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ABSTRACT 

 

Microbial Fuel Cell (MFC) technology utilizes bacterial growth in carbon-containing 

solutions to generate electricity or hydrogen. For the direct production of electricity, an MFC  

operates aerobically at the cathode and anaerobically at the anodes. The same basic design can be 

used with minor changes to produce hydrogen at the cathode by applying an additional 

overpotential and omitting oxygen from the cathode. In this configuration, the device is called an 

MEC (Microbial Electrolysis Cell). However, the term “MFC” is frequently used to describe 

both devices. The primary objectives of this study were to determine optimal operating 

conditions and to minimize the internal resistance in the MFC in order to improve the reactor 

performance for power generation or hydrogen production using the organism Shewanella 

oneidesis MR-1. In this study, MFC performance was evaluated under various operating 

conditions with a modified MFC system architecture called a “Dual-Anode Chambered MFC” 

which incorporates two anode chambers flanking a single cathode chamber. This design leads to 

improvements in reactor performance and reduced internal resistance by minimizing electrode 

separation and providing parallel electrical connectivity, which increases the maximum current 

the MFC can supply for a given time (mA).  These improvements lead to increased maximum 

specific power output (W/m
3
), volumetric hydrogen production rate (m

3
-H2/m

3
-substrate/day), 

and hydrogen yield on substrate (mol-H2/mol-substrate). An analysis of reactor performance 

using the new MFC reactor system included as system variables the size of the electrode surface 

area, substrate (lactate) concentration (5mM, 10mM, 20mM), substrate flow rate (1ml/min, 

3ml/min, 5ml/min), and internal resistance (Ohms) for electricity production. The maximum 



 

  vii 

volumetric power density of 23.6 W/m
3 
(standard deviation: 2.25, error: 1.3)

 
and hydrogen yield 

of 0.438 mol-H2/mol-substrate were obtained under optimized conditions; these conditions were 

then used to compare the reactor performance to that of a single-anode chambered MFC. Results 

indicated that the dual-anode MFC produced power per unit anode volume of 23.6 W/m
3
, about 

1.2 times the power of a single-anode MFC (20.2 W/m
3
). This was due to the reduction of 

internal resistance within the dual-anode MFCs. The internal resistance was reduced by 45 %, 

from 106 Ohms (single-anode) to 58.3 Ohms (dual-anode). 
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CHAPTER 1                                                                                                               

INTRODUCTION 

As we head into the future, large portion of energy produced and used in the world will 

be from sustainable sources due to the world’s limited supply of fossil fuels and their impact on 

environmental and economic changes. Microbial Fuel Cell (MFC) technology generates either 

electricity or hydrogen from bacterial growth in carbon-containing solutions, including sources 

of low or negative economic value such as wastewater. When configured for the production of 

electricity an MFC is similar to a hydrogen fuel cell in design, but uses bacteria instead of 

hydrogen to create electricity and can simultaneously treat wastewater as well [4]. Currently 

most MFC research focuses on increasing the power density of the system based on the projected 

surface area of electrodes and/or the reactor volume, while little research has been done on 

determining the effects of varying fuel cell components and the parameters of MFC construction 

on the voltage output. In this research study, a series of dual-anode chambered MFC reactors 

were designed and constructed to increase the maximum current of the system and to increase 

the hydrogen production rate (m
3
-H2/m

3
-substrate per day) and yield (mol-H2/mol-substrate). 

This design incorporated dual-anode chambers surrounding a single-cathode chamber, which 

resulted in improvements in the reactor performance, reducing the internal resistance by 

minimizing electrode separation. Analysis was conducted for experiments where these small 

MFCs were operated for both power generation and for hydrogen production. A comparison of 

the reactor performance between single-anode and dual-anode systems using optimized operating 

conditions was made for different values of the reactor design and operating parameters, such as 

cathode electrode surface area, substrate concentration, and substrate flow rate.  
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CHAPTER 2                                                                                                                                                                                                                                     

BACKGROUND 

2.1 Biological Mechanism    

This section contains an overview of the biological mechanism and the current design 

structures of MFCs. An MFC uses bacteria to catalyze the conversion of organic matter into 

electricity by transferring electrons to an electrical circuit [1]. Microorganisms can transfer 

electrons to the anode electrode in three ways: using exogenous mediators (ones external to the 

bacterial cell) such as potassium ferricyanide, anthraquinone 2, 6-disulfonic acid, cobalt 

sepulchrate, and thionine; using endogenous mediators produced by bacteria; or by direct 

transfer of electrons from the respiratory enzymes (i.e. cytochromes) to the electrode [3]. 

Exogenous mediators can divert electrons from the respiratory chain by entering the outer cell 

membrane, becoming reduced, and then leaving in a reduced state to shuttle the electrons to the 

electrode. The mediator-less MFCs have more commercial application potential than biofuel 

cells using exogenous mediators because the mediators used in biofuel cells are expensive, 

potentially toxic to the microorganisms, and are impractical for an open environment [2]. 

Several metal-reducing bacteria such as Shewanella oneidensis, Shewanella putrefaciens, 

Geobactor sulfurreducens, Geobactor metallireducens and Rhodoferax ferrireducens are able to 

generate electricity in a mediator-less MFC [2]. The bacteria present in mediator-less MFCs 

typically have electrochemically-active redox enzymes such as cytochromes on their outer 

membrane that can transfer electrons to external materials and therefore do not require 

exogenous mediators to accomplish electron transfer to an electrode [2]. Figure 1 show how the 

voltage recovered in an MFC depends on where electrons exit the chain of respiratory enzymes.  
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Figure 1: Representation of respiratory chain and standard potentials for Paracoccus 

denitrificans [3] 

 

Bacteria grow by catalyzing chemical reactions, and storing energy in the form of 

adenosine triphosphate (ATP). Reduced substrates are oxidized and electrons are transferred to 

respiratory enzymes by NADH. These electrons flow down a respiratory chain which contains a 

series of enzymes that function to move protons across an internal membrane and create a proton 

gradient. The protons flow back into the cell through the enzyme ATPase, creating 1 ATP 

molecule from 1 ADP for every 3 to 4 protons. The electrons are finally released to an electron 

acceptor. The maximum potential of the process is ~1.2 V, on the basis of the potential 

difference between the electron carrier and oxygen under standard conditions [3]. 

Shewanella oneidensis MR-1 is used in this study. Shewanella oneidensis MR-1 is a 

mesophilic, facultative anaerobe that is found mainly in sediment environments [4]. It is capable 

of utilizing many substrates, including lactate, acetate, pyruvate, serine, and other amino acids 
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and is capable of reducing a variety of electron acceptors besides oxygen, including Fe(III), 

Mn(IV), sulfur, nitrate, and fumurate. This organism is called an exoelectrogenic bacterium 

because it transfers electrons outside the cell via the hypothesized extracellular structure termed 

nanowires [4]. Shewanella oneidensis MR-1 is able to grow both aerobically and anaerobically 

on a vast array of electron acceptors and plays an important role in metal reduction. Mutagenic 

and biochemical studies show that S. oneidensis reduces ferric iron, a process which involves 

membrane-bound electron carriers. Lower et al. [5] found that anaerobically grown S. oneidensis 

adhered to an iron surface with two to five times greater force than aerobically grown cells, so 

the observation that this strain was more adhesive under anaerobic conditions might allow closer 

contact required for electron transfer from cell bound cytochromes even in the absence of 

nanowires [5]. Bacteria used in an MFC catalyze the conversion of organic matter into electricity 

[6]. Microorganisms oxidize the substrate and produce electrons and protons in the anode 

chamber. Electrons, collected on the anode, are transported to the cathode by an external circuit 

and the protons diffuse through proton exchange membrane (PEM) internally. Electrons and 

protons are consumed in the cathode chamber by reducing oxygen, usually forming water [7]. In 

a similar manner, hydrogen gas can be produced at the cathode chamber by applying a small 

voltage and omitting oxygen from the cathode [8]. A simple representation of the biological 

mechanism is demonstrated in Figure 2. 

2.2 Design Structures 

2.2.1 Electricity Generation 

In the research literature, a wide range of materials and system designs have been used in MFCs 

to improve the reactor performance in terms of voltage output, coulombic efficiency, stability, 
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Figure 2: Representation of Biological Mechanism of Producing Electricity in a Microbial 

Fuel Cell [3] 

                                           

and longevity. Practical applications of MFCs will require that a design be developed that will 

not only produce high power and coulombic efficiencies, but one that is also economical to mass 

produce based on the materials and the reactor architecture. 

2.2.1. A   Aqueous-cathode MFCs with PEMs 

The simplest MFC design such as that in Figure 2 consists of two chambers separated by 

a PEM.  The anode chamber contains a carbon felt electrode, aqueous medium, and the bacterial 

culture. The cathode chamber contains a platinized carbon cloth electrode with a buffer solution. 

For electricity generation, the MFC operates aerobically at the cathode side and anaerobically at 

the anode [3]. In an aqueous cathode chamber, the concentration of dissolved oxygen in the 

cathode solution can affect MFC performance [3]. Power generation increases when pure oxygen 

gas is sparged into the cathode and decreases as the dissolved oxygen concentration is lowered. 

For electricity production the anode chamber is often sparged with nitrogen gas and stir bars are 

used to provide homogeneous, oxygen-free conditions in the chamber [4]. The PEM membranes 
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are primarily used in two-chamber MFCs (H-type) as a method for restricting oxygen mass 

transfer between the liquid-filled anode and cathode chambers; liquid containing dissolved 

oxygen in the aqueous-cathode cannot be allowed to mix with the bacterial solution in the anode 

chamber.[4, 12]. However, these H-type MFC reactors have several problems related to the 

proton transfer efficiency of the PEM which affects the power production including biofouling 

and oxygen leakage [10]. Chae et al. investigated a major problem of oxygen leakage from 

cathode to anode associated with Nafion PEM membranes. It was found that Nafion PEMs are 

permeable to oxygen and the oxygen mass transfer coefficient (Ko) and the oxygen diffusion 

coefficient (Do) for Nafion PEMs is estimated as 2.80 x 10
-4

 cm
2
/s and 5.35 x 10

-6
 cm

2
/s, 

respectively when a 50 mM phosphate buffer was used as the catholyte [11]. Chae et al. also 

found that PEMs operating over long periods of time can be discovered with a biofilm causing 

adverse effects on mass transport through the membrane [10].  

2.2.1. B   Air-cathode MFCs without PEMs 

 Many researchers have chosen to use air-cathode MFCs because of their economical and 

scalable characteristics; the implementation on site being practical on a large scale (for example, 

for wastewater treatment), and the affordability of MFC materials [4].  Liu and Logan introduced 

an air-cathode single chamber MFC lacking a membrane which produced lower coulombic 

efficiency than an MFC with the membrane, indicating that oxygen diffusion into the anode is 

increased. It is estimated by Liu and Logan [12], based on oxygen flow rate measurements that 

oxygen diffusion into the anode chamber with a PEM is much lower than the oxygen diffusion 

into the anode with the PEM removed. This oxygen is likely consumed by bacteria growing on 

the cathode instead of the anode in the absence of the PEM [11]. Hence, while potentially being 
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easier to implement for some large scale applications, membrane-less MFCs suffer from lowered 

power generation because of the substrate loss due to aerobic oxidation by bacteria on the 

cathode electrode instead of the anode and loss of efficiency due to a partially aerobic system.  

The air-cathode single chamber membrane-less MFC uses a cathode exposed directly to 

air instead of air-sparged water and theoretically forms an aerobic biofilm on the cathode inner 

surface (the surface facing the anode) to remove any oxygen that diffuses into the chamber, 

keeping conditions in the anode chamber anaerobic [12]. However, in practice, this process does 

not completely eliminate the possibility of an aerobic anode. When only examining the cost of 

energy production, using an air-cathode single chamber MFC without PEM does help to reduce 

the material costs by eliminating both the need for energy intensive aeration of the liquid and 

expensive materials such as a PEM [12]. However, the removal of the PEM increases oxygen 

transfer into the anode chamber, which is responsible for low electron and energy recoveries in 

MFCs [13]. While membrane-less MFCs are an interesting research topic, the low electron and 

energy recoveries make them inefficient [10].  

2.2.2 Hydrogen Production 

Hydrogen gas can be produced with the same exoelectrogenic bacteria that are used in 

MFC technology by modifying the MFC design [7]. Biohydrogen production via the 

electrohydrogenesis process is a recent development, so there are not many systems that have 

been tested or reported in the literature [4].  

2.2.2. A   Microbial Electrolysis Cells: MECs  

Microbial Electrolysis Cells (MECs, see Figure 3) are based on modifying MFCs in two 

ways: 1) adding a small voltage (>0.2 V) to the electricity produced by the bacteria and 2)  
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Figure 3: Generalized Schematic of MEC [4] 

 

removing any oxygen at the cathode. In an MFC, an anode potential can approach theoretical 

limit of EAn = -0.3 V (e.g. acetate). With oxygen, the cathode potential in an MFC is ~0.2 V, 

achieving an overall cell voltage ~0.5V [0.2 – (-0.3 V) = 0.5 V]. But, in order to form hydrogen 

gas at the cathode, the oxygen must be removed and overcome a cathode potential at pH = 7 and 

298 
o
C of ECat = -0.414 V. Therefore, the calculated cell voltage for a system to produce 

hydrogen at the cathode is Eemf = ECat – EAn = -0.114 V. The cell voltage is negative, so the 

reaction is not spontaneous and is endothermic. Therefore, in order to overcome this 

thermodynamic limit for hydrogen evolution, an additional voltage of >0.114 V is required [8]. 

While 0.114 V in theory is needed with acetate as a substrate, in practice larger voltages must be 

applied due to overpotential at the cathode. In practice, ~0.25V or more must be applied to the 

Power Supply 
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circuit to obtain reasonable current densities, and thus hydrogen generation rates [8].  Adding 

0.25 V is still substantially less than the voltage needed for water electrolysis, which requires 1.8 

to 2.0 V. 

It is important for an MEC to operate in a completely anaerobic state in order to produce 

pure hydrogen [7]. In MECs, protons and electrons released by exoelectrogenic bacteria are 

recombined to form hydrogen gas instead of forming water at the cathode. A current published 

study using MEC reports that the biohydrogen gas is produced at yields of 2.01 to 3.95 mol-H2 

per mol-substrate (acetic acid) at an applied voltage of 0.2 to 0.8V. At an applied voltage of 0.6 

V, a gas production rate of 1.1m
3
 H2 per m

3
 reactor per day was achieved [14]. 

2.2.2. B   MEC Designs  

Call and Logan [8] determined that high hydrogen recovery and production rates are 

possible in a single chamber MEC without a membrane. In their work, these researchers 

produced hydrogen gas by using a membrane-less single chamber MEC with a modified design 

structure including a graphite fiber brush anode and a minimized electrode separation. The 

hydrogen production rate reaches a maximum of 3.12 m
3
 H2 per m

3
 reactor per day, which is 

more than double the hydrogen production rate that was obtained in previous studies at an 

applied voltage of 0.8 V [8]. 

The same researchers noted that the presence of a membrane (CEM: Cation Exchange 

Membrane) does not prevent hydrogen diffusion back into the anode chamber [8]. Theoretically, 

protons are combined equimolarly with electrons at the cathode in biocatalyzed electrolysis (2 

H
+
 + 2 e

-
  H2). They also found that the membrane interrupts proton diffusion by transporting 

cationic species other than protons [8] and it causes a pH increase in the cathode chamber that 
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lowers system performance. Increased pH limits bacterial growth at the anode, which in turn 

limits the hydrogen evolution at the cathode. This pH difference between anode and cathode 

creates an extra potential loss of about 0.06 V in the system. Similar effects also occur in 

membrane-less single chamber configuration [15]. These pH gradient related potential losses are 

more problematic for single chamber configuration (membrane-less) than for two chamber 

configurations (membrane-present), as ion concentrations increase more rapidly in a single 

chamber configuration than in the cathode chamber of a two chambered configuration.  

 Rozendal et al. explain that the presence of a membrane in biocatalyzed electrolysis is 

essential for maintaining the purity of hydrogen gas that is produced at the cathode [9]. By 

omitting the membrane, the produced hydrogen at the cathode will be contaminated by gaseous 

metabolic products from the anode chamber such as CO2, CH4, H2S and which will result in a 

reduction of the coulombic efficiency due to consumption of the hydrogen at the anode chamber 

[8, 9]. They conclude that the pH increase at the cathode and the potential losses related to the 

pH gradient across the membrane will occur more rapidly in a single chamber configuration as 

compared to a double chamber configuration [9]. Additionally, high concentrations of hydrogen 

gas in the absence of oxygen in a single chamber MEC favors the growth of methanogens which 

can lower hydrogen recoveries and contaminate the gas with methane [16, 17]. Therefore, as is 

the case in membrane-less MFCs, a single chamber MEC lacking a membrane suffers from low 

overall efficiency. In addition, it can create a product gas that is a mixture instead of pure 

hydrogen. Therefore, there are compelling reasons for developing MECs with membranes. 
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2.2.2. C   MEC Membrane Materials 

Rozendal et al. tested an MEC in two configurations, one with a Cation Exchange 

Membrane (CEM: also called as PEM) and one with an Anion Exchange Membrane (AEM), to 

examine the performance of MECs with different types of ion exchange membranes [9]. The 

schematic of these configurations is shown in Figure 4. The AEM allows the transport of anions 

from the cathode to the anode instead of the transport of cations. As demonstrated in Figure 4 for 

the MEC with the AEM, the hydrogen at the cathode is not produced from the reduction of 

protons but from the reduction of water. In this process, hydroxyl ions are produced equimolarly 

with the consumed electrons from the anode (2 H2O + 2 e
-
  2 OH

-
 + H2). A comparison 

between the electrochemical cells of two configurations (applied voltage scans of the 

electrochemical cells) shows that at the lower applied voltage range, the CEM outperforms the 

AEM configuration. The CEM configuration starts to produce current (hydrogen) at applied  

 

 

Figure 4: Schematic Representation of MEC with a CEM and an AEM [12] 
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voltages above 0.2V, while the AEM configuration starts to produce current at applied voltages 

above 0.4V [15]. However, at the higher applied voltages (1.0 V or above), the AEM 

configuration slightly outperforms the CEM configuration, even though it performs worse at the 

lower applied voltages. Both configurations demonstrated a comparable volumetric hydrogen 

production rate by producing over 0.3 m
3 

H2/m
3
 reactor/day at 1.0 V of over potential applied. 

The pH gradient associated with the potential loss in the system is lower in the AEM 

configuration [9]; however, the potential losses associated with reduced pH gradient were 

negated by the increased cathode over-potentials as compared to the CEM configuration (CEM: 

0.12 V at 2.39 A/m
2
; AEM: 0.27 V at 2.15 A/m

2
) [15]. In conclusion, it is possible to operate an 

MEC both with a CEM or an AEM and the CEM was found to be more suitable since the CEM 

outperforms at the lower applied voltages needed for a long operation cycle. 

2.3 Power Density Measurements 

 To investigate MFC reactor performance and its efficiency at producing cell voltage or 

electricity, it is common to optimize the system for power production. The power output by an 

MFC is related to the measured voltage, EMFC, across the external load and the current by 

P=IEMFC where the current can be relate to the external resistance Rext by, I = EMFC /Rext. Hence 

the power can also be expressed as  

                                                         P = EMFC
 2
/Rext                                                                                                         (1) 

 There are many conventions for expressing the power density. In the literature, the power 

density may be calculated by dividing the power by the anode surface area, cathode surface area, 

membrane surface area or reactor liquid volume. It is important therefore to consider the volume 

or area units used to normalize the power when comparing MFC power generation results. 
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2.3.1 Power Output Normalized by Electrode Surface Area 

 Many researchers use the surface area of the anode for calculating power density; i.e., 

                                                           PA = EMFC
2 
/ (Rext AAn)                                                        (2) 

This is because the amount of anode surface area available for microbes to grow can affects the 

amount of power generated. However this convention is not appropriate for all MFC system 

architectures. In systems where the anode is pressed onto a surface, only one side of the anode 

may be used (this is the projected surface area) [19, 12]. If both sides of the anode are suspended 

or exposed in bacterium, both sides of the anode surface area may be used [20]. However, the 

surface of the anode does not always affect power generation. In some systems with very high 

anode surface area relative to the cathode area [7], it is more appropriate to normalize power 

generation by the cathode surface area.  

2.3.2 Power Output Normalized by Membrane Surface Area 

 In reactor systems where a membrane separates the two electrode chambers, the 

membrane projected surface area may also be used to normalize the power [21]. According to Oh 

and Logan, power production can be affected by the relative sizes of the anode, cathode and 

PEM. A power density based on the membrane surface area is calculated as 

                                                       PA = EMFC
2 
/ (Rext APEM)                                                          (3) 

2.3.3 Power Output Normalized by Volume 

 The reactor liquid volume can also be used as a normalizing factor. Sometimes 

researchers normalized power production using the anode volume (based solely on geometry) or 

the anode liquid volume (excluding membrane area and gas head space) or total reactor volume 

(including both the cathode and anode chambers). If the cells are grown in a separate flask 
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outside the reactor and are recirculated through the anode, this volume may also be included. A 

volumetric power density based on the anode reactor volume is calculated as  

                                                               Pv = EMFC
2 
/ (Rext VAn)                                                     (4) 

2.4 Internal Resistance 

The internal resistance is one of the critical system variables to consider in MFC 

construction; high reactor internal resistance limits the performance of the MFC by limiting 

current supply within the system. Hence, it is important to understand, measure, and minimize 

the internal resistance to produce the maximum power output. Voltage output varies with 

external resistance, Rext. The system components act as a second (internal) resistance, Rint, which 

can be considered to be in series with Rext. Maximum power generation, P, often normalized by 

the volume of the anode, varies inversely with the total resistance of the system squared, (Rint + 

Rext)
2
. While the Rext can be varied, Rint is fixed. Therefore, P is ultimately limited by Rint. 

Substantially higher power densities can be achieved by using more efficient system 

architectures with lower internal resistances. These relationships are described below. The total 

current produced by an MFC is expressed as 

                                                        I = Eemf  /(Rint+Rext)                                                                (5) 

                    

where Rint is the internal resistance and Rext is the external resistance in ohms. The open circuit 

voltage between the anode and cathode can be described as Eemf. 

                                                               Eemf = IRint + IRext  (6) 

                                                                       V = IRext  (7) 

                                                                        P = VI  (8) 

                                                       Pmax = IRext Eemf  /(Rint+Rext)  (9) 
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where Eemf is the electro-motive force of an MFC (open circuit voltage) in volts, V is the 

measured voltage (measured voltage) in volts, P is the power output in watts, and Pmax is the 

maximum power output in watts. Hence, the maximum power output is inversely proportional to 

the square of total resistance: 

                                                          Pmax = Eemf
2
 Rext /(Rint+Rext)

2                                                                
  (10)

 

2.4.1 Measuring Internal Resistance 

There are several different methods to evaluate the internal resistance of an MFC. These 

include the polarization slope method, the power density peak method, electrochemical 

impedance spectroscopy (EIS) using a Nyquist plot [22], and current interrupt methods [4]. In 

this study, the first two of these methods are used to estimate the internal resistance. As implied 

in the current equation described above, the polarization slope method uses a plot of current 

versus measured voltage, the slope of which is Rint. As long as the polarization curve is linear, 

the internal resistance is easily obtained over the region of interest. For the power density peak 

method, the maximum power occurs at the point where the internal resistance is equal to the 

external resistance. The internal resistance can therefore be calculated by determining the 

external resistance that produced the peak power output [4]. 

2.5 Preliminary Research 

My research with MFCs concentrated on developing more efficient reactor designs. In 

order to evaluate changes in reactor design and performance of the MFCs in a timely manner, I 

initially focused on electrical power generation instead of hydrogen production. MFCs are 

generally easier to operate and monitor due to the simplicity of measuring electric energy 

production compared to collecting and analyzing a gas. MFC (for electricity production) and 



 

  16 

MEC (for H2 production) systems share many characteristics; therefore methods for improving 

electricity generation in MFCs will lead to increased hydrogen production in MECs.  

The first MFC reactor I constructed was the H-type reactor in Figure 5A. The reactor was 

tested for power generation using a pure culture of Shewanella oneidensis MR-1 and produced 

up to 117 mW/m
2
 referenced to the anode projected area. In this H-type design the anode and 

cathode chambers were connected by a narrow tunnel formed by two glass slip joints with a 

PEM membrane separating the chambers and with the electrodes suspended in an aqueous 

solution on either side of the PEM. While it was an easy reactor to construct and assemble, it had 

several design flaws that made it difficult to optimize the reactor performance; these include a 

large electrode separation, a large “dead volume” in the head space, small electrode and 

membrane areas compared to a large reactor volume, a large amount of bacterium trapped in the 

narrow membrane joint, and a poor system for feeding substrate and sampling the reactor 

solution. In order to eliminate these flaws, I constructed a sandwich-type miniature reactor  

 

A BA B

 
 

Figure 5: Types of MFCs used in the Previous Research - (A) H-type MFC Reactor Design 

(B) Sandwich-type MFC Reactor Design [Photograph courtesy of Dr. Ying Wang] 
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shown in Figure 5B based on the design of Bretschger et al. 2007 [18]. It was fabricated from 

PVC pipe material and was separated by a PEM. This reactor design allowed for following 

improvements: 

- Elimination of the narrow membrane joint between two chambers so the anode and 

cathode are in direct contact with the membrane reducing the electrode spacing 

- Reduction of the reactor volume by reducing the size of anode and cathode  

chambers; in particular making the cathode chamber half the size of the anode  

- Complete packing of the anode chamber with anode electrode material (carbon felt) to 

provide a large anode electrode surface area, eliminating “dead volume” in the head 

space 

- Continuous flow of substrate-containing medium across the biofilm on the anode side, 

enabling a consistent voltage production  

- Use of an air-cathode instead of aqueous-cathode to eliminate a buffer solution  

        

2.5.1 Comparison of MFC Reactor Types 

2.5.1. A   Voltage Production 

The electrical energy generating abilities of H-type and sandwich-type MFC reactors 

were compared using a pure culture of Shewanella oneidensis, in a minimal medium (pH = 7.0) 

with lactic acid as the carbon substrate. The MFCs were traditionally operated at pH values 

between 6 and 8. The effect of pH on the growth and electron transfer abilities of S. oneidensis 

MR-1 in MFCs was examined and found in the literature [28]. The power density at neutral pH 

was significantly higher for S. oneidensis MR-1 in the mini-MFC using graphite felt electrodes 

and nanoporous polycarbonate membranes with S. oneidensis MR-1 [28]. Their work determined 



 

  18 

that MFC performance was most efficient between pH 7 and 8 for S. oneidensis MR-1. Thus, S. 

oneidensis MR-1 growth at pH 7 was used in the study. 2 mM lactate was continuously fed into 

the 15 ml anode compartment in the sandwich-type reactor while 20 mM lactate was periodically 

fed into the 500 ml anode compartment in the H-type reactor in fed-batch fashion.  

 A month of experimentation demonstrated that the sandwich-type reactor outperformed 

the H-type reactor producing about 264 mV at 500 ohms of resistance within a week of operation. 

The H-type reactor reached its highest voltage on the 24
th

 day of operation (Figure 6). In these 

experiments, the sandwich-type reactor provided a maximum volumetric power density of 9.3 

W/m
3
 per anode liquid volume compared to 0.24 mW/m

3
 per anode liquid volume in the H-type 

reactor. This result indicated that the sandwich-type reactor was more efficient than the H-type 

reactor. This is likely due to the increased anode surface area per unit volume of the anode  
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Figure 6: Comparison of Operation Efficiency on Voltage Generation between H-type and 

Sandwich-type Reactors at 500 ohms  
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Figure 7: The Voltage Output and Power Density as a Function of the External Resistance - 

(A) H-type MFC reactor design (B) sandwich-type MFC reactor design, the power density was 

normalized by the reactor volume of the anode chamber 

 

chamber with a low internal resistance caused by the small anode to cathode distance. The 

combined use of packed layers of graphite felt for the anode (high surface area), an increased 

size of the PEM with respect to reactor volume in a mini sandwich-type reactor, and small 

electrode spacing resulted in improved performance. 

2.5.1. B   External Resistance 

In order to measure the power density as a function of resistance the external resistance 

across the anode and cathode was varied from 0 to 1,000 ohms (Figure 7). The voltage output 

increased with increasing external resistance in both H-type and sandwich-type reactors. As 

shown in Figure 8, the power density of the H-type reactor increased slowly with the resistance 

over the range of 0 to 500 ohms then steadily decreased after the maximum power density of 

0.24 W/m
3 

at 500 ohms. The power density of the sandwich-type reactor showed a dramatic 



 

  20 

increase in the range of 0 to 200 ohms of resistance. It reached a maximum value of 11 W/m
3
 at 

200 ohms after which it decreased monotonically. 
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CHAPTER 3 

MATERIALS AND METHODS 

3.1 Double-Anode Chambered Microbial Fuel Cell (MFC) Construction  

In order to improve MFC performance and increase power density and hydrogen 

production rate a new MFC reactor design utilizing dual anode chambers was designed and 

constructed. This design has two advantages over more conventional designs. First, the provision 

of two anodes increases the maximum current over single anode designs. Second, close electrode 

spacing (2 cm) minimizes internal resistance, which should increase the maximum power output 

as maximum power output is produced at the smallest internal resistance (Figure 9). Other 

advantages associated with this dual-anode chambered MFC system include increased mass 

(proton) transfer to the single cathode chamber by sharing one common cathode, overall 

decreases in reactor volume and cathode material costs, and more simplified and convenient 

design structure. The working liquid volume of the anodic compartment is 15mL. The system 

was also designed to avoid voltage reversals as it operates under continuous flow mode, with the 

medium containing sufficient substrate passed sequentially through the reactor [18]. Substrate 

concentration and bacterial substrate consumption rate were continuously monitored and 

analyzed by high performance liquid chromatography (HPLC) (Waters, Alliance 2690 Analytical 

HPLC) of the filter sterilized growth medium. According to the literature, voltage reversal (the 

reversal in polarity of one or more cells and a loss of power generation) results when one cell 

does not generate sufficient voltage relative to other cells as the result of substrate starvation. It 

often occurs in stacked MFCs which are connected in series and operated under fed-batch mode 

[23]. In long term operation of MFCs, it is important to avoid two crucial voltage reversal factors, 



 

  22 

substrate starvation and series electrical connectivity. In order to avoid these, the electrodes need 

to be connected in parallel and sufficient substrate needs to be provided to the anode [24]. The 

parallel electrical connectivity also helps to increase the electric current generation. A schematic 

that illustrates the continuous flow system of substrate and gas in the dual-anode chambered 

MFC is shown in Figure 8.  

The dual-anode chambered system was operated in two different ways. One way was to 

generate electricity using an aerobic cathode and the other was to produce pure hydrogen gas 

using an anaerobic cathode. Pure hydrogen gas was evolved using the potential from the bacteria 

and a small additional applied voltage. In the hydrogen production configuration protons and 

electrons produced by bacteria are catalytically recombined at the cathode to form hydrogen gas. 

An air-cathode was used for electricity generation; this allows the cathode to remain 

aerobic without having to sparge water with air in the cathode chamber. Oxygen, protons, and 

 

Figure 8: Schematic Diagram of Continuous Flow System of the Dual-Anode Chambered 

MFC 
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electrons are catalytically combined in the presence of a platinum catalyst to form water at the 

cathode chamber and generate electricity. Figure 9 shows a miniature dual-anode chambered 

MFC that was used for electricity generation. However, this reactor design could be operated as 

either an MFC or MEC based on whether air (to the cathode chamber) and additional voltage are 

added to the system. Thus it can be switched between these two modes of operation. 

3.2 MFC Reactor Design Materials and Features 

The dual-anode chambered MFC consists of three separate chambers: two anaerobic 

anode chambers inoculated with a pure bacterial culture, S. oneidensis, and a cathode chamber 

where electricity or hydrogen is produced. The anode and cathode chambers were fabricated 

from transparent polycarbonate material (lexan pipe, anode chamber size: 5 cm diameter, 2.54 

length, cathode chamber size: 5 cm diameter, 1.27 cm length) and were separated by the PEM 

(Nafion: Alfa Aesar, size: 5 cm diameter), which was fitted in between two rubber gaskets. The 

PEM was pretreated by boiling in a solution of deionized water and H2O2 (30%), followed by 

H2SO4 and deionized water, each for 1 h, and then was stored in deionized water prior to being 

used.  Solid graphite rods were used as the cathode and anode electrodes and the two anodes 

were connected electrically in parallel using copper wires. The anodes were placed close to the 

cathode to reduce internal resistance. The anodic compartments were filled with carbon felt to 

increase the surface area available to bacteria for transferring electrons. At the cathode, the 

graphite carries electrons to the final electron acceptor; when operated aerobically, the final 

electron acceptor is oxygen. Increasing the surface of the anode relative to that of the cathode 

can increase power by increasing the number of bacteria adhered to the carbon felt allowing the  
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Figure 9: Representation of Mini Dual-Anode Chambered MFC for Electricity Generation 
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formation of a larger biofilm, which increases the generation of electrons and their transfer.  

Carbon cloth impregnated with platinum metal (Fuel cell store, 2cm x 3cm) was used as the 

cathode material and it was pressed against the PEM.  This arrangement should reduce or 

eliminate transport resistance through a fluid phase and should provide a fast transfer of protons 

across the PEM.  

 

3.3 Culture and Medium  

A pure culture of S. oneidesis MR-1 was used as the inoculum in the anode compartment of 

the MFC. The S. oneidesis MR-1 strain was stored at -80 °C prior to use. The Defined Medium 

for Shewanella (DMS) from Galit Meshulam-Simon et al. 2007 [25] was used for all 

experiments and contained: 5.7mM K2HPO4, 3.3mM KH2PO4, 125mM NaCl, 5.4µM 

FeCl2x4H2O, 5 µM CoCl2x6H2O, 485 µM CaCl2x2H2O, 5 µM NiCl2x6H2O, 9mM (NH4)2SO4, 

0.2 µM CuSO4, 1mM MgSO4, 1.3 µM MnSO4, 1 µM ZnSO4, 57 µM H3BO3, 67.2 µM Na2EDTA, 

3.9 µM Na2MoO4, 1.5 µM Na2SeO4, 2mM NaHCO3, and a vitamin mixture (1 L of medium 

contains 0.02 mg biotin, 0.02 mg folic acid, 0.1 mg pyridoxine HCl, 0.05 mg thiamine HCl, 0.05 

mg riboflavin, 0.05 mg nicotinic acid, 0.05 mg DL-pantothenic acid, 0.05 mg p-aminobenzoic 

acid, 0.05 mg lipoic acid, 2mg choline chloride, 0.01mg vitamin B12). Sterilized sodium DL-

lactate at experiment-specific concentrations was used as the carbon source. Sodium DL-lactate 

was sterilized by filtration. The medium was adjusted to a pH of range 6.8 to 7.2 by addition of 

1M NaOH. The inoculation loop was used to pick a single colony from the plate and inoculate in 

a small test tube containing an LB broth medium and grown overnight at 33 °C temperature. 

Then the grown cells in the test tube were re-inoculated into 20ml of LB broth medium in a 
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shake-flask and grown overnight at 33 °C temperature. The following day, the grown cells were 

centrifuged (4000 rpm for 15min) and the cell pellet was washed three times in a DMS solution. 

The washed cells were re-suspended in the DMS solution to the desired cell concentration, 

estimated by reading optical density using spectrophotometer set to 600nm (OD600) ; the desired 

concentration range was between 0.1 and 0.2. 

3.4 Hydrogen Production using a Dual-Anode Chambered MEC 

The dual-anode chambered MEC reactor (for hydrogen production) design in Figure 10 

includes the following features: H2 gas collector, continuous-feeding flow of medium and 

substrate into each anode chamber, and continuous monitoring systems for cell voltage and 

hydrogen production. For both the MEC and MFC the voltage across a load was measured and 

recorded every 1 min by a data acquisition box (National Instruments, NI USD-6221), using a 

Labview (National Instruments) program running on a personal computer. A steady-state voltage 

production was reached after 5 days. Three replicate reactors were used and the experimental 

measurement for each reactor was taken and the average value was used. An H2 sensor [31] 

(Figure 11) was built and used for monitoring hydrogen production. At the beginning of 

experiments I was primarily focused on electrical power generation from MFCs for evaluating 

the changes and improvements in the design structure and the reactor performance. As 

mentioned earlier, MFCs producing electricity do not require the collection and analysis of a gas 

product and so were easier to operate for purposes of optimizing the design. Hydrogen 

production experiments were conducted by using the optimized solution from the electrical 

power generation experiments. 
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Figure 10: Representation of a Dual-Anode Chambered MEC for Hydrogen Production 
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Figure 11: Schematic Representation of the Experimental Apparatus for Hydrogen 

Production [Courtesy of Donglee Shin] – A carrier gas, flowing at 50 ml/min entered cathode 

chamber of the MFC. Hydrogen produced in the MFC reactor (cathode) was transported to the hydrogen 

sensor by the carrier gas. Output from the hydrogen sensor was sent to a personal computer via Labview 

program 

 

 

3.5 Operational Conditions 

A series of miniature dual-anode chambered MFCs were constructed and were operated 

at room temperature (approx. 22°C). These were used to compare electricity production while 

varying experimental parameters for improving electricity generation (Figure 9). The fact that 

power generation is so sensitive to the sizes of PEM, electrode spacing, and other factors makes 

it essentially impossible to know if one bacterium can produce more power than another, if 

power is affected by substrate of medium composition and concentration, or if power is affected 

by the use of different catholytes, unless all variables and parameters were tested in the same 

system. Therefore, it was important that all parameters and variables must be varied in otherwise 

identical conditions in order to quantify the effect of these parameters on the operation of 

MFCs/MECs. 
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3.5.1 Experimental Variables 

In this study, I examined the effect of several system variables on power, power density, 

and hydrogen production. For power production, the following variables were measured: cell 

potential, volumetric power density, internal resistance, and current. For hydrogen production, 

volumetric hydrogen production rate, hydrogen yield per substrate, and coulombic hydrogen 

recovery (coulombic efficiency) were measured. 

3.5.2 Experimental Parameters 

The external resistance, substrate concentration, substrate flow rate, and cathode surface 

area were varied in order to study their effects on reactor performance and product efficiency for 

generating electricity and hydrogen. For hydrogen production, an applied voltage of 0.5V was 

used. While varying external resistance from 20 to 1000 ohms, the voltage was monitored and 

used to determine the maximum volumetric power density for power generation.  

The substrate feed rate affects bacterial growth on the anode electrode and thus the power 

output was monitored while varying the flow rate of substrate and medium. In this study, lactate 

was selected as the growth substrate and used to evaluate the growth of S. oneidensis MR-1. 

Previous studies of S. oneidensis MR-1 reported that the lactate can be used as a primary carbon 

source for S. oneidensis MR-1 to generate electric current in a minimal medium [27]. This is 

because S. oneidensis MR-1 prefers three-carbon carbohydrates for growth. Experimentally, L-

lactate, pyruvate, and acetate are among compounds utilized as sources of carbon and energy 

[30]. To investigate the effects of bacterial activity on cell voltage production, different lactate 

concentration (5, 10, and 20 mM) and different flow rates (1, 3, and 5ml/min) were tested and 

evaluated.  
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Different sizes of cathode surface areas were also used and compared to investigate 

reactor performance. In some systems with very high anode surface areas relative to the cathode 

areas, some literature normalized their power densities using the cathode surface areas [7]. In this 

study I used a rectangular shaped cathode electrode material, plantinized carbon paper (cloth), in 

sizes (length x width) of 4cm x 3cm and 2cm x 3cm. 
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CHAPTER 4                                                                                                                                                              

RESULTS AND DISCUSSION 

4.1 Dual-Anode Chambered MFCs for Electricity Production 

4.1.1 Effect of Cathode Surface Area on Power Generation  

The voltages produced using the same cathode system with different total cathode surface 

areas (12 cm
2
 vs. 24 cm

2
) were compared and examined in MFC tests (Figure 12, Table 1 and 

Table 2). The carbon paper pre-loaded with a Pt catalyst was used as the cathode material. 

Nafion was used as a PEM material due to its high proton conductivity and as a cathode binder to 

allow the transfer of protons and electrons to the cathode electrode in an air cathode system in 

the dual-anode chambered MFCs. As Figure 12 shows, increasing the cathode surface area of Pt-

coated electrode by 100% to 24 cm
2
 produced no difference in voltage compared to the case 

when the cathode surface area was 12 cm
2
. These results demonstrated that the surface area of  

 

   

Figure 12: Representation of Voltage Production at Different Total Cathode Surface Areas 

- Comparison Experiments Run In Triplicate  
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Table 1: Effect of Cathode Surface Area on Maximum Power Generation with 5 mM 

Lactate Concentration 

       
 

Maximum Power Output (mW) 
   Total Cathode S.A 

(cm
2
) Test 1 Test 2 Test 3 Avg (mW) S.D Error 

12 0.320 0.344 0.271 0.312 0.037 0.022 

24 0.326 0.281 0.297 0.301 0.023 0.013 

        

 

Table 2: Effect of Cathode Surface Area on Voltage Production with 5 mM Lactate 

Concentration 

 
     Voltage Production at 200 ohms (mV) 

   Total Cathode 
S.A (cm

2
) Test 1 Test 2 Test 3 Avg (mV)  S.D Error 

12 245 259 233 246 13.01 7.51 

24 257 237 241 245 10.58 6.11 

 

 

the cathode in the certain experimental range of 12 – 24 cm
2 
does not limit power generation in  

the dual-anode system. 

4.1.2 Power generation as a Function of Substrate Concentration 

When lactate was added to the MFC, the current or power density increased to a plateau 

value (Figure 13B). The rates of current increment were proportional to lactic acid concentration 

over the range of 5 - 20mM. Since a current was produced by the addition of the natural electron 

donors (lactate) of the bacterium, it could be concluded that the bacterial oxidation of the 

electron donors and the direct electron transfer from the cell surface to electrode produced the 

electrochemical signals. 

 Following inoculation with S. oneidensis MR-1, a stable voltage was generated after 

adding a different substrate concentration of lactate, 5 mM (450 mg/l), 10mM (900 mg/l), and 

20mM (1800 mg/l) into the anode chambers. A plot of the volumetric power density at each 
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initial substrate concentration demonstrated saturation kinetics (Figure 13B). When fit to 

saturation kinetics, a half-saturation constant Ks of 6.15mM and an R
2
 of 0.902 were obtained. A 

maximum power density of Pmax, 11.6 W/m
3
 was obtained using 5 mM lactate, while those using 

10 mM and 20 mM lactate concentrations were Pmax=18.3 W/m
3
 and Pmax =18.5 W/m

3
 (Figure 

13B). Since many researchers use different ways of optimizing their maximum power output 

based on their reactor system architectures, I normalized the maximum power production by 

anode and cathode electrode surface areas, by membrane surface area, and by total reactor liquid 

volume and anode inoculation liquid volume. These values are shown in Table 3. It was found 

that 20 mM lactate achieved the highest maximum power output of the three lactate 

concentrations. However, 10 mM lactate also resulted in a very similar power density value to 20 

mM lactate. Therefore, 10 mM lactate was determined to be an effective operational substrate 

concentration by considering the amount of substrate required to feed into the reactor. A 

maximum volumetric power density based on the anode liquid volume at each substrate 

concentration was obtained in Figure 13A. 

4.1.3 Effect of Substrate and Medium Flow Rates on Power Generation  

Current cannot be generated in an MFC at a rate greater than the rate bacteria can oxidize a 

substrate and transfer electrons to the electrode surface. As bacteria colonize a surface and form 

a biofilm, the rate of substrate consumption by the biofilm can eventually exceed mass transfer to 

the surface. Using continuous flow mode, the relationship between maximum growth rate and 

substrate flow rate was investigated with lactate as the limiting factor of a culture of S. 

oneidensis MR-1. Here we considered the possibility that substrate flux to the biofilm limits 

power generation by determining the effective substrate flow rates at 1ml/min, 3ml/min and 
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Figure 13: Volumetric Power Density at each Lactate Concentration - (A) Maximum 

volumetric power density as a function of lactate concentration with error bars and SD based on 

the maximum power densities in experiments run in triplicate (B) Plot of saturation kinetics 

using Michaelis-Menten kinetic model with Ks = 6.15, R
2
 = 0.902 

 

 

Table 3: Maximum Power Density Normalized By Different Parameters at Each Lactate 

Concentration 

 

Lactate 
Conc. 

Max. 
Power 

Production Max. PD_An  Max. PD_Cat 
Max. 

PD_Mem 
Max. 

PD_An_Vol. 

Max. 
PD_Total 

Vol. 

(mM) (mW) (W/m
2
) (mW/m

2
) (mW/m

2
) (W/m

3
)  (W/m

3
) 

5 0.347 85.6 289 85.6 11.6 1.24 

10 0.549 136 458 136 18.3 1.96 

20 0.555 137 462 137 18.5 1.98 

(A) 

) 

 (B) 
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5ml/min. The maximum volumetric power density was obtained at each flow rate by using 

operational conditions of 10 mM lactate concentration (Figure 14), 12 cm
2
 of cathode surface 

area (Table 1), and 15ml of anode liquid volume based on the previous experiments. The most 

effective substrate feed rate on the MFC occurred at 5 ml/min and it produced its maximum 

volumetric power density in respect to anode liquid volume as 23.6 W/m
3
. Power densities of 

18.3 W/m
3
 and 17.7 W/m

3
 were achieved for substrate flow rates of 3 ml/min and 1 ml/min, 

respectively. The MFC with the optimized flow rate of 5 ml/min produced approximately 22 % 

higher power density compared to 3 ml/min. When 10 mM lactate was used as the carbon source 

in a dual-anode MFC system, the average doubling time during the exponential growth phase in 

fully anaerobic conditions was approximately 11 h, much slower than the 3 h doubling time 

observed for aerobic growth with 50 mM lactate in Tang et al., 2006 [29]. Maximum growth 

rates of 0.0263, 0.0640, and 0.0745 hr
-1

 were achieved for initial substrate flow rates of 1ml/min, 

3ml/min, and 5ml/min, respectively.
 
An average substrate consumption rate for S. oneidensis 

MR-1 in an anaerobic dual-anode system was found to be approximately 5.5 mM lactate 

consumed per day (0.23 mM lactate per hour) or 20.6 mg lactate consumed per hour and growth 

on lactate was saturated at a concentration greater than 20 mM.  

4.1.4 Comparison of Single-Anode Chambered and Dual-Anode Chambered MFC 

Performance  

 

The maximum power generation (W/m
3
) under optimized operational conditions was 

obtained and used to compare the reactor performance of the dual-anode chambered MFC with 

an existing reactor configuration using a single-anode chamber (Figure 15). The voltage and 
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Figure 14: The Effect of Substrate and Medium Feed Rates on Power Density 

 

 

 

 

Figure 15: Comparison of Maximum Power Generation on Single-Anode and Dual-Anode 

Chambered MFCs under Optimized Operational Conditions at 5 ml/min Flow Rate, 10 

mM Lactate 
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volumetric power densities obtained using single-anode chambered MFCs were generally lower 

than those produced by dual-anode chambered MFCs. An average voltage output produced by 

single-anode system was 0.226 V and 0.314 V was obtained by the dual-anode system (200 Ω 

external resistances). To determine what load (resistance) would produce the maximum power 

density the circuit resistance was varied from 20 to 450 Ω with optimized operational conditions. 

The maximum power from the single-anode MFC reached 20.3 W/m
3
 (standard deviation: 4.43, 

error: 2.56), producing a current of 1.69 mA (100 Ω) (Figure 16, 17). The MFC with dual-anode 

chambers generated 23.6 W/m
3 

(standard deviation: 2.25, error: 1.3)
 
with a current of 3.66 mA 

(50 Ω). 

The higher current achieved here was possibly due to the reduction of internal resistance 

within the system. As Figure 18 illustrates, the internal resistance can be evaluated by using the 

polarization slope method, as it was described in section 2.5.1 (Measuring internal resistance). 

The slopes of the polarization curve for single and dual MFC systems were linear over the range 

of 0.65 – 2.6 mA, Figure 18 (A) and 1.3 – 5.2 mA, Figure 18B, respectively.  The internal 

resistance (slope) was determined to be 106 Ω for the single-anode MFC and 58.3 Ω for the 

dual-anode MFC system, which is a reduction of 45% for the dual-anode system. For the power 

density peak method, the internal resistances yielded 100 Ω for the single and 50 Ω for the dual 

(Figure 16), which is quite similar to that obtained from the first approach of using polarization 

slope method. The reactor configuration of dual-anode chambers played a critical role in the 

reduction of the total resistance of the system by having reduced electrode spacing and by 

providing parallel electrical connectivity. Since the internal resistance of the MFC was primarily  



 

  38 

 

Figure 16: Power Density and Cell Voltage Curves - By switching out the circuit load; we 

obtain a data set on the cell voltage and the volumetric power density as a function of resistance 

(A) Single-Anode Chambered MFC (B) Dual-Anode Chambered MFC 

 

 

 

 

 

 

 

(A) 

(B) 
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Figure 17: Power Density Generated as a Function of Current - (A) Single-Anode 

Chambered MFC (B) Dual-Anode Chambered MFC 

 

 

 

 

Figure 18: Polarization Curves - Cell voltage versus Current to obtain the polarization curve 

showing the regions of constant voltage drop (A) Single-Anode Chambered MFC (B) Dual-

Anode Chambered MFC 

 

(A) (B) 

(A) (B) 

Max PD at 1.69 mA 

Max PD at 3.66 mA 



 

  40 

a function of electrode spacing [9], the internal resistance of the dual-anode chambered MFCs 

was substantially lower than the single-anode chambered MFC. 

Ohm's law states that the current in a circuit is inversely proportional to the circuit 

resistance. The amount of current is determined by the total resistance of the circuit (internal and 

external resistances) and the measured cell voltage. In a parallel circuit the source current divides 

among the available electrical paths or number of anodes in our system. Hence, the dual-anode 

chambered MFC can yield the higher current by lowering internal resistance. For the same 

voltage rating, a larger MFC (dual-anode chambered) tends to have a larger amount of stored 

charge and be able to supply higher current for a given time (Amp). The amount of charge 

passing through a point over a given period of time produces an electric current such that  

I = Q/t 

where I is the current in amps, Q is charge in coulombs and t is time in seconds.  

4.2 Dual-Anode Chambered MECs for Hydrogen Production 

Hydrogen gas was produced with dual-anode chambered MECs when current generation was 

forced by applying a small external voltage (> 0.2 V in practice) between the anode and the 

cathode, causing hydrogen gas to be produced at the anaerobic cathode through the reduction of 

protons. In this study, I used optimized operational conditions that were determined in the power 

generation experiments described above. These operational conditions were included 10mM of 

lactate concentration, 5 ml/min of substrate flow rate, and the cathode surface area of 12cm
2
. The 

amount of hydrogen produced per mol substrate consumed was used as the hydrogen yield. The 

maximum hydrogen yield was 0.438 mol H2 per mol substrate at an applied voltage of 0.5V 

using 10 mM lactic acid, with a production rate of 0.165 m
3
 H2 per m

3
 reactor per day, based on 
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the anode liquid volume. Using lactate, an average substrate consumption rate of 2.19 mM/day 

was determined. For this specific substrate, the theoretical number of moles of hydrogen that 

could be produced by complete oxidation of the substrate was 4.6 x 10
-3 

mol H2 per day. The 

total moles of hydrogen recovered based on the measured current was determined as 3.36 x 10
-4

 

mol H2 per day, and the coulombic hydrogen recovery or the total recovered moles of H2 vs. the 

theoretically possible was found to be 7.3%. Based on the electrical power production using the 

same operational conditions, the molar yield of hydrogen per substrate can also be predicted 

assuming 100% cathode conversion efficiency as 0.851 mol H2/mol substrate, which is double 

the amount of hydrogen produced by an MEC. This calculation can be achieved using the 

maximum current (3.66 mA) produced by the dual-anode chambered MFC (Figure 17B) and an 

average substrate consumption rate of 5.12 mM per day which was obtained in the dual-anode 

chambered MFC for electricity production.  

The low recovery of hydrogen achieved in the MEC experiment in comparison with the 

theoretical hydrogen recovery was thought to be due to the overpotentials associated with the pH 

gradient. The transport of cation species other than protons across the PEM may have caused a 

pH increase in the cathode chamber. As the Nernst equation states, every pH unit difference 

between anode and cathode increases the equilibrium potential Eeq by about 0.06 V, which 

requires additional energy (applied energy) in order to generate hydrogen in the MEC [14]. This 

may help explain why bacteria like S. oneidensis MR-1 that produce acetate and hydrogen, 

cannot further convert the remaining acetate to hydrogen completely. Based on the HPLC 

analysis, acetate was found as one of the end products from lactate metabolism by S. oneidensis 

MR-1. According to the literature, the major products of lactate metabolism are acetate and 
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pyruvate, with over 70% of the lactate being converted to acetate, pyruvate, and succinate under 

anaerobic growth of S. oneidensis MR-1 in lactate minimal medium [32].  
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CHAPTER 5                                                                                                                                                       

CONCLUSIONS 

Dual-anode chambered MFCs exhibit higher current production than single-chambered 

MFCs. The internal resistance of the MFC was significantly lower in the dual-anode 

configuration (two chambers flanking a single cathode chamber) compared to the single anode.  

This was achieved by reducing the spacing between electrodes and by providing parallel 

electrical connectivity. The dual chambered MFC displayed a maximum volumetric power 

density of 23.6 W/m
3 

when operated in continuous flow mode under optimized operating 

conditions. This was higher than 20.2 W/m
3
, the maximum power density achieved by the 

single-anode chambered MFC. The internal resistance was reduced by 45% from 106 Ω (single-

anode) to 58.3 Ω (dual-anode), which indicated that a dual-anode produces about twice as much 

current per unit anode volume as a single-anode (3.66 mA and 1.69 mA, respectively).  

As discussed in the introduction, it was expected that hydrogen productivity in the MEC 

would be optimized at the same conditions where electrical energy production was optimized. 

However, the dual-anode chambered MEC design operated at an applied voltage of 0.5V 

demonstrated volumetric hydrogen production rate of 0.165 m
3
 H2 per m

3
 anode liquid volume 

per day and a hydrogen yield of 0.438 mol H2 per mol substrate. These values were lower than 

the values (2.01-3.95 mol H2/mol substrate, 1.1 m
3
 H2/m

3
 reactor/ day at applied voltages of 0.2 

to 0.8 V using acetic acid) obtained from the hydrogen production by bacterial fermentation of 

glucose [7], but the volumetric hydrogen production rate was greater than the rate (0.02 m
3
 

H2/m
3
 reactor/day at an applied voltage of 0.5 V) found using a H-type MFC [14].  
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