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ABSTRACT 
Accurate summary data is of paramount concern in data 
warehouse systems; however, there have been few attempts to 
completely characterize the ability to summarize measures. The 
sum operator is the typical aggregate operator for summarizing 
the large amount of data in these systems.  We look to uncover 
and characterize potentially inaccurate summaries resulting from 
aggregating measures using the sum operator.  We discuss the 
effect of classification hierarchies, and non-, semi-, and fully- 
additive measures on summary data, and develop a taxonomy of 
the additive nature of measures.  Additionally, averaging and 
rounding rules can add complexity to seemingly simple 
aggregations.  To deal with these problems, we describe the 
importance of storing metadata that can be used to restrict 
potentially inaccurate aggregate queries. These summary 
constraints could be integrated into data warehouses, just as 
integrity constraints and are integrated into OLTP systems.  We 
conclude by suggesting methods for identifying and dealing with 
non- and semi- additive attributes. 

Categories and Subject Descriptors 
H.2.7 [Database Management]: Database Administration – data 
warehouse and repository.  

General Terms 
Design, Reliability 

Keywords 
Data Warehouse, OLAP, Additivity, Metadata, Summarization 

1. INTRODUCTION 
Accurate and efficient summarized data are essential in data 
warehouses and online analytical processing (OLAP) systems. 
Data warehouses contain historical, integrated, and relatively 
static data, and are often magnitudes larger than online 
transactional processing (OLTP) systems.  Effective 
summarizability of these enormous disparate data sources is of 
paramount concern, and until recently, has been a widely ignored 
challenge in data warehousing.  [13] argues that summarizability 
“is an extremely important issue that is largely ignored in OLAP 

literature”.  Because of the size of data warehouses and the 
strategic purpose of these systems, query outputs are nearly 
always aggregated sets of the base data, and inaccurate aggregate 
query outputs could result in misinterpretation of the data 
resulting in poor strategic decisions.  [11] describes three design 
criteria necessary for all database systems, consisting of 
correctness, efficiency, and usability, and argues that data 
correctness is of utmost importance.  
 
Data warehouses are typically conceptualized as facts and 
dimensions, whereby facts are measures of interest, and 
dimensions are attributes used to identify, select, group, and 
aggregate measures of interest.  Attributes that are used to 
aggregate measures are labeled classification attributes, and are 
typically conceptualized as hierarchies.  Figure 1 shows an 
example of a classification hierarchy along the time dimension, 
illustrating that measures can be aggregated from the lowest level 
of granularity, dates, into progressive higher months, quarters, 
and years.  For example, a profit measure may be aggregated from 
the daily profit to the monthly, quarterly, or yearly profit.   
 
 
 
 
 
 
 
 
 
 
 
 
Typically, data is aggregated along multiple hierarchies, 
summarizing data along multiple dimensions.  For example, a 
summary may show the total sales in the year 2004 at all branch 
locations in Pennsylvania.  In this case, the sales measure is rolled 
up along the time dimension and location dimension.  Because of 
the enormous size of the data sources, operations are performed to 
summarize measures in a meaningful way.  The typical operations 
include the following: 

• Roll-up, which increases the level of aggregation along one 
or more classification hierarchies; 
• Drill-down, which decreases the level of aggregation along 
one or more classification hierarchies;  
• Slice-Dice, which selects and projects the data; 
• Pivoting, which reorients the multi-dimensional data view to 
allow exchanging facts for dimensions symmetrically; and,  
• Merging, which performs a union of separate roll-up 
operations. 
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Figure 1:  A Classification Hierarchy 
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In this paper, we are concerned with the accurate summarization 
of measures, and therefore we will concentrate on roll-up and 
merge operations, which both use aggregate operators to combine 
finer-grained measures into summary data.  The most common 
aggregate operator used to summarize measures is the summation 
operator, and is generally considered the default aggregate 
operator when rolling-up data.   However, in certain instances, 
using the sum operator to summarize data can result in inaccurate 
summary outputs.  Therefore, it is of vital importance to 
recognize the potential for inaccurate summaries resulting from 
using the summation operator.  The ability to use the summation 
aggregate operator has been labeled additivity. A measure is: 

• additive along a dimension if the sum operator can be used 
to meaningfully aggregate values along all hierarchies in that 
dimension;   

• fully-additive if it is additive across all dimensions; 
• semi-additive if it is only additive across certain 
dimensions; and, 
• non-additive if it is not additive across any dimension.   
 
[9]  argues that “the most useful facts are numeric and additive”.  
Yet, data warehouses are littered with non-additive measures. One 
reason for this abundance is that it is often advantageous to store 
non-additive data in a data warehouse.  Organizations may store 
non-additive data to alleviate data management issues.  [2] 
describes that reduced information means reduced data 
management, and “a reality of data warehousing is that many 
companies struggle to build, maintain, and query large databases”.  
[9] states that optimized inventory levels in stores can have a 
major impact on chain profitability and state that snapshots, 
which are inherently non-additive across different time spans, are 
a viable category of data warehouse.  This illustrates a fine 
distinction of data that could present summarization problems if 
incorrectly analyzed, and those that are more likely to present 
problems in real systems.  For instance, temperature is a non-
additive attribute that cannot be meaningfully added with other 
temperatures; however, it is unlikely that someone will 
mistakenly misinterpret a query that sums temperatures together.  
On the other hand, duplicate, incorrect, and missing values in a 
classification attribute can result in undetected anomalous queries, 
resulting in poor decisions. 
 
While several authors have discussed the importance of accurate 
summarizations, we have not found a comprehensive taxonomy of 
measures that could potentially result in inaccurate summaries.  In 
this paper, we look to characterize inaccurate summaries, 
specifically those resulting from using the sum aggregate 
operator.  We show various examples of inaccurate summary 
outputs, and suggest rules for identifying and handling these 
situations.  We also contend that these issues should be 
considered in all phases of data warehouse design. 
 
Section 2 discusses types of summarization problems, Section 3 
discusses potential solutions, and Section 4 concludes our paper. 

2. CHARACTERIZATION OF SUMMARY 
DATA IN OLAP SYSTEMS 
In the previous section, we described the importance of accurate 
summaries in data warehouse systems.  The first step towards 
ensuring accurate summaries is recognizing when and how the 
sum operator can be used to meaningfully aggregate data.  For 
this purpose, we have created a taxonomy that can be used to 
facilitate this recognition.  Figure 2 illustrates our taxonomy of 
summation constraints. 
 
 The following subsections describe the importance of 
classification hierarchies, followed by subsections detailing 
examples and underlying causes for the non- and semi-additive 
data illustrated in Figure 2. 

2.1 Classification Hierarchies 
With respect to summarization, classification hierarchies are of 
central concern because the primary method of rolling-up and 
drilling-down data is along these pre-defined hierarchies.  
Additionally, data warehouse design often involves materializing 
aggregate views along these hierarchies.  As we have already 
described, a classification hierarchy is a ladder of increasingly 
high level attributes, each composing data from the lower levels.  
Hierarchies can be further classified into strict, non-strict, 
complete, incomplete, multiple path, and alternate path 
hierarchies.   
 
A strict hierarchy is one where each object at a lower level 
belongs to only one value at a higher level. For instance, US 
states and Canadian Provinces can be considered to form a strict 
hierarchy because each state or province belongs to only one 
country.  A non-strict hierarchy can be thought of as a many-to-
many relationship between a higher level of the hierarchy and the 
lower level.   Non-strict hierarchies can result in multiple or 
alternate path hierarchies, whereby the lower object splits into 
two distinct higher level objects.  For instance, sales could be 
rolled up along the location hierarchy either by area code, zip 
code, or city and county.  This is considered an alternate path 
hierarchy because the hierarchy joins again at a higher level.  If 
the hierarchy does not come back together it can be considered a 
multiple path hierarchy. 
 
Alternate and multiple path hierarchies are important when 
summarizing measures, and can specifically present problems 
when merging data.  An inaccurate summarization can result if 
summaries from different paths of the same hierarchy are merged.  
Specifically, data cannot be merged among classification 
attributes that have overlapping data instances.  For instance, you 
cannot merge total sales from an area code with the total sales in a 
city that the area code served. This is because data instances 
would be rolled up into both categories, and measures would be 
added twice if the summaries were merged. 
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It becomes especially important to recognize which merges will 
result in duplicate values in summary data in complex data 
warehouses with numerous alternate and multiple path 
hierarchies, some of which are materialized.  In addition to 
merges along different paths of the same hierarchy, summaries 
cannot be merged with summaries at a different level of the same 
hierarchy.   This is because the higher levels contain data at the 
lower levels.  For instance, you could not merge the total sales 
from New York City with those of the United States of America, 
since the Sales from New York City will be included in the sales 
from the United States. 

Completeness in hierarchies means that all members belong to 
one higher-class object, which consists of those members only.  
For instance, the US states hierarchy would be considered 
complete if there were data instances for each of the 50 US states.  
In other situations, it may not be possible to capture all of the 
possible values.  Therefore, if a classification hierarchy is 
incomplete, incorrect summaries may result.  More on this topic 
will be discussed in Section 2.3, when we discuss dirty data in the 
semi-additive section.  

Many concepts from statistical databases (SDB) are transferable 
to OLAP systems, and vice versa; however, due to the differences 
in users and domains, the literatures in each area do not cite each 
other.  Both SDBs and OLAP systems are structured in a multi-
dimensional format and provide statistical summaries.  The main 
difference between SDB and OLAP systems is the area of 
emphasis, with SDB literature emphasizing conceptual modeling, 
and OLAP literature emphasizing query performance [14].  

Therefore, it is important for OLAP systems to borrow some areas 
of SDB systems, such as strict classification hierarchies and the 
need to distinguish summary data from attributes [13].  [14, 15] 
discuss strictness and completeness in data warehouses, but only 
from a conceptual modeling perspective.  While it is important to 
consider these aspects in conceptual modeling, it is not sufficient.  
Considering these properties in later stages of design can be 
useful for restricting potentially inaccurate summaries. 

There is a fundamental difference between classification attributes 
and dimensional attributes within the same dimension [10].  
Classification attributes are those attributes that are used to 
summarize measures, while dimensional attributes are used as 
descriptors. [12] argues for the need to rigorously classify 
hierarchies and detailed characteristics of hierarchies, such as 
completeness and multiplicity.  

2.2 Non-Additive Measures 
Non-additive facts are defined as measures where the sum 
operator cannot be used to meaningfully aggregate values. In this 
section we will detail various non-additive facts, and describe 
methods for dealing with these measures. 

2.2.1 Ratios and Percentages 
In [9], several types of measures that are inherently non-additive 
are described.  They state that percentages and ratios, such as 
gross margin, are non-additive, and therefore, when designing 
systems, both the numerator and denominator should be stored in 
the fact table.  Additionally, they note that it is important to 

Classification Examples 

1.0 Non-Additive  

1.1 Fractions  

1.1.1 Ratios GMROI1 ,  Profitability ratios 

1.1.2 Percentages Profit margin percent,  return percentage 

1.2 Measurements of intensity Temperature, Blood pressure 

1.3 Average/Maximum/Minimum  

1.3.1 Averages Grade point average, Temperature 

1.3.2 Maximums Temperature, Hourly hospital admissions, Electricity usage, Blood pressure 

1.3.3 Minimums Temperature, Hourly hospital admissions, Electricity usage, Blood pressure 

1.4 Measurements of direction Wind direction, Cartographic bearings, Geometric angles 

1.5 Identification attributes  

1.5.1 Codes Zip code, ISBN, ISSN,  Area Code, Phone Number, Barcode 

1.5.1 Sequence numbers Surrogate key, Order number, Transaction number, Invoice number 

2.0 Semi-Additive  

2.1 Dirty Data Missing data, Duplicated data, Ambiguous and unusable data, Incorrect data 

2.2 Changing data Area codes, Department names, customer address 

2.3 Temporally non-additive Account balances, Quantity on hand,  

2.4 Categorically non-additive Basket counts, Quantity on hand, Quantity sold 

3.0 Additive  

         1 GMROI is Gross Margin Return On Inventory investment 

 

Figure 2: Taxonomy of Summation Constraints 
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remember when summing a ratio, it is necessary to take the ratio 
of the sums and not the sums of the ratios.  In other words, the 
numerator and denominators should first be aggregated separately 
using the sum operator, and then the totals should be divided, 
yielding the appropriate ratio values. 

2.2.2 Measures of Intensity 
[9] state that all measures that record a static level are inherently 
non-additive across the date dimension, and possibly over other 
dimensions as well.  Measurements of intensity are another type 
of static measurement that is inherently non-additive, and includes 
measures, such as temperature and blood pressure. These 
attributes are often indirect measurements of additive base data.  
And, often, it may not be possible to store the data from which 
these attributes are derived.  For instance, temperature is a 
measurement of the kinetic energy, or average speed of the 
molecules, in the substance that is being measured.  Since it 
probably is not feasible to capture and store the average speed of 
molecules, much less the additive attributes, distance and time, 
for each molecule from which this speed is derived, the non-
additive measure, temperature, is stored. 

While measurements of intensity are non-additive, they are often 
still important measures, and therefore cannot be “designed out” of a 
system.  It is also unlikely that non-additive intensity attributes 
would be misinterpreted, primarily because most professionals 
recognize that measures of intensity cannot be meaningfully added, 
and the results of large scale aggregation of these values would 
often be well-outside what is considered normal.  However, blindly 
using sum as the default roll-up operator for all facts will make 
systems that rely on measures of intensity less efficient because the 
analyst will need to take time to determine reset the aggregate 
operator for the query.  Therefore, it is important for systems to 
allow default aggregate operators for measures to be set and be 
made visible to analysts performing queries. 

2.2.3 Average/Maximum/Minimum 
Often, snapshot fact tables will include measures that are derived by 
taking the average, maximum, or minimum values from an 
operational system.  For instance, in the health care domain, it is 
often important to analyze the number of patients admitted to a 
hospital.  So, a snapshot fact table could be created at the daily grain 
to capture the number of hospital admissions.  In this case, it also 
may make sense to store other aggregates about daily hospital 
admissions, such as the maximum number of admissions in an hour, 
the minimum number of admissions in an hour, when these 
extremes took place, and average number of hourly admissions.  
These values may be useful for providing information about finer 
grain peaks in a snapshot.  Unlike total daily number of admissions, 
which is fully-additive, maximums, minimums, and averages are 
non-additive; however, other aggregate functions can be used on 
these measures.  For instance, it may be useful to look at the highest 
maximum or lowest minimum.   

2.2.4 Other Non-additive Facts 
In addition to ratios and measurements of intensity, there are 
numerous other facts that cannot be meaningfully added because 
they would violate arithmetic rules.  For instance, text fields, certain 
arbitrarily assigned numbers (i.e. zip code, ISBN, etc…), and 
measures of direction (such as 35 degrees east of north), cannot 
meaningfully be added, and often cannot be meaningfully 
aggregated using other aggregate operators as well.  While there are 

few plain English queries that would result in someone mistakenly 
adding zip codes together and not realizing the error, it is possible 
that systems developed to view this summarized data may not 
provide the appropriate flexibility and efficiency of use if these 
constraints are not made apparent.   

2.3 Semi-additive Measures 
Semi-additive measures are those measures where the sum operator 
can be used for aggregation along certain dimensions, but not all.  In 
this section we detail several semi-additive measures and methods 
for handling these measures.  

2.3.1 Dirty Data 
The data that populates data warehouses is pulled from multiple 
disparate data sources, often from legacy databases and non-
standardized data and schema formats.  Data cleansing is typically 
performed during the extraction, transformation, and loading (ETL) 
process and can involve eliminating duplicate records, correcting 
data errors, and ensuring the integrity of the relations among data 
sets.   Once data makes it through the ETL process, it is assumed to 
be thoroughly cleaned; however, it is often impossible to eliminate 
all possible anomalies in the data. 

Inaccurate data is often termed Dirty Data, and has been 
characterized as missing data, wrong data, correct but unusable data, 
and compound data with different representations.  These data can 
occur when there are data entry errors, non-enforced integrity 
constraints, different values of the same data in different databases, 
ambiguous representations of data, or nulls are mistakenly permitted 
[8].   Of particular concern are dimensions that have missing, 
duplicate, ambiguous, or inaccurate data in classification attributes, 
because these could result in inaccurate summarizations of rolled-up 
data along the associated hierarchies. 

[9] suggests creating an arbitrary code for dimensional instances that 
are unknown or unavailable.  For instance, a retail chain may track 
customers based on store discount cards that are swiped every time 
a customer checks out.  Customers who do not have discount cards 
would not be tracked in the system.  In the sales fact table, these 
transactions would be included, but would be given an arbitrary 
missing data code for the customer dimensional fields.  When 
summarizing these sales along the customer location hierarchy, the 
sales for customers with cards would be in the appropriate group.  
However, the sales for the customers without cards would be 
included in an ambiguous missing data group.  If the majority of the 
customers’ locations are not tracked, then an analysis of sales by 
location would be meaningless.  In this case, facts rolled-up along 
this dimension would have inherently ambiguous data, and the 
resulting summaries would be imprecise.   

This example demonstrates that summarization problems can have 
an impact on decision-making.  The effect is likely to be more 
significant as the percentage of missing data increases.  Therefore, it 
is important to provide a measure of precision when rolling up the 
data.  In this situation, analysts should determine whether measures 
are systematically missing from the dataset. 

Another problem occurs when customer data are stored incorrectly 
or duplicated with different information in each instance. With 
respect to aggregate summarizations, the most vital issues occur 
when instances have incorrect or anomalous information in 
classification attributes.  In these cases, it is difficult to gauge the 
degree of the problem because these errors are not typically known. 
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For example, suppose a customer is listed twice in the data 
warehouse with the mistakenly transposed zip codes of 19050 and 
19005. When rolled up to the zip code level, the sales from this 
customer would be associated with the wrong group.  However, 
since both zip codes are in the state, the anomaly would disappear 
when rolled up to the state level.  Since there is nothing in the 
system to indicate that measures associated with these zip codes is 
incorrect, hidden summarization problems can occur.  High 
cardinality attributes with non-systematic capture techniques are 
more prone to incorrect or duplicate data instances. 

2.3.2 Changing Data 
Incomplete and changing dimensional attribute instances can result 
in inaccurate summarizations.  Data warehouses are typically 
created from transactional systems meant to support operational 
needs.  Many of these systems were not designed with long term 
analysis of data in mind.  Therefore, it is not uncommon for more 
data to have been captured later in the lifetime of the database, 
which is not available earlier.  Additionally, external changes in the 
environment of the data instances can result in new data becoming 
available.  For instance, in the past 15 years, there has been an 
explosion of area codes in the United States.  Area codes have been 
split into new area codes and overlaid on top of existing area codes.  
For instance, in the Philadelphia area, the original area code, 215, 
was split into two area codes, 215 and 610.  Additionally, area code 
484 was overlain on top of the existing area codes; so, what once 
was in the area code 215 may now be either in 215, 610, or 484.  A 
query may show that the population in the 215 area code decreased 
from 200 to 150 people, when in fact the population of the area 
coved by the original 215 area code increased from 200 to 400 
people.    Needless to say, this can make data analysis across area 
codes very complex, and potentially can lead to inaccurate 
summarizations of the data. 
Additionally, merges, splits, overlapping, and incomplete data are 
dependent on the data instances and often are a result of changing 
business needs or a changing environment from which the data was 
held.  Therefore, it is important to track changes, especially those 
that affect classification hierarchies, as the characteristics of the data 
and environment change. This example illustrates how data could be 
misinterpreted, especially if only area code 215 population trends 
were analyzed, especially when the formation of new area codes is 
not known to the analyst. 
[9] describe a similar idea of slowly changing dimensions, and 
described several methods for dealing with this issue, including 
simply overwriting data (type 1), storing the new data instance in a 
new row, but with a common field to link the dimensions as being 
the same (type 2), or adding a new attribute to the dimension table 
to store both the new and old values (type 3).  Other methods for 
dealing with changing dimension include versioning with current 
value flags, or versioning with event lengths.  There are 
disadvantages to using the methods associated with slowly changing 
dimensions for dealing with data that merges, splits, or is overlain.  
Specifically, the methods do not explicitly state how and why the 
data has changed, but rather only show that a specific value has 
changed.  Additionally, the splitting, merging, or overlaying of data 
is, conceptually, information about the data, and should therefore be 
considered metadata.  In other words, storing the changing data in 
the dimension tables can make them conceptually complex, and 
may not provide the full explanation of the change needed.  
Therefore, it is more appropriate to store merges, splits, and overlain 
data in metadata tables, which can be linked to the dimension tables. 

These techniques only address how to handle changes in the 
dimensional data instances, but do not focus on changes that affect 
the schema or summation constraints.  For instance, at one time area 
codes formed a strict alternate path hierarchy in a location 
dimension, whereby one location was assigned one area code; 
however, area codes have been created, split, and overlain on top of 
the original area codes.  In this situation, what was initially a strict 
hierarchy is now a non-strict hierarchy.  None of the methods for 
slowly changing dimensions would recognize the change in this 
factor, which could affect the accuracy of summaries; therefore, it is 
also important to store metadata pertaining to changes in the 
characteristics of classification hierarchies. 

2.3.3 Temporally Non-additive Measures 
Temporally non-additive measures are those measures that are not 
additive along the time dimensions.  One example of a temporally 
non-additive measure is a bank account balance (Figure 3). Account 
balances from different times cannot meaningfully be added 
together and therefore can be considered temporally non-additive. 
Another typical example is Quantity_on_hand. 

Temporally non-additive measures are only meaningful when 
grouped by the snapshot date because they include duplicate 
transaction level data that is not apparent in the fact table.  Account 
balances are determined from numerous transactions, and adding 
account balances over different times counts these underlying 
transactions multiple times. 
 

 
 
For instance, suppose a customer opens a checking account with a 
balance of $1000 in January. The customer may then make a deposit 
in February of $500, deposit $3000 in March, and deposit $1000 in 
April.  Figure 4 depicts the non-additive nature of the monthly 
account balances derived from these transactions.   

As Figure 4 shows, summing the monthly account balances across 
time would result in certain transactions being duplicated. 
Specifically, all of the previous transactions are duplicated when 
summing the monthly account balance.  While this balance is 
determined by a number of finer grained transactions that are not 
stored in the OLAP system, they are still included in the summary 
result.  The figure demonstrates that adding balances across time 
would result in certain transactions being duplicated. 
 
Month Old Transactions New Transactions Balance 
January - +$1000 $1000 
February $1000  +$500 $1500 
March $1000+$500 +$3000 $4500 
April $1000+$500+$3000 +$1000 $5500 
Total $7000 $5500 $12500 

Figure 4: Account Balances 

Dimension Additive 

Time No 

Customer Yes 

Branch Yes 

Account Type Yes 

Figure 3: Dimensions across which account 
balances are additive 
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This example demonstrates that although the individual transactions 
are not stored in the database, they are included in the account 
balances, and summing the account balances includes transactions 
multiple times.  Therefore, any snapshot fact measures that are 
derived in this fashion will be inherently non-additive across the 
time dimension.  However, aggregating all of the account balances 
at a single time along other dimensions can provide a meaningful 
measure of the total amount of money in the organization at any one 
time.   

While snapshots are inherently semi-additive, they can provide 
useful information, including the average amount of money held 
over a period of time, the times when there is a maximum or 
minimum amount of money held, and the variation of money held.  
Since these are summaries that may need to be queried from the 
system, it is often advantageous to store these snapshots.  It may 
also be beneficial to continue to store additional attributes for more 
robust querying capabilities, such as net amount of deposits, net 
amount of withdrawals, number of deposits, number of withdrawals, 
and total number of transactions. 

2.3.4 Categorically Non-additive Measures  
Categorically non-additive measures are measures that are not 
additive on the dimension that holds the different types of 
information.  If a fact table includes a measure that is derived from 
counting diverse data, such as basket counts, the measure will be 
semi-additive (Figure 5).  The reason for this is that summing the 
total count results in diverse products being added up in the same 
summarization number. 
 
For example, a store may sell 50,000 products per week; however, 
this number means relatively little for most business purposes, 
especially if numerous and diverse products are sold.  Therefore, 
basket counts are non-additive along the product dimension.  In 

other words, when aggregating basket count, it must be grouped by 
product.  Unlike inventory levels and account balances, the quantity 
of products sold can be aggregated along lower levels of a 
hierarchy.  Account balances can only be grouped by the lowest 
grain of the time dimension, which also matches the snapshot 
interval; however, quantity of products sold can, in some cases, 
meaningfully be aggregated along lower levels of a hierarchy.  For 
example, Figure 6 depicts the number of products sold from a 
general purpose store and shows 3 levels of the product family 
hierarchy. 

In this example, a store may sell 100 different models of televisions 
and 200 different models of telephone.  Showing the quantity of 
each different model would result in an overload of information; 
therefore, basket counts can meaningfully be aggregated at the 
class, and possibly even family level.  Unlike temporally non-
additive measures, it is possible that categorically non-additive 

measures may be partially rolled up along the classification 
hierarchy to reduce the problem of too much information. 

 
 

 
Figure 6.  Basket Count Measures 

Inventory levels, such as quantity on hand, are another type of 
categorically non-additive measures (Figure 7).  Inventory measures 
are derived from counting different types of items, and are also 
typically snapshot levels.  We note that most books mention 
inventory levels are only non-additive across time [9, 1]. Because 
units of different products may imply different meaning, adding 
quantities of different products may not be meaningful. For example, 
adding quantities of TVs sold and Batteries are not informative.  
Inventories demonstrate that our characterization of additive 
attributes is not mutually exclusive, as they can be both 
categorically and temporally non-additive. 
 

 
 

2.4 Additive Measures 
Measures that do not meet any of the previously described rules for 
non-additivity or semi-additivity can be assumed to be additive.  
However, just because a measure is additive across all dimensions 
does not ensure that a query will be correct.  Inaccurate summaries 
can arise when pre-specified rules for rolling up data are prescribed.  
For instance, using non-standardized rules for averaging and 
rounding data can result in inconsistencies in summary data.  These 
types of problems are most apparent when sharp decision cutoff 
points exist, and are based on aggregate functions.  An example is 
the averaging rules for particle air pollution.  Congress passed a 
regulation [16] that prescribes regulatory decisions based on the 3-
year average concentration of particle pollution using a pre-
specified averaging rule.  This value is obtained by averaging 
together the quarterly and yearly averages. This result from 

Dimension Additive 

Time Yes 

Product No 

Customer Yes 

Store Yes 

Figure 5: Dimensions across which basket counts 
are additive 

Dimension Additive 

Time No 

Product No 

Customer Yes 

Store Yes 

Figure 7: Dimensions across which quantity-on-hand
measures are additive 

Classification Measure 
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averaging the averages can vary from traditional averaging whereby 
all data points are averaged together.  This results because different 
quarters can have a different number of samples resulting in unequal 
weighting of instances.  While it may not be a momentous change, 
if the summarization result is near the cut-point for determining 
whether to impose regulations, then the averaging mechanism 
becomes quite significant. 

Similarly, rounding rules can result in differences in data output.  If 
data is pre-rounded to a set number of digits before averaging, it can 
result in different results than if it is averaged and then rounded.  
These are just a few examples of how business rules for rounding 
and averaging can result in the misrepresentation of data.  These 
situations are not unique to the examples given, and also extend 
beyond averaging and rounding.  Regardless of the operation, it is 
important to store these business rules as metadata in the database. 

2.5 Other Aggregate Operators 
While the sum operator is the most common aggregation operator, 
data from data warehouses can provide much richer information 
than simple summations can provide.  Often, analysts are concerned 
with the central tendency, range of data, or use more robust tools to 
mine patterns or perform what-if scenarios using the data.  As data 
warehouses are implemented in non-traditional domains and are 
integrated with analysis tools, it is more common to have non-
additive attributes, non-traditional aggregate operators, and new 
types of logical errors.  Many organizations and agencies in the 
scientific community and government have been capturing 
enormous amounts of data, and are recognizing the benefits of 
integrated data warehouses for strategic planning, and more rich and 
complete data analysis.  For instance, [4] describe the deployment of 
a data warehouse in a health care domain. And, [6] describe the 
application of data warehousing in non-traditional domains such as 
environmental monitoring and research, biomedical applications, 
and other types of digital libraries. 

3. DATA DICTIONARY AND SUMMARY 
CONSTRAINTS 
In this section we will describe previously suggested approaches for 
dealing with summarization issues, and briefly describe the need for 
future techniques to expand upon these approaches. 

[7] argues that data should be normalized into what they propose as 
General Multidimensional Normal Form (GMNF), whereby 
aggregation anomalies are avoided through a conceptual modeling 
approach that emphasizes sorting out dimensions, dimensional 
hierarchies, and which measures belong where.  While using their 
approach to structure data in GMNF may help avoid certain 
aggregation anomalies, it does not guarantee correctness of all 
queries, such as those associated with categorically non-additive 
measures, and measures rolled-up along changing dimensions.  
Additionally, [9] argues that the most useful facts are additive 
because they provide the most robust querying capabilities and 
lessen the opportunities for inaccurate summaries. The approach 
described in [7], however, makes no attempt to ensure all facts are 
additive. Rather they only ensure that all facts are summarizable by 

focusing on adequately structuring the dimensions and dimensional 
hierarchies. 

Prior research has suggested incorporating notations or appendices 
and glossaries into conceptual models to address these concerns. [5] 
proposes a conceptual model that explicitly depicts hierarchies and 
aggregation constraints along hierarchies, and argue that a fact 
glossary should be developed describing how each fact was derived 
from an ER model.  [7] contends that conceptual design is the most 
important phase of data warehouse design, and during this phase it 
is important to sort out dimensions, dimensional hierarchies, and 
which attributes belong where. 

While we agree these ideas are important, they are not sufficient.  
The literature focuses on eliminating or documenting potential 
summarizability constraints.  Non-additive data, however, can cause 
summarizability problems that may not be feasible to eliminate from 
a data warehouse. Simply documenting the associated constraints is 
not sufficient for mitigating the associated problems. The accuracy 
of summary data is a principal concern in OLAP systems, and this 
information should not be stored in glossaries where it may be 
glanced over or ignored. Rather, it is important to include 
summarizability constraints in a conceptual model in a manner that 
facilitates the transfer to later stages of design.  Specifically, data 
warehouses should store the dimensions across which measures are 
additive, and should alert or constrain analysts to potentially 
inaccurate summaries.  We term these safeguards summary 
constraints because they restrict inappropriate aggregate summaries. 
Imagine the ubiquity of update anomalies if primary and foreign key 
constraints were only documented in an appendix of a conceptual 
model. 

In order to deal with dynamic summarizability constraints at query 
time, it is important to store and integrate metadata pertaining to 
these constraints into data warehouses.  In data warehouses, there 
are 3 kinds of metadata, consisting of administrative, business, and 
operational metadata [3].  Administrative metadata consist of 
descriptions of source databases, back end and front end tools, 
definitions in the schema, data mart locations and contents, derived 
data, dimensions and hierarchies, pre-defined queries and reports, 
physical organization, ETL rules, refresh and purging policies, and 
user profiles, authorization, and control.  Business metadata consist 
of business terms and definitions, ownership of data, and charging 
policies.  

And, operational metadata consists of information collected during 
the operation of the warehouse, including the lineage of migrated 
and transformed data, whether it is active, archived or purged, usage 
statistics, error reports, and audit trails.  It is important to store 
certain metadata from each category to handle summarizability 
constraints.  In addition to the metadata described above, [12] states 
the importance of storing information about hierarchy completeness.  
[7] states that the distinction between meaningful and meaningless 
aggregation data should be stored in an appendix.  And, [13] 
describes the importance of tracking splits and merges in the 
database. 
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Figure 8: Identification and Suggestions for dealing with Non-additive Attributes 

 
Figure 9: Identification and Suggestions for dealing with Semi-additive Attributes 

 
Designing systems to accurately summarize data is a primary 
concern in data warehouse design, and classifying hierarchies, 
creating normal forms for summarization, and tracking summary 
constraints in conceptual models are important first steps.  
However, it is important the data warehouses be built flexible 

enough to handle business querying needs.  This involves 
allowing non- or semi additive measures, which raises the 
potential for inaccurate summaries.  We suggest that since all of 
the issues cannot be designed out of OLAP systems, the 
constraints must be included in metadata.  
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4. CONCLUSIONS 
Accurate summarizability is a chief concern in OLAP systems. 
In this paper, we examined the effects of non- and semi-additive 
facts on the accuracy and meaning of summary data. From this, 
we developed a taxonomy of semi- and non- additive attributes.  
We were also derived several rules that can help with the 
recognition and handling of potentially inaccurate summaries.  
Figure 8 and Figure 9 depict the methods for identifying and 
working with non- and semi- additive attributes.  

There is no simple solution to resolve problems associated with 
inaccurate summary data. Approaches should include a 
combination of considering summarization constraints from the 
conceptual phases through implementation.  This could be better 
achieved by storing summarization characteristics in a machine 
readable data dictionary and by creating select query triggers 
that ensure summary constraints are not violated. 
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