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ABSTRACT

Maintenance actions can be classified, according to their efficiency, into three categories:

perfect maintenance, imperfect maintenance and minimal maintenance. To date, the litera-

ture on imperfect maintenance is voluminous, and many models have been developed to treat

imperfect maintenance. Yet, there are two important problems in the community of mainte-

nance that still remain wide open: how to give practical grounds for an imperfect-maintenance

model, and how to test the fit of a real data set to an imperfect-maintenance model. Motivated

by these two pending problems, this work develops an imperfect-maintenance model by taking

a physically meaningful approach. For the practical implementation of the developed model,

we advance two methods, called QMI method and spacing-likelihood algorithm, to estimate

involved unknown parameters. The two methods complete each other and are widely appli-

cable. To offer a practical guide for testing fit to an imperfect-maintenance model, this work

promotes a bootstrapping approach to approximating the distribution of a test statistic. The

attractions and dilemmas of QMI method and spacing-likelihood algorithm are revealed via

simulated data. The utility of the developed imperfect-maintenance model is evidenced via a

real data set. This article has a supplementary material online.

KEY WORDS: Censored data; Maximum spacing estimation; Model selection; Parametric

bootstrap; Quasi-Monte Carlo integration.
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1 INTRODUCTION

Maintenance (or, interchangeably, repair) plays a key role in the life-cycle management of a ma-

chine. A machine herein could be any piece of mechanical equipment. An optimal scheduling

of inspection, maintenance and replacement can improve the reliability of a machine and, mean-

while, significantly reduce operational cost. Hence, the modeling of maintenance efficiency and

the optimization of maintenance policies are attracting more and more attention; see Ahmad and

Kamaruddin (2012), Wang (2012), Shafiee and Chukova (2013) and Tanwar et al. (2014) for recent

reviewing work on maintenance. Maintaining actions comprise perfect repairs, imperfect repairs

and minimal repairs performed to retain or restore a machine in or to an acceptable operating con-

dition. The problems of perfect maintenance and minimal maintenance are trivial, which can be

readily solved by invoking a renewal process and a non-homogeneous Poisson process (Lindqvist,

2006). Compared with the assumptions of perfect maintenance and minimal maintenance, which

only have restricted applications, the assumption of imperfect maintenance is more practical and

has been applied to a variety of machines, such as electric drills (Shafiee et al., 2012), a distributed

energy system (Xia et al., 2012), motors (Pulcini, 2013), a coal-transportation system (Pandey

et al., 2013), fire water pumps (Ramirez and Utne, 2013), a high pressure die casting machine

(Tambe et al., 2013), dump trucks (de Toledo et al., 2015), machines in power plants (Dijoux and

Idee, 2013; Melchor-Hernandez et al., 2015), et al..

Motivated by the practical need of modelling imperfect repairs, numerous imperfect-maintenance

models have been developed. There are many imperfect-maintenance models that are built on

stochastic processes and multi-state systems; for recent works, the reader is referred to Guo et al.

(2013), Mercier and Castro (2013), Zhang et al. (2015), Pandey et al. (2013), Liu et al. (2013),

Zhang et al. (2013), and the references therein. Here, we only review imperfect-maintenance mod-

els that are built on lifetime distributions. An early attempt at modeling imperfect maintenance is

the (p, q) rule, assuming that the probability of a repair being perfect is p and being minimal is

q=1-p (Nakagawa, 1979). Block et al. (1985) extended the (p, q) rule to be age-dependent, namely,

the (p(t), q(t)) rule. Obviously, the (p, q) rule (or its generalization) is confined to the realm of

speculation, and will be invalid in most cases where repairs are neither perfect nor minimal. Ki-

jima (1989) introduced the concept of virtual age, assuming that an imperfect repair reduces a

maintained machine’s physical age (therein called virtual age) by an amount proportional to the

additional age accumulated since the last repair, or by an amount proportional to the physical age

just before the repair. Henceforth, virtual age models have been extensively explored and em-
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ployed (see, e.g., Dijoux and Idee, 2013; Khojandi et al., 2014; Tanwar et al., 2014). Malik (1979)

introduced the concept of improvement factor, assuming that an imperfect repair changes the time

of the hazard rate curve to some newer time but not all the way to zero. Lin et al. (2000) extended

the improvement factor model, stating that an imperfect repair could change both the time and the

slope of the hazard rate curve. For recent research on the (extended) improvement factor model,

the reader may refer to, e.g., Park et al. (2012), Xia et al. (2012) and Khatab et al. (2014). Note that

the extended improvement factor model by Lin et al. (2000) indeed embraces many documented

imperfect-maintenance models, including the family of virtual age models, which act through the

hazard rate function. Since Malik (1979) put the idea out before Kijima (1989), in the current work

we group virtual age models into the family of improvement factor models. One major limitation

of improvement factor models is they all assuming that the improvement factor is identical for

all repairs during the maintained machine’s whole operational life cycle. Intuitively, each repair

should have a different degree of impact on the machine’s quality. Hence, it is more practical to

assume that the improvement factor is random. Motivated by the idea of “improvement factor”

and the limitations of existing improvement factor models, the major contribution of the current

work is an imperfect-maintenance model grounded on practical considerations. Our approach is

legislated by the notion of hazard potential introduced by Singpurwalla (2006).

The second contribution of the current work is a generic approach for testing whether an

imperfect-maintenance model is valid in light of a real data set. For every particular application

and data set, practitioners are confronted with the problem of selecting among a set of candidate

models the most appropriate model. An intuitive approach to the problem is to build a statistical

test of hypotheses. Lifetime data of identical machines under perfect maintenance and/or minimal

maintenance are identically distributed, and therefore classical test statistics are applicable (see,

e.g., Li et al., 2014). By contrast, testing fit to an imperfect-maintenance model is a big challenge

in that lifetime data of identical machines under imperfect maintenance are no longer identically

distributed. Furthermore, for certain imperfect-maintenance models, the distribution function of a

test statistic not only depends on the number of lifetime data but also on the number of imperfect

repairs. Therefore, classical test statistics are not directly applicable. Testing fit to an imperfect-

maintenance model has received surprisingly little attention. To our knowledge, at the present

time there exist only two works on goodness-of-fit test for imperfect-maintenance models: Liu

et al. (2012) and de Toledo et al. (2015). However, the method developed by Liu et al. (2012)

is questionable, because transformed data (by using probability integral transformation) are not

uniformly distributed when involved parameters are unknown and estimated (David and Johnson,
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1948). The methods developed by de Toledo et al. (2015) are for model selection (namely, select-

ing among a given set of models the best fitted model) not for testing model validation in light of

data. Motivated by the practical need of testing goodness of fit for imperfect-maintenance models,

we here develop a generic approach such that practitioners can readily compute the p-value for any

particular problem.

The following exposition is divided into four parts. Section 2 is devoted to mathematically

formulating our two contributions. Section 3 is devoted to parameter-estimation. In Section 4, we

further detail the procedure for testing goodness-of-fit. In Section 5, we present numerical study

results.

2 MODEL FORMULATION

2.1 Ameliorated Improvement Factor Model

Let random variable T denote the lifetime of a machine operating in certain environment (denoted

by E ). The reliability function of T , namely Pr(T > t; t ≥ 0), is assumed to be absolutely contin-

uous. In the foregoing and following expressions, we introduce the convention that all quantities

to the right of the vertical slash are conditional, and that all quantities to the right of the semicolon

are known (specified). Let non-negative function h(t), t ≥ 0, denote the hazard rate function of

Pr(T > t; t ≥ 0). Suppose that, after being put into operation at time 0, the machine is repaired at

time s (> 0). A general framework of the improvement factor model is set forth as follows (see,

e.g., Lin et al., 2000). The repair is assumed to take negligible time. Right after the repair the

hazard rate function is re-formulated to be bh(t − s+as) for t > s. Here, the value t − s+as in the

set of parentheses is called the physical age (or, interchangeably, virtual age) of the machine. t − s

represents the time elapsed from the repair. a (∈ [0,1]) is an age-reduction factor, indicating that

the physical age of the machine may be reduced (for 0 ≤ a < 1) or the same (for a = 1). b(> 0) is

a hazard-rate-alteration factor, indicating that the rate of accumulation of hazard may be reduced

(for 0 < b < 1), the same (for b = 1), or advanced (for b > 1). The improvement factor model is

widely applicable: if b = 1, the improvement factor model will reduce to a virtual age model; if the

repair is perfect, we can set a = 0 and b = 1; if the repair is minimal, we can set a = 1 and b = 1.

Under the improvement factor model, an imperfect repair should lower the hazard rate of the

machine and lead to bh(as)< h(s). One shortcoming of the improvement factor model is it assum-

ing that a and b are constant. This assumption could be inappropriate and even problematical in
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many circumstances. For example, the improvement factor model cannot guarantee that the hazard

rate will always be lowered because, if b> 1, bh(as) can be larger than h(s). Since the environment

E may change wildly and every repair should have a different degree of impact on the machine’s

quality, it is more practical to assume that a and b are random. By quality, we mean a resistance

to failure-causing agents. The second shortcoming of the improvement factor model is its implicit

requirement that the hazard rate function should be non-decreasing. If the hazard rate function is

non-increasing (e.g., the first part of a bath-tub shaped hazard rate function), then bh(as) can be

larger than h(s). Consequently, this implicit requirement impedes the wide implementation of the

improvement factor model in real-life practice. The third shortcoming of the improvement factor

model is that right after the repair the reliability of the machine is still exp(−∫ s
0 h(u)du). However,

it is more practical in reality that an imperfect repair will improve the reliability of the maintained

machine.

Let H(t) denote the cumulative hazard of the machine at time t (≥ 0):

H(t) =
t

∫
0

h(u)du =
t

∫
0

Pr(T ≤ u+du|T > u).

Here and in the following, the symbol “d” denotes an infinitesimal change in a quantity. We note

that the cumulative hazard function H(t) is monotonically increasing. Motivated by the above

shortcomings of the improvement factor model, we here ameliorate it by replacing the hazard rate

function, h(t), with the cumulative hazard function, H(t). Specifically, the ameliorated improve-

ment factor model says that right after the repair the cumulative hazard function is re-formulated

to be bH(t − s+as) for t > s. We might still call a (∈ [0,1]) the age-reduction factor and b(> 0)

the hazard-rate-alteration factor. If the repair is perfect, we set a = 0 and b = 1; if the repair is

minimal, we set a = 1 and b = 1. For the ameliorated improvement factor model, the improvement

factors a and b are random, having certain probability distributions. If the variance of a (or b) is

small, then we can approximate it by a constant value. In Section 1 of the supplementary material,

we discuss in detail the advantages of the ameliorated improvement factor model. In what follows,

unless otherwise stated, by the improvement factor model we mean the ameliorated improvement

factor model.

It is well known that the reliability function and the cumulative hazard function are related via

the exponentiation formula Pr(T > t;H(t)) = exp(−H(t)). The improvement factor model is not a

product of conjecture. We provide in the following a novel platform for interpreting the improve-

ment factor model by giving a new insight into the exponentiation formula. For ease of exposition,

an exponential distribution with its rate parameter being 1 is called the standard exponential dis-
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tribution. Let X be a random variable following the standard exponential distribution. Note that

exp(−H(t)) is indeed the reliability function of X evaluated at H(t). Namely, we have

Pr(T > t;H(t)) = Pr(X > H(t)), (1)

or

Pr(T ≤ t;H(t)) = Pr(H(t)≥ X). (2)

Equation (2) says that the time to failure of the machine coincides with the time at which its cumu-

lative hazard exceeds a random threshold; the random threshold follows the standard exponential

distribution. Maintenance on the machine, if any, will change its lifetime distribution, i.e., the left

part of Equation (2). Note that, for any and all machines, the distribution of the random threshold

is the standard exponential distribution, irrespective of the machine’s quality and the environment

E . X is called by Singpurwalla (2006) the hazard potential, of which the distribution cannot be

changed by, say, maintenance actions. Therefore, we claim that maintenance on the machine, if

any, will re-formulate the right part of Equation (2), yet by virtue of directly re-formulating its cu-

mulative hazard function. There can be a few ways to re-formulate its cumulative hazard function

– the improvement factor model is certainly a practical and competent one.

2.2 Cumulative-Hazard-Scaling Method

Cumulative-hazard-scaling method is the name given to a generic procedure for testing fit to the

improvement factor model. For testing fit to other imperfect-maintenance models, the appropriate

translations are obvious. Suppose that n(≥ 1) independent machines are put into operation at time

0, the lifetimes of which are denoted by random variables {T1, · · · ,Tn}. The lifetimes of the n

machines need not be identically distributed. After being put into operation, the machines will be

repaired at certain time points. For 1 ≤ i ≤ n, let non-negative function H i(t; θθθ i), t ≥ 0, denote the

cumulative hazard function of the ith machine before performing any repair on it. θθθ i is a vector

of parameters. Assume that the ith machine fails at time ti(> 0) (see Figure 1). Before its failure,

0     

…    … 

          

            
                      

Figure 1: Repairs are performed on the ith machine at time points t i
j’s for 1 ≤ j ≤ ki.
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ki(≥ 1) repairs have been performed on the machine at time points
{

t i
1, · · · , t i

ki

}

with 0 = t i
0 < t i

1 <

· · ·< t i
ki
< ti. For 1 ≤ j ≤ ki, let ai

j (resp. bi
j) denote the outcome of the random variable a (resp. b)

at the maintenance-performing time t i
j. Let non-negative function δ i(t;···) denote, at time t (≥ 0),

the virtual age of the ith machine. It’s easy to derive that, at time t i
j right after the jth maintenance,

the virtual age of the ith machine is δ i
(

t i
j;ai

1, · · · ,ai
j

)

= ∑
j
m=1(Π

j
v=mai

v)(t
i
m − t i

m−1). Therefore, at

time ti, the virtual age of the ith machine is

δ
i
(
ti;ai

1, · · · ,ai
ki

)
= ti − t i

ki
+

ki

∑
m=1

(Πki
v=mai

v)
(
t i
m − t i

m−1

)
,

and the cumulative hazard of the ith machine is

Hi = Π
ki

v=1bi
vH i

(
δ

i
(
ti;ai

1, · · · ,ai
ki

)
; θθθ

i
)
. (3)

Now turn back to Equation (1). We note that for every random variable T having the cumu-

lative hazard function H(t), there exists a random variable X following the standard exponential

distribution. The reliability function of T is indexed by t, whereas the reliability function of X is

indexed by H(t). Singpurwalla (2006, Theorem 1) claimed that the lifetime of any and all ma-

chines follows the standard exponential distribution with H(t) being the scale. Consequently, we

can state the following result.

Proposition 1. If the improvement factor model is the true underlying law, and the involved pa-

rameters (e.g., the ai
j’s) are all known, then the data {H1, · · · , Hn} follow the standard exponential

distribution.

Remark 1. The conditional lifetime distribution of the ith machine after the kith maintenance can

be formulated to be

Pr(Ti ≤ t| Ti > t i
ki
) = 1− exp

(

−Π
ki

v=1bi
vH i

(
δ

i
(
t;ai

1, · · · ,ai
ki

)
; θθθ

i
))

, t > t i
ki
.

Therefore, the lifetime data {t1, · · · , tn} are independent but not identically distributed.

Remark 2. We should pay attention to the condition stated in Proposition 1: parameters involved

in the calculation of the Hi’s should be completely known. However, in real-life practice, we

have to estimate, say, the ai
j’s in order to obtain the Hi’s. Consequently, according to David and

Johnson (1948), the Hi’s are no longer independent and may not follow the standard exponential

distribution. The distribution of the Hi’s can only be approximated by Monte Carlo simulation.

Therefore, for testing fit to the improvement factor model, we cannot simply examine whether the

Hi’s are from the standard exponential distribution.
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Now we can bring up the cumulative-hazard-scaling method which involves the following

steps.

Step 1 Estimate unknown parameters according to the data {t1, · · · , tn}, {k1, · · · ,kn} and the t i
j’s.

Step 2 For 1 ≤ i ≤ n, calculate Hi by using Equation (3) in which θθθ i, ai
j and bi

j (1 ≤ j ≤ ki) are

replaced by their estimated values.

Step 3 Employ suitable goodness-of-fit tests on the data {H1, · · · ,Hn} to examine whether the

improvement factor model is the underlying law.

The key steps of the cumulative-hazard-scaling method are Step 1 (for parameter estimation)

and Step 3 (for goodness-of-fit test). Therefore, the following two sections, Section 3 and Section

4, are devoted to parameter estimation and goodness-of-fit test, respectively.

Remark 3. As of now, we assume that the data {t1, · · · , tn} are complete lifetime data. It should be

pointed out that the cumulative-hazard-scaling method can be directly applied to incomplete life-

time data. If, for example, the lifetime of the first machine is right censored at time o1 (t1
k1
< o1 < t1),

then the corresponding value, H1 = Π
k1

v=1b1
vH1(δ 1(o1;a1

1, · · · ,a1
k1
); θθθ 1), is a right censored obser-

vation. Parameter-estimation methods and goodness-of-fit tests for handling incomplete lifetime

data are respectively developed in Section 2 of the supplementary material and Section 4.

3 PARAMETER ESTIMATION

For illustrative purpose, we here make the following assumptions.

A1 The age-reduction factor, a, follows a beta distribution with the probability density function

given by

fa(x; u,v) =
Γ(u+ v)

Γ(u)Γ(v)
xu−1(1− x)v−1, 0 < x < 1.

u(> 0) and v(> 0) are two unknown parameters. Let Fa(x; u,v) denote the cumulative

distribution function of the age-reduction factor.

A2 The hazard-rate-alteration factor, b, follows a gamma distribution with the probability density

function given by

fb(x; e,c) =
ce

Γ(e)
xe−1 exp(−cx), x > 0.

e(> 0) and c(> 0) are two unknown parameters. Let Fb(x; e,c) denote the cumulative dis-

tribution function of the hazard-rate-alteration factor.
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A3 The n independent machines are statistically identical in that, before performing any repair,

the cumulative hazard function (resp. hazard rate function) of each of the n machines is

H(t;θθθ) (resp. h(t;θθθ)) for t ≥ 0. θθθ is a vector of unknown parameters. Let F(t; θθθ) denote

the matching cumulative distribution function.

For 1 ≤ i ≤ n, the conditional probability of the event {ti ≤ Ti ≤ ti +dti}, conditioning on the

data {ai
1, · · · ,ai

ki
} and {bi

1, · · · ,bi
ki
}, can be calculated via

Pr
(
ti ≤ Ti ≤ ti +dti|θθθ , {ai

1, · · · ,ai
ki
}, {bi

1, · · · ,bi
ki
}
)

= Π
ki

v=1bi
vh(δ i(ti; ai

1, · · · ,ai
ki
); θθθ)exp(−Π

ki

v=1bi
vH(δ i(ti; ai

1, · · · ,ai
ki
); θθθ))dti.

For 1 ≤ j ≤ ki, the probability Pr(ai
j ≤ a ≤ ai

j +dai
j|u, v) can be calculated via

Pr(ai
j ≤ a ≤ ai

j +dai
j|u, v) =

Γ(u+ v)

Γ(u)Γ(v)
(ai

j)
u−1

(1−ai
j)

v−1dai
j,

and the probability Pr(bi
j ≤ b ≤ bi

j +dbi
j|e, c) can be calculated via

Pr(bi
j ≤ b ≤ bi

j +dbi
j|e, c) =

ce

Γ(e)
(bi

j)
e−1

exp(−cbi
j)dbi

j.

Therefore, if the data {ai
1, · · · ,ai

ki
} and {bi

1, · · · ,bi
ki
} are available, then the log-likelihood function

of Θ = (θθθ ,u,v,e,c) can be formulated to be

ℓ(Θ; {t1, · · · , tn}, A, B) =
n

∑
i=1

log

(
1

dti
Pr

(
ti ≤ Ti ≤ ti +dti|θθθ , {ai

1, · · · ,ai
ki
}, {bi

1, · · · ,bi
ki
}
)
)

+
n

∑
i=1

ki

∑
j=1

log( fa(a
i
j; u,v))+

n

∑
i=1

ki

∑
j=1

log( fb(b
i
j; e,c)),

in which A is a set collecting all the ai
j’s, and B is a set collecting all the bi

j’s.

3.1 QMI Method

Evidently, {ai
1, · · · ,ai

ki
} and {bi

1, · · · ,bi
ki
} are unobservable latent data. Therefore, we need to cal-

culate the marginal probability of the event {ti ≤ Ti ≤ ti +dti}:

Pr(ti ≤ Ti ≤ ti +dti|Θ) =
∞

∫
0

· · ·
∞

∫
0

︸ ︷︷ ︸

ki

1

∫
0

· · ·
1

∫
0

︸ ︷︷ ︸

ki

Pr
(
ti ≤ Ti ≤ ti +dti|θθθ , {ai

1, · · · ,ai
ki
}, {bi

1, · · · ,bi
ki
}
)

ki

∏
j=1

fa(a
i
j; u,v)

ki

∏
j=1

fb(b
i
j; e,c)dai

1 · · ·dai
ki

dbi
1 · · ·dbi

ki
.
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The marginal log-likelihood function of Θ therefore can be formulated to be

L(Θ; {t1, · · · , tn}) =
n

∑
i=1

log

(
1

dti
Pr(ti ≤ Ti ≤ ti +dti|Θ)

)

.

The ML estimate of Θ, denoted by Θ̂, is the maximizer of the marginal log-likelihood function:

Θ̂ = argmax
Θ

L(Θ; {t1, · · · , tn}).

Normally, the marginal probability Pr(ti ≤ Ti ≤ ti +dti|Θ) shall involve high-dimensional in-

tegration and therefore is very knotty to evaluate. Two available approaches to tackling high-

dimensional integration are numerical integration and Monte Carlo integration. One drawback of

numerical integration is that it is inappropriate for evaluating the marginal probability when ki > 2,

due to the curse of dimensionality. Monte Carlo integration, on the contrary, is particularly useful

for evaluating high-dimensional integrals. The strong law of large numbers guarantees that the

Monte Carlo approximation converges almost surely. Moreover, it follows from the central limit

theorem that the order of the expected integration error in terms of the Monte Carlo sample size is

O(N−1/2) (Gentle, 2003, Chapter 7).

The main disadvantage of Monte Carlo integration is that it is slow. The sample size N should

be fairly large – on the order of thousands or even millions – to obtain acceptable precision in the

answer. On the other hand, we note that optimization algorithms for maximizing L(Θ; {t1, · · · , tn})
shall require thousands of times of integration. Hence, the computational load for ML estima-

tion of Θ is large. To reduce computational load, we here replace Monte Carlo integration with

quasi-Monte Carlo integration (Morokoff and Caflisch, 1995). It has been proved that lower er-

ror and improved convergence can be obtained by replacing random points with more uniformly

distributed (known as quasi-random) points; see Niederreiter (1978). Computational experiments

have shown that quasi-Monte Carlo integration is significantly more efficient than Monte Carlo in-

tegration; see, among others, Papageorgiou (2001), Schlier (2004), and Sloan and Wozniakowski

(1998).

By defining ε i
j = exp(−bi

j) for 1 ≤ i ≤ n and 1 ≤ j ≤ ki, the marginal probability can be

equivalently formulated to be

Pr(ti ≤ Ti ≤ ti +dti|Θ) =
∫

UUU i

Pr
(
ti ≤ Ti ≤ ti +dti|θθθ , {ai

1, · · · ,ai
ki
}, {− log(ε i

1), · · · ,− log(ε i
ki
)}
)

Π
ki

j=1 fa(a
i
j; u,v)Πki

j=1[(ε
i
j)
−1 fb(− log(ε i

j); e,c)]dai
1 · · ·dai

ki
dε

i
1 · · ·dε

i
ki
,
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in which UUU i is the 2ki-dimensional unit cube: UUU i = (0,1)×·· ·× (0,1)
︸ ︷︷ ︸

2ki

. Let non-negative function

g(zzzi; Θ) denote the integrant:

g(zzzi; Θ) = Pr
(
ti ≤ Ti ≤ ti +dti|θθθ , {ai

1, · · · ,ai
ki
}, {− log(ε i

1), · · · ,− log(ε i
ki
)}
)

Π
ki

j=1 fa(a
i
j; u,v)Πki

j=1[(ε
i
j)
−1 fb(− log(ε i

j); e,c)],

in which zzzi = (ai
1, · · · ,ai

ki
, ε i

1, · · · ,ε i
ki
). The idea of quasi-Monte Carlo integration is to generate

a sequence of N quasi-random points, denoted by zzzi
1, · · · , zzzi

N , from the unit cube UUU i. Then the

quasi-Monte Carlo approximation for the marginal probability is

Pr(ti ≤ Ti ≤ ti +dti|Θ) =
∫

UUU i

g(zzzi; Θ)dzzzi ≈ 1

N

N

∑
v=1

g(zzzi
v; Θ).

For later reference, we might call the foregoing ML method by utilizing quasi-Monte Carlo inte-

gration “QMI method”. R code for QMI method is available on request.

Remark 4. It should be pointed out that {ε i
1, · · · ,ε i

ki
} is an exchangeable sequence of random

variables in that for any permutation of {ε i
1, · · · ,ε i

ki
}, denoted by {ε̈ i

1, · · · , ε̈ i
ki
}, the integrant of

the permutated sequence g((ai
1, · · · ,ai

ki
, ε̈ i

1, · · · , ε̈ i
ki
); Θ) is identical to the integrant of the original

sequence g((ai
1, · · · ,ai

ki
, ε i

1, · · · ,ε i
ki
); Θ). Therefore, the set of the N points {zzzi

1, · · · ,zzzi
N} is in effect

a set of the factorial of ki times N points.

3.2 Spacing-Likelihood Algorithm

QMI method has its inherent drawbacks: (1) the estimator Θ̂ may not be consistent, because QMI

method maximizes the marginal log-likelihood function L(Θ; {t1, · · · , tn}) rather than the log-

likelihood function ℓ(Θ; {t1, · · · , tn}, A, B); (2) QMI method is still time-consuming. Intuitively,

a method directly maximizing the log-likelihood function ℓ(Θ; {t1, · · · , tn}, A, B) should be more

efficient. Following the train of thought, now the crux of the matter is how to acquire the latent

ai
j’s and bi

j’s.

Given the vector of unknown parameters, Θ, and the lifetime data {t1, · · · , tn}, the log-likelihood

function of A and B, denoted by L(A,B; Θ, {t1, · · · , tn}), is proportional to

L(A,B; Θ, {t1, · · · , tn}) ∝
n

∑
i=1

log

(
1

dti
Pr

(
ti ≤ Ti ≤ ti +dti|θθθ , {ai

1, · · · ,ai
ki
}, {bi

1, · · · ,bi
ki
}
)
)

+
n

∑
i=1

ki

∑
j=1

log( fa(a
i
j; u,v))+

n

∑
i=1

ki

∑
j=1

log( fb(b
i
j; e,c)). (4)
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Intuitively, if Θ is known, the ML estimates of the ai
j’s and bi

j’s are what jointly maximize the log-

likelihood function L(A,B; Θ, {t1, · · · , tn}). However, ML estimates of the bi
j’s will undoubtedly

be closely spaced, because {bi
1, · · · ,bi

ki
} is an exchangeable sequence. Even though {ai

1, · · · ,ai
ki
}

is not an exchangeable sequence, computational experiments showed that ML estimates of the ai
j’s

are also closely spaced. Therefore, ML estimation (or any method grounded on maximizing the

log-likelihood function L(A,B; Θ, {t1, · · · , tn}) cannot be employed for estimating the ai
j’s and

bi
j’s.

Note that if {bi
1, · · · ,bi

ki
} are closely spaced, then {Fb(b

i
1; e,c), · · · ,Fb(b

i
ki

; e,c)} are closely

spaced. But if {bi
1, · · · ,bi

ki
} are gamma-distributed, then {Fb(b

i
1; e,c), · · · ,Fb(b

i
ki

; e,c)} should be

uniformly distributed. Therefore, to guarantee that {bi
1, · · · ,bi

ki
} are from a gamma distribution, we

only need to guarantee that {Fb(b
i
1; e,c), · · · ,Fb(b

i
ki

; e,c)} are from the standard uniform distribu-

tion. Following the train of thought, we come to the maximum spacing method (Cheng and Amin,

1983; Ranneby, 1984; Ekstrom, 1998). Maximum spacing estimation has been encountered in

the statistics literature but is not widespread among engineers. Maximum spacing estimation was

shown to give consistent, asymptotically efficient estimators even in cases where ML estimation

fails (Anatolyev and Kosenok, 2005; Ekstrom, 1998, 2001).

For 1 ≤ i ≤ n, let

Fi = Pr(Ti ≤ ti|θθθ , {ai
1, · · · ,ai

ki
}, {bi

1, · · · ,bi
ki
}) = 1− exp(−Π

ki

v=1bi
vH(δ i(ti; ai

1, · · · ,ai
ki
); θθθ)).

We might assume that the data {F1, · · · ,Fn} have already been arranged in ascending order with

F1 ≤F2 ≤ ·· ·≤Fn. Likewise, arrange the elements in the set A (resp. B) in ascending order, denoted

by {a1, · · · ,ak} (resp. {b1, · · · ,bk}), in which k = ∑
n
i=1 ki. Let F0 = a0 = b0 = 0, Fn+1 = ak+1 = 1,

and bk+1 =+∞. Define a spacing function of A and B:

S(A, B; Θ, {t1, · · · , tn}) =
1

n+1

n+1

∑
i=1

log(Fi −Fi−1)+
1

k+1

k+1

∑
i=1

log(Fa(ai; u,v)−Fa(ai−1; u,v))

+
1

k+1

k+1

∑
i=1

log(Fb(bi; e,c)−Fb(bi−1; e,c)). (5)

We develop here an iterative algorithm, called spacing-likelihood algorithm, for efficiently and

speedily estimating the unknown parameter Θ. The ML estimate Θ̂, obtained via QMI method,

can be used for starting the algorithm. Let Θ(m) denote the estimate of Θ obtained after the mth

iteration of the spacing-likelihood algorithm. The (m+1)st iteration proceeds as follows.

S step Maximize, with respect to A and B, the spacing function S(A, B; Θ(m), {t1, · · · , tn}). Let Â

denote the estimate of A and B̂ the estimate of B.
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L step Maximize, with respect to Θ, the log-likelihood function ℓ(Θ; {t1, · · · , tn}, Â, B̂). Denote

the maximizer by Θ(m+1).

Stop the recursive procedure when two consecutive estimates are close enough; that is, for example,

after m iterations we have ||Θ(m)−Θ(m−1)||< ε . ε is a pre-assigned positive tolerance limit. Then

Θ(m) is an optimal estimate for Θ; Â and B̂ – obtained after the mth S step – are optimal estimates

for A and B respectively. We here do not prove the convergence of spacing-likelihood algorithm. In

fact, the intuition behind spacing-likelihood algorithm has been around for a long time: alternate

between estimating the unknown parameter Θ and the latent ai
j’s and bi

j’s. If we employ QMI

method for estimating Θ, the optimal estimates for A and B can then be obtained by maximizing

the spacing function S(A, B; Θ̂, {t1, · · · , tn}). R code for spacing-likelihood algorithm is available

on request.

Remark 5. As will be revealed in Section 5, QMI method and spacing-likelihood algorithm are

two complementary parameter-estimation methods. QMI method is more efficient when the number

of repairs, k, is small, due to the 2ki-dimensional integration and the curse of dimensionality.

Spacing-likelihood algorithm, on the other hand, is more efficient when k is moderate or large;

this is because, in the spacing function (5), both n and k play the role of “sample size”. Hence, the

larger the values of n and k, the better the performance of spacing-likelihood algorithm.

4 GOODNESS-OF-FIT TEST

Owning to the efforts by many statisticians, led by Pearson, Fisher, Cramér, von Mises and Kol-

mogorov, there have been developed a few general principles for hypothesis testing: chi-square

tests, empirical-distribution-function (EDF) tests, likelihood-ratio tests, et al.. Here, by an EDF

test statistic we mean a statistic (e.g., the Anderson-Darling statistic) expressed as a functional of

the empirical distribution function. In the present study, we develop a generic procedure for testing

fit to the improvement factor model by employing EDF tests, because all the other types of tests

are not applicable. For example, likelihood-ratio tests are developed with the intention to compare

two nested models, with one model being an expanded form of the other model (Swihart et al.,

2014). In Section 3 of the supplementary material, we explained why chi-square goodness-of-fit

tests cannot be employed for testing fit to the improvement factor model.

Among the many EDF tests, we here examine the Kolmogorov-Smirnov test, the Cramér-

von Mises test and the Anderson-Darling test, due to their well-recognized power for testing fit.
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Assume that the data {H1, · · · ,Hn} have been arranged in ascending order with H1 ≤H2 ≤ ·· · ≤Hn.

For 1 ≤ i ≤ n, invoke the probability integral transformation and calculate xi = 1− exp(−Hi).

Denote by F̂n(x) the empirical distribution function of the data {x1, · · · ,xn}. The Kolmogorov-

Smirnov statistic is defined by

K̂2
n =

√
n sup

0<x<1

|F̂n(x)− x|=
√

n max

(

max
1≤i≤n

(
i

n
− xi), max

1≤i≤n
(xi −

i−1

n
)

)

;

the Cramér-von Mises statistic is defined by

Ŵ 2
n = n

∫ 1

0
[F̂n(x)− x]2dx =

n

∑
i=1

(

xi −
i−0.5

n

)2

+
1

12n
;

and the Anderson-Darling statistic is defined by

Â2
n = n

∫ 1

0

[F̂n(x)− x]2

x(1− x)
dx =−n− 1

n

n

∑
i=1

(2i−1) [log(xi)+ log(1− xn+1−i)] .

Darling (1955) examined the limiting distributions of the above three statistics by analytical

methods assuming that the unknown parameter is one-dimensional. Sukhatme (1972) extended

Darling’s (1955) result to multi-dimensional parameters. A general study of the weak convergence

of the estimated empirical process,
√

n[F̂n(x)− x], was carried out by Durbin (1973), stating that

under some regularity conditions the estimated empirical process converges weakly to a centered

Gaussian process. A survey of results connected to Durbin’s (1973) work can be found in Shorack

and Wellner (2009). Owning to the consistency and efficiency of maximum spacing estimation

(Ranneby, 1984), the property of weak convergence of the estimated empirical process,
√

n[F̂n(x)−
x], still holds in our problem. Therefore, the above three statistics are applicable to testing the fit

to the improvement factor model.

It is important to note that the Hi’s are calculated from not only the estimate of Θ but also the

estimates of the ai
j’s and bi

j’s. Hence, according to David and Johnson (1948),

• the above test statistics are no longer distribution-free; computation of critical values has to

be carried through for each particular combination of the assumptions A1-A3;

• the distributions of the test statistics may depend on the unknown parameter Θ;

• the distributions of the test statistics may depend on the total number of repairs k.

In view of the complexity of our problem, the parametric bootstrap procedure (Stute et al., 1993)

constitutes the only possibility for calculating critical values. Given Θ̂, an estimate of Θ obtained

from collected data, the generic procedure for testing fit to the improvement factor model is pre-

sented as follows.
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(1) Randomly generate k values from the beta distribution Fa(x; û, v̂) and k values from the gamma

distribution Fb(x; ê, ĉ). For 1 ≤ i ≤ n, randomly generate a value from the conditional distri-

bution

Pr(Ti ≤ t| Ti > t i
ki
) = 1− exp(−Π

ki

v=1bi
vH(δ i(t; ai

1, · · · ,ai
ki
); θ̂θθ)), t > t i

ki
.

Here, the ai
j’s and bi

j’s are simulated values.

(2) Employ QMI method and/or spacing-likelihood algorithm to obtain optimal estimates of Θ,

the ai
j’s and the bi

j’s. Calculate the Hi’s and, finally, the value of a test statistic.

(3) Repeat steps (1) and (2) for a sufficiently large number of times in order to obtain accurate

asymptotic approximations (in n) of the p-values.

When dealing with censored data, let F̂n(x) be the Kaplan-Meier estimate of the distribution

function (not survival function) of the data {x1, · · · ,xn}. The corresponding statistics are the results

of replacing the empirical distribution function F̂n(x) with F̂n(x).

5 NUMERICAL STUDY

In real-life practice, maintenance-performing time points are scheduled according to certain crite-

ria. For example, when maintaining a safety-critical machine, the machine usually will be repaired

once its reliability drops to a critical threshold. Undoubtedly, it is the number of repairs, rather than

the repair-performing epochs, that affects the performance of QMI method or spacing-likelihood

algorithm. Therefore, without loss of generality, we only study the case where maintenance-

performing time points are equally spaced with ∆(> 0) being the fixed time between two con-

secutive repairs. That is, we have t i
j = j∆ for 1 ≤ i ≤ n and 1 ≤ j ≤ ki. For each pair of n and ∆,

the lifetime data {t1, · · · , tn} are simulated in the manner given in Section 4.1 of the supplementary

material.

Let W(H(t;θθθ)) denote a Weibull distribution with H(t;θθθ) being its cumulative hazard func-

tion. We might assume that, before performing any repair, the lifetimes of the n independent ma-

chines follow a Weibull distribution with the cumulative hazard function being H(t;θθθ) = (wt)τ ,

in which θθθ = (w, τ). We know that different values of τ can have marked effects on the be-

havior of the Weibull distribution. To show that the improvement factor model can be applied

to lifetime models with different hazard rate functions, we study the cases of τ being 0.5, 1

and 3, respectively corresponding to decreasing, constant and increasing hazard rate functions.
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The value of w is fixed at 1. Herein we only present the parameter-estimation results when

{w = 1,τ = 3,u = 3,v = 1,c = 1,e = 3} to illustrate our indicative findings. Parameter-estimation

results for τ = 0.5 and τ = 1 can be found in the supplementary material for this paper. To study

the impact of sample size on the performance of QMI method and spacing-likelihood algorithm,

three levels of sample size are examined: small (n = 20), moderate (n = 50), and large (n = 100).

As pointed out in Section 4.1 of the supplementary material, the value of ki is not fully determin-

istic. To study the impact of the total number of repairs on the performance of QMI method and

spacing-likelihood algorithm, we gradually increase ∆ from 0.4 to 1.0 with step size 0.1. The range

of ∆ is determined such that the total number of repairs vary from larger than n to smaller than half

of n.

For a particular parameter configuration, we run the data-generating procedure in Section 4.1

of the supplementary material for 1000 times. For each of the 1000 data sets, employ a parameter-

estimation method to estimate Θ; then calculate the mean and mean squared error (MSE) of the

1000 estimates. The results obtained via QMI method are summarized in Table 1 (for n = 20), in

Table 1: Mean and MSE of the 1000 ML estimates via QMI method (n = 20).

∆ k̄ ŵ τ̂ û v̂ ĉ ê

0.4 28.441 2.4030 3.4242 3.7917 1.8867 1.8929 3.8196

1.5602 1.3383 1.4454 1.5201 1.5708 1.4540

0.5 22.346 1.8118 3.3729 3.6280 1.7361 1.7064 3.7389

0.9586 1.2278 1.2840 0.9700 0.9654 1.2439

0.6 18.275 1.4905 3.3021 3.4100 1.5883 1.5489 3.6225

0.5446 0.9780 1.0320 0.6348 0.6656 0.9408

0.7 15.178 1.3890 3.2225 3.3369 1.3504 1.3963 3.5126

0.4215 0.8862 0.8611 0.4587 0.4651 0.8364

0.8 12.223 1.2967 3.1195 3.2086 1.3009 1.3500 3.4156

0.2915 0.7640 0.7701 0.2571 0.2598 0.7369

0.9 9.78 1.2079 3.0712 3.1345 1.2896 1.2889 3.2897

0.1691 0.6656 0.6554 0.1918 0.1990 0.6336

1.0 7.446 1.1685 3.0504 3.1098 1.1643 1.1806 3.2168

0.1213 0.5498 0.5690 0.1495 0.1593 0.5899

Table 2 (for n = 50), and in Table 3 (for n = 100). k̄ is the sample mean of the 1000 simulated total

number of repairs. For each pair of ∆ and k̄, the first row gives the sample mean and the second

row gives the MSE. Halton sequence (for dimensions up to 6) and Sobol sequence (for dimensions
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Table 2: Mean and MSE of the 1000 ML estimates via QMI method (n = 50).

∆ k̄ ŵ τ̂ û v̂ ĉ ê

0.4 70.941 1.1316 3.5258 3.5171 1.1283 1.1404 3.5823

0.1425 1.1937 1.0544 0.2818 0.2918 1.0836

0.5 56.304 1.1209 3.4190 3.4214 1.1275 1.1365 3.5199

0.1247 1.1486 0.9656 0.2663 0.2852 1.0096

0.6 45.607 1.1144 3.3224 3.2259 1.1172 1.1305 3.4512

0.1171 1.1376 0.9188 0.2492 0.2523 0.9876

0.7 37.705 1.0952 3.1998 3.2011 1.1084 1.1249 3.4190

0.0823 0.9903 0.7560 0.2337 0.2471 0.7760

0.8 31.174 1.0883 3.1224 3.1213 1.1056 1.1116 3.2787

0.0747 0.9023 0.7240 0.2112 0.2298 0.7456

0.9 24.321 1.0840 3.0842 3.0777 1.0960 1.1036 3.1207

0.0577 0.8622 0.6696 0.2019 0.2170 0.7136

1.0 18.46 1.0747 3.0243 3.0165 1.0881 1.0966 3.0247

0.0441 0.7089 0.6184 0.1747 0.1911 0.6992

Table 3: Mean and MSE of the 1000 ML estimates via QMI method (n = 100).

∆ k̄ ŵ τ̂ û v̂ ĉ ê

0.4 141.838 1.2963 3.7303 3.6941 1.2916 1.2662 3.7270

0.0789 0.6410 0.7138 0.1733 0.1991 0.7578

0.5 111.871 1.2596 3.6352 3.6688 1.2688 1.2196 3.5967

0.0616 0.6370 0.6356 0.1694 0.1814 0.6412

0.6 91.043 1.2128 3.5002 3.5334 1.2274 1.2086 3.5672

0.0477 0.5939 0.5859 0.1610 0.1700 0.5992

0.7 75.358 1.1998 3.3878 3.4457 1.2034 1.1848 3.4029

0.0420 0.5551 0.5230 0.1495 0.1598 0.5882

0.8 61.62 1.1365 3.3693 3.3148 1.1590 1.1646 3.2948

0.0356 0.5383 0.5047 0.1375 0.1490 0.5721

0.9 48.873 1.0985 3.1775 3.2027 1.1227 1.1377 3.2264

0.0323 0.5302 0.4677 0.1243 0.1345 0.5099

1.0 37.19 1.0803 3.0630 3.0936 1.0961 1.1035 3.0710

0.0221 0.5256 0.3737 0.1190 0.1283 0.4051
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more than 6) are employed to generate quasi-random points for QMI method. The results obtained

via spacing-likelihood algorithm are reported in Table 4 (for n = 20), in Table 5 (for n = 50), and

Table 4: Mean and MSE of the 1000 ML estimates via spacing-likelihood algorithm (n = 20).

∆ k̄ ŵ τ̂ û v̂ ĉ ê

0.4 28.608 1.2735 4.3695 3.9459 1.1826 2.0931 3.8841

0.0889 2.3956 1.6901 0.1781 1.6477 1.4701

0.5 22.449 1.1907 4.2884 3.6869 1.1497 2.0572 3.8372

0.0480 2.0837 1.1880 0.1345 1.6752 1.3771

0.6 18.22 1.1908 4.1832 3.7171 1.2437 2.1305 3.6604

0.0482 1.8372 1.4069 0.2418 1.8105 1.2283

0.7 15.079 1.1558 4.2535 3.6706 1.2240 2.1352 3.5310

0.0352 1.9679 1.2854 0.2401 1.8848 1.1747

0.8 12.403 1.1041 4.2108 3.5333 1.1742 2.1285 3.5125

0.0190 1.9846 1.3808 0.2235 1.7825 1.0939

0.9 9.793 1.0639 4.2545 3.6277 1.1720 2.2210 3.6376

0.0096 2.0378 1.4552 0.2311 2.1959 1.5411

1.0 7.414 1.0364 4.2625 3.6680 1.3193 2.2233 3.4400

0.0059 2.0666 1.4954 0.4638 2.2774 1.1006

in Table 6 (for n = 100).

Comparing Tables 1-3, it is clear that with the sample size fixed, a larger ∆, and hence a smaller

k, shall entail a more accurate ML estimate; with k fixed, a larger n shall entail a more accurate ML

estimate; QMI method fails when k is not small. Therefore, for a fixed sample size n, if k is smaller

than a certain value, then QMI method shall produce an accurate ML estimate of Θ; if k exceeds

the value, then QMI method will break down. One reason for QMI method being only applicable

to small k may be that high-dimensional integration will make the marginal log-likelihood function

very flat, and therefore the returned estimate may be quite distant from the true value.

It can be concluded from Tables 4–6 that with the sample size fixed, a smaller ∆, and hence a

larger k, shall produce a more accurate ML estimate; with k fixed, a larger n shall produce a more

accurate ML estimate; spacing-likelihood algorithm fails when k is small. As stated in Remark 5,

one reason for spacing-likelihood algorithm being only applicable to moderate or large k is that, in

the spacing function (5), both n and k play the role of “sample size”.

According to Sections 4.2 and 4.3 in the supplementary material and Tables 1-6, it can be

concluded that (see Table 7) (1) QMI method is more efficient when the total number of repairs
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Table 5: Mean and MSE of the 1000 ML estimates via spacing-likelihood algorithm (n = 50).

∆ k̄ ŵ τ̂ û v̂ ĉ ê

0.4 71.224 1.0142 3.0582 3.1503 1.0681 1.0921 3.2170

0.0033 0.4746 0.3235 0.0429 0.0559 0.3789

0.5 56.095 1.0186 3.0799 3.1753 1.0855 1.1064 3.2846

0.0034 0.4898 0.3645 0.0698 0.0875 0.4512

0.6 45.553 1.0194 3.0978 3.2079 1.1185 1.1232 3.2909

0.0037 0.5158 0.4891 0.0973 0.1009 0.5322

0.7 37.74 1.0224 3.1080 3.2607 1.1557 1.1651 3.3290

0.0041 0.5727 0.5994 0.1128 0.1306 0.7039

0.8 30.765 1.0238 3.1261 3.4085 1.1812 1.1964 3.4114

0.0042 0.6455 0.8290 0.1315 0.1572 0.8782

0.9 24.291 1.0358 3.1461 3.4986 1.2020 1.2159 3.5009

0.0052 0.7056 0.9967 0.1854 0.2011 1.0468

1.0 18.458 1.0601 3.1522 3.5393 1.2361 1.2644 3.7225

0.0090 0.7495 1.1977 0.2455 0.3209 1.3332

Table 6: Mean and MSE of the 1000 ML estimates via spacing-likelihood algorithm (n = 100).

∆ k̄ ŵ τ̂ û v̂ ĉ ê

0.4 141.831 1.0033 3.0351 3.0794 1.0250 1.0443 3.0978

0.0016 0.3280 0.1388 0.0157 0.0181 0.2180

0.5 111.837 1.0120 3.0485 3.0819 1.0377 1.0706 3.1055

0.0019 0.3417 0.2127 0.0250 0.0293 0.2504

0.6 91.128 1.0249 3.0618 3.0856 1.0479 1.0715 3.1211

0.0020 0.3653 0.2284 0.0312 0.0350 0.2801

0.7 75.717 1.0301 3.0816 3.1163 1.0650 1.1119 3.1509

0.0021 0.4245 0.2346 0.0403 0.0542 0.3183

0.8 61.969 1.0399 3.0963 3.1243 1.0772 1.1240 3.1863

0.0022 0.4615 0.3031 0.0523 0.0686 0.3831

0.9 48.795 1.0408 3.1183 3.1429 1.0947 1.1345 3.2424

0.0025 0.5039 0.3704 0.0718 0.0917 0.4848

1.0 37.304 1.0456 3.1393 3.2585 1.1226 1.1404 3.3062

0.0036 0.5681 0.5150 0.1111 0.1303 0.5397
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is small, no matter how large the sample size is; (2) spacing-likelihood algorithm is more efficient

when both the total numbers of repairs and the sample size are not small; (3) when the sample

size is small but the total number of repairs is not small, both QMI method and spacing-likelihood

algorithm fail.

Table 7: Comparative performance of QMI method and spacing-likelihood algorithm.

❍
❍

❍
❍
❍
❍
❍❍

n

k
small moderate large

small QMI N.A. N.A.

moderate QMI spacing-likelihood spacing-likelihood

large QMI spacing-likelihood spacing-likelihood

Via intensive simulation study we found that the boundary between small and moderate is

around 30. Yet, when the sample size is small, for QMI method to be applicable, the total number

of repairs should be smaller than the sample size; that is, the total number of repairs should be

relatively small.

More numerical examples can be found in the supplementary material. A real data set from

Électricité de France (a French electric utility) is analyzed in Section 4.4 of the supplementary

material, in which we also compared the ameliorated improvement factor model with another two

imperfect-maintenance models.

6 CONCLUSIONS

In this paper we proposed a generic maintenance model that can be used to characterize perfect,

imperfect and minimal maintenance, and can be coupled to any maintenance policy as long as the

maintained machine’s operating duration is modeled by a lifetime distribution. The proposed main-

tenance model is grounded on practical considerations and is superior to most existing maintenance

models. For its practical implementation, we developed two methods for parameter estimation and

a framework for testing its goodness of fit. The two parameter-estimation methods complete each

other, and both of them can readily handle complete data and incomplete data. For testing good-

ness of fit, we identified certain suitable test statistics and outlined the steps for approximating the

distribution of a test statistic by using a parametric bootstrap procedure. By virtue of the paramet-

ric bootstrap procedure, the proposed test statistics can be used to measure discrepancy for any

combination of sample size, number of repairs, percentage of censoring, etc.
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The methods and numerical study presented here have left a number of practical issues un-

touched. Further studies need to be undertaken in future work.

• As shown in Table 7, both QMI method and spacing-likelihood algorithm fail when the

sample size is small yet the total number of repairs is not small. We should develop other

methods to solve this problem.

• For lack of space, we here didn’t examine the power of the three EDF tests. Our concern

is that their performance depends on several factors, such as the sample size, number of

repairs, degree of censoring, underlying lifetime model, etc. Conducting a thorough study

of the power of the three tests will make this paper extremely lengthy. However, it would be

of interest to study the impact from sample size (or number of repairs) on the performance

of the three tests – to support experimental design.

SUPPLEMENTARY MATERIALS

Technical details: In the PDF file, we provided a further discussion on the ameliorated improve-

ment factor model and a short review of chi-square goodness-of-fit tests. We extended QMI

method and spacing-likelihood algorithm for dealing with censored data. The PDF file also

includes parameter-estimation results for τ = 0.5 and τ = 1, and the performance of the S

step of spacing-likelihood algorithm was examined. A real data set was analyzed (PDF file).

Source code: The zipped package contains R codes for the two parameter-estimation methods

(ZIP file).

ACKNOWLEDGMENTS

The authors are very grateful to the Editor, the Associate Editor, and two referees for their com-

ments for improvements. The work described in this paper was partially supported by a grant from

City University of Hong Kong (Project No.9380058) and also National Natural Science Foundation

of China (Project No. 71371163).

REFERENCES

Ahmad, R. and Kamaruddin, S. (2012). An overview of time-based and condition-based mainte-

nance in industrial application. Computers & Industrial Engineering, 63(1):135 – 149.

21



Anatolyev, S. and Kosenok, G. (2005). An alternative to maximum likelihood based on spacings.

Econometric Theory, 21(2):472–476.

Block, H. W., Borges, W. S., and Savits, T. H. (1985). Age-dependent minimal repair. Journal of

Applied Probability, 22(2):pp. 370–385.

Cheng, R. C. H. and Amin, N. A. K. (1983). Estimating parameters in continuous univariate

distributions with a shifted origin. Journal of the Royal Statistical Society. Series B (Method-

ological), 45(3):394–403.

Darling, D. A. (1955). The cramer-smirnov test in the parametric case. The Annals of Mathematical

Statistics, 26(1):1–20.

David, F. N. and Johnson, N. L. (1948). The probability integral transformation when parameters

are estimated from the sample. Biometrika, 35(1/2):182–190.

de Toledo, M. L. G., Freitas, M. A., Colosimo, E. A., and Gilardoni, G. L. (2015). ARA and ARI

imperfect repair models: Estimation, goodness-of-fit and reliability prediction . Reliability

Engineering & System Safety, 140:107 – 115.

Dijoux, Y. and Idee, E. (2013). Classes of virtual age models adapted to systems with a burn-in

period. IEEE Transactions on Reliability, 62(4):754–763.

Durbin, J. (1973). Weak convergence of the sample distribution function when parameters are

estimated. The Annals of Statistics, 1(2):279–290.

Ekstrom, M. (1998). On the consistency of the maximum spacing method. Journal of Statistical

Planning and Inference, 70(2):209–224.

Ekstrom, M. (2001). Consistency of generalized maximum spacing estimates. Scandinavian Jour-

nal of Statistics, 28(2):343–354.

Gentle, J. E. (2003). Random Number Generation and Monte Carlo Methods. Springer, 2nd

edition.

Guo, C., Wang, W., Guo, B., and Si, X. (2013). A maintenance optimization model for mission-

oriented systems based on wiener degradation. Reliability Engineering & System Safety,

111(0):183–194.

22



Khatab, A., Ait-Kadi, D., and Rezg, N. (2014). Availability optimisation for stochastic degrad-

ing systems under imperfect preventive maintenance. International Journal of Production

Research, 52(14):4132–4141.

Khojandi, A., Maillart, L. M., and Prokopyev, O. A. (2014). Optimal planning of life-depleting

maintenance activities. IIE Transactions, 46(7):636–652.

Kijima, M. (1989). Some results for repairable systems with general repair. Journal of Applied

probability, 26(89-102).

Li, L., Hanson, T., Damien, P., and Popova, E. (2014). A bayesian nonparametric test for minimal

repair. Technometrics, 56(3):393–406.

Lin, D., Zuo, M. J., and Yam, R. C. M. (2000). General sequential imperfect preventive mainte-

nance models. International Journal of Reliability, Quality and Safety Engineering, 7(3):253–

266.

Lindqvist, B. H. (2006). On the statistical modeling and analysis of repairable systems. Statistical

Science, 21(4):532–551.

Liu, Y., Huang, H., Wang, Z., Li, Y., and Yang, Y. (2013). A joint redundancy and imperfect

maintenance strategy optimization for multi-state systems. IEEE Transactions on Reliability,

62(2):368–378.

Liu, Y., Huang, H., and Zhang, X. (2012). A data-driven approach to selecting imperfect mainte-

nance models. IEEE Transactions on Reliability, 61(1):101–112.

Malik, M. (1979). Reliable preventive maintenance policy. AIIE Transactions, 11(3):221–228.

Melchor-Hernandez, C. L., Rivas-Davalos, F., Maximov, S., Coria, V., and Guardado, J. (2015).

A model for optimizing maintenance policy for power equipment. International Journal of

Electrical Power & Energy Systems, 68:304 – 312.

Mercier, S. and Castro, I. T. (2013). On the modelling of imperfect repairs for a continuously

monitored gamma wear process through age reduction. Journal of Applied Probability,

50(4):1057–1076.

Morokoff, W. J. and Caflisch, R. E. (1995). Quasi-monte carlo integration. Journal of Computa-

tional Physics, 122:218–230.

23



Nakagawa, T. (1979). Optimum policies when preventive maintenance is imperfect. IEEE Trans-

actions on Reliability, R-28(4):331–332.

Niederreiter, H. (1978). Quasi-monte carlo methods and pseudo-random numbers. Bulletin of the

American Mathematical Society, 84(6):957–1041.

Pandey, M., Zuo, M. J., and Moghaddass, R. (2013). Selective maintenance modeling for a mul-

tistate system with multistate components under imperfect maintenance. IIE Transactions,

45(11):1221–1234.

Papageorgiou, A. (2001). Fast convergence of quasi-monte carlo for a class of isotropic integrals.

Mathematics of Computation, 70:297–306.

Park, J., Chang, W., and Lie, C. (2012). Stress-reducing preventive maintenance model for a unit

under stressful environment. Reliability Engineering & System Safety, 108(0):42–48.

Pulcini, G. (2013). A model-driven approach for the failure data analysis of multiple repairable

systems without information on individual sequences. IEEE Transactions on Reliability,

62(3):700–713.

Ramirez, P. A. P. and Utne, I. B. (2013). Decision support for life extension of technical systems

through virtual age modelling. Reliability Engineering & System Safety, 115(0):55–69.

Ranneby, B. (1984). The maximum spacing method-an estimation method related to the maximum

likelihood method. Scandinavian Journal of Statistics, 11(2):93–112.

Schlier, C. (2004). Error trends in quasi-monte carlo integration. Computer Physics Communica-

tions, 159(2):93–105.

Shafiee, M. and Chukova, S. (2013). Maintenance models in warranty: A literature review. Euro-

pean Journal of Operational Research, 229(3):561–572.

Shafiee, M., Chukova, S., and Finkelstein, M. (2012). Warranty and optimal upgrade strategy for

used systems: An electric drill case study. Asia-Pacific Journal of Operational Research,

29(04):1250023.

Shorack, G. and Wellner, J. (2009). Empirical Processes with Applications to Statistics. Classics

in Applied Mathematics. Society for Industrial and Applied Mathematics.

24



Singpurwalla, N. D. (2006). The hazard potential. Journal of the American Statistical Association,

101(476):1705–1717.

Sloan, I. H. and Wozniakowski, H. (1998). When are quasi-monte carlo algorithms efficient for

high dimensional integrals? Journal of Complexity, 14(1):1–33.

Stute, W., Manteiga, W., and Quindimil, M. (1993). Bootstrap based goodness-of-fit-tests. Metrika,

40(1):243–256.

Sukhatme, S. (1972). Fredholm determinant of a positive definite kernel of a special type and its

application. The Annals of Mathematical Statistics, 43(6):1914–1926.

Swihart, B. J., Goldsmith, J., and Crainiceanu, C. M. (2014). Restricted likelihood ratio tests for

functional effects in the functional linear model. Technometrics, 56(4):483–493.

Tambe, P., Mohite, S., and Kulkarni, M. (2013). Optimisation of opportunistic maintenance of a

multi-component system considering the effect of failures on quality and production sched-

ule: A case study. The International Journal of Advanced Manufacturing Technology, 69(5-

8):1743–1756.

Tanwar, M., Rai, R. N., and Bolia, N. (2014). Imperfect repair modeling using kijima type gener-

alized renewal process. Reliability Engineering & System Safety, 124:24 – 31.

Wang, W. (2012). An overview of the recent advances in delay-time-based maintenance modelling.

Reliability Engineering & System Safety, 106(0):165–178.

Xia, T., Xi, L., Zhou, X., and Du, S. (2012). Modeling and optimizing maintenance schedule

for energy systems subject to degradation. Computers & Industrial Engineering, 63(3):607 –

614.

Zhang, M., Gaudoin, O., and Xie, M. (2015). Degradation-based maintenance decision using

stochastic filtering for systems under imperfect maintenance. European Journal of Opera-

tional Research. In press.

Zhang, M., Xie, M., and Gaudoin, O. (2013). A bivariate maintenance policy for multi-state

repairable systems with monotone process. IEEE Transactions on Reliability, 62(4):876–886.

25


	INTRODUCTION
	MODEL FORMULATION
	Ameliorated Improvement Factor Model
	Cumulative-Hazard-Scaling Method

	PARAMETER ESTIMATION
	QMI Method
	Spacing-Likelihood Algorithm

	GOODNESS-OF-FIT TEST
	NUMERICAL STUDY
	CONCLUSIONS

