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Abstract: The use of inertial sensors to characterize pathological gait has traditionally 

been based on the calculation of temporal and spatial gait variables from inertial sensor 

data. This approach has proved successful in the identification of gait deviations in 

populations where substantial differences from normal gait patterns exist; such as in 

Parkinsonian gait. However, it is not currently clear if this approach could identify more 

subtle gait deviations, such as those associated with musculoskeletal injury. This study 

investigates whether additional analysis of inertial sensor data, based on quantification of 

gyroscope features of interest, would provide further discriminant capability in this regard. 

The tested cohort consisted of a group of anterior cruciate ligament reconstructed (ACL-R) 

females and a group of non-injured female controls, each performed ten walking trials. 

Gait performance was measured simultaneously using inertial sensors and an 

optoelectronic marker based system. The ACL-R group displayed kinematic and kinetic 

deviations from the control group, but no temporal or spatial deviations. This study 

demonstrates that quantification of gyroscope features can successfully identify changes 

associated with ACL-R gait, which was not possible using spatial or temporal variables. 

This finding may also have a role in other clinical applications where small gait  

deviations exist.   
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1. Introduction 

Inertial sensor technology has the potential to bring gait analysis outside of the biomechanics 

laboratory and allow gait analysis to be more accessible to a wider group of clinicians and researchers 

on a more regular basis [1,2]. Although current gold standard gait analysis tools, such as 

stereophotogrammetry and force plates, provide high quality kinematic data, these systems also have 

many pitfalls such as their cost, their setup time and the fact they are confined to the camera defined 

collection space. On the contrary, inertial sensors are inexpensive, easy to use when combined with 

processing software and are not confined to a small collection space [3,4]. Instead of gait analysis 

being confined to complex biomechanics laboratories, as with traditional gait analysis tools, gait 

analysis with inertial sensors could take place during regular clinical check-ups, in the home and 

ubiquitously as people go about their daily lives [5]. Such inertial sensor use could drastically increase 

the amount of gait data that clinicians and researchers can obtain. The subsequent expansion of 

available databanks would also allow for enhanced gait rehabilitation programs and more ecologically 

valid research [6].  

Despite the current depth of research in the inertial sensor gait area, the sensors are not used 

extensively outside of the laboratory environment, save for example as a step counter. This may be 

partly due to the fact that inertial sensor gait analysis use has been primarily confined to replication of 

traditional gait analysis metrics; such as temporal, spatial and kinematic data. There is therefore a need 

for research to look toward using inertial sensor data in innovative ways to provide new clinically 

meaningful metrics. Despite the availability of the theoretical framework in which inertial sensor data 

can be integrated to obtain position, it is a well-documented phenomenon that this process results in 

significant errors [7,8]. It is hypothesized that the use of the raw inertial sensor signal would yield 

more valid and reliable results as opposed to the error ridden integration to position. 

Previous inertial sensor gait research on patient populations has used temporal or spatial outputs 

from inertial sensors to identify pathological gait patterns, however the pathologies studied have been 

characterized by large gait deviations [9,10]. Observed differences ranged from 0.5 m in step length 

for Parkinson patients [10] to 0.6 m in step length for stroke patients [9]. Some pathological 

conditions, such as anterior crucitate ligament reconstruction or early on-set knee osteoarthritis (OA), 

may result in gait deviations that do not alter temporal or spatial parameters, but do alter joint angular 

kinematics and kinetics and can consequently lead to the premature development of degenerative joint 

disease such as OA. There is a body of research investigating how inertial sensor data can be used to 

calculate joint angular kinematics, however, the processing techniques are not yet accurate enough to 

provide clinically useful results [11–13]. Error rates are approximately three degrees when using a 

robotic knee [11], however these error rates then increase to 7.88 degrees with human use; due to 

sensor attachment issues and soft tissue movement [13]. In addition, these techniques require the 

patient to wear multiple sensors. There is a need to consider if clinically useful data can be obtained 
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with fewer sensors, as for ambulatory monitoring applications, decreasing the number of sensors can 

greatly enhance the usability of the system [14]. The reported errors in estimating joint angular 

kinematics using inertial sensors are in a range which makes them accurate only for identifying large 

deviations to the gait pattern. As some abnormal pathological gait patterns have only subtle deviations 

there is a need for an inertial sensor processing technique that can identify a pathological gait deviation 

in which no spatio-temporal differences exist, but only subtle kinematic differences exist. 

As such, the purpose of this work was to investigate innovative ways by which raw inertial sensor 

data could be processed to provide clinically useful information. Specifically we want to determine if 

inertial sensor extracted features can be used to identify abnormal gait patterns in a pathological 

population with subtle gait pattern differences. 

ACL-R gait was chosen as the gait pathology to investigate for three reasons. Firstly, aberrant gait 

patterns post-ACL-R have been suggested to be a potentially important risk factor for the development 

of knee OA [15–17]. Secondly, ACL-R gait has not been previously investigated with inertial sensors 

and thirdly, the deviations between ACL-R and normal, healthy gait patterns are minimal [18–20]. 

Therefore, ACL-R participants provide a novel test cohort to determine if inertial sensors can be used 

to detect gait changes that are not obvious to the eye. 

2. Experimental Section  

Seventeen lower limbs of fourteen female athletes constituted the ACL-R group. Of these athletes, 

three participants had previously ruptured both right and left ACL, thus both lower limbs were 

included for the analysis in these participants (Table 1). Of the seventeen involved lower limbs 

analyzed in this work, eight were reconstructed via a hamstring auto-graft surgical procedure, with the 

remaining being a bone-patellar tendon-bone auto-graft. At the time of testing all athletes were fully 

engaged in field or court based sports (e.g., Gaelic football, soccer, hockey, basketball) at club or 

county level and no athlete was undergoing any form of formal rehabilitation. Seventeen female 

athletes with no previous history of knee joint injury constituted the control group (Table 1). All 

athletes played field or court based sports (e.g., Gaelic football, soccer, hockey, basketball) at club or 

county level. Ethical approval for the study was approved by the Universities ethics committee. Before 

each subject began the study, they were informed of the risks of participation and each read and signed 

an informed consent form. 

Table 1. Anthropometric, gait velocity and surgical data. Averages are presented with 

standard deviations in brackets. Differences between group means are non-significant  

(p > 0.05) except for age (p < 0.01).  

 Age (y) Height (m) Weight (kg) Walking Speed (m/s) 
Time Since Surgery 

(year) 

Control 20.8 (1.17) 1.65 (0.06) 64.7 (7.06) 1.42 (0.13)  

ACL-R 23.7 (3.12) 1.64 (0.05) 64.9 (9.02) 1.37 (0.13) 3.50 (3.25) 

Gait data was collected simultaneously using both conventional gait analysis tools as well as inertial 

sensors. Conventional gait data was obtained using an active marker CODA Motion Analysis System 

(Charnwood Dynamics, Ltd, Leicestershire, UK) that consisted of three MPX30 cameras sampling at 
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200 Hz. The system was integrated with two AMTI force plates sampling at 1,000 Hz (Watertown, 

MA, USA). Motion capture data was obtained using previously described methods [21]. Anthropometric 

data was obtained for the calculation of internal joint centres at the hip, knee and ankle joints, and 

included pelvic width (left ASIS to right ASIS), pelvic depth (ASIS to PSIS on right side), knee width 

and ankle width. Limb lengths of the thigh, shank and foot were also measured with a measuring tape. 

The markers and marker wands were applied according to manufacturer guidelines by the same 

investigator on all subjects. Markers were positioned on the lateral aspect of the knee joint line, the 

lateral malleolus, the heel and the fifth metatarsal head. Wands with anterior and posterior markers 

were positioned on the pelvis, sacrum, thigh and shank. The markers were fixed to the skin with 

double sided tape.  

Two inertial sensors (Xsens MTx G25, Enchede, The Netherlands), sampling at 100 Hz, were 

placed on each subject. Each inertial sensor contained a 3-axis accelerometer and gyroscope. For the 

research presented in this paper, only the sagittal plane shank gyroscope signal was used. The signal 

range of the gyroscopes were ±1,200 degrees per second. They were placed on the anterior aspect of 

the tibia, attached to the CODA leg marker, with the centre of the inertial measurement unit at the  

mid-point between the lateral malleolus and the knee joint centre. The sensors were held in place with 

double sided tape as well as athletic tape. 

After the markers were secured in place, a Chartered Physiotherapist put each subject into a subtalar 

neutral standing position prior to collection of a neutral stance trial. This was performed to align the 

participant with the laboratory coordinate system and to function as a reference position for subsequent 

kinematic and kinetic analysis. Prior to performing the trial, each subject completed several practice 

walking trials through the laboratory walkway. This allowed the subjects to get accustomed to the 

markers as well as allowing a starting point to be identified so that the subjects would contact the force 

plates in normal stride. Subjects walked barefoot across the 15 m walkway at their self-selected normal 

walking speed. To ensure normal walking throughout each trial, the subjects were not made aware of 

the presence of the force plates until the data collection was completed. Any trials in which there were 

not two consecutive foot strikes onto the force plates were discarded. Ten clean gait cycles, in which 

two full foot strikes onto the force plates were detected, were saved. The employed measurement 

system has been previously shown to be reliable when using the same marker set up and ten gait  

trials [21]. 

2.1. Data Processing of Inertial Sensors  

Heel strike (HS) and toe-off (TO) points were found in the inertial sensor data based on a 

previously validated algorithm [22]. From these gait events, four temporal variables were calculated 

for each trial; gait cycle duration, stance time, swing time and double support time. 

A data-driven approach was used to determine if data from the sagittal plane shank gyroscope could 

be used to differentiate between ACL-R and healthy control gait patterns [23]. Six gyroscope features 

during each gait cycle on each foot were quantified from the sagittal plane gyroscope (Figure 1). These 

were selected based on previous research which indicated that the sagittal plane shank rotation rate 

signal can be used to identify pathological gait patterns [10]. Minimum value at TO represents the 

large minimum prior to peak rotation rate at mid-swing. Rate of change during initial swing was 



Sensors 2014, 14 891 

 

 

determined by calculating the rate of change of the sagittal plane shank rotation rate from TO until 

25% of the swing phase. Peak shank rotation rate during swing is the maximum rotation rate the shank 

achieves during the swing phase. Peak negative rotation rate at HS occurs at the first minimum 

following the maximum rotation rate during mid-swing. Post-HS shank variance was calculated by 

taking the variance of the gyroscope signal from HS until 35% of the stance phase. Mid-stance 

variance was calculated by taking the variance of the gyroscope signal from 35% stance to 75% stance. 

Figure 1. The sagittal plane shank gyroscope signal over a single gait cycle. The quantified 

features from each gait cycle are numbered on the graph. 1—minimum value at TO,  

2— rate of change during initial swing, 3— peak shank rotation rate during swing,  

4—minimum value at IC, 5—post-HS shank variance and 6—mid-stance variance.  

 

Inertial sensor outputs (temporal and extracted features) from each steady state gait cycle were 

averaged for each trial. Values from each trial were averaged to obtain one value for each variable for 

every subject. Values from each subject were averaged to obtain one value for the ACL-R group and 

one value for the control group. For ACL-R participants, data from the injured legs were used. For 

control subjects, either the right or left leg was used to allow for an equal number of right and left legs 

in both the ACL-R and control groups. Independent samples t-tests were used to test for differences 

between groups in the temporal data as well as the quantified gyroscope variables. 

2.2. Data Processing of Conventional Gait Data  

Gait speed was calculated by dividing the stride length by the stride duration of the right heel 

marker, which was obtained from the motion capture software. Knee angular kinematic and kinetic 

data from each trial was accumulated over the entire stride. The first initial contact was found in the 

force plate data as a 10 N crossing of the vertical ground reaction force. The next initial contact was 

found in the kinematic data using a previously validated method [24]. Each trial of each participant 
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was normalized to 400 samples and averaged over all ten trials. The averaged curves from each subject 

were averaged over each group to obtain the comparison curves between the ACL-R and the control 

groups. Independent two-sided t-tests were used to test for significant differences between magnitudes 

of the group means time averaged profiles for each variable recorded during the stride. This technique 

has been used previously [25,26]. The level of significance was set at p < 0.05.  

Peak knee adduction moment during early stance and normalized peak knee adduction moment 

(%Bw-ht) [27] during early stance were compared using an independent samples one sided t-test 

(PASW Statistics, 24 Version 18.0, IBM Corporation, Chicago, IL, USA). The level of significance 

was set at p < 0.05. Associated effect sizes (eta squared) were calculated using the formula described 

in Pallant [28]: t
2
/[t

2
 + (N1 + N2 – 2)] and quantified according to Cohen [29] as 0.01 = small effect 

size, 0.06 = medium effect size and 0.14 = large effect size. Pearson product correlations and 

subsequent significance values were used to investigate the relationship between the six features which 

were extracted from the gyroscope signal. 

3. Results and Discussion 

3.1. Temporal Features and Gyroscope Extracted Features  

As can be observed from Table 2, there were no significant differences in temporal parameters 

between the ACL-R group and the control group. However, a significant difference was found between 

the groups in three of the gyroscope variables: peak rotation rate at mid-swing for the ACL-R group 

was significantly lower than the control group; minimum rotation rate at IC for the ACL-R group was 

significantly lower than the control group; post-HS shank adjustments for the ACL-R group were 

significantly lower than the control group.  

Table 2. Temporal gait parameters compared between the ACL-R and control groups. 

Average values are presented with standard deviations in brackets. 

Temporal Variable ACL-R Control t Sig 

Gait cycle (s) 1.008 (0.063) 0.975 (0.036) 1.833 0.076 

Stance time (s) 0.570 (0.047) 0.544 (0.026) 1.973 0.057 

Swing time (s) 0.438 (0.037) 0.434 (0.025) 0.382 0.765 

Double support time (s) 0.060 (0.025) 0.058 (0.015) 0.334 0.741 

Gyroscope extracted features 

Shank rotation rate at TO (rad/s) −4.293 (0.753) −4.481 (0.674) 0.768 0.448 

Shank rate of change during initial swing 

(rad/s/s) 
0.767 (0.212) 0.762 (0.224) 0.063 0.950 

Peak shank rotation rate during swing 

(rad/s) 
6.935 (0.695) 7.517 (0.562) −2.680 0.012 * 

Shank rotation rate at IC (rad/s) −3.452 (0.614) −4.105 (0.699) 2.893 0.007 * 

Post-IC shank rotation rate variance (rad/s) 0.898 (0.534) 1.246 (0.434) −2.082 0.045 * 

Shank rotation rate variance during  

mid-stance (rad/s) 
0.237 (0.104) 0.321 (0.200) −1.551 0.131 

* significant difference between the groups (p < 0.05). 
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Table 3 presents eta squared, cohen’s D and 95% confidence intervals of the difference for all 

gyroscope extracted features with significance values less than 0.05 when comparing between the 

ACL-R group and the control group. 

Table 3. Eta squared, cohen’s D and 95% confidence intervals of the difference for all 

gyroscope extracted features with significance values less than 0.05. 

 
Eta 

Squared 

Cohen’s 

D 
Power 

95% Confidence Intervals of 

the Difference 

Lower Upper 

Peak shank rotation rate 

during swing 

0.184 

(large) 
0.921 0.740 −1.023 −0.140 

Peak shank rotation rate at 

IC 

0.207 

(large) 
0.993 0.801 0.193 1.113 

Post-IC shank rotation rate 

variance 

0.120 

(moderate) 
0.715 0.525 −0.688 −0.008 

Table 4 presents Pearson product correlation information between each of the six gyroscope 

extracted features.  

Table 4. Pearson product correlations and significance values (presented in brackets) 

between each of the gyroscope extracted features. 

 

Shank 

Rotation 

Rate at 

TO 

Shank Rate 

of Change 

During 

Initial 

Swing 

Peak Shank 

Rotation 

Rate 

During 

Swing 

Shank 

Rotation 

Rate at 

IC 

Post-IC 

Shank 

Rotation 

Rate 

Variance 

Shank 

Rotation Rate 

Variance 

During  

Mid-Stance 

Shank rotation 

rate at TO 
- 

−0.83 

(< 0.01) 

−0.56 

(< 0.01) 

0.32 

(< 0.063) 

−0.47 

(< 0.01) 

−0.53 

(< 0.01) 

Shank rate of 

change during 

initial swing 

- - 
0.44 

(< 0.01)  

−0.30  

(0.086) 

−0.40  

(< 0.018)  

0.51  

(< 0.01) 

Peak shank 

rotation rate 

during swing 

- - - 
−0.83  

(< 0.01) 

0.79  

(< 0.01) 

0.42  

(< 0.01) 

Shank rotation 

rate at IC 
- - - - 

−0.91  

(< 0.01) 

−0.44  

(< 0.01) 

Post-IC shank 

rotation rate 

variance 

- - - - - 
0.42  

(0.012) 

3.2. Conventional Gait Features  

Peak knee adduction moment was lower for the ACL-R group (N = 17, M = 0.31 Nm/kg∙m,  

SD = 0.08) than for the control group (N = 17, M = 0.41 Nm/kg∙m, SD = 0.12; t(32) = 2.483,  

p = 0.010, one tailed, Figure 2), with an associated large effect size (eta squared = 0.16). Normalized 
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knee adduction moment was also lower for the ACL-R group (N = 17, M = 2.86, SD = 1.01) than for 

the control group (N = 17, M = 3.89, SD = 1.13; t(32) = 2.770, p = 0.005, one tailed), with an observed 

large effect size (eta squared = 0.19). 

A comparison of time averaged profiles for knee angular displacement in coronal, frontal and 

sagittal planes showed that there were significant differences in knee joint kinematics between the 

groups during the swing phase (Figure 2). No differences were observed between groups during the 

stance phase of the gait cycle (Figure 2). The ACL-R participants displayed a more extended and more 

adducted knee position during swing phase than the control subjects.  

Figure 2. 3D knee angular kinematic time averaged profiles for the ACL-R group and the 

control group normalized over the stride. Segments with significant differences between 

the ACL-R and control groups are shown in the shaded sections. 

 

4. Conclusions/Outlook 

This work extends the current use of inertial sensors to analyze gait patterns by extracting features 

from a gyroscope on the shank which are capable of identifying the presence of a pathological gait 

condition that is not obvious to the naked eye. Inertial sensors have been used previously to identify 

gait pathologies in which there are large temporal or spatial abnormalities in gait patterns [9,10,30]. 

However, since there were no significant temporal or spatial deviations in this ACL-R group, the 

authors quantified features from a shank mounted gyroscope to differentiate between ACL-R and 
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healthy control gait patterns. Due to the potential association between aberrant ACL-R gait patterns 

and early onset of knee joint OA [15–17], the results of the present study suggest that inertial sensor 

extracted features may one day be applicable in the clinical domain as a screening tool to easily 

identify patients who have potentially harmful gait patterns; although more work is required to prove 

this hypothesis. Inertial sensors are a valuable tool for gait analysis due to their low cost, portability 

and ease of use compared to conventional gait analysis tools. Regular inertial sensor use for gait 

analysis would result in a significant increase in the amount of gait data that clinicians and researchers 

can collect.  

The conventional gait analysis tools used in this study indicate that there were subtle gait pattern 

deviations between the ACL-R and control groups however there were no temporal or spatial 

differences in the gait patterns between groups (Tables 1 and 2). There were small knee joint angular 

kinematic differences between the groups; for example ACL-R participants displayed a more extended 

and adducted knee position during swing (Figure 2). Such a position may apply an increased 

translational shear stress on the knee joint. The ACL-R participants also displayed a significantly lower 

peak knee adduction moment. Current state of the art inertial sensor processing techniques can 

accurately determine spatial and temporal gait metrics, but not joint angular kinematics. Thus, this 

paper proposed a novel method of processing inertial sensor data to detect ACL-R gait patterns; which 

involved extracting features from the sagittal plane shank gyroscope signal. 

The findings of this work and previous work [10] on inertial sensor extracted features suggest that 

there may be a relationship between peak shank rotation rate during swing and harmful gait patterns; 

further work is required. Previous published work has reported statistically significant differences of 

0.2 and 0.4 s in gait cycle time between two different Parkinson patient groups compared to healthy 

controls [10]. In the present study a non-significant 0.02 s difference was found in gait cycle time 

between the ACL-R group and the control group (Table 5). However, a significant difference did exist 

in the peak shank rotation rate during swing. The ACL-R patients in the present study had values that 

were significantly less than an age and activity matched control group. These values were similar to 

those values reported in an elderly control group in a previous study [10]. Having a decreased peak 

shank rotation rate during swing alone is not likely to be a problem, however it is an interesting finding 

that two very different pathological populations who have been shown to be at an elevated risk of knee 

joint OA development displayed similar peak shank rotation rate values during swing. ACL-R patients 

are at a higher risk of developing knee joint OA and a potential mechanism of this is thought to be 

abnormal locomotion patterns [15–17]. Elderly patients are also at a high risk of developing knee OA 

from abnormal locomotion patterns [31]. Perhaps, a reduced peak shank rotation rate during swing is a 

characteristic of gait in subjects who have gait patterns that may potentially cause long-term knee joint 

degeneration. The results of this study do not confirm this, but these results combined with previous 

research suggest that this inertial sensor extracted feature may be an important marker of harmful gait 

patterns. More work is warranted to thoroughly investigate this potential relationship.  

All three of the extracted features which were significantly different between the ACL-R and the 

control groups were of lower magnitude in the ACL-R group (Table 2). Based on similar relationships 

between knee kinematics and shank rotation rate in previous research [10,32], this decrease in 

magnitude of shank rotation rate at IC (when the knee is extended) may be related to some motor 

strategy to limit strain on the ACL. This adaptation strategy may have also resulted in the significantly 
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lower shank rotation rate variance seen in initial stance of the ACL-R group compared to the control 

group. As the peak value at IC was decreased, the rotation rate had less of a peak value to recover from 

during initial stance, resulting in the lower shank rotation rate variance seen during initial stance of the 

ACL-R group. Post-IC shank rotation rate variance is most likely linked to the body beginning to 

move over the foot at the start of stance. 

Table 5. Peak shank rotation rate during mid-swing comparison. Mean values are 

presented with standard deviations in brackets. 

Study Group 
Average 

Age (year) 

Gait Cycle 

Time (s) 

Peak Shank Rotation Rate 

During Mid-Swing (deg/s) 

Salarian et al. 

[10] 

Parkinson stim on 61.5 1.4 (0.6) 225.2 (103.5) 

Parkinson stim off 61.5 1.2 (0.2) 275.4 (110.0) 

Control 63.6 1.0 (0.1) 386.3 (40.1) 

Current study 
ACL-R 20.8 1.0 (0.063) 397.6 (40.1) 

Control 22.6 0.98 (0.034) 430.9 (32.1) 

Table 4 implies that there is a close relationship (0.79, −0.83 and −0.91 Pearson product correlation) 

between all of the gyroscope extracted features that are significantly different between the ACL-R 

group and the control group. This suggests that they are providing similar information regarding the 

differences observed in ACL-R gait patterns. Perhaps, if future biomechanical research conclusively 

proves that knee adduction moment is a strong predictor of knee joint degeneration over time, 

extracted features from a single inertial sensor could be used to assess risk of joint degeneration. Such 

an approach could utilize multiple regression techniques in which these correlations are useful to 

determine variables providing redundant information which can therefore be dropped from the 

multiple regression equation. The advantage of estimating joint moments in the future using one 

inertial sensor is that joint moment calculations require the measurement of angular kinematics as well 

as ground reaction forces, which require a significant amount of measurement equipment. Using one 

inertial sensor means it would be much easier to obtain the complex moment data, thus allowing the 

collection of an important biomechanical marker outside of the constraining laboratory environment. 

Based on the fact that epidemiological research has shown that ACL-R patients are five times more 

likely to develop knee joint OA than the general population [33] and these extracted features are 

different in an ACL-R population, these extracted features could be useful at identifying patients who 

have abnormal gait patterns that may result in long-term knee joint degenerative disease. This 

hypothesis suggests that inertial sensors and their extracted features might one day be useful in clinical 

practice for use as a screening tool for pathological populations in which only subtle gait deviations 

exist. In such a scenario, an inertial sensor could be mounted on the shank and if the feature of interest 

is in an abnormal range, it would indicate to the clinician that that patient should undergo a more  

in-depth gait analysis using the more costly and time consuming traditional gait tools. Such a screening 

tool would allow a larger number of patients to be analyzed at a lower cost to both the patient and the 

health-care system.  
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An a priori sample size calculation was not possible, as previous work had not considered inertial 

sensor extracted features in an ACL-R population. Post-hoc analysis showed that the differences 

between groups for the peak shank rotation rate during swing and the shank rotation rate at IC both 

seem to be real observed effects based on the fact that their effect sizes are large, Cohen’s D are over 

0.80 and their observed powers are both over 0.90 (Table 3). The difference between groups for  

post-IC shank variance does not have a high level of observed power and only a moderate effect size, 

providing less confidence that the difference seen between groups for that variable was a real observed 

effect (Table 3).  

A limitation of this study is that it does not conclusively prove any link between inertial sensor 

extracted features and the presence of abnormal movement patterns which may lead to knee joint 

degeneration over time. Estimating knee joint OA development is not a simple issue, but a complex, 

multifaceted problem that is well beyond the scope of one cross-sectional study. 

The main contribution of this work is that a novel processing method has been employed to obtain 

clinically useful gait information from a musculoskeletal pathology which results in only subtle gait 

pattern deviations. 
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