An amended description of *Rafflesia leonardi* and a revised key to Philippine *Rafflesia* (Rafflesiaceae) JULIE F. BARCELONA^{1,2}, EDWINO S. FERNANDO³, DANIEL L. NICKRENT⁴, DANILO S. BALETE⁵ & PIETER B. PELSER¹ ¹School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; e-mail: barceljf@hotmail.com; pieter.pelser@canterbury.ac.nz #### **Abstract** The taxonomic identity of *Rafflesia banaoana* from Kalinga Province in northern Luzon (Philippines) and its affinity with *R. leonardi* of the adjacent Cagayan Province are discussed. Both taxa share a unique combination of morphological characters pertaining to the color and shape of the perigone lobes, their warts, the diaphragm aperture, the size and number of disk processes, and anther number. The only notable difference between *R. banaoana* and *R. leonardi* is flower size and characters correlated with size. Because *Rafflesia* species show large intraspecific variation in flower size, and because *R. banaoana* and *R. leonardi* share a number of other morphological features, we conclude that these two taxa are conspecific. The name *R. banaoana* should therefore be considered a synonym of the earlier name *R. leonardi*. Here, we present an amended description of *R. leonardi*. An updated key to all ten known species of Philippine *Rafflesia* is also provided. Key words: Cagayan, Kalinga, Luzon, parasitic plant, Philippines, Rafflesia banaoana ### Introduction Rafflesia Brown (1821: 207; Rafflesiaceae) is a genus of holoparasitic plants that are exclusively dependent on their liana host *Tetrastigma* (Miquel 1863: 72) Planchon (1887: 423; Vitaceae). In his comprehensive review, Nais (2001) discussed all 18 *Rafflesia* species known at that time, two of which, *R. schadenbergiana* Göppert ex Hieronymus (1885: 3) and *R. manillana* Teschemacher (1844: 65) were reported for the Philippines. Since 2001, however, 12 additional names have been published for the Philippines (summarized in Barcelona *et al.* 2009a, 2009b, Balete *et al.* 2010). Of these, we recognize eight as distinct species. One of these new Philippine *Rafflesia* species was described by Malabrigo (2010) from a population discovered by staff of the Resources, Environment and Economic Center for Studies, Inc. (REECS) in the Kalinga Province of northern Luzon. Malabrigo named it *R. banaoana* Malabrigo (2010: 140), in honor of the Banao tribe. In discussing its affinity, Malabrigo (2010) compared *R. banaoana* (Fig. 1A) to other Philippine species and concluded that it resembles *R. baletei* Barcelona & Cajano (Barcelona *et al.* 2006: 232) (Fig. 1C) of the Bicol Region (southern Luzon) in the shape and density of the perigone warts and the color and morphology of its ramenta. We, however, disagree with these observations. *Rafflesia banaoana* has perigone warts that are ²Philippine Native Plant Conservation Society, Ninoy Aquino Parks & Wildlife Center (NAPWC), Protected Areas and Wildlife Bureau (PAWB), Department of Environment & Natural Resources (DENR), North Avenue, Diliman, Quezon City, Philippines ³Department of Forest Biological Sciences, University of the Philippines - Los Baños, College 4301, Laguna, Philippines, e-mail: esfernando@hotmail.com ⁴Department of Plant Biology, Southern Illinois University, Carbondale, IL 62901-6509 U.S.A., e-mail: nickrent@plant.siu.edu ⁵Department of Zoology, Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, IL 60605, U.S.A., e-mail: danilo.balete@gmail.com smaller, less embossed, and, as visible in Fig. 1, more regularly and distantly spaced from each other than those of *R. baletei*. In addition, *R. banaoana* has warts of two distinct sizes: large elliptic or roundish warts interspersed with tiny ones, whereas *R. baletei* has warts that are irregular in shape and size and cannot readily be assigned to two size classes. Instead, the warts of *R. banaoana* most closely resemble those of *R. leonardi* Barcelona & Pelser (Barcelona *et al.* 2008a: 224) (Fig. 1B). Furthermore, in *R. banaoana*, the short, reddishbrown ramenta that are nearly evenly distributed in the perigone tube are much more similar to those of *R. leonardi* than to those of *R. baletei*. Malabrigo (2010) also stated that *R. banaoana* is similar in size with *R. speciosa* Barcelona & Fernando (2002: 648) (Fig. 1E) of Panay and *R. mira* Fernando & Ong (2005: 267) (Fig. 1F) of Mindanao. Furthermore, he claimed that like *R. leonardi* from Cagayan Province (northern Luzon) and *R. manillana* of Samar and Luzon (Fig. 1D), *R. banaoana* has widely spaced perigone lobes and that it resembles *R. baletei*, *R. leonardi*, *R. lobata* Galang & Madulid (2006: 2), and *R. manillana* in perigone color. Finally, his photographs show that *R. banaoana* shares the wide diaphragm aperture of *R. leonardi*, *R. lobata*, and *R. manillana*. A comparison of *R. banaoana* photos and illustration with those of the aforementioned species, however, clearly shows that *R. banaoana* can only be confused with *R. leonardi* (Fig. 1A–F). Both taxa share a unique combination of morphological characters, namely, elliptic or roundish powdery white warts on the perigone's upper surface, a wide diaphragm aperture, and short, reddish-brown ramenta. Moreover, both R. banaoana and R. leonardi have relatively few disk processes (up to 16; Barcelona et al. 2008a, Malabrigo 2010) compared to other similar-sized Rafflesia species (e.g., R. mira, 38-40, and R. speciosa, 17–31). Also, the reddish orange, orbicular to broadly orbicular perigone lobes with slightly auriculate bases are unique characters of R. banaoana and R. leonardi. Finally, both taxa overlap in anther number (R. banaoana, 18–22 and R. leonardi, 20 or 21). The only distinguishing characters that the author explicitly mentions for R. banaoana are "the number and structure of the processes that are very few (14–16) [and] concentrated in the center of the disc but irregularly scattered" (Malabrigo 2010: 145). In comparison, the processes of R. leonardi are lacking or few and poorly developed. Observations of other Rafflesia species, however, show that the number of processes is strongly correlated with flower size (e.g., Barcelona et al. 2009b). It is, therefore, not surprising that these are more numerous and better developed in R. banaoana, which has larger flowers (40–50 cm diam.) than R. leonardi (25.5–34 cm diam.). This is further supported by the observation that small R. leonardi flowers entirely lack processes, whereas up to 10 processes have been reported for larger flowers of this species (Barcelona et al. 2008a). Thus, the only true difference between the taxa is flower size. Limited sample size may be a reason for the pronounced difference in flower size between R. banaoana and R. leonardi. When studying the flower size of R. leonardi, we measured ca. 10 fresh specimens of newly opened or early senescent flowers on ca. five different host plants. It is not clear from Malabrigo (2010) how many flowers of R. banaoana were measured, as only the holotype was cited. This holotype specimen was not available for examination at LBC. Rafflesia species demonstrate substantial variation in flower size both between and within populations, and large variation can even be observed in flowers growing on a single host plant. Our field observations in different Rafflesia populations reveal that flower size may depend on the number of flowers and buds that are present on a single host as well as the size, health, and age of the host plant. The large variation in flower size is perhaps best exemplified by the largest flower in the world, R. arnoldii Brown (1821: 207), which has flowers that range from a little more than half a meter to a meter and a half when fully expanded—a three-fold size difference (Nais 2001). Likewise, in R. schadenbergiana, flowers from a single host plant have been measured from 52 to 70 cm in diameter (Barcelona et al. 2008b, 2009b) while the largest flower reported for this species is 80 cm (Hieronymus 1885, '1884'). Also, R. manillana shows large differences in flower size. For instance, flowers on one of the host plants in Basey, Samar are substantially larger (20–23 cm diam.) than flowers growing on other host plants in the area (15–17 cm diam.; pers. obs. by JFB). Because of the large intraspecific differences in flower size observed in Rafflesia, flower diameter is not suitable as the sole criterion for species delimitation. In view of this, and after examining the original description of R. banaoana, we therefore conclude that Malabrigo's (2010) Rafflesia and R. leonardi are conspecific and that the name R. *leonardi* has priority. In the absence of access to the type specimen, we feel that sufficient morphological characters were illustrated in Malabrigo (2010) for us to make comparisons and be confident in our taxonomic conclusion. **FIGURE 1.** *Rafflesia banaoana* and species compared to it by Malabrigo (2010). **A.** *R. banaoana* Malabrigo (= *R. leonardi*). **B.** *R. leonardi* Barcelona & Pelser. **C.** *R. baletei* Barcelona & Cajano. **D.** *R. manillana* Teschem. **E.** *R. speciosa* Barcelona & Fernando. **F.** *R. mira* Fernando & Ong. Photo credits: **A.**—P. Malabrigo, courtesy of Asia Life Sciences, **B**— **E.**—J.F. Barcelona, **F.**—courtesy of Fuentes-Maestre, Department of Tourism Region XI. Despite our taxonomic differences with Malabrigo (2010), we acknowledge the significance of the contribution of his work to our current knowledge of the distribution and morphology of *R. leonardi* in particular, and patterns of diversity of the genus *Rafflesia* in general. We now know that *R. leonardi* has flowers that range from 25.5 to 50 cm in diameter and that this species grows in the montane forests (up to 1361 m elevation) of Kalinga, as well as in the lowland evergreen forests (270–300 m elevation) of Cagayan Province of northern Luzon. The presence of *R. leonardi* in Kalinga is particularly interesting, because Merrill (1923: 121) reported *Rafflesia* from this province. Although Merrill referred to this species as *Rafflesia manillana*, it is possible that it was, in fact, *R. leonardi*. ### **Taxonomy** *Rafflesia leonardi* Barcelona & Pelser in Barcelona *et al.* (2008a: 224).—Type: *Barcelona et al. 3355* (holotype PNH!; isotypes L!, PUH!, US! CAHUP!). = Rafflesia banaoana Malabrigo in Malabrigo (2010: 140). —Type: Malabrigo 605 (holo LBC, n.v.). ## An updated key to Philippine Rafflesia Presented below is an updated identification key to all known Philippine *Rafflesia* that includes two species not described in the overview paper by Barcelona *et al.* (2009b): *R. aurantia* Barcelona, Co & Balete from Quirino Province of Luzon (Barcelona *et al.* 2009a: 18) and the recently described *R. verrucosa* Balete, Pelser, Nickrent & Barcelona from Mindanao (Balete *et al.* 2010: 50). This key now includes updated information on the morphology of *R. leonardi* following the observations of Malabrigo (2010). An updated character comparison (see Barcelona *et al.* 2009b) of all Philippine *Rafflesia* is also provided (Table 1). This includes additional measurements of *R. manillana* flowers from various localities. 1. Diaphragm aperture wide, more than ½ of the diaphragm diameter, fully exposing the disk inside (if otherwise, 1. Diaphragm aperture narrow, less than ½ of the diaphragm diameter, only partially exposing the disk inside 4 Windows/white blotches absent from the inner surface of the diaphragm and perigone tube; processes when present, with reddish-orange tips; anther cavities on the floor of the perigone tube absent; flowers more than 25 cm diam. -Windows/white blotches present on the inner surface of the diaphragm and perigone tube, processes with blackish Diaphragm usually entire (irregularly lobed in some populations in northern Luzon), cream-colored with round or elliptic, reddish-orange blotches or reddish-orange background with cream-colored or whitish variously-shaped and 5. Disk processes polymorphic, larger ones laminar or plate-like, erose; perigone warts round or elliptic; rim of aper-Disk processes monomorphic, conical; perigone warts elongated; rim of aperture whitish or paler than the diaphragm ______6 6. Fully expanded flowers 52-80 cm diam, reddish maroon; diaphragm rugose, larger perigone warts 1 cm or more wide, sometimes coalescent or reticulate; disk processes more than 40 in number. —Mindanao . R. schadenbergiana Fully expanded flowers 45-56 cm diam, rusty- or reddish brown; diaphragm generally smooth; larger perigone - 8. Diaphragm warts thin, slightly raised, not laminar, not fringing the aperture rim; disk processes solitary and conical or variously branched but not anastomosing laminar plates nor forming an interconnected system9 TABLE 1. Character comparison for Philippine Rafflesia. This is an updated version of the table published in Barcelona et al. (2009b). | Characters | R. baletei | R. vertucosa | R. aurantia | R. lobata | R. manillana | R. philippensis | R. leonardi
(including R. banaoana) | R. speciosa | R. mira | R. schadenbergiana | |---|----------------------|--|---|---------------------------------------|---------------------------------------|---|--|---------------------------------------|--------------------------------|--------------------------------| | Position
of flowers
on host | on roots | on roots | on roots | on roots
and
climbing
shoots | on roots
and
climbing
shoots | on roots | on roots
and
climbing
shoots | on roots
and
climbing
shoots | on roots | on roots | | Flower
diameter
(cm) | 9–22 | 14.5–16 | ca. 20 | 11–21 | 14–23 | 17.5–27(–
32) | 25.5–50 | 45–56 | 45–60 | 52-80 | | Perigone
color | orange | reddish
orange or
cinnamon | orange | reddish
orange | reddish
orange | red, less
often
reddish
orange | reddish
orange | reddish
orange to
red | reddish
orange to
red | reddish
orange to
maroon | | Perigone
wart /
ornamen-
tation
shape | round or
elliptic | prominently
raised,
solitary,
irregular in
shape,
usually
roundish,
less often
rod-like to
narrowly
elongated,
white-tipped | sharp-
edged,
areoles-
forming | round or
elliptic | round or
elliptic | elliptic or
slightly
elongated | round or
elliptic | elon-
gated | mostly
round or
elliptic | elongated
to
reticulate | | Diaphragm
rim | entire | erose | entire | lobed | entire
(rarely
lobed) | entire | entire | entire
(rarely
lobed) | entire | entire | | Diaphragm
rim color
vs.
diaphragm
color | darker | concolorous | con-
colorous | con-
colorous | white | white | con-
colorous | con-
colorous
or white | red | white |continued on the next page TABLE 1 (continued) | Characters | R. baletei | R. verrucosa | R. aurantia | R. lobata | R. manillana | R. philippensis | R. Ieonardi
(including R. banaoana) | R. speciosa | R. mira | R. schadenbergiana | |--|--|---|--|---|--|--|--|--|--|--| | Diaphragm
surface | reticulate | densely
covered with
prominently
raised,
pleated,
plate-like,
white-tipped
warts | sharp-
edged,
areoles-
forming | smooth | smooth or
slightly
rugose | rugose | smooth | smooth | smooth | rugose | | Ratio
diaphragm
/ aperture
diameter | 2.3–2.5 | 1.75–2.25 | 3.3–2.8 | up to 1 | 1.33–1.8
(–2.33) | 2–2.2 | 1.2–1.5 | 1.8–2
(–2.4) | ca. 2 | 1.8–2.2 | | Diaphragm
aperture
shape | round | round,
sometimes
irregularly
so | round | round | round | oval | round | round | round | round | | Disk
processes
number | 19–26 | indefinite | indefinite | 7–14 | 8–30 | up to ca. 25 | absent or up to 16 | 17–31 | 38–40 | 30–63 | | Disk
processes
arrange-
ment /
disposition | regular
concen-
tric rings | irregular,
inter-
connected
system | centrally
disposed,
horizon-
tally
oriented
in
females?,
vertically
oriented
in males? | irregular
concentric
rings | irregular
concentric
rings | irregular,
not in rings | irregular
concen-
tric rings | regular
concen-
tric rings | irregular
concentric
rings | regular
concentric
rings | | Disk
processes
maximum
length (cm) | 1 | 1.1 | 1 | 0.5 | 0.55 | 1.5 | 1.2 | 2.3 | 1 | 3 | | Disk
processes
types | monomor
phic,
conical or
slightly
laterally
com-
pressed,
often
branched | tightly
packed,
laminar
plates with
erose
margins | poly-morphic, flattened, peri-pheral ones narrowly lanceo-late, spinose, tuber-culate, tips tufted with golden brown hairs | monomor-
phic,
conical or
slightly
laterally
com-
pressed,
unbran-
ched | mono-
morphic,
conical or
slightly
laterally
com-
pressed,
unbran-
ched,
tips tufted
with black
hairs | dimorphic,
promi-
nently
flattened
laterally and
branched,
interspersed
with
tuberculate
ones | almost
absent,
when
present
mono-
morphic,
conical,
un-
branched | mono-
morphic,
conical,
often un-
branched | poly-
morphic
in 4 zones:
conical
central
ones
followed
by blades
perpen-
dicular to
each other,
then
outermost
ones
reduced | mono-
morphic,
conical,
often un-
branched |continued on the next page | Characters | R. baletei | R. verrucosa | R. aurantia | R. lobata | R. manillana | R. philippensis | R. leonardi
(including R. banaoana) | R. speciosa | R. mira | R. schadenbergiana | |--|--|--|---|--|--|---|---|---|---|---| | Ramenta
color
relative to
surroun-
ding
tissue | darker | white-tipped
in newly
opened
flowers,
otherwise
concolorous | slightly
darker? | white | white | darker | darker | darker | darker | darker | | Ramenta
length
(mm) | up to 2 | 7 | 7–10 | 1–2 | 0.5–1 | up to 3 | up to 2 | up to 2 | 5–10 | 4–10 | | Ramenta
distri-
bution
on the
perigone
tube and
diaphram | uniform | longer and
denser at
perigone
tube floor,
shorter and
more widely
spaced on
the
diaphragm,
nearly
absent near
the aperture
rim | sparse
towards
the
aperture,
becoming
dense
towards
the base
of the
floral
cavity | sparse at
base,
abundant
towards
the
diaphragm | sparse at
base,
abundant
towards the
diaphragm | sparse at
base,
abruptly
more
abundant
towards the
diaphragm | abundant
at base,
gradually
more
sparse
towards
aperture | uniform | sparse at
base,
abundant
halfway,
less
abundant
towards
aperture | sparse at
base,
abundant
halfway,
less
abundant
towards
aperture | | Ramenta
size &
shape | largest at
base,
slightly
smaller
towards
aperture,
not
clustered | covered with clavate pustules, poly-morphic, filiform to variously branched or cleaved apically, white-tipped in newly opened flowers | uniformly
lanate,
glabrous,
slender,
unbran-
ched to
furcate,
tips
swollen | smallest
and
solitary at
base,
larger and
more
clustered
towards
the
aperture
('win-
dows') | smallest
and
solitary at
base,
larger and
more
clustered
towards the
aperture
('windows') | smallest and
solitary at
base,
abruptly
larger and
more
clustered
towards the
diaphragm | solitary
at base,
more
sparse
and
clustered
towards
aperture | largest
and
solitary
at base,
smaller
and more
clustered
towards
aperture | smallest at
base and
diaphragm,
largest
halfway up
the tube,
not
clustered | smallest
and
solitary at
base,
largest,
more
clustered
halfway
up,
smaller
and more
clustered
towards
aperture | | Windows | absent | absent | absent | present | present | present only
in large
flowers | absent | absent | absent | absent | | Anther
number | 11–14 | 20 or 21 | 12–14 | 10–11 | 10–18 | 14–16(–23) | 18–22 | 19–24 | 10–22 | 26–40 | | Tetra-
stigma host | Tetra-
stigma
sp. | Tetra-
stigma sp. | Tetra-
stigma sp. | Tetra-
stigma sp. | T.
leucosta-
phylum, T.
cf. loheri,
Tetra-
stigma sp. | Tetra-
stigma sp.
or T.
scariosum
(see
Veldkamp,
2009) | T. cf.
loheri | Tetra-
stigma
sp. | T. loheri | T. papillo
sum | | Distri-
bution | Luzon | Mindanao | Luzon | Panay | Luzon and
Samar | Luzon | Luzon | Panay
and
Negros | Mindanao | Mindanao | ## Acknowledgements We dedicate this paper to four important Filipino botanists, namely, Mr. Leonardo L. Co, Drs. Prescillano M. Zamora, Daniel A. Lagunzad, and Cecilia B. Amoroso whose legacy in advancing Philippine Botany through training Filipino students, raising awareness about the importance of biodiversity conservation, and protecting the Philippines' precious forests and seas, will always be appreciated and remembered. We will sorely miss you. We thank Dr. Wiliam Sm. Gruezo, Chief Editor, Asia Life Sciences, for allowing us to reprint a photograph of *Rafflesia banaoana*. #### References - Balete, D.S., Pelser, P.B., Nickrent, D.L. & Barcelona, J.F. (2010) *Rafflesia verrucosa* (Rafflesiaceae), a new species of small-flowered *Rafflesia* from eastern Mindanao, Philippines. *Phytotaxa* 10: 49–57. - Barcelona, J.F., Cajano, M.O. & Hadsall, A.S. (2006) *Rafflesia baletei*, another new *Rafflesia* (Rafflesiaceae) from the Philippines. *Kew Bulletin* 61: 231–237. - Barcelona, J.F. & Fernando, E.S. (2002) A new species of *Rafflesia* (Rafflesiaceae) from Panay Island, Philippines. *Kew Bulletin* 57: 647–651. - Barcelona, J.F., Co, L.L., Balete, D.S. & Bartolome, N.A. (2009a) *Rafflesia aurantia* (Rafflesiaceae): a new species from northern Luzon, Philippines. *Garden's Bulletin Singapore* 61: 17–28. - Barcelona, J.F., Pelser, P.B., Balete, D.S. & Co, L.L. (2009b) Taxonomy, ecology, and conservation status of Philippine *Rafflesia* (Rafflesiaceae). Proceedings of the 7th Flora Malesiana Symposium. *Blumea* 54: 77–93. - Barcelona, J.F., Pelser, P.B., Cabutaje, E.M. & Bartolome, N.A. (2008a) Another new species of *Rafflesia* (Rafflesiaceae) from Luzon, Philippines: *R. leonardi. Blumea* 53: 223–228. - Barcelona, J.F., Pelser, P.B., Tagtag, A.M., Dahonog, R.G. & Lilangan, A.P. (2008b) The rediscovery of *Rafflesia schadenbergiana* Göpp. ex Hieron. *Flora Malesiana Bulletin* 14: 162–165. - Brown, R. (1821) An account of a new genus of plants, named *Rafflesia*. *Transactions of the Linnean Society of London* 13: 201–234. - Fernando, E.S. & Ong, P.S. (2005) The genus *Rafflesia* R.Br. (Rafflesiaceae) in the Philippines. *Asia Life Sciences* 14: 263–270. - Galang, R. & Madulid, D.A. (2006) A second species of *Rafflesia* (Rafflesiaceae) from Panay Island, Philippines. *Folia Malaysiana* 7: 1–8. - Hieronymus, G. (1885 [1884]) Über Rafflesia schadenbergiana (Göppert). Ein Beitrag zur Kenntnis der Cytinaceen. Breslau. Reprinted in Bulletin du Congrès international de botanique et d'horticulture de St. Pétersbourg (1884, published 1885) 35–36 and as: Über eine neue, von Dr. A. Schadenberg und O. Koch auf Süd-Mindanao entdeckte Art der Gattung Rafflesia. Gartenflora 34 (1885) 3–7, t. 1177. - Malabrigo Jr., P.L. (2010) *Rafflesia banaoana* (Rafflesiaceae): Another new species from Luzon, Philippines. *Asia Life Sciences Supplement* 4: 139–146. - Merrill, E.D. (1923) An enumeration of Philippine flowering plants, Vol. 2. Bureau of Printing, Manila. - Miquel, F.A.W. (1863) Ampelideae novae. Annales Museum Botanicum Lugduno-Batavi 1: 72-101. - Nais, J. (2001) Rafflesia of the world. Sabah Parks, Kota Kinabalu. - Planchon, J.E. (1887) Ampelideae, in: De Candolle, A.L.P.P. & De Candolle, A.C. (eds.) *Monographiae phanerogamarum 5*. Paris, pp. 305–637. - Teschemacher, J.E. (1844) On a new species of *Rafflesia*, from Manilla. *Boston Journal of Natural History* 4: 63–66, t. 6. Veldkamp, J.F. (2009) Notes on the names of the *Tetrastigma* (Vitaceae) hosts of *Rafflesia* (Rafflesiaceae). *Reinwardtia* 13: 75–78.