a number of
layers There are (hR +l) layers of nodes m the
structure, numbered from top to bottom (as 0 to
h) There are bz nodes m level 0

h

This “parametnzed structure” 1s farrly general and
can represent a number of typical configuratrons
A binary balanced tree of height 11s defined

by
F=2, D=l, h=l, b=l

The same binary tree upside down is defined

by
F=1/2, D=2, h=l, b=2’

A list of length 1 1s defined by

38

F=l, D=l, h=l, b=l
A set of n hsts of length 1 IS defined by

F=l, D=l, h=l, b=n

A parent relation, where each person has two clul-
dren and each child has two parents, 1s defined by

F=2, D=2, h=number of generations,
b=number of people of unknown parentage

However, this formahsm does not represent cycles

Nor does It represent short cuts, were a short cut IS
the existence of two paths of different length going
from one point to another Clearly, they would

violate our assumption that nodes were arranged m
layers mth arcs going from nodes m one layer to
the next We also emphasize that we assume the

data to be random, with a uniform dlstnbutlon
Thus, the values F and D are average values

Our assumption that the duphcatlon factor 1s

mdependent of the size IS a very crude approxlma-

tlon For instance it implies that if you start from
one node you still generate some duphcates Obvl-
ously the duphcatlon factor increases with the size
of the start set Therefore, our approxlmatlon
overestimates the number of duphcates However,
It becomes reasonable as the size of the start set
becomes large It 1s also dependent upon our
assumption that the data IS random (with a um-

form dlstnbutlon) and not regular

Let us now turn to the problem of charactenzmg

mter-relation relationships Let A and B be two

sets The transfer ratto of A with respect to B,

denoted TAB IS the number such that given a ran-
dom set of n nodes m A, the size of A n B after
duphcate ehmmatlon 1s n TAB Note that 0 5 T

51

This defimtlon can be extended to binary relations

by consldenng only the columns of the relations
We shall denote the I-th column of R by RI. Thus,

given two binary relations R and S, the number of
tuples m the (ternary) result of the Jam of R and S
IS n TRssl, where n IS the number of tuples m R

4.3. The Cost Metrics

We have chosen for our cost measure the number

of successful inferences performed by the system

The simplest way to obtam this cost function IS to

measure the size of the mtermedlate results before

duphcate ehmmatlon

Note that III this model the measure of complexity
of the Join, the carteslan product, intersection and
selection IS the size of the result, the measure of
complexity of union IS the sum of the sizes of the
arguments (each tuple present m both argument IS
going to fire twrce), and the measure of complexity
of proJectlon IS the size of the argument Readers

famlhar with performance evaluation of relational

quenes might be surprised by these measures How-

ever, it 1s argued m [Banclhon 851 that they are

meaningful In essence, our cost 15 a measure of one
important factor m the performance of a query
evaluation system, the number of successful finngs,

rather than a measure of the actual run-time per-
formance

4.4. cost Evahation

For each strategy and for each query, we have

analytically evaluated the cost of computmg the
given query using the given strategy The cost 1s
expressed as a function of the data parameters F,

D, h and b The formulae are hsted 111 Append= 1,
and their denvatlons are contamed m [Bancllhon

and Ramakmhnan 861 To compare these fanly

complex formulae, we have plotted a number of
curves, some of which are Included m Append= 2

4.6. Graphical Comparison of the Costs

The curves shown m Appendix 2 show the relative
performance of the various strateges on each of
the sample quenes for three sets of data They are
relations m which the tuples are arranged m a tree
structure, an mverted tree structure, and a

“cylmder” A cylmder 1s a structure m which each

layer has b nodes and each node has on the aver-
age two mcommg and two outgomg arcs We

present below a sample relation of each type

Tree, S=Z D=l Inverted Tree, S=l, D4

b=S

h=3

Cylinder, S=D=2

39

The choice of these structures was made m order

to study the effects of uneven dlstnbutlon of the

data and the effects of duphcatlon We have fixed

the sizes of all relations at 100,000 tuples For the

tree structure, we vary the shape by changing the
fan-out F while keeping the number of arcs (which
1s the number of tuples) constant Clearly, decreas-
mg the fan-out mcreases the depth of the structure

and vice-versa Bmllarly, the shape of the mverted
tree 1s varied by varying the duphcatlon factor
The shape of the cylinder 1s varied by varying the
ratlo of breadth b to height h, agan keepmg the
number of arcs constant

For each query and data structure, we plot the cost
of each strategy against the shape of the data
(measured m terms of the parameter used to vary
It) Thus, for each query, we plot cost vs F for the
tree, cost vs D for the inverted tree, and cost vs
b/h for the cylinder We do this for each strategy
The cost 1s computed usmg the cost functions
listed m the appendix We have often displayed a
subset of the curves (for the same query and data
structure) over a different range, to allow a better
comparison

For the ancestor queries, we plot the cost of each
strategy for the cases when the parent relation has

100,000 tuples and the data m it has the shape of a
tree, an inverted tree and a cyhnder

For the same generation example, we have
assumed that the relations up and down are ldentl-
cal and that the fan-out and duphcatlon for the
relation flat are both equal to 1 We have also
assumed that the transfer ratio from up to flat 1s
equal to the transfer ratlo from flat to down We
have assumed that all three relations (up, flat and
down) have 100,000 tuples We plot the cost of

each strategy as the shape of up and down vanes

for a total of SIX cases the cases when the struc-
ture 1s a tree, an inverted tree and a cylinder, with

the transfer ratio equal to 1 and 0 01 (100% and

1% respectively)

4.6. Summary of the Curves

There are several important points to be seen m
the curves For a given query, there 1s a clear ord-
ermg of the various strategies which usually holds
over the entire range of data The difference m per-

formance between strategies 1s by orders of magm-
tude, which emphasizes the importance of chocsmg
the right strategy The cost of the optimal strategy
1s less than 10,000 m each of the quenes we have
considered, over the entire range of data The size
of the data 1s 100,000 tuples This indicates that

recursive quenes can be implemented efficiently

We present a summary of the ordering of the stra-
tegies, as seen m the correspondmg curves We use

<< to denote an order of magnitude or greater
difference m performance, and for a given query,
we list m parentheses those strategies that perform
ldentlcally for all data We refer to the various
strategies usmg the followmg acronyms for brevity
HN (Henschen-Naqvl), C (Countmg), MS (Magic

Sets), QSQR, QSQI, APEX, P (Prolog), SN (Semi-
Naive), N (nave) and KL (Klfer-Lozmsku)

Query 1 (Ancestor bj)

Tree
(HN,C) << (MS,QSQR,APEX) = P <<
QSQI << (SN,KL) << N

Inverted tree

(HN,C) << (MS,QSQR,AF’EX) << P <<
QSQI << (SN,KL) << N

Cylinder

(HN,C) << (MS,QSQR,APEX) <<
QSQI << (SN,KL) << N << P

Query 2 (Ancestor jb)

All data

(HN,C) << (MS,QSQR,KL) <<
QSQI << APEX << SN << N = P

Query 3 (Ancestor bf, non-hear)

All data

QSQR << QSQI << APEX <<
(SN,MS,KL) << N

(HN, Countmg and Prolog do not apply)

Query 4 (Same Generatton bj)

Tree
C << I-IN = (MS,QSQR,APEX) = P <<

QSQI << (SN,KL) << N

Inverted tree

C << HN = (MS,QSQR,APEX) <<
P << QSQI << (SNJU) << N

Cylinder

C << HN = (MS,QSQR,APEX) <<

QSQI << (SN,KL) << N << P

To summarize the ancestor results, the following
order 1s seen to hold for the ancestor queries

(HN, C) << (MS, QSQR) << QSQI <<
APEX << SN << N

There are some exceptions and addltlons to the
above ordering In the non-linear case, Henschen-
Naqvl and Countmg do not apply, and Magic Sets
reduces to Semi-Nave Klfer-Lozmsku performs

40

hke Semi-Naive, except m the case where the

second argument 1s bound, and m this case it per-
forms hke QSQR APEX performs like QSQR m
the case where the first argument IS bound Prolog

performs poorly when It cannot propagate the con-
,tant m the query (the case where the second argu-
ment 1s bound), as expected When It can pro-
pagate the constant, Its performance degrades shar-
ply with duphcatlon, especially as the depth of the
data structure mcreases This 1s readily seen from
the curves for the cylinder

To summanze the same generation results, we
have

C << I3N = (MS, QSQR, APEX) <<

QSQI << (SN, KL) << (P, N)

Prolog behaves like QSQR when there 1s no duph-
cation (tree) With duphcatlon, Its performance
degrades so sharply with an increase m the depth
of the data structure that we have classified It with
Nave, although It performs better than Semi-
Nave over a wide range

4.7. Interpreting the Results

These results mdlcate that the followmg three fac-

tors greatly influence the performance

1 The amount of duplrcatron of work,
2 The size of the set of relevant facts, and

3 The use of unary vs brnary intermediate
relations

By duphcatlon of work, we refer to the repeated
firing of a rule on the same data This can occur
due to duphcatlon m the data (e g Prolog), or due

to an lteratlve control strategy that does not
remember previous iinngs (e g QSQI and Naive)
Relevant facts have been defined earlier, and their

slgmficance m reducing the number of useless
firings has been explained The third factor 1s hard
to define precisely Strateges which only look at

sets of nodes rather than sets of arcs perform
better than those that look at sets of arcs, by an
order of magnitude or more They are less gen-

erally applicable smce this often mvolves a loss of
mformatlon This usually leads to non-termmatlon
unless the database has certam properties, such as

hnearlty of rules and acychclty of the extensional
database The followmg dlscusslon 1s intended to
clarify these concepts, as well as to explam the per-

formance of the various strategies m terms of these
three factors

4.7.1. The Ancestor Queries

We begm by looking at the ancestor queries The
effect of duphcatlon 1s seen by consldermg Prolog
and QSQI, both of which do duplicate work, for
different reasons When the first argument 1s
bound, Prolog performs hke QSQR on a tree data
structure, where exactly one arc enters each node
(equivalently, there 1s exactly one way of deriving
a given answer) With duphcatlon (1 e on the aver-
age more than one arc enters a given node) perfor-
mance degrades dramatically Prolog’s performance
for the same query on a cylinder 1s comparable to
Nave evaluation, a difference of several orders of
magmtude’ We note that the set of relevant facts
1s comparable m the two cases, bemg the set of
nodes reachable from the node denoting the con-
stant m the query (which will henceforth be
referred to as the query node) However, m the
case of the cylinder, these nodes can be reached
along several paths and Prolog infers them afresh
along each path QSQI performs duplicate compu-
tation for a different reason, which 1s that its ltera-
tlve control strategy does not remember previous
firings Essentially, there are as many steps (execu-
tions of the control loop) as the longest path from
the query node, and all nodes reached by a path of
length less than or equal to 1 are recomputed at all
steps after the lth This can be seen by comparing

QSQR and QSQI and noting that QSQI IS orders

of magnitude worse m all cases QSQR uses the
same set of relevant facts (the reachable nodes)
and differs only m that It has a recursive control
strategy that avoids precisely this duphcatlon
Naive evaluation also does a lot of duplicate work,
for the same reason as QSQI, 1 e , It does not
remember previous firings Semi-Naive differs from

Naive only m that It remembers all previous firings
and does not repeat them Thus, the effect of
duphcatlon can also be seen m the difference
between Naive and Semi-Nave

The effect of a smaller set of relevant facts can be
seen m the vast difference between Magic Sets and
Semi-Naive Magic Sets 1s simply Semi-Naive
applied to the set of relevant facts, which 1s deter-
mmed to be the set of reachable nodes except m
the doubly recursive case In this case, the first
phase of the Magic Sets strategy, which computes
the set of relevant facts, fads and the Magic Sets
strategy degenerates to Sent-Naive This effect can
also be seen m the behavior of Prolog on a tree
data structure (which means we eliminate the effect
of duphcatlon) when the first argument IS free
Prolog’s depth first strategy 1s unable to propagate
the constant m the second argument of the query
In other words, It must consider all facts m the

41

database, and its performance degrades by several
orders of magnitude Srmllarly, the Klfer-Lozmsku
strategy degenerates to Semr-Naive when the
optrmrzatlon algonthm fads to push down the con-
stant m the query We note that pushmg the con-
stant (eqmvalently, the selectron that it represents)
1s eqmvalent to cutting down on the number of
relevant facts

QSQR succeeds m restnctmg the set of relevant
facts to the set of nodes reachable from the query
node even m the non-linear versron of ancestor
QSQI also succeeds m doing this, but performs a
lot of duplicate computation The Magic Sets algo-

nthm uses the entire parent relation for the set of
relevant facts and so degenerates to Semr-Nave
APEX, for reasons explamed below, also uses a
much larger set of relevant facts So, although rt
improves upon Semr-Narve computatron m thus
case, It 1s much worse than QSQR Henschen-
Naqvl and Countmg do not apply and Prolog does
not termmate Thus QSQR rs the only strategy
that succeeds m both restnctmg the set of relevant
facts and avoldmg duphcate work It does this at
the cost of lmplementmg the recursrve control,
whrch 1s a cost that we do not understand at this

stage

The behavror of APEX &rstrates the mterestmg
dlstmctlon between the set of relevant facts and
the set of useful facts The first step m the APEX
strategy 1s to find what APEX calls the set of
relevant facts (whrch 1s actually a subset of the set
of relevant facts as we have defined It, smce It does
not include all facts than could denve an answer)
In the ancestor examples, these are facts from the
relation parent, and the finng of the first rule adds

them to the ancestor relation Subsequently, these
facts are substituted (m turn) mto both the parent
and ancestor predicates m the body of the second

rule Except m the first case, this leads to
subquenes whose answers are not relevant For

example, m the case where the second argument 1s

bound to John, the set of relevant (a la APEX)
facts 1s the set of facts p(X,John) By substltutmg

these mto the parent predicate m the second rule,
we generate the query a(John,?) This computes the
ancestors of John, whereas the given query

a(?,John) asks for the descendants of JO~II Thus IS

because APEX does not make the dlstmctlon that
facts of the form p(X,John) are relevant to the
query a(?,John) only when substrtuted mto the
ancestor predrcate m the second rule This 1s a dls-
tmctlon that the Magic Sets strategy makes, and It
thereby reduces the number of useless firmgs

We now consider the thud factor, the arrty of the
intermediate relations The two strategies which

use unary mtermedrate relations are the Henschen-
Naqvr and Countmg strategies In essence, at step 1

they compute the set of relevant facts whrch IS at a
drstance 1 from the query node Let us denote this
set by Sr At the next step, they compute the set
of those nodes m parent to whrch there IS an arc
from a node m Sr Thus, they compute all nodes
reachable from John, and further they compute
each node at most D trmes where D 1s the duphca-
tlon factor However, the unary relatrons strategy
fads to termmate if the query node IS m a cycle
Also, neither the Henschen-Naqvr nor the Countmg
strategy applies when there are non-linear rules

Magic Sets computes exactly the same set of
relevant facts and does no duplicate work How-
ever, m the second phase at step 1 rt computes all
arcs m the transitive closure of parent (restricted
to the set of relevant facts) of length 1 In partlcu-
lar, thus includes all arcs of length 1 rooted at John
This 1s the answer, and this 1s essentrally all that
the more specmhzed methods, Henschen-Naqvl and
Counting, compute Everything else that the
Magrc Sets strategy does 1s useless computatron
Thus, the cost of the Magic Sets strategy 1s the
number of arcs m the transrtlve closure of the sub-

tree rooted at John (1 e the subtree of nodes reach-
able from John)

The recursrve control of QSQR generates
subquenes usmg precisely the nodes m set Sr at
step 1, and the answer to each of these subquenes
1s the set of all nodes m the subtree rooted at that
node By mductlon, it IS easy to see that the total
cost mvolved m computmg a query 1s the number
of arcs m the transltlve closure of the subgraph
rooted at that query node The intermediate rela-

tlons here are the (binary) sets of answers to each
subquery Thus seems to indicate the power of a
recursrve control strategy since It succeeds m
reducmg both the set of relevant facts and the

amount of duplicate work

4.7.2. The Same Generation Query

We conclude thus drscussron by explarmng the per-

formance of the vanous strategres m the same gen-
eration query m terms of these three factors
Countmg has the best performance smce It uses the

smallest set of relevant facts (the nodes of up
whrch are reachable from the query node), does not
do duphcate computatron, and further, uses unary
mtermedrate relations It executes the query m
two phases In the first phase, at step 1, It com-
putes the set of all nodes m up that are reachable
from the query node via a path of length 1 In the
second phase, rt first computes the nodes of down
that are reachable from thus set via an arc of flat,

42

still retammg the distance of each set from the

query node In subsequent iterations, it steps
through down once each time, such that each node
m a set that IS 1 steps away from the query node m
up is the root of paths of length 1 m down

Henschen-Naqvi uses the same set of relevant facts,
and is a unary strategy, but it does a lot of duph-
cate work It is a single phase algorithm, which
does the same amount of work as the first phase of
Countmg m computmg sets of up nodes along with
their distances from the query node However, it
steps through down 1 times for each set at a dls-
tance 1 from the query node m up Smce it does not
keep track of the work it does m step 1 at step i+l,

it repeats a lot of the work m steppmg through
dOtOtt

The set of relevant facts for Magic Set, QSQR and

APEX IS agam the set of up nodes reachable from
the query node They do not perform duphcate
computation However, they work with bmary rela-
tions, m effect computing all paths with equal
lengths m up and down hnked by a single arc m
flat Thus, their performance is mfenor to that of
Counting Our graphs show their performance to
be identical to that of Henschen-Naqvi It is to be

expected that they perform similarly smce the
duphcate work done by Henschen-Naqvl 1s offset
by the fact that they work with binary relations
However, their performance 1s not really identical

It appears to be so m our curves for two reasons
The first IS our approximation of the number of
arcs of length 1 to n(1) gsum(E,h-I) The second is
the fact that we plot the curves for cases where up
and down are identical Under these conditions, the

expressions for the performance of these methods

become identical

QSQI is sumlar to QSQR except that at each step,
it duplicates the work of the previous steps, and so

it IS mfenor to Magic Set, QSQR and APEX
Serm-Naive uses binary relations, and although it
does not do duphcate work, this is outweighed by
the fact that the set of relevant facts is all the
nodes m up So it performs worse than QSQI
Klfer-Lozmskn degenerates to Semi-Naive since the
optimization strategy falls to make any improve-
ments to the system graph Prolog is similar to
QSQR when there is no duphcatlon m the data,

but its cost increases exponentially with the depth
of the data structure when there is duphcation
Naive evaluation uses the entire set of nodes m up
as relevant facts, does duphcate work smce it does
not remember finngs, and uses bmary intermediate
relations With the exception of Prolog over a cer-
tam range, it is clearly the worst strategy

Fmally, we note that when the transfer ratio T is

0 01 (l%), the cost of computmg the answer by
Naive or Semi-Naive evaluation is essentially that
of computmg all arcs m the relation flat, and so
the two methods perform almost identically

4.8. Summary and Caveats

Our conclusions may be summarized as follows
1 For a given query, there is a clear ordermg of
the strategies
2 The more speclahzed strategies perform
sigmficantly better
3 Recursion IS a powerful control structure which

reduces the number of relevant facts and ehm-
mates duphcate work

4 The choice of the nght strategy is critical smce
the differences m performance are by orders of
magmtude
5 Three factors which greatly influence perfor-
mance are (1) duphcatlon of work, (11) the set of
relevant facts, and (m) the anty of the mtermedl-
ate relations

The results seem robust in that the performance of
the various strategies usually differ by orders of
magnitude, which allows a wide latitude for the

approximations m the model and cost evaluation,
Also, the curves rarely intersect, which means that
the relative ordenng of the strategies is mamtamed
m most cases over the entire range of data

However, it must be emphasized that our cost
function makes some crude approximations The
cost of Jam IS hnear m the size of the result, a
consequence of our using the size of mtermediate
relations as the cost measure We also ignore the

cost of disk accesses, and the cost of implementmg
a recursive control strategy Our model suffers from
the approximation that duplication is independent
of the sue of the start set

Fmally, our sample data and queries are hmlted,
and the results must be extrapolated to other data

and queries with caution, especially smce the
results show some variance m the relative perfor-
mance of the strategies for different sets of data

and queries In particular, our benchmark IS hm-
ited to the type of data and query where there IS a
large amount of data and the size of the answer to

the query is anaall This clearly favors the “smart”
strategies and obscures, for instance, the fact that
Semi-Naive performs as well as any other strategy
when computmg the entire transitive closure of a
relation [Bancdhon 851 Further, our data contams
no cycles or shortcuts This IS an important hmi-

tation smce it favours some of the speclahzed strs
tegies For instance, there are cases where Count-
mg performs worse than Magic Sets pancdhon et

43

al 861 This IS not shown by our results since these

cases mvolve shortcuts m the data

We have also assumed m this paper that methods
should strive for generality, 1 e we have not
addressed the problem of finding a set of speclal-
lzed operators which would solve the “real life”
cases of recursion Other authors have addressed
this problem, mainly by concentratmg on the tran-
sltlve closure operator [Valdunez and Boral 851 or
extensions of it [Dayal et al 85, Rosenthal et al

851

6. Conclusions

In this paper, we have given a description and
comparative evaluation of the myor strategies for

processmg logic queries without function symbols

We have tried to identify the exact application
domain for each method We have also tried to
describe the strategies m a uniform manner Unfor-
tunately, we have only been partially successful at
that We have identified a set of maJor charactens-
tics of the strategies method vs optimization stra-
tegy, top-down vs bottom-up, recursive vs itera-
tive and compiled vs interpreted But some of
these charactenstlcs are somewhat arbitrary for

the same strategy it IS sometimes possible to have
a compiled or interpreted version For instance, we
have presented a compiled version of naive evalua-
tion, while SNIP is an interpreted version of it It

seems also reasonable to design a compiled version
of iterative QSQ We also argued that the dlstmc-
tlon between optlmlzatlon strategy and method
was mamly of a pedagogical interest However, the
top-down vs bottom-up and recursive vs iterative
dlstmctlon seems to capture mtrmslc properties of
the strategies But we consider that the problem of
finding a good taxonomy of strategies is still wide

open

We have presented a performance comparison of
ten methods Even though the “benchmark” we

have used is mcomplete, the cost measure too ele-
mentary and the approximations crude, we found
the results to be valuable The robustness of the

results (at least on our workload), both m terms of

the order of magnitude differences between the
costs of the strategies and m terms of invariance of

the results to the parameters which we varied, was

a surpnse We have also been able to explain most
of our results through three factors duplication,
relevant facts and unary vs binary While the first
two factors were well known, the third one came
also as a surprise, even though it was probably

already understood m [Sacca and Zamolo 861

Acknowledgements

We wish to thank Bill Alexander and Patrick Val-
dunez for careful proofreading of parts of the
manuscript We are extremely grateful to Paris
Kanellakls, Ehezer Lozmsku, Jeff Ullman, Laurent
Viellle and Carlo Zamolo who provided enhghten-
mg comments and suggested many corrections and
improvements to the paper

References

[Afratl et al 861
“Convergence of Sideways Query Evalua-

tion,” F Afratl, C Papadlmltnou, G
Papageorglou, A ROUSSOU, Y Saglv and J

Ullman, Proc 5th ACM SIGMOD-SIGACT
Symposrum on Prmcrples of Database Sys-
tems, 1986

[Aho and Ullman 791
“Umversahty of Data Retrieval Languages,”
A Aho and J Ullman, Proc 6th ACM Sym-
poerum on Prrncaplea of Programmmg
Languages, 1979

[Apt and Van Emden 821
“Contributions to the Theory of Logic Pro-
grammmg,” JACM, 1982

(Banclhon 851
“Naive Evaluation of Recursively Defined

Relations,” F Bancllhon, m On Knowledge
Base Management Systems - Integrattng
Databaee and AI Systems, Brodre and Mylo-
pouloa, Eda , Sprmger- Verlag

[Bancllhon SSa]
“A Note on the Performance of Rule Based
Systems,” F Bancllhon, MCC Technrcal
Report DB-022-85, 1985

[Bancllhon et al 861
“Magic Sets and Other Strange Ways to
Implement Loge Programs,” F Bancllhon,
D Maler, Y Saglv and J Ullman, Proc 5th
ACM SIGMOD-SIGACT Symposmm on
Prrncaples of Database Systems, 1986

[Bancllhon et al SSa]
“Magic Sets Algorithms and Examples,” F

Bancllhon, D Maier, Y Saglv and J Ull-
man, Unpublashed Manuecrrpt, 1986

[Bancllhon and Ramaknshnan 861
“Performance Evaluation of Data Intensive
Logic Programs,” F Bancllhon and R

Ramaknshnan, Unpublwhed Manuacrapt,

March 1986

[Bayer 851
“Query Evaluation and Recursron m Deduc-
tive Database Systems,” R Bayer, Unpub-

44

hshed Manuscrrpt, 1985

[Chang 81)
“On the Evaluation of Queries Contammg
Derived Relations m Relational Databases,”

C Chang, In Advances an Data Base
Theory, Vol 1, HGallarre, J Mtnker and
JM Ngcolaa, Plenum Press, New York,
1981, pp 285-260

[Dayal et al 851
“PROBE a Research Project in

Knowledge-Onented Database Systems

Prehmmary Analysis,” U Dayal, A Buch-
mann, D Goldhlrsch, S Heller, F Manola,
J Orenstem and A Rosenthal, Technrcal
Report, CGA-85-08, July 1985

[Delobel 861
“Bases de Donnees et Bases de Connms-
sances Une Approche Systemlque a l’kde
d’une Algebre Matrlclelle des Relations,” C
Delobel Journees Francophones, Grenoble,
January 1986

[Dletnch and Warren 851
“Dynamic Programmmg Strategies for the

Evaluation of Recursive Quenes,” S W
Dletnch and D S Warren, Unpublrshed

Report, 1985

[Gallalre et al 841
“LOg1c and Data Bases A Deductive
Approach,” H Gallalre, J Mmker and J -M
Nlcolas, Computrng Surveys, Vol 16, No 2,
June 1984

[Gardarm and Mamdrevllle 851
“Evaluation of Database Recursive Logic
Programs as Recurrent Function Senes,” G

Gardarm and Ch de Mamdrevllle, Proc
SIGMOD 86, Washtngton, D C, May 1986

[Han and Lu 861
“Some Performance Results on Recursive
Query Processmg m Relatlonal Database
Systems,” J Han and H Lu Proc Data

Engcneertng Conference, Los Angeles,

February 1986

[Henschen and Naqvl841

[I(lfer

“On Complimg Quenes m Recursive First-
Order Data Bases,” L Henschen and S

Naqvl, JACM, Vol 31, January 1984, pp 4%
85

and Lozmskn 851
“Query Optlmlzatlon m Logic Databases,”
M Klfer and E Lozmskn, Technrcal Report,
SUNY at Stonybrook, June 1985

[Laskowskl 841
“Compllmg Recursive Axioms m First Order

Databases,” K Laskowskl, Masters Theere,
Northwestern Unrversrty, 1984

[Lozmskn 83)
“A Problem-Onented Inferential Database
System,” E Lozmskn, Tech Report 89-17,
The Hebrew Unrversrty of Jeruaalem, May
1988

[Lozmsku 851
“Evaluating Queries m Deductive Databases
by Generatmg,” E Lozmskn, Proc 11th

Internattonal Jornt Conference on Artrficral

Intell%gence, 1985

[Lozmsku 85a]
“Inference by Generatmg and Structuring of
Deductive Databases,” E Lozmskn, Unpub-
lashed Manuecrrpt, 1985

[Marque-Pucheu 831
“Algebraic Structure of Answers m a Recur-
sive Logic Database,” G Marque-Pucheu,

To appear an Acta Injormatrca

[Marque-Pucheu et al 84)
“Interfacing Prolog and Relational Database
Management Systems,” G Marque-Pucheu,
J Martin-Gallauwaux and G Jomler, rn

New Applacatrone of Databaeee, Gardarrn
and Gelenbe Eda, Academic Press, London,
1984

[McKay and Shapiro 811
“Using Active Connection Graphs for Rea-
soning with Recursive Rules,” D McKay
and S Shapiro, Proc 7th Internahonal Jornt
Conference on Art?ficral Intelligence, 1981

[Morns et al SS]
“Design Overview of the NAIL! System,” K
Morns, J Ullman and A Van Gelder,
Proceedtnge of the Srd Internattonal conjer-
ence on Logrc Programmtng, London, July

1986

[Naqvl and Flshman 811
“An Improved Complhng Techmque for
First Order Databases,” Shamlm A Naqvl
and Dame1 H Flshman, Proc Formal Bases
for Databases, Toulouse, October 1981

[Naqvl and Henschen 831
“Syntheazmg Least Fixed Point Queries
mto Non-recursive Iterative Programs,” S
Naqvl and L Henschen, Proc 9th Interna-
ttonal Jotnt Conference on Artajicral InteN:-
gence, Karleruhe, 1989

[Relter 781
“Deductive Question Answering on Rela-
tional Data Base,” R Relter, In Logrc and
Data Basea, H Gallarre and J Mmker Ple-

45

num Press, New York, 1978, pp 149-177

[Rohmer and Lescoeur 851

“La Methode Alexandre une solution pour
tralter les axlomes recursifs dans les bases de
donnees deductives ,” Collogue Reconnars-
eance de Formes et Intellrgence ArtQiczelle,
Grenoble, November 1985

[Rosenthal et al 851
“Traversal RecursIon A Practical Approach
to Supportmg Recursive Apphcatlons,” A
Rosenthal, S Heller, U Dayal, F Manola,
Unpublrshed Report, CGA, December 1985

[Sacca and Zamolo 86a]

“On the Implementation of a Simple Class
of Logic Queries for Databases,” D Sacca

and C Zamolo, Proc 5th ACM SIGMOD-
SIGACT Symposaum on Prrncrples of Data-
base Systeme, 1986

[Sacca and Zamolo 86b]

“Implementmg Recursive Logic Quenes
with Function Symbols,” &zpublrshed
Manuecrlpt, Aprcl 1986

[Sagv and Ullman 841

“Complexity of a Top-Down Capture Rule,”
Y Saglv and J Ullman, Technacal Report,
Stanford Unaversaty, STAN-CS-84-1009,
1984

[Shapiro and McKay 801

“Inference wth Recursive Rules,” S
Shapiro and D McKay, Proc 1st Annual
Nataonal Conference on Artajicaal Intella-
gence, August, 1980

[Shapiro et al 821

“Bl-Dlrectlonal Inference,” S Shapiro, J

Martms and D McKay, Proc 4th Annual

Conference of the Cognatave Scaence Socaety,
Ann Arbor, Machagan, 1982

[Taxskl 551

“A Lattice Theoretical Flxpomt Theorem
and its Apphcatlons” A TarskI, Pacajic
Journal ojMathematacs 5, 1955, pp 285-309

[Ullman 851
“Implementation of LogIcal Query
Languages for Databases,” J Ullman,
TOLD, Vol 10, No 3, pp 289-521, 1985

[Ullman and Van Gelder 85)
“Testing Apphcablhty of Top-Down Cap-
ture Rules,” J Ullman and A Van Gelder,
Technacal Report, Stanford Unaversaty,
STAN-CS-85-1046, 1985

[Van Emden and Kowalskl76]
“The Semantics of Predicate Logic as a Pro-

grammmg Language,” M Van Emden and
R Kowalskl, JACM, Vol 23, No 4, October

1976, pp 733-742

[Valdunez and Boral 861
“Evaluation of Recursive Queries Using Jom
Indices,” P Valdunez and H Boral, Proc
Farat Intl Conference on Expert Database
Systems, Charleston, 1986

[Vlellle 851
“On Handlmg Recursively Defined Virtual
Relations m Deductive Databases,” L

Vlellle, Unpublashed Report, ECRC, Munach

pietile 861

“Recursive axioms m Deductive Databases
The Query/Subquery Approach,” L Vlellle,
Proc Farst Intl Conference on Ezpert Data-
base Systema, Charleston, 1986

[Zamolo 851
“The Representation and Deductive
Retrieval of Complex ObJects,” C Zamolo,
Proc 11th Int Conference on Very Large
Data Bases, Stockholm, September 1985

[Zaniolo 861
“Safety and Compllatlon of Non-Recursive
Horn Clauses,” C Zamolo Proc Farat Intl
Conference on Ezpert Database Systeme,
Charleston, 1986

Appendix 1: The Cost Functions

We first explam the notation and termmology used
m analytically derlvmg the cost functions We have

derived expresslons for the cost of each strategy on

each of the four queries we have defined We refer
the reader to [Bancdhon and Ramakrlshnan 861 for
the derlvatlon of these expressions

We denote the number of nodes at level 1 m rela-
tion R by nR (I), and the total number of arcs m R

(which 1s the number of tuples m R) by AR Where
no confusion 1s possible, we drop the subscript

We denote the sum of the (h+l)st elements of the
geometric series of ratlon E by gsum(E,h), thus

gsum(E,h) = (1 + E -t- E2 + E3 + + Eh)

We define the length of an arc m the transltlve clc+
sure of R (which we denote by R*) to be the length
of the path of R that generates It (Note that this
1s well defined because there are no short-cuts)

We denote by aR*(l) the number of arcs of length
exactly 1 m R* Where the context IS clear, we
write a(l)

46

a(l) = n(1) + n(l+l) + . f n(h) = n(1) gsum(E,h-1)

We denote by h’ the average level

h, =h-
It denotes the mean level at which we pick a node,
assummg nodes are umformly diitrlbuted We have

actually defined h’ as the distance of the mean

level from the highest level h for notational con-
venience, since this IS a quantity we use exten-

slvely .

Query 1 (Ancestor.bf)

1.1 Naruc euafuatron

1 2 Semr-Narue Euakatron

1.3 QSQ, Itcruttue

1.4 QSQ, Recurswe

1 5 Henschen-Naqw

1 6 Prolog

17APEx

1 8 Kifer-Lozmskrl

1 6 Magrc Seta

1 10 Countmg

Query 2 (AncestorA%)

2 1 Narue eualuatron

2 2 Semr-Narue Eualuatlon

Dk(h-l+l).a(i) + E.gsum(E,h’-1)
Pl

Dka(l) + E gsum(E,h’-1)
I==1

E gsum(E,h’-1) + F 5 (h’-i+l) 1 El-’
P-1

(F+E) gsum(E,h’-1) + Dg E’.gsum(E,h’-1)
I==1

(F+E) gsum(E,h’-1)

gsum(F,h’) + E gsum(E,h’-1) + fi (F’) gsum(F,h ‘--I)
I=-1

(F+E) gsum(E,h’-1) + D fi E’ gsum(E,h’-1)
1-l

Dka(l)+E gsum(E,h’-1)
P-1

(F+E) gsum(E,h’-1) + Dfi E’ gsum(E,h’-1)
I==1

(F+E) gsum(E,h’-1)

D$(h-lfl) a(l) + (l/E) gsum(l/E,h-h’-1)
i-1

Dka(1) f (l/E) gsum(l/E,h-h’-1)
1-l

47

2 3 QSQ, Itcrat:uc (l/E) gsum(l/E,h-h’-1) + D F:(h-h’-l+l) i (l/E)”
I

24 QSQ, R~cursrvc 1 + (l/E) gsum(l/E,h-h’-1) + F ‘5(1/E)’ gsum(l/E,h-h’-1)
i-1

t 5 Henschen-Naqv:

2 6 Prolog

(D+l/E) gsum(l/E,h-h’-1)

(l/E) gsum(l/E,h-h’-1) + hn(~) gsum(F,h-1)
i=l

2 7APEX (l/E)(h”‘) (E gsum(E,h-1)+D fiEL gsum(E,h-1))
1-I

2 8 K:fer-Lozmaktr

2 9 Magw Seta

(D+l/E) gsum(l/E, h-h’-1)

1 + (l/E) gsum(l/E,h-h’-1) + F hs(l/E)i gsum(l/E,h-h’-1)
l-1

2 10 Corntmg @+1/E) gsum(l/E,h-h’-1)

Query 3 (Aucestor.bf, Non-Linear Version)

S 1 Narve evaluatron E gsum(E,h’-1) + D k(log(h/l)+l) (l-l) a(l)
F-1

3 2 Semr-Narve Evaluatron E gsum(E,h’-1) + D ?(I-1) a(i)
I==1

3 3 QSQ, Iteratrve E gsum(E,h’-1) + F 5 (h’-1+1) 1 El-’
111

$4 QSQ, Recurerve F+E gsum(E,h’-l)+D’$ (1-l) E’
I==2

3 5 Henschcn-Naqvl Does not apply

3 6 Prolog

37APhx

Does not terminate

E gsum(E,h’-1) + (l/E)‘-l” (D 5 (1-l) E’ gsum(E,h-i))
I==1

+ E” (F~(I-1) (l/E)’ gsum(l/E,h-1))
G-1

S 8 Krfer-Lormaklc E gsum(E,h’-1) + D~(I-1) a(l)
1-l

9 9 Magrc Sets E gsum(E,h’-1) + D fi(I-1) a(i)
111

3 10 Countmg Does not apply

48

Query 4 (Same Generstion.bl)

In the following expressions, h ‘,P dOcpn - mm(h ‘ap,h ‘,&, and h,, bW,, - min(h,Phdor,J

4 1 Naive cvaluatton

‘JGp2/m 1 E/u T/u2(om 1 Fdorn ii+- @,, Edown)
i-1

4 3 QSQ, Itetatavc

(h ‘.p down +l) Fjrot +

T .,2/1atl F,, 3&- (h’,,~ro-1+1) Ej +
i-1

(h ‘sp down -l+l) E&.gsum(&.,,,,i-1) +

4 4 QSQ, Recuratve

F,, &sum(&,,h ‘.p-l) +E,, tw4Lp,h ‘.p-l) ‘JJ., 2 f I& 1 F/M +

T sp2 trot 1 E/rot Tjwdoa 1 Deiotm 2 dor- EiP wm(E,,h Lp-l) EL +
1-l

T up2/1at1 %at T/m.dom 1 Fdotm 2 drrn (E,, &own)*
1-l

4 5 Henschen-Naqvc

F,, gsum(Elph ‘sp-l) +

UC, ‘bp2 /Iat 1 Ffrot + Kp2 flat I E/M %at2 doral Fdom E:p gS’d%on, l-l)) +

T up2 /lot 1 Qat T/1.t2dows 1 Fdowm (Es, &non)

4 6 Prolog

twm(Fsp,h Lp- 1) +F., gsum(F.pJGp-l) Cp2 w 1 F/U +

‘&z/w F /Iat Tfrotz doml i?- F$ gsum(Flp,h Lp--l) Ff,, +
1=1

‘Lpnfrsstl E/u T/uzdo.v.t Fdorm O&p km)
111

49

/ 7APJ.m

Fwgsum(E.p~h’.p-l) +E,,gsum(%,h’.,-1) T,p~i~d l F/M +

‘&2/u 1 ha Twnrorr 1 D&m i?- EiP gsum(E.,h ‘.p-l) E!,, +

i-1

T sp211.t 1 E/rat T/1.t2~mm 1 Fd,, I?- @.p EdJ
i-l

4 8 Klfer-Loztnskri

/ g Magic Set43

F, gsu4Lp,h ‘.p-l) +E,,sum(E.p,h :,-I) T,, 2.f ~,,t 1 F/U +

T l p2/1.t 1 E/r& T/uPL~~ 1 Ddms 2 ‘*rg Eip wum(E.,h k-1) EL. +

Cl

/ 10 Countrng

F, gsum(E,h Lp-l) +
‘Lp2/1d 1 F/U (l+E.+m4Q X,-l)) +

fFd- Lp2/~at1E/rat T/~,miorrlDdor~ (Esp &orm~ +
b-1

T sp2/1.t1 E/u T/rtstzroa 1 Fdmss ii- &,.&o,)

i=l

50

Appendix 2: The CUW~S

A.M. Tree A.D?. Inverted traa

I
C

J O I
S

t I

C
0
s
t

A.Dt. Cylinder

\ -

ns, tsar. AIU

MN, C

mo-’

ns, as* Ata
M--

’ nn,c

A. tb. Tree

Sg.bf. tree. 1 - 1 Sg.bf. Cylinder. T * 1

c

0

:

C
0

:

A.dr, Cylindrr

C
0

:

So.bf. Cylinder,

