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Abstract. One uses Drinfeld's quantum double construction and a basis a la
Poincare-Birkhoff-Witt in Uhn+ to compute an explicit formula for the
quantum R-matrix.

0. Introduction

1. Definition: [1,2] Uhsl(N + 1) is the topologically free C [[/ι]] algebra generated
by Xi9 Yh Hh 1 ̂  i: g N, with the relations:

2 " '

for Ii -j\ = 1,Xi

2Xj - (eh'2 + e^^XjXt + XjX? = 0,

Yt

2 Yj - (eh/2 + e~ h/2) Yt Yj Yt + Yj Y? = 0.

It is a Hopf algebra for the coproduct Δ:

The antipode S is given by: S(Hi) = -Hh S(X^ = -eh/2Xi9 S(Yt) = -
This Hopf algebra is not cocommutative; the non-cocommutativity is measured

by the so-called K-matrix, which "intertwines" Δ and the opposite comultiplication
Δ' [1,2]. The images of R in tensor products of finite dimensional representations
play an important role in the construction of representations of the braid group
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and of link invariants. Drinfeld has indicated how the existence of this ^-matrix
comes from the double construction for Uhb+ (see below) and indicated the general
form of it; for the case of s/(2), he gave an explicit formula. Our aim is to find such
an explicit formula for the general case of sl(N -f 1), following the same method.
We shall introduce a convenient basis in Uhn+, via the definition of analogues of
root vectors, thanks to which the computations are not too complicated. We first
need some preliminaries.

Giving to Xt (respectively Yt) the degree αf (respectively — αf) Uhsl(N + 1) is
naturally Q-graded where Q is the root lattice.

One defines an adjoint representation ad: Uhsl(N + 1) -• End (Uhsl(N + 1)) by
ad = (L(g)jR)(Id(χ)S)4 where L (respectively R) is the left (respectively right)
representation. Let Uhb+, respectively (7Λb_, the unital subalgebra generated by
the Xj's and the /^'s, respectively by the y£'s and the iff's. Before introducing
analogues of root vectors in Uhb+, it is useful to consider the new generators
Et = Xi expίί-fc/^ffj) instead of Xt. Then

Δ{Ed = Et ® 1 + exp (^Hή ® Ei9 S(Et) = exp Q

In terms of the new generators, the analogues of Serre's relations can be rewritten as:

for i Φj9 diά{E^~aii(E^ = 0. (αι7) is the Cartan matrix.

Furthermore, ad(£ f) acts as a twisted derivation: for ξ,ηeUhsl(N + 1) homogeneous
of degree β and y, ad (£,)(£/) = ad (£*)(£>/ + t2(ai'y)ξ. ad(E£)fa), where t = <Γft/4.

2. Quantum it-Matrix and Quantum Double Construction

Definition 1. A quasi-triangular Hopf algebra is the data of a Hopf algebra A and
of an invertible element Re A® A such that: ^ ^ ( x ) ^ " 1 =Δ'(x) VxeA, where Δ' is
the opposite comultiplication, and (4®id)(jR) = jR13,R23, (id®Δ)(R) = R13R12.

Then R automatically satisfies the Yang-Baxter equation.
The quantum double construction is a procedure allowing to construct a

quasitriangular Hopf algebra from any Hopf algebra.

Definition and Theorem 2. Let Abe a Hopf algebra and A° be the dual algebra A*
with the opposite comultiplication. Then there exists a unique quasi-triangular Hopf
algebra {D(A\ R) such that:

1. D(A) contains A and A° as Hopf subalgebras;
2. R is the image of the canonical element of A®A° by the embedding:

3. the linear map: A ® A0 -* D(A) is bijective,

a®b—>ab.

So, as a linear space, D(A) can be identified with A®A° and its algebra and
coalgebra structures will be completely determined as soon as one knows how to
compute a product ξ-v, for ξ in A° and υ in A as a sum of products vt^h vteA,
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ξiβA0. In fact, one can give an intrinsic formula for the product A°®A^»D(A) in
terms of the map A ® A° -+D(A) described in point 3) of the theorem: let
τ:Ao®A-+A®A° be the permutation ξ®v^v®ξ then the sought for product
is given by the following composition:

A°®A >A°®A—+A®A° >A®A°—+D{A)
(tr(g)id)(S<g>/®3)J τ (/®tr)J

where A is the usual coproduct on the tensor product of the Hopf algebras A and
A°, and tr: A ® A° -> C is the contraction: t φ ® ξ) = ξ(v).

Application to the case ofUhsl(N -f 1). The quasi-triangular structure of Uhsl(N + 1)
can be deduced from that of the double of Uφ+ from the following facts:

1. (Uhb+)° can be identified with Uφ- as a Hopf algebra.
2. So, as linear spaces, we have: D(Uhb+) = Uhb+ ® Uφ_ = Uhsl(N + 1)® XJtff,
where Jf is the Cartan subalgebra of s/(AΓ + 1).
3. We shall construct an isomorphism as in 1) for which the isomorphism
D(Uhb+) = Uhsl(N + 1)® Uffl is an isomorphism of algebras

4. If ε: UJί? -• C is the canonical augmentation, a quasi-triangular structure on
Uhsl(N H-1) is defined by the image of ReD(Uhb+)®D(Uhb+) by the composition:

(and this mapping, when restricted to Uφ+ ® 1 or to 1 ® Uφ- is nothing but the
natural inclusion).

Here duality should be understood in the category of Quantized Universal
Envelopping algebras (Q.U.E. algebras) (cf. Drinfeld [1]). We shall freely use the
formalism of Q.U.E. and Q.F.S.H. (Quantized Formal Power Series) algebras.

1. An Analogue of the Poincare-Birkhoff-Witt Theorem for Uhn+

Uhn+ is the unital subalgebra generated by the E/s. Each positive root α oϊsl(N + 1)
can be written: (x. = εi — εj = (xi + oίi+ί + —hOj_ ί 9 l^i<j^N. One defines by
induction the root vector: £ α = ad£ ί( JE ε.+ 1_ ε j).

1. Commutation Relations Between the Ea's

a) Commutation of a vector of simple root Ek with £ ε ._ ε j + 1.

For fc = i - l , aάEk(Eεi.εj+ί) = Eει_ι_εj+ί. For fc=j+l, EkEεi.ε.+ ί

so,

Fcr fc^i-2 or fc^j + 2, £ k £ β l . β J + 1 = £ β i . β j + 1 £ k . For fc = i,ad£ i(£ β |-. β l + 2)
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(ad Ej)2(Ei+1) = 0, and more generally:

ad £,(£., _ε,+,) = (ad E))2 ad £ , + 1 ( £ , < : . 1 J t , )

= ((ί2 + r 2 ) a d £ , a d £ / + 1 a d £ ί

- a d £ ί + 1 ( a d £ i )
2 ) ( £ ε i + 2 _ ε j + I ) = 0.

For fce{i+ 1 . . . . J - 1}: ad£ k (£ ε i _ ε . + 1 )

= a d £ ί a d £ f c _ 2 a d £ l k a d £ t _ 1 a d £ l k ( £ Λ + I _ , J + 2 )

= (t2 + r 2) ~x ad Et • • • ad Ek _ 2((ad E,,)2 ad Ek _ x

+ a d £ t _ 1 ( a d £ t )
2 ) ( E , + 1 ) = 0.

For fc=j: £, £ ε ( - ε j + ι = a d £ r a d £ J _ 2 ( £ y £ £ j _ 1 _ ε . + 1 )

But, £ ε . _ 1 _ ε j + 1 = EJ-1EJ-Γ2E]EJ-1, so

= 0 according to Serre's relations.

b) Commutation of Ea and Eβ, oc = εi — εp+i,β = εj —
For 7 ̂  /? + 2: £ α £^ = £^£α. For j = p+l: put α' = ε, - ep, one has: Ea = Ea,Ep

Γ2EpEa, and Ea,Eβ = EβEa>. So

EαEβ = Eα'EpEβ — t~2EpEβEα>,

so

— t~2EβEα = Eα>Eαp+β — t 2Eαp+βEα,

go on =

For j ^ p: Up to exchanging the roles of α and β, one may suppose that i is the
smallest index which appears. Put γ = OLJ•+ — h <xp; α = αf + — h α7 _ x + 7 and

= ad Ej. x{EyEβ) -

EβEΛj_x _ y

But EpEj+1,...,Ep^ commute with Eα._ι+fh so EyEα._ι+β = Eα._ι+βEr Put
7 = a,- + / : one has in the same way: Eγ,Eβ = EβEy>.

Then: EyEβ = adEj(Ey,Eβ) and EβEy = Γ2i"-»adEj(EβEy.) so

t2—t~2\
1 τ

F
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a n d
ExEβ - t*«'t>%Ex = ( t 2 - t~2)EyEai +...+αk.

Remark. This supposes (with notations as above) that i^j—1 and k ̂  p + 1. But
for / =7, i.e. α = y, we saw in the course of the proof that: EyEβ — t~Άy'β)EβEy = 0
for k = p, i.e. β = γ, £αj._1 + ^

1 + y £ p = 0 so £ y £ α , - 1 + , - ί ~ 2 ( y ' α j - 1 + y ) £ Λ , . 1 + y = 09

We shall put on the set of positive roots R + a total order /?(1) < /?(2) < < j?(n),
such that the ordered monomials Eβ(1)

mί' Έβ{n)

mn, (m1,...,mn)eiVn form a basis
of Uhn+. We record the following computational lemma, which is easily checked
by induction, and which will be useful next.

Lemma

— h
+ exp—// ε ι _ ε . + 1 ®£: ε._ ε.+ l . (Sum from k = itok =j-ί).

Put

H

Then M ^ = e'\uk for /c>/. As Λ(£α) = W l + (1 - ^ ) ( w 2 + ••• + uj..1 + 1 ) +
one can compute ^i(£α)Λ by the ̂ -multinomial formula:

where

uk+l —V y^εi-εj-k+i) C λ P 2 ri«j-k+i-£j+i^VC'«/-k+!-£.;+ J *

2. A Basis £ la Poincare-Birkhoff-Witt for Uhn+

Definition. Let K+ be the set of positive roots, OL19...,OIN the simple roots. Let's
consider the following total order onR + :
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α 1 , α 1 + α 2 , α ] ^ α 2 + α 3 , α 1 + α2 + α 3 + α 4 , . . . , α 1 + •• + α N , α 2 ,

α 4 , . . . , α 2 + ••• + α N , α 3 , α 3 + α 4,

α 3 + + α i V , α 4 , . . . , α N _ 1 + αN,αJ V,

and let's note β(l) < β(2) < ••• < β(n) the inverse total order (i.e. β(l) = <xN,β(2) =

Theorem. The set of elements Eβ{ί)m1"Έβ(n)mn, (m1,...,mw)eJV/I from a basis of
Uhn+.

Proof

a) One knows that the monomials in Eί9...,EN9 generate Uhn+9 so a fortiori the
(non)-ordered monomials in £α's. To see that the set above is generator, it is enough
to prove that each element Eβ(hy Έβ(ik), is a linear combination of ordered
elements as above, with mί-\- — \ - m n ^ k .

We shall make a double induction: first on fc, and for k fixed, on ix.
—The case k = 1 is clear.
—Suppose the assertion true for k: we now prove by induction on ix that it holds
for fc+ 1. So, let's consider an element Eβ(iι) ~Eβ(ik+ι).

i) For i1 = 1, apply the induction hypothesis on k to Eβ(i2yEβiik+ί).
ii) If ix > 1, applying again the induction hypothesis on k to Eβ(i2y"Eβ{ik^x),
one sees that Eβ{h)Eβ(i:ί)' Έβ{ik+l) is a linear combination of elements
Eβiiι)Eβij^Eβij+1p^.- Em

m» with mj+ -m n ^/c.

If i1 ^j: we are O.K.
If i\ > j : Em)Eβ(j)

mjΈβU+ 1 }

m j + x ^ ( π )

m n = Eβ{ίι)EβU)EβU)

mj- ιEβ(j+ t)

mJ+1 Eβ{n)

mn.

But we have computed the "commutation relations" between the Eα's and there are
essentially three possibilities: for some non-zero coefficients λ and μ:

_ί°
Eβdi)Eβ(j) ~~ λEβU)Eβ{iι) - < μEβ{iι)+βU)

I μEyEa, + y+β, where ^ ( i j = α' 4- 7^(7) = 7 + jF

and so: β(i1)> y > β(j).
Then:

17 17 17 "* j — 1 17 "* j +1

' [λEmEm)Em

m'-1Eβi

\ •—1

\ 117 T7 Ί7 mJ ~ 1 J7
I Λ^βϋΊ^βdri^βU) ^βί

17 Win

Wj+ 1
• £ ί

• £ ί

• £ ί
mn

\{n)

/) '"Άβin)
m - 1 17 mn

β(j) '"^β(n)

In the first case, induction on k allows to reorder Eβ(iι)Eβ(j)

mi"x Eβϋ+ i }

m j + 1 Eβ(n)

mn

as a linear combination of monomials with at most k terms, then as j<il9 one
uses induction on it.

In the second case: the first term is treated in the same way, and the second
one comes from induction on k.

In the third case: proceed for the two terms as in the first case, as y < βOΊ).
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b) Let us prove now that the Eβiί)

mί -Eβ(n)

mn are linearly independent. Let Q be
the root lattice; Uhn+,Uhsl(N + 1), Uhsl(N + 1)® Uhsl(N + 1) are Q x β-graded.
For Q-degree reasons, the EβU) are independent.

A:Uhn+ -» Uhb+ ® Uhn+ preserves the β-degree and Δ(Eβ) has a component
of bidegree (ochβ — α, ) if and only if β is of the form β — αf + . Then the component
of bidegree (noci9n(β — αf)) of ^(E^)11 is proportional to E"exp(— nh/2)Hβ-aι®
(Eβ_Λi)

n. (See lemma).
In the same way, the component of bidegree {(m + m1 + —t-m r)oc i9...) of

+ ...+ΛiJ^(EΛi + ... + ai+r_^^-iEaι+ai+^EΛι

m) is proportional to:

and the monomial on the right of ® is already well ordered. More generally,
consider the component of bidegree (pα f,...) of Δ(Eβ(ί)

mi Eβ{n)

mn), with p maximal:
it is proportional to Ef exp(-h/2)H®Eβ{ ίy

mι••• Eβ{nY

mn, with β(k)r = β(k)-α£ if
β(k) = oil + ••• and β{k)' = β(k) if not. When reordering Eβ{iγ

mι ' Eβinγ

mn, the only
commutations than one has to do are between two vectors of the form £α.+1+...,
these commutations are of the type: EyEδ = λEδEγ for a non-zero λ. So, the sought
for component is proportional to a monomial

^ p e x p ~

Consider now a linear relation between the Eβ(1)

mι - Eβ{n)

mn: one can assume they
all have the same Q-degree: Em$(i) is fixed. We prove by induction on this degree
that the relation is trivial.

—we saw that if this Q-degree is β(i).

—Among the monomials of the relation, consider the biggest integer i such that
there appears a £α. + ... with a non-zero exponent. Let n be the biggest total
exponent at which all £α. + ... appear. Only the monomials in which this total
exponent is exactly n will have a component of degree (nα ί 5...) after applying A.
From the relation we started with, we deduce a relation between the monomials
Eβ{1)

m'1"Έβ{n)

m'n which appeared on the right of ®, and if the Eβ{ί)

mi"-Eβ{n)

mn are
two by two distinct, it is the same for the Epil)

mli~-EPiH)

m\ (The β(k) of the form
af + ••• are replaced by αi + 1 + •••, or 1 if β(k) = och and the others are unchanged.)
As the Eβ(1)

m>ι' Έβ(n)

m'n have a Q-degree strictly smaller than the one we started
with, this new relation is trivial. But the coefficients of this relation are non-zero
multiples of the coefficients of the initial relation (see remarks made above): so the
coefficients of all the monomials in which Eαi + ... appears with exponent n should
be zero; this contradicts the choice of n.

Remark. Uhn+ is a (non-homogeneous) quadratic algebra, generated by the £α's,
and the existence of the P.B.W. basis implies that it is a Koszul algebra in the
sense of Priddy. [3,4].

The choice has the following interest:

Proposition. Let (Uhn + )j be the subspaee ofUhn+ with basis Eβil)

mi -"Eβ{j)

mj with
(m1,...inij)eNj. Then:
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a) (Uhn + )j is a subalgebra ofUhn+.
b) (Uhn + )j is a sub- Uhb+ right-comodule ofUhn + , i.e.

II. Computation of the Universal /^-Matrix

1. Construction of a Basis of the Q.F.S.H. Dual to Uhb+

From the previous theorem, we deduce that Eβ{1)

m Eβ^H^1 HN

rN

9 is a basis
oϊUhb+. Let's introduce linear forms ξl9...,ξN and r\v yeR+, defined by: £,(#,) = 1;
zero on the other monomials; ηγ(Eγ) = 1, zero on the other monomials.

Lemma 1.

i) (ξ^Hl1} = n! and ξt

n is zero on the other monomials.

n ^ Φ (e i Φ (e ̂ }
1 1 mi,m'i 1 1 rι>ri(ί ~h\rπ\ / i — h\mn 1 * ΛΓ

Proo/.

i) is immediate.

ii) <^γ",£7

n '> = (ηy

n~1®ηy,Δ(Ey

n)}

n_1 Φn\e~h) n,_ί -h

'ηγ

n \ Ey

n> x > and the result follows by induction on n.

iii) One checks immediately:

) Ίβ{ή) S I SN 5

)

But ^ ( ^ ( 1 )

m ' 1 ^(w-i)m'"-1)et/ f tfc+(8)(i7hw + ) n _ 1 and η m is zero on

So, X =

M n - 1 Z7 m ' l . . F m ' n - lm'n-l\
β(n) /

— m* v y ^ / M mi „ m r t - l 17
~(l _e-h\mrOmn,mn'\

ΊΊβ(l) Ίβ(n-1) ^

and applying the same argument, one gets the result.
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2. Commutation Relations and Coproduct in (Uhb+)*

We note ηt = ηa. for αf a simple root.

Lemma 2.

ii) K i , ^ ] = - 2 I

iii) i i l

lm,fljl = QX\i-J\*2.

iv) For <Xj > α, one has: f/ff/β - e^^^^η^ = (1 - eh)ηai+a if αf + αeR + and 0 if not.

i) is immediate.
ii) T/ ̂  is non-zero only on Eyί^ where its value is 1. ξtfj is non-zero only on EjHi
where its value is 1, and if z =y, on Ej where its values is ( ^ (x) ̂ i5 exp—{hβ)Hi ®E^ =
-h/2.
iii) For our order, α ί + 1 < αί? so ηi+1ηi is non-zero only on Eί+1Ei; where its value
is 1. On the contrary, ηiηi+1 may be non-zero also on £α.+ α. + 1:

Hi

iv) ηaηi is non-zero only on EaE{ where it is 1.

One shows then that η^^ is zero on each monomial of degree ^ 3 in the Ey\ The
only monomial of degree 2 on which it is not zero is EΛEi and its value on it is
(̂/ι/2)(α,αι) I t c a n b e n o n _ z e r o o n β^ o n iy if α = α ί + 1 H h αi? γ = α, + α and then

<?yβf/ί,Ey> = l.

Corollary. y4s an algebra; {Όhb + )* is generated by the ξ/s and η^s. Furthermore,
one has from iii) and iv) the analogues of Serre's relations:

Lemma 3.

i if | i -

(eh/2 + e-hl2)ηiηi±iηi + ηi±iηi

2 = 0.

ii) Δ(ηi) — ηt ® 1 -f- exp (— ξf _ x + 2ξi — ξf + x ) ® ηt with the evident modification for
i = 1 or i = N.

Proof

i) is immediate.
ii) As the operation of "commuting" two root vectors can never give a simple root
vector, a priori Δ(ηi) will be non-zero only on: £ f ® l (where it is 1) and
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H1'
i~HN

r»®Ei.

so; we must have ^ = 0 for jφ{i — ί,i,i

i.e.

= f/, ® 1 + exp ( - &_ i + 2ξt - ξi+!) <g> jji.

For the identification with the Q.F.S.H. associated with the Q.U.E. algebra (Uhb+)°,
it is useful to introduce: ζx = ξx — i^2?

and Δ(ηt

Remark. 2<ζ f,

g)l+e

H,> =

L4

χp(

[ζi,ηj[

α,).

] = 0

1 \
] ~ 4 f

li-

if JG{Z —l,i,z

7 i ± i »

ft

3. Tfte Identification of(Uhb + )* with the Q.F.S.H Associated with Uhb- with the
Opposite comultiplication. Let Δ' this opposite comultiplication and S' the related
antipode. With these, one can define another adjoint representation ad' = (L®R)
(I®S')Δf. In Uhb_, one introduces the new generators Ft= YiQxp{h/4)Hi and
adr(F f) has the same properties with respect to Uhb_ as ad(£ f) had with respect
to Uhb + .

In particular, for each positive root α = αf H 1- α,-, one defines the analogue
of the root vector Fa as: Fa = adr (Fi)(Fa.+ί + — I - α7). From the computations made
above, one easily gets:

Proposition. For every A 1 ( / I ) , . . . , 1 N ( / Z ) G C [ [ / Ϊ ] ] , with h-valuation 1, the map

φλ:(Ukb+)°-+Q.F.S.H.(Ukb-),

defines an isomorphism of Hopf algebras.
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We shall see that there is a unique choice of λf's such that the Hopf algebra
structure of D(Uhb + ) induces the one of Uhsl{N + 1).

An easy computation gives that, in Uhsl(N + 1),

We compare it with [Eu η^\ computed in D(Uhb+) thanks to the intrinsic formula
given in the introduction. One has: (tr(χ)id)(S®/®3)4(^ (x)£ i)= — ̂ i7

i9 so:

LEhηj'] = δJ exp (2ζ£) - exp - - HΛ

The image by φ Λ : [£ I , F J ]/lJ (fe) = δι72sh((/i/2)f/ί).
So, λj(h) = (l -e~h). One also checks that, in D(Uhb + )9[Hi9ηj'] = - ( α , ,

Corollary. The map: D(Uhb+)-+Uhsl(N + 1)

defines a (surjective) morphism of Hopf algebras. So, the image of the canonical
element of D(Uhb+)(x)D(Uhb+) defines a quasi-triangular structure on Uhsl(N + 1).

4. The Canonical Elements ofD(Uhb+)®D(Uhb+) and the Universal R-Matrίx of
Uhsl(N + 1). In terms of the P.B.W. basis of Uhb+ and of its dual basis, the
canonical element is given by:

frJj.«U n

(m,...,mn)eNn

β l ' " % 09^(1) '"^βin) SI '"Civ

This can be written in a more compact way by using the ^-exponential:

With these notations, one has:

where the product is made in the order 1 < 2 < < n.
Now:—the image of ΣHj®ξj in Uhsl{N + l)®Uhsl(N + 1) is (ft/2)ί0, where

to toeJ^(χ)^f corresponds to the scalar product ( , ).
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—from ηiηi+1~eh/2ηi+1ηi = (l-eh)ηΰίi+ai + ίi one has ηai+ai+ι = ~e~*(l -e~h)

Fα.+α.+1, and by induction on the length /(α) of the root α

Theorem. The universal R-matrix of Uhsl(N + 1) is given by:

with the same convention as above for ordering the product.
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