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AN ANALYSIS OF A SINGULARLY PERTURBED
TWO-POINT BOUNDARY VALUE PROBLEM

USING ONLY FINITE ELEMENT TECHNIQUES

MARTIN STYNES AND EUGENE O'RIORDAN

Abstract. We give a new analysis of Petrov-Galerkin finite element methods

for solving linear singularly perturbed two-point boundary value problems with-

out turning points. No use is made of finite difference methodology such as

discrete maximum principles, nor of asymptotic expansions. On meshes which

are either arbitrary or slightly restricted, we derive energy norm and L norm

error bounds. These bounds are uniform in the perturbation parameter. Our

proof uses a variation on the classical Aubin-Nitsche argument, which is novel

insofar as the L   bound is obtained independently of the energy norm bound.

1. INTRODUCTION

We consider the analysis of finite element methods for the singularly per-

turbed problem

(1.1a)     Lu(x) = -eu"(x) + a(x)u'(x) + b(x)u(x) = f(x),       0 < x < 1,

(1.1b) u(0) = u(l) = 0,

where e G (0, 1] is a parameter, a G C2[0, 1], b G c'[0, I], f e Cx[0, 1],

and for x e [0, 1] we have

(1.1c) a(x) > a > 0.

We assume that problem (1.1) has a unique solution u(x). This is guaranteed

if e is sufficiently small (see, e.g., Gartland [4, p. 97]). In general, this solution

has a boundary layer at x = 1. It is possible in our analysis to weaken the

differentiability assumptions on a, b, and /, but for simplicity of presentation

we have not done this.

Problem (1.1) may be regarded as a linearized one-dimensional version of

a convection-dominated flow problem. Many authors have suggested methods

for its numerical solution, and at present it is well understood from a computa-

tional point of view. However, the analysis of such methods (i.e., the provision
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664 MARTIN STYNES AND EUGENE O'RIORDAN

of proofs that numerical algorithms yield accurate approximate solutions) is

difficult. We shall confine our attention to analyses which yield realistic upper

bounds on the errors obtained in actual calculations. This excludes, for exam-

ple, arguments whose error bounds involve Sobolev norms of u, because such

norms involve negative powers of the parameter e, and so the bounds are in

general several orders of magnitude greater than the errors obtained in practice.

Since the seminal papers of II'in [8] and Kellogg and Tsan [9], various numer-

ical methods for the solution of ( 1.1 ) have been analyzed using finite difference

techniques (see, e.g., Berger, Solomon, and Ciment [2], Emelyanov [3], Gartland

[5], and their references). This encompasses papers such as Gartland [4] and

Stynes and O'Riordan [15], where finite elements are used to generate difference

schemes, but the argument is essentially carried out in the consistency/stability

framework associated with finite difference methods. Most analyses consider

difference schemes which satisfy a discrete maximum principle; this is a seri-

ous restriction if one wishes to generalize these arguments to problems in two

dimensions, because there a linear nine-point scheme which is of positive type

cannot have truncation error of order greater than one, uniformly in e (see

Van Veldhuizen [19]). However, we note that the papers of Niederdrenk and

Yserentant [12] and Gartland [5] do not employ discrete maximum principles.

In comparison with the finite difference situation, it seems more troublesome

to adapt "classical" finite element arguments to yield realistic error bounds for

approximate solutions of ( 1.1 ). An appreciation of the difficulties involved may

be gained by examining Axelsson [1] or de Groen [6]. These difficulties arise

because of the asymmetric nature of the bilinear form associated with (1.1).

(They manifest themselves, for example, in inequality (3.9) of [6], which gives

an upper bound for this bilinear form; this upper bound is clearly not tight

when both arguments of the bilinear form equal u .)

It is possible to make some progress by constructing a symmetric bilinear

form which is equivalent to the original asymmetric one. This gives an ele-

gant theory which measures the effectiveness of any proposed test space (see

Morton [10]). In general, however, there are practical difficulties in computing

the "ideal" test functions prescribed by the theory, as described in Morton and

Scotney [11].

Another approach is that of Szymczak and Babuska [18], where Lp estimates

are obtained via a finite element analysis; however, the argument used relies on

bounds for the Green's function of the differential operator L, and so seems

difficult to extend to higher-dimensional problems.

In this paper we show how certain Petrov-Galerkin methods for (1.1) may

be analyzed using a purely finite element approach and without attempting to

symmetrize the associated bilinear form. No use is made of discrete maximum

principles nor of equivalent ideas such as nonnegative discrete Green's func-

tions. We need bounds on |«( (x)\, i = 0, 1,2, but no asymptotic expansion

of u is required. We work with fairly general meshes which from a practical

point of view are essentially arbitrary. We consider several difference schemes
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ANALYSIS OF A TWO-POINT BOUNDARY VALUE PROBLEM 665

generated by making various choices for the trial and test spaces. We obtain

error bounds in the usual energy norm associated with (1.1) and in the L [0, 1 ]

norm. The magnitude of these error bounds does not depend on e ; in the sin-

gular perturbation literature, numerical methods with this property are said to

be uniformly accurate or uniformly convergent. It is of some interest to note that

our L estimate is obtained independently of the energy norm estimate; in this

way, our analysis is quite different from the classical Aubin-Nitsche approach.

Our work sheds light on the relationship between the choice of trial and test

spaces and the norm (energy or L ) in which one can prove a uniform conver-

gence result (see Remark 3.1 ). The results also illustrate the importance of using

a suitable quadrature rule when dealing with singular perturbation problems, as

a comparison of §§4, 5, and 6 reveals.

An outline of the argument we use to obtain our energy norm bound (in

the case of a Galerkin finite element method on a uniform mesh) is given in

Stynes and O'Riordan [16]. In O' Riordan and Stynes [13] we show that a vari-

ation of this argument is valid in the case of a constant-coefficient singularly

perturbed elliptic problem in two dimensions, using again a Galerkin finite ele-

ment method on a uniform mesh. For brevity, several proofs below are either

summarized or omitted; in all cases the entire argument can be found in the

technical report [17].

It is not the purpose of this paper to suggest new methods for solving (1.1)

numerically, as adequate methods already exist, but rather to construct a frame-

work suitable for the finite element analysis of singularly perturbed equations.

Consequently, we do not present any numerical results. Nevertheless, we point

out that two-dimensional analogues of the finite element methods of this paper

can be applied successfully to singularly perturbed elliptic problems, and that

numerical results for these will appear in Hegarty, O'Riordan, and Stynes [7].

2. The continuous problem

In this section we discuss those properties of ( 1.1 ) and of its solution u which

we shall need later for the analysis of our finite element method.

Notation. Throughout this paper we shall use C to denote a generic posi-

tive constant which is independent of e and of the mesh used. We use C¡,

i = 1, 2, 3, to denote specific positive constants (arising in proofs) which are

independent of e and of the mesh used. We shall say that a quantity q is O(z)

when we mean that \q\ < Cz for all sufficiently small z .

First we deduce an inequality needed later to show that certain bilinear forms

associated with the operator L are coercive.

Lemma 2.1. Without loss of generality, we may assume that there exists Cx> 0

such that for x G [0, 1] we have

(l.ld) b(x)-l2a'(x)>2Cv
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666 MARTIN STYNES AND EUGENE O'RIORDAN

Proof. This can be achieved by a change of variable of the form v = e axu

with suitably chosen a . See [17] for details.   D

From now on, we shall assume that (1.Id) is satisfied in addition to (1.1a —

c). We also assume, without loss of generality, that Cx < 1/2.

Lemma 2.2. The solution u of (I.I) satisfies

(2.1) I|m|Il~[0,1] = Moo^C

and

(2.2) |w(,)(x)|<C(l+e_,e_a(1~*)/£)   forO < x < 1 and i = 1, 2.

Proof. These bounds are immediate from Kellogg and Tsan [9] when b > 0.

If we do not have b > 0, then proceed analogously to the proof of Lemma

2.1.    D

Our analysis will make repeated use of the arithmetic-geometric mean in-

equality

(2.3) yz<ty2 + z2/4t,        t>0.

3. PeTROV-GaLERKIN FINITE ELEMENT DISCRETIZATIONS

To begin with, we work with an arbitrary mesh

0 = x0 < xx < ■ ■ ■ < xN = 1,

and we set hi = xi - x¡_, for i = I, ... , N, with H = max, hi. For i =

I, ... , N - 1 , set h¡ = (h¡ + hi+x)/2 . The energy norm estimate of §4 is valid

on this mesh; in §§5 and 6 we shall consider a slightly less general mesh which

is described in §5.

We assume that e is so small that (2e/a)ln(l/e) < 1/2. Set

M = max{/: x. < 1 - (2e/a)ln(l/e)}.

From (2.2) we have

(3.1) |m'|,|«"|<C   oniO,^).

We shall refer to [xM, 1] as the layer region. Outside [xM, 1], we use piecewise

linear "hat" functions in both the trial and test spaces; as Axelsson [1] has

pointed out, one needs to use some form of exponential upwinding only in

the neighborhood of x = 1. In the layer region [xM, 1] we consider three

possibilities:

(i) using approximate L-spline trial functions and hat test functions (§4),

(ii) using hat trial functions and approximate L*-spline test functions (§5),

(iii) using approximate L-spline trials and approximate L*-spline tests (§6).
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ANALYSIS OF A TWO-POINT BOUNDARY VALUE PROBLEM 667

In all cases, the integrals used to define the schemes can be evaluated exactly. In

general, the difference schemes generated will not satisfy a discrete maximum

principle.

Remark 3.1. Possibility (i) above will yield an energy norm result, possibility

(ii) yields our L norm result, while (iii) yields the same L2 norm result and

an improved energy norm result. This trichotomy illustrates the role played

by each space in obtaining uniformly accurate numerical methods for singular

perturbation problems.

4.   Z-SPLINE TRIAL FUNCTIONS IN THE LAYER REGION

In this secton we give a Petrov-Galerkin finite element method for which we

derive an error estimate in an energy norm appropriate to (1.1).

On [0, xM] we use hat trial functions. Define a piecewise constant function

à which approximates a(x) by

~ai - ál(*,._, ,x,] = (°(xi-i) + <*(x¡))/2   for / = 1, ... ,N.

Next, define a basis {</>;: i = M, ... , N - 1} for a space of approximate

L-spline trial functions on [xM, 1] by

L<t>i = -e4>" + aft = 0     on [xM, if,

4>l(xj) = ôij   forj = M,... ,N,

where ~ means that mesh points are excluded. Our trial space S now consists

of hat trials on [O.x^] and Z-spline trials on [xM, 1]; in particular, the basis

function <f>M is a hybrid hat/ Z-spline.

We take our test space T to be the span of {yt. : i = 1,... , N - 1}, where

each y/i is the hat function satisfying y/A\x,) = ôtj for all j.

Lemma 4.1 (interpolation error in the L°° norm). Let u{ G S interpolate to the

solution u o/(l.l) at each node x(, i = 0, ... , N. Then for x G [x¡_x, x¡],

(i)   \(u - Uj)(x)\ < Ch) ifl<i<M,

(ii)   \(u-uI)(x)\<Cht(l-e~ah'/g) ifM<i<N.

Proof. Inequality (i) is a standard result using (3.1). To prove (ii), use a

maximum principle/barrier function approach. See [17] for details.   □

The next result relates the Lx and L2 norms of the derivative of an Z-spline

over each subinterval within the layer region.

Lemma 4.2. For each w e S and each i e {M + I, ... , N},

p \w'(x)\dx<C(l-e-ah-,e)x/2ex/2ip \w'(x)\2 dxÏ   .

Proof. Compute each side of the inequality in terms of \w(x¡) -w(x¡_l)\. See

[17] for details.   D
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Definitions and notation. Let (•, •) denote the usual L [0, 1] inner product.

Let (•, •)    denote that the integration is only over [0, l]\{xQ, ... , xN}

Define || • ||

analogue, viz.,

Define || • || to be the usual L2[0, 1] norm, and || • \\d to be its discrete

r_i -     i1/2

for all w g Hq (0, 1). Then our energy norm is defined to be

m     m       r   ii    'i|2   ,   n     ,,2 -, 1/2
||H|| = {e||w II  +\\w\\d}     ,

for all weHx(0, 1). Set

B(v, w) = (ev' , w) + (av , w) + (bv , w)

and

/v—i

(4.2) B(v, w) = (ev', w) + (äv' ,w) + ^2 hi(bvw)(xi)
;=1

for all v, w eH¡(0, 1).

We begin the analysis by showing that the bilinear form B(-, •) is coercive

over S x T.

Lemma 4.3. For each v G S, let vT e T interpolate to v at each x¡. Then for

H sufficiently small (depending only on b ,a , and a" ),
~ 2

B(v , vT) > Cjlllulll .
Proof. We have

B(v , vT) = B(v , v) + B(v , vT - v)

= e\\v'\\2 + ¿2k (b(Xi) - (l/2)a'(Xi) + 0(Ä,)) v2(X¡)
i

+ (-ev" + äv', (vT - v))"   (on integrating by parts and using

äi+x-äl = hi(a'(xi) + 0(hi)))

>Cx\\\v\\\2,

for H sufficiently small, where we have used (l.ld), vT = v on [0, xM], and

both (4.1) and (v - vT)(xi) = 0 on [xM, 1].   D

L

Our computed solution u  G 5 is obtained from the linear system of equa-

tions

(4.3) £(«*,*,)=*,/(*/).        1 = 1,.-- , JV— 1.

It follows from Lemma 4.3 that (4.3) has a unique solution.

Notation. We set p = aH/e.
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Proposition 4.4. For H sufficiently small (independently of e ),

\\\uI-uh\\\<CH+CHX/2(l-e-p)X/2.

Proof. From Lemma 4.3, we have

(dd\        C\W\ui-uhW\2 ^B(ui-uh> ("/-"A)r)
\    •    / ~■ h ~ h h

= B(Uj - u, (Uj-u )T) + B(u - u , (Uj-u )T).

We bound each of these B(-, -)-terms separately. First,

B(u¡ -u,(u,-u )T) = (u,-u, -e(u¡ - u)"T - a(u¡ - uh)'T)~

= (u-Uj, ä(Uj-u )'T),

because (u,-u )T is piecewise linear and (u¡ -u)(x¡) = 0 for each i. Hence,

\B(u,-u, (Uj-u)T)\

M
,2,, Aw    v      , h.

<cEM(m/-m)(^)-(m/-m)(^-i)I
¡=i

+ C  ¿  ht{\- e~ah-/e) r \(U¡ - uh)'(x)\ dx
i=M+\ Jxi-\

(using Lemma 4.1)

M

<C'Ë(hiji\(uI-uk)(xt)\
!=i

(4.5) +c  ¿  h^l-e-^f'e^lr \(u,-uh)'(x)\2 axX'"
i=M+\ ly*,-! j

(by Lemma 4.2)
M M

< c£(*,)3 + (c./sj^a.-k«, - uH)(Xi)\2
1=1 ;=1

N-l

+ C(l-e~p)3  £ (Äf)2 + (C1/8)e||(«/ - i#*)'||2
i=M+l

(using (2.3) twice)

<CH(l-e~p) + Cxm\u,-u\\\2    (since ¿Â,<l).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Returning to (4.4), we have

B(u - u , (Uj - u )T) = B(u, (Uj-u )T) - B(u , (Uj - u )T)

A,

(4.6)

_ L L L

= B(u, (Uj-u )T)-B(u, (Uj-u )T) + (f, (Uj-u )T)

N-l

- E ñxMui - «*)(*,)     (by (l-la) and (4.3))
¡=i

= ((à - a)u , (Uj - u)T) + J2 hi(bu(uI - uh))(xt)
i

- (bu ,(u,-u )T) + 2j(w/ - u )(*,.)(/ - /(*,-), V¡).
i

Set 6¡ = f*M \u'(x)\dx . Then, using bounds from Lemma 2.2, we have

e¡ < chi + c(e-a{X-x'+')/e - e-a{l-x'-i)/e).

It follows [17] that

Y,0]<CH + C(l-e~p).
i

Thus,

N-\

\((ä - a)u , (Uj - u)T\ <CJ2 hl\(u¡ - i/Xx,.)^
¿=i

(4-7) < ¿Zhi [(Ci/8)("/ - "Vi*,) + cei]     (usinê (2-3))

< (C1/8)||m/ - ufd + CH2 + CH(l- e~p).

As regards the terms involving / from (4.6), we have

N-l

]T (u¡ - uh)(x¡)(f - f(x¡), y/¿)

<C^2(h¡)2\(uI-uh)(x¡)\
i

< ÎZiC&if + {CJQhfa - uh)2(X¡)}     (using (2.3))

i=\

(4.8)

<C#2-r(C1/8)||M/-M/'||2.

Taking the remaining terms in (4.6), we can essentially imitate the previous

calculations to obtain
N-l

J2 ~h¡(bu(ur - u ))(*.) - (bu, (u, - u )T)
i=\(4.9)

< (C1/8)||m/ - uh\\] + CH2 + CH(l-e ")

Now substituting (4.7), (4.8), and (4.9) into (4.6), we obtain

\B(u - u , (Uj - u)T)\ < (3C1/8)|||w/ -u\\\2 + CH2 + CH(l- e~p).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ANALYSIS OF A TWO-POINT BOUNDARY VALUE PROBLEM 671

Combining this inequality with (4.4) and (4.5) then completes the proof of

Proposition 4.4.   D

We now need to estimate |||m - «7|||.

Proposition 4.5 (interpolation error in the energy norm). For all meshes we have

III« - W/lll2 < CH(H + (l- e'p)eln(l/e)).

Proof. Integrating by parts, we have

Í4 10)     B(u~unu- "/) = (£(M - "/)'. (" - "/)') + (* - a'/2 > (u - uif)

> |||m - u,\\\     (using (l.ld) and \\u - u¡\\d = 0).

On the other hand,

B(u -Uj, u-Uj) = (f - buj, u-uT) - /     au\(u - u¡) dx

(4.11) , J°
+      (à- a)u'¡(u- Uj)dx

by (1.1a) and our choice of trial functions. Here,

\(f - bun u-Uj)\<C        \u-Uj\dx + Cl    \u-Uj\dx

(4.12) <CH2 + C(l -xM)H(l-e~")    (by Lemma 4.1)

< CH2 + CH(l - e~")(H + eln(l/e))     (by choice of M)

< CH2 + CH(l -e'")eln(l/e).

Also,

/     aUj(u-Uj)dx+      (ä-d)Uj(u-Uj)dx
Jo J*M

N       fx>
(4.13) ^cY^ht \u'i(x)\dx    (byLemma4.1)

,=i     ^/-.
N

KCYsKWxJ-^x^^CH2,

•11..I,

since /0 |« (x)\dx < C from (2.2).

Combining (4.10)-(4.13), we get the desired result.   D

Remark 4.6. Since 1 - e~p < p for all p > 0, this bound essentially states that

IIIm-WjIH is almost 0(H).
We can now easily derive the main result of this section.
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Theorem 4.7 (energy norm error estimate). For H sufficiently small (indepen-

dently of e ), and u   defined by (4.3),

|||w-MA|||<C//+C/I'1/2(l-e"/,)1/2.

Proof. Combine Propositions 4.4 and 4.5.   D

Remark 4.8. Theorem 4.7 trivially implies that, uniformly in e , \\u - u \\d <

CH '  . It is possible to show that, on a uniform mesh, \\u -u \\d < CH.

5.   L* -SPLINE TEST FUNCTIONS IN THE LAYER REGION

We now consider a different Petrov-Galerkin finite element method for solv-

ing (1.1). This method is closely related to one used in Stynes [14]. However,

the analysis in [14] is finite difference in nature, whereas the argument below

uses only finite element techniques. We prove an L error estimate of order H

for the method. This estimate is obtained directly, without use of any energy

norm error estimate.

Assume that the mesh is arbitrarily graded on [xM_x, 1], i.e., hM > hM+x >

■ ■ ■ > hN. This is not a practical restriction, as it would be quite unusual to

coarsen the mesh as one moves into the boundary layer. The mesh on [0, xM_x]

is still unrestricted. With a view to proving an 0(H) error bound in the L

norm on such a general mesh, we replace the approximation à by a modified

piecewise constant approximation a~ in order to obtain the coercivity result of

Lemma 5.1. For the definition of a, see [14]. Regarding a as a quadrature rule

which enables evaluation of those integrals arising in the finite element method,

it has the property of automatically varying with the local-cell Reynolds number

in such a way as to ensure stability of the method. In particular, on intervals

\xi-\ > •*,] > where h¡ « e, we have at « à(, and on intervals where h¡ » e ,

we have ïï; « a(xi_x).

Take the trial space 5 to be the span of {<t>¡ : i = 1,... , N -1} , where each

</>( is the hat function satisfying </>((x7) = S^ for all j .

In our test space T we use hat functions on [0, xM]. Our approximate

L*-spline test functions are defined as follows: for i = M, ... , N - 1, let y/¡

satisfy

L*Wi = -*F? -äy/x■ = 0   on [xM, 1]~,

Wi(Xj) = Slj,        j = M,... ,N.

Our test space T is the span of {^: i = I, ... , N - 1}, where for / =

I, ... , M - I, ~y/'. is a hat function centered at x¡, and Tj7M is a hybrid

hat/ L* -spline.
We also define a set of functions {y/¡: i = I,..., N- 1} analogous to the

{F,}- We take each {^;} to satisfy ZV, = 0 on [xM, l]~ ; in all other
respects, y/i is defined as "p^ was defined.

Set
(n-\ 2

INI*' = { X^1' v¡)w (*,)
I i=i
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11 2
for all w G HQ (0, 1 ). On HQ (0, 1 ), this norm is equivalent to the discrete L

norm defined in the last section (see [17]).

Set
N-l

B(v, w) = (ev , w) + (av', w) + ^(1, y/i)(bvw)(x¡)

;=1

for all v, weHx(0, 1).

Lemma 5.1. For each v G S, let vT G T interpolate to v at each x¡. Then for

H sufficiently small (depending only on b, a , and a" ),

B(v,vT)>Cx \\\vT\\\2.

Proof See [17].   d

Our computed solution « G S is now obtained from the linear system of

equations

(5.1) *(«*,?,) = (!>?,)/(*,).        i = I,..., N-l.

To obtain an estimate for \\u-u ||rf<, we employ a duality argument. Assume

that \\Uj- u \\d, t¿ 0, as otherwise we are done. Define w G T by

rs9ï   ru   tl*    ZlViUWUj-u^xWjKxA(5.2) B(4>.,w) =-j--'--,        j = 1, ... , N -I.
11"/ - « 11/

Now, letting u¡ G S interpolate to u at each node,

\\u - u \\a' — \\ui - u \\d' = -^(M/ _ u ' w)   (fTom (5-2))

(5.3) = B(u¡-u,w) +B(u-u ,w).

Theorem 5.2 (discrete L   norm error estimate). For H sufficiently small (in-

depently of e ), and u   defined by (5.1),

II« - u \\d < CH.
Proof. The two right-hand side terms of (5.3) can be bounded separately, using

arguments similar to those of §4. See [17] for details.   D

6. Simultaneous energy and L2 norm error estimates

Let the trial space S be as in §4 (so 5 consists of Z-splines in the layer

region), and let the test space T be as in §5 (so T consists of L*-splines in

the layer region). Let the mesh be arbitrarily graded in the layer region as in §5.

We use the bilinear form B(-, •) of §5.

Define our computed solution u  G S by

(6.1) 2(M\F¿) = (1, W(Xf),        i = I,..., N-l.

The following theorem improves the main result of §4; it also includes a result

similar to that of §5.
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Theorem 6.1 [17]. For H sufficiently small (independently of e ), and u   defined

by (6.1),

\\\u - uh\\\ < CHx/2(H+(l - e~p)eln(l/e))x/2

and

\\u-u\\d<CH.

Corollary 6.2 [17]. For H sufficiently small (independently of e ), and u   de-

fined by (6.1),

\\u-u\\ <CH.
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