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Abstract

In this paper, a review about the quality of the sim-
ilarity measure and its applications in machine learn-
ing is presented. This measure is analyzed from the
perspective of the granular computing. The granular
computing allows analyzing the information at differ-
ent levels of abstraction and from different approaches.
The analysis shows that this measure is based on two
basic aspects on the universe of objects: the granular-
ity of the information and the principle that, similar
problems have similar solutions. Using the measure,
a method was formulated to build relations of similar-
ity; these relations and other results have been used in
improving machine learning techniques.

Keywords: quality of similarity measure, granular
computing, rough set theory, machine learning

1. Introduction

The granular computing is a new computational term
that includes the theories, methodologies, techniques
and tools that make use of the granules (subsets of a
universe) in the solution of problems, [1, 2]. The main
concept is the granule; this is defined as a nucleus, en-
tity or focal point of compound knowledge for different
objects, mutually indistinguishable [3].

A granulation of the universe consists on decompos-
ing the universe in a family of subsets (granules) that
contains all the objects of the universe. The granula-
tion depends on the relationship R. A universe U can
be divided in a series of granules, each one settled down
by a relationship R [4]. The combined quotient U/R
contains groups of inseparable objects according to R.
Two common types of granulation of the universe are
the partition and the covering of the universe; in the
first case, the intersection between granules is empty,
in the second case the granules can be superimposed,
and in both cases the union of all the groups is equal
to the universe. The Rough Set Theory (RST) [5] and
the Fuzzy Set Theory (FST) [6] offer concrete models
of granular computing [7].

The granulation of the universe facilitates the learn-
ing process based on different perspectives of the in-

formation; it is possible to diminish the computational
cost of the discovery process, as well as to find more
abstract relationships. The RST is among the learn-
ing techniques that use the granulation. The rough
sets have been used in the construction of algorithms
for the rules generation, the feature selection, and
other tasks of machine learning, like it is shown in
[8, 9, 10, 11].

The classic RST is defined taking into account fea-
tures with discrete domains; therefore, the methods
for the knowledge discovery based on the classic RST
are affected when mixed data (application domains in
which the features can have discrete or continuous val-
ues) appears. To solve this problem, new concepts and
methods have been developed based on similarity rela-
tions instead of equivalence relation; this is known as
the extended Rough Set Theory [12]. The new prob-
lem is finding the appropriate similarity relation for
each application domain. A method to build similar-
ity relations based on the similarity quality measure
is proposed in [13, 14], this includes to compute the
weights for the features.

The effectiveness of the similarity relation and the
weights for the features that are found using this ap-
proach has been proved when using these results for
improving or creating the machine learning method.
The purpose of this paper is to analyze all these data.
The content of this paper is the following. In the
section 2, the similarity quality measure is analyzed
in the context of the granulation of the universe and
the principle that "similar problems have similar so-
lutions"; the method for building similarity relations
is presented in section 3; in section 4, some improve-
ments to techniques of machine learning are revised.

2. Analysis of the similarity quality measure.

The definition of different relationships among the ob-
jects determines different granulation alternatives. In
the context of the supervised learning (classification
problems or functions approximation problems), the
knowledge that is discovered establishes relationships
between the granulation regarding the condition fea-
tures and the granulation regarding the decision fea-
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ture (also called objective feature). Keeping in mind
the relevance of this fact, measures have been defined
that allow establishing a relationship grade between
both granulations; for example, the quality of similar-
ity measure in the RST; this measure has been em-
ployed in the development of machine learning tech-
niques, [9, 15].

Let DS = (U, A ∪ {d}) be a decision system, where
A is the set of condition features and d is the deci-
sion feature. Let B⊆A and X ⊆ U , B defines an
equivalence relation and X is a concept. X can be
approximated using only the information contained
in B by constructing the B-lower and B-upper ap-
proximations of X , denoted by B∗X and B∗X re-
spectively, where B∗X = {x ∈ U : [x]B ⊆ X} and
B∗X={x ∈ U : [x]B ∩ X �= ∅}, and [x]B denotes the
equivalence class of x according to B-indiscernible re-
lation. The objects in B∗X are surely members of X ,
while the objects in B∗X are possibly members of X .
Let a granulation Y = {Y1, ..., Yn} of U according to
the values of the decision feature d (classes), where
Yi, denote a decision class; in this case the set Y is a
partition of U .

The coefficient γB (Y ) defined by expression (1) is
called the quality of the classification of Y according
to the features in B. It expresses the percentage of
objects which can be correctly classified into classes
Y1, ..., Yn using the features in B only.

γB (Y ) =

n
∑

i=1
|B∗Yi|

|U |
(1)

This is an important measure in the RST because it
is related with important concepts of this theory, such
as the consistency of the decision system, and the con-
cept of reduct. A reduct is a minimal set of attributes
B ⊆ A such that IND(B) = IND(A), IND(X) is
called the X-indiscernibility relation; this definition
can be reformulated using the quality of the classifi-
cation measure in the following way: a reduct B is a
minimal set of attributes such that γA(Y ) = γB(Y ).

It is possible to appreciate that the classification
quality measure establishes a relationship between the
granulation generated by the equivalence relations B
and the granulation generated by the classes in the de-
cision system. The concepts of conditional granularity
(CG) and the decision granularity (DG) have been in-
troduced to call the granularity of universe according
to the conditional features and the decision feature re-
spectively; in [16] the relationships between CG and
DG are studied; therefore, the classification quality
measure establishes a grade of relation between CG
and DG.

But the classification quality measure is limited to
the case of decision feature with discrete domain, that
is, the case of classification problems where DG is

a partition of the universe according to the decision
classes. To overcome this restriction the similarity
quality measure is introduced in [17], this measure is
defined according to a similarity relation, which allows
working with mixed data to describe the objects and
working with discrete or continuous decision features.
This measure can be analyzed as a combination of the
granularity of the universe according to CG and DG,
and the principle of the Case-based reasoning.

The solution in case-based reasoning starts from ex-
ploiting the relationship between two types of similar-
ities, one defined on the space of the objects’ descrip-
tion (condition features) and other one defined on the
space of the solutions (features of decision) [18] and
[19]; starting from a correct description of the prob-
lems, similar problems should have similar solutions.
The principle of case-based reasoning can be expressed
as “while more similar are the problems according to
the condition features, more similar should be the val-
ues of the decision features”.

The solution of problems using the case-based rea-
soning, and in general the lazy learning, has as a base
that this principle is satisfied; in other case, they ob-
tained solutions without the required quality. The sim-
ilarity quality measure represents the degree in which
the similarity between objects using features of con-
dition is the same as the similarity according to the
decision feature; and it is built in the following way.

Let be relationships R1 and R2 which determine the
CG and DG respectively. Granules N1 and N2 defined
for (2) and (3) can be built using R1 and R2, N1 and
N2 of x are the neighbourhoods of x according to the
relations R1 and R2 respectively:

N1(x) = {y ∈ U : xR1y} (2)

N2(x) = {y ∈ U : xR2y} (3)

By using the Dice similarity coefficient [20] and the
granules N1 and N2, the expression (4) allows to cal-
culate a similarity grade between both granules:

ϕ(x) =
|N1(x) ∩ N2(x)|

0.5 ∗ |N1(x)| + 0.5 ∗ |N2(x)|

0 ≤ ϕ(x) ≤ 1 (4)

Calculating (4) for all the objects of the universe, the
grade in which the similarity according to the condi-
tion features coincides with the similarity according
to the decision feature can be measured. This grade
is called the similarity quality measure, denoted by
θ(DS), and it is defined by expression (5):

θ(DS) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

∀X∈U

ϕ(x)

|U |

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(5)
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This measure does not require that the features of the
decision system have discrete domain, like it is the case
of the classification quality measure; moreover, it can
be used in domains with mixed data. This measure
depends on the granulation of the universe according
to the condition features and the granulation due to
the decision feature. These granulations can be par-
titions or coverings; they are defined by relations R1

and R2. In the next section, a method to build the
relations is proposed.

3. Method to build similarity relations using

the similarity quality measure

One of the most important advantages of the RST to
develop problem solving techniques is that it practi-
cally does not require any additional information, only
those contained in the universe of objects. Against this
statement, it could be only mentioned that the classic
formulation of the RST supposes the domain of the
features is discrete, because it uses an indiscernibility
relation of the data which defines as inseparable those
objects that have same values for the subset of features
considered in the relation (xRy ⇔ bi(x) = bi(y) for all
bi ∈ B ⊆ A, and x, y ∈ U). Defined in this way, this
relation is an equivalence relation.

As it was established before, this type of indiscerni-
bility relation imposes a restriction for the case of
domains with mixed data. For example, in the case
of features with continuous domains, slight differences
among objects are not meaningful when building the
equivalence classes, where the measurement mistakes
of the attribute’s values always lead to an imprecise
description of the objects we are working on. The
answer to this problem has been discretizing the con-
tinuous domains or to work with other alternatives of
indiscernibility relation; see figure 1; the first alterna-
tive reduces the problem to the classic RST and the
second one leads to the extend RST. A generalization
of the classical rough set approach is specified by the
replacement of the equivalence relation with a binary,
weaker similarity relation. This yields some extensions
to the classical RST such as [12, 21, 22, 23, 24, 25]. The
purpose is to extend the inseparability relation R so as
to gather into the same class those objects which are
not identical but closer (similar) enough to a referent
object according to the similarity relation. While an
equivalence relation defines granules like equivalence
classes, the similarity relation defines the granule as a
similarity classes. The similarity class of x, according
to the similarity relation R is denoted by R(x) and
defined by (6):

R(x) = {y ∈ U : yRx} (6)

It is read as “the set of elements in U that are similar
to according to R”.

Fig. 1: Alternatives in RST.

The equivalence relations induce partitions of the
universe U , while the similarity relations induce a cov-
ering of a universe. A covering of universe U is a fam-
ily of subsets of U where no subsets in the family are
empty and the union is equal to U . A partition of U is
a covering of U , so the concept of a covering is an ex-
tension of the concept of a partition. Many researches
have been developed to study covering approximation
space in the RST, such as [25, 26, 27]; some of them
oriented to build a covering-based generalized RST.

However, the determination of the most appropriate
similarity relation for an application domain does not
have an immediate answer; becoming an outstanding
problem in order to use the methods based on the ex-
tended RST. Subsequently, it is analyzed the solution
proposed in [13, 14] to build similarity relations. The
similarity relation is formulated as xRy ⇔ F (x, y) ≥
ε, x, y ∈ U , and F (x, y) is a similarity function with
values in [0,1].

The function F includes the following terms, and it
can be defined by expression (7):

• Local similarity measures used to compare the
values of single features (called comparison func-
tions of the feature).

• Feature weights representing the relative impor-
tance of each attribute.

• A global similarity measure responsible for the
computation of a final similarity value based on
the local similarities and feature weights (called
similarity function).

F (x, y) =
n
∑

i=1

wi ∗ ∂i(xi, yi) (7)

where: n is the number of features wi is the weight of
feature i Xi and Yi are the values of feature i in objects
X and Y respectively ∂i is the comparison function of
feature i.

Given the features comparison function’s ∂i (an ex-
ample is showed in expression (10)), the problem of
building the relation R is reduced to find the set
of weights associated to the features, that is W =
{w1, w2, ..., wn}.

Considering the granulation of the universe accord-
ing to the condition’s features and the decision’s fea-
ture (conditional granulation and decision granula-
tion), the relations R1 and R2 are defined according
to (8) and (9):
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For all objects x and y in U :

xR1y if and only if F1(x, y) ≥ ε1 (8)

xR2y if and only if F2(x, y) ≥ ε2 (9)

Where F1 and F2 are similarity functions to compare
objects in U , F1 includes features in A and F2 com-
putes the similarity degree between two objects ac-
cording to the value of the decision feature d; ε1 and
ε2 are thresholds. If F1 is defined according to the ex-
pression (7), the problem is to find the set of weight
W that maximizes the similarity quality measure (ex-
pression (5)).

This is an optimization problem that can be solved
using a heuristic search, in which the heuristic evalu-
ation function defined by the similarity quality mea-
sure is maximized. In [13, 14], the Particle Swarm
Optimization (PSO) [28] has been used to solve the
problem. In this paper (to see section 4.1) an exten-
sion of the study is presented by using as heuristic
method the Univariant Marginals Distribution Algo-
rimth (UMDA), instead of PSO. The UMDAc algo-
rithm, proposed by [29], has interesting characteristics
such as the relative ease of implementation, speed in
locating the optimal solution, its powerful exploring
capabilities and its relative lower computational cost
in terms of memory and time. The method to calculate
the set of weights, that use a heuristic search method
(as PSO or UMDA) to maximize the similarity quality
measure (expression (5)) is called maxQS.

4. Applications in Machine Learning

The quality similarity measure and the method to
build similarity relations described in previous sections
allow making a granulation of the universe and extend-
ing the RST in the case of mixed data. The quality of
this granulation and this similarity relation has been
shown in several applications in the machine learn-
ing field. In this section, three cases are revised that
show the applicability of the similarity quality mea-
sure and the derived results from it. The weights for
the condition features have been used to build the ini-
tial set of weights for a multilayer net, which improves
the learning algorithm performance. The similarity
function defined for the expression (7) and the weights
for the condition features have been used to retrieve
similar instances in the k-NN method, and the simi-
larity relation was used to propose a new method for
prototype-based learning; the effectiveness of both was
proved. Moreover, an algorithm has also been formu-
lated to discover classification rules in domains with
mixed data.

4.1. Application in MLP.

The Artificial Neuronal Network called Multilayer Per-
ceptron (MLP) is a powerful model for solving nonlin-
ear problems. The construction of neuronal nets is a
problem of non lineal optimization in which the objec-
tive is to find a set of weights that minimizes the cost
function. This cost function is generally characterized
by a great number of local minima in the vicinities of
the global minimum.

The network topology and the initial weights play
a very important role. In general, the formation of
the MLP network is carried out through the succes-
sive intents with different network topologies and sets
of weights until arriving to satisfactory results for the
problem. The learning process includes an initializa-
tion algorithm and an algorithm of weights adjust-
ment. The weight can be initialized in a random way,
but it is important to keep in mind that the results will
depend in great measure of the value of these weights
[30],that is an interesting problem as it is shown in
[31, 32, 33].

In general, the multilayer Perceptron can have sev-
eral hidden layers. However, in the study presented in
[14, 34], the initialization of the MLP with a single hid-
den layer is considered. The values for the weights of
the connections between the input nodes and the nodes
in the hidden layer are initialized using the weights of
features according to the maxQS method described in
section 3. The weights for the connections between the
nodes of the hidden layer and the nodes in the output
layer are generated randomly.

In [14], a study of the performance of the MLP
is presented with this variant of initialization of the
weights in the problem of function approximation.
The problem is to calculate the resistant capacity of
three types of connectors (stud, crestbond and canals);
it is an important parameter because it is responsible
of ensuring the connection among structures. Three
databases were used; the output for each instance in
the three databases is the value of resistant capacity.
Two initialization alternatives were studied: the first
one appears in the implementation of the MLP in the
Weka tool 1, where the weights are initialized in a
random way; the other is initializing the weights us-
ing the weight according to the method maxQS. The
results obtained by the MLP with both initialization
variants were compared with the real value of the re-
sistant capacity, using three different error measures
(Mean Absolute Percentage Error, Root Mean Square
Error, and the average magnitude of the difference be-
tween the desired value and that obtained by the pre-
diction); in all the cases the obtained error by the new
method of initialization of the weights was smaller.

1Tool of open code written in Java. Available under GNU
public licenses in http://www.cs.waikato.ac.nz/Ÿml/weka/
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∂(xi, yi) =

⎧

⎨

⎩

1 − |xi−yi|
Max(ai)−Min(ai) if i is continuous

1 if i is discrete and xi = yi

0 if i is discrete and xi �= yi

(10)

On the other hand, in [34] an expanded study of
this new method of weight initialization is presented
in classification problems and the function approxi-
mation problems. There were used 24 databases from
the UCI repository 2, 12 where the domain of deci-
sion attributes is nominal (classification) and 12 where
is numerical (function approximation). The perfor-
mance of the MLP using four different types of weights
was studied: random generation, calculation of the
weights by the conjugate gradient (method KNNV SM

[35]), using the same weight value for all attributes
(w = 1/numAtt), and the weights calculated by the
method maxQS. The error measures used are Mean
Absolute Percentage Error and the Average of the dif-
ferences between the desired and produced value by
the method. In the classification problems, weights
calculated by using the Relieff method (RELIEF) [36]
is used also. In all the cases the performance of the
MLP using the weight calculated according to the
maxQS method was superior to the rest. These stud-
ies show that the calculated weights according to the
maxQS method, described in section 3, are better than
other sets of weights when they are used to initialize
the neuronal network MLP, in both case, using train-
ing sets coming from real problems or international
databases as the UCI Repository.

In this paper a new experimental study of the per-
formance of the maxQS method is presented, in which
the search method UMDA is used instead of PSO.

The problem is to calculate the resistant capacity
for the channel type connector. The dataset has five
input variables and one output with a total of 43 in-
stances. The input variables are: thickness of the soul
(w), thickness of the wing (t), longitude of the connec-
tor (L), height of the connector (H), resistance of the
concrete to the compression (fc). The output for each
instance is the value of resistant capacity (Q). In the
experimentation, the expression (10) has been used as
comparison function in the expression (7), which al-
lows working with mixed data. A three-layer neural
network with inputs features, outputs, and one hid-
den layer with variable number of nodes (n + q)/2 was
designed.

The result obtained using this set W in the MLP
method was compared with other four alternatives to
W . The k-fold cross-validation process was employed.
K - Fold Cross - Validation divides the original dataset

2UCI Machine Learning Repository. In C. U. o.
C. Irvine. (Ed.). http://www.ics.33.edu/ mlearn/
MLRepository.html

into k subsets of equal size where one is used as test
set while the others as used as the training set. Then
the overall accuracy of the classifier is calculated as the
average precision obtained with all test subsets. This
technique eliminates the problem of overlapping test
sets and makes an effective use of all available data.
The recommended value k = 10 was used [37].

Five alternatives of methods to calculate the weights
were employed for the experimentation. The variants
for calculating the weights are: (i) the method maxQs
using UMDA (called UMDAc+RST), (ii) the method
maxQs using PSO (called PSO+RST), (iii) assigning
the same weight to each feature (called Standard), (iv)
Random (MLP-R) and (v) calculation of the weights
by the conjugate gradient method (KNNV SM ).

The results obtained were compared with the real
value of the resistant capacity according to the mea-
sures: (i) Mean Absolute Percentage Error (MAPE)
and (ii) Mean Absolute Error (MAE). In order to com-
pare the results, we will use a multiple comparison test
to find the best algorithm. In Table 1 can be observed
that the best ranking is obtained by UMDAC+RST
for the MAE measure. Iman_Davenport test [38] is

Table 1: Results of the Friedman statistical test’s for
the MAE error measure.

Algorithm Ranking

UMDAc+RST 1

PSO+RST 2.25

Standard 4.5

MLP-R 2.75

KNNV SM 4.5

carried out (employing F-distribution with 4 and 12
degrees of freedom) in order to find statistical differ-
ences among the algorithms, obtaining a p-value near
to zero. In this manner, Table 2 shows the results of
the Holm [39] procedure for comparing UMDAc+RST
to the remaining ones. The algorithms are ordered
with respect to the obtained z-value. Thus, by using
the normal distribution, the corresponding p-value as-
sociated with each comparison can be obtained and
this can be compared with the associated α in the
same row of the table to show whether the associated
hypothesis of equal behavior is rejected in favor of the
best ranking algorithm (UMDAc+RST), the test re-
jects three cases. It can be noticed that the method
based on UMDA is statistically superior to Standard,
MLP-R and KNNV SM methods, and it presents com-
parable results with PSO+RST. In order to process
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Table 2: Holm test α=0.5, taking as method of control UMDA+RST.
i algorithm z = (R0 − Ri)/SE p Holm Hypothesis

4 Standard 3.130495 0.001745 0.0125 reject

3 KNNV SM 3.130495 0.001745 0.016667 reject

2 MLP-R 1.565248 0.117525 0.025 reject

1 PSO+RST 1.118034 0.263552 0.05 accepts

Table 3: Summary of the comparison of the method of UMDAc+RST with the different calculation methods.
Qexp/

Parameters CSA NRMC SENACY T P achan P SO+ UMDAc+

RST RST

Arithm. Mean 2.4024 3.0065 0.9881 1.6151 0.9987 1.0001

Max Value 35.95 28.72 67.83 54.99 73.56 69.87

Min Value 5.98 5.98 19.59 9.35 21.17 21.25

Stand. Deviation 15.61 16.57 13.08 15.12 13.05 12.53

Correl. Coeff. 0.96 0.96 0.98 0.74 0.98 0.99

0.85 ≤ Qexp/Q ≤ 1.15 0 0 41 7 42 43

Qexp/Q < 0.85 0 0 1 2 1 0

Qexp/Q > 1.15 43 43 1 1 34 0

the results of the experiments we used KEEL [40].

The best results are obtained when PSO+RST and
UMDAc+RST, next they are compared with other
classical methods for the prediction of the resistant
capacity of connectors (Q). These methods are: CSA
[41], NRMC [42], SENACYT [43] and Pashan [44].
These results show that the most stable methods are
UMDAc+RST and PSO+RST. Table 3 show these re-
sults.

This experimental results suggest that the construc-
tion of similarity relations based on similarity func-
tions (such as the defined by (7) and the similarity
quality measure defined by (5)) is feasible, indepen-
dently of the heuristic method that is used.

4.2. Applications in lazy learning.

4.2.1. Effect on the performance of the method k-NN.

The k-nearest neighbor’s method (k-NN) [45] is one of
the well-known and relatively simple methods to solve
classification and functions’ approximation problems.

The basic idea of the k-NN method is that similar
input values have similar output [19]. The output of an
object is calculated starting from the output from the
most similar neighbors to it; for example, in the case
of the classification, the k-NN rule classifies each un-
labeled example by the majority label of its k-nearest
neighbors in the training set. To select the similar in-
stances’ set it is necessary to use a function that allows
calculating the similarity grade between two objects.
In the classic k-NN method, the Euclidean distance is
used to find the nearest neighbors because the domains
of all features are the real numbers.

Different studies have shown that the performance
of k-NN depends crucially on the way that distances
are computed between different examples, among
them [46, 47]. The results presented in [48] show that
an important aspect in the methods based on similar-
ity grades, as the k-NN method, is the set of weights
assigned to the features, because this improves signif-
icantly the performance of the method.

The importance of building the most appropriate
similarity measure in the case-based systems, partic-
ularly to solve function approximation problems, is
studied in [49]. This is the so-called problem of dis-
tance metric learning. An alternative solution to this
problem consists in using a similarity function like the
defined by the expression (7) setting as the weight fea-
tures those calculated by the maxQS method described
in the section 3, which maximize the similarity quality
measure.

The employment of this type of similarity function
is studied in [13] to give solution to the problem of the
prediction of the resistant capacity of stud connectors
in composite structures using the k-NN method like
functions approximation. The following alternatives
were studied to calculate the weight: assigning the
same weight to each feature, three alternatives based
in the expert criteria and the weights calculated by the
maxQS method. To calculate the error the following
measures are used: MAPE and MAE. The experimen-
tal results show that when the last alternative is used
to calculate the weights, the error of the approxima-
tion is significantly lower; there are significant differ-
ences in accuracy with respect to the real value. In
[14], this study is extended to other two types of con-
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nectors (crestbond and canals) using the alternatives
mentioned before, plus the weights obtained by Con-
jugated Gradient method (KNNV SM ) [35], and the
three error measures; the experimental results also in-
dicate that the weighted similarity function using the
weights that maximize the similarity quality measure
allows to minimize the errors.

In this paper, the study shown in [13, 14] is ex-
tended by using 12 data set’s for classification prob-
lems (tae, bridges_version1, diabetes, biomed, iris,
zoo, schizo, soybean-small, cars, heart-statlog, liver-
disorders and glass) and 12 data sets for functions’
approximation problems (baskball, bodyfat, detroit,
diabetes_numeric, elusange, fishcatch, pollution, pw-
linear, pyrim, sleep, vineyard and scholvote) from UCI
Repository, eight of them are mixed datasets.

In the functions approximation problems three al-
ternatives of weights were compared for the similarity
function (Standard (1/Quantity-features), KNNV SM

and maxQS), to evaluate the effectiveness of the k-NN
method were also used the two error measures, before
mentioned. For the statistical analysis of the results
the techniques of hypothesis test were used [50]. For
multiple comparisons, the Friedman tests are used and
of Imam-Davenport test [38] to detect differences sta-
tistically significant among a group of results. The
Holm test [39] was used also. Tables 4 and 5 show
the result (Imam-Davemport (distribution of F with 2
and 22 grades of freedom) value of p: 0.000016789863).
The KEEL tool’s in its version 2.0 was used in the sta-
tistical analysis in all experimental results; specifically
the Non-Parametric Statistical Analysis module was
use [40].

The Holm test was applied, it shows the results
of the measures using the weights computed by the
maxQS method are significantly lower to those ob-
tained when the weights are calculated by means of the
Standard methods and KNNV SM methods. Fried-
man’s test and Imam-Davemport’s test were applied
among the Standard method, KNNV SM method and
maxQS method, regarding the correlation coefficient
of Pearson, to the R2 coefficient and MAE measure
and it is shown that significant differences exist among
them.

A similar experimental study was carried out for the
case of 12 classification data sets. In this case, the Re-
lief method for the weight calculation is included also.
A Friedman’s test and Imam-Davemport’s test were
applied, among the Standard methods, KNNV SM

methods, Relief methods and maxQS methods regard-
ing the general accuracy of the classification of the
k-NN method; it is demonstrated that significant dif-
ferences exist among them. The Holm’s test was ap-
plied, regarding the general accuracy of the classifi-
cation, and it is corroborated that the general accu-
racy of the classification is significantly superior when
the weights are calculated by the maxQS method that

when they are calculated by the Standard methods,
KNNV SM methods and Relief methods. This study
of the accuracy ratifies that k-NN method produces
the best results when the similarity function defined
(7) joint to the weights calculated using the maxQS
method is used.

4.2.2. A method for building prototypes using the
similarity relation.

In the Nearest Prototype Learning (NPL) [51], the
idea is to determine the value of the decision feature
of a new object analyzing his similarity with regard
to a set of prototypes, selected or generated from an
initial set of instances. The prototypes represent the
typical characteristics of a set of instances instead of
necessary or sufficient conditions; the prototypes can
be abstractions of the same instances previously ob-
served, or they can be the directly observed examples.
To learn prototypes is to represent the information
of the training sets as a set of points in the space of
the application domain, called prototypes, the decision
value of a new point is calculated using the decision
value of one or more prototypes. The intention of the
NPL is to decrease the costs of storage and processing
of the learning techniques based on instances.

In [52], the NP-BASIR method is proposed to con-
struct prototypes using similarity relations. The per-
formance of the method was studied using the similar-
ity relations based on the similarity quality measure
in the function approximation problem. For each in-
stance in the training set, the similarity class is built
using the similarity relation; a prototype is build us-
ing an aggregation operator over the instances in this
similarity class. The intention is to construct a pro-
totype or centroid for a set of similar objects. The
performance of the NP-BASIR algorithm was studied
using 19 data sets of the UCI’s Repository. It is pos-
sible to appreciate that the proposed method achieves
a substantial reduction of the quantity of instances
(in the majority of the cases a reduction about to 80
per cent of the number of instances), preserving the
precision. This result is very important due to the
computational complexity of the lazy methods (such
as k-NN and nearest prototype) and it depends on the
quantity of instances; when the number of instances
decreases, the computational cost is reduced. Also,
that paper shows, that there are not significant dif-
ferences between the efficacy of the approximation of
functions obtained using the set of prototypes and the
rule of the most similar neighbors and other aproxi-
mators like Multilayer Perceptron, Linear Regression
and Regression Tree.
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Table 4: Results of the Friedman statistical test’s for the MAE error measure.
Algorithms Ranking

Standard 2.4167

KNNV SM 2.5

PSO+RST 1.0833

Table 5: Holm test’s for α = 0.5 for the MAE error measure, taking as control PSO+RST.
i Algorithms z = (R0 − Ri)/SE p Holm Hypothesis

2 KNNV SM 3.47011 0.00052 0.025 rejects

1 Standard 3.265986 0.001091 0.05 rejects

4.3. IRBASIR: an algorithm for learning

classification rules.

Using the similarity relation built according to the
method described in section 3, the IRBASIR algorithm
(Induction of Rules BAsed on Similarity Relations) for
the induction of classification rules was formulated; it
allows to discover knowledge using decision systems
with mixed data without the necessity of carrying out
a discretization process before or during the knowledge
discovery process.

The rules represent functions that establish a rela-
tion between the examples (described by means of a
set of features) and the decision classes. They are usu-
ally expressed in the way if P then Q, where P is the
conditional part formed by a conjunction of elemen-
tary conditions (p1 and p2 and....pk), and Q is the
decision part that assigns a value of decision (class) to
an object that completes the condition.

However, the IRBASIR algorithm has a different
way to express P . The algorithm induces rules in the
way if

∑

w(i)∗∂i() ≥ ε then Q, where w(i) is the fea-
ture weight i, ∂i() is the comparison function for the
feature i and ε it is a threshold. The algorithm per-
forms an iterative procedure in which each instance in
the training set, not used before, is employed to gener-
ate a decision rule; the similarity class of the instance
is built using the similarity relation, and a decision rule
is generated in the way if

∑

w(i) ∗ ∂i() ≥ ε then Q,
where Q is the value of the majority class in the sim-
ilarity class. The weights and the similarity relation
are calculated according to the method described in
the section 3.

In [53], the behavior of the IRBASIR algorithm is
studied using 12 datasets of the UCI Repository with
mixed data. In the experimentation, the results ob-
tained by IRBASIR were compared with two versions
of the C4.5 algorithm (the C4.5 classifiers in the KEEL
tool [40], and J48 in the Weka tool), and the MOD-
LEM algorithm in the ROSE2 tool 3. In practically all
cases the accuracy of the classification reached using

3Rough Sets Data Explorer. Available in http://www-
idss.cs.put.poznan.pl/rose

the rules induced by the IRBASIR algorithm was su-
perior to those generated by the C4.5 algorithm, J48
algorithm and MODLEM algorithm. Multiple com-
parison tests were used to compare the results with
the purpose of finding the best algorithm, the statis-
tical analysis confirms that the IRBASIR algorithm is
statistically better than others.

5. Conclusions

In this paper a review has been presented with the fol-
lowing results: the similarity quality measure; the cal-
culus of the features weights by means of the optimiza-
tion of this measure, the construction of the similarity
relation based on weighted similarity functions that in-
clude those weights, and the employment of previous
results in improving machine learning techniques. The
study includes the analysis of the quality of similarity
measure from the perspective of the granular comput-
ing and the principle of the Case-based reasoning. It
is also studied a method to build similarity relations
based on weighted similarity functions, which consists
in maximizing the value of this measure by using a
metaheuristic.

A revision of the effectiveness of the derived results
from the measure is presented in the context of the ma-
chine learning techniques. This includes a new analysis
about the performance of the k-NN method, enlarging
the previous study, using trainings sets of the UCI’s
Repository.
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