The Annals of Statistics
1993, Vol. 21, No. 2, 903-923

AN ANALYSIS OF BAYESIAN INFERENCE FOR
NONPARAMETRIC REGRESSION!

By Dennis D. Cox

Rice University

The observation model y, =g(i/n)+e¢, 1<i<n, is considered,
where the ¢’s are i.id. with mean zero and variance ¢2 and B is an
unknown smooth function. A Gaussian prior distribution is specified by
assuming f is the solution of a high order stochastic differential equation.
The estimation error 5§ = 8 — f is analyzed, where B is the posterior
expectation of 8. Asymptotlc posterior and sampling distributional approxi-
mations are given for ||5]|2 when || - || is one of a family of norms natural to
the problem. It is shown that the frequentist coverage probability of a
variety of (1 — a) posterior probability regions tends to be larger than
1 — a, but will be infinitely often less than any ¢ > 0 as n — « with prior
probability 1. A related continuous time signal estimation problem is also
studied.

1. Introduction. In this article we consider Bayesian inference for a
class of nonparametric regression models. Suppose we observe
(1.1) Y, =B(t,;) + ¢, 1<iz<n,
where ¢,, = i/n, B: [0,1] - R is an unknown smooth function and €4, €g,...
are i.i. d random errors with mean 0 and known variance o2 < «. The ¢, are
modeled as N(0, ?). A Gaussian prior for 8 will now be specified. Let m > 2

and for some constants a,...,a,, with a,, # 0 let
m .
L= Y a,D
i=0

be a constant coefficient linear differential operator (D = d /d¢). Let w denote
a standard Gaussian white noise on [0, 1], which is formally the derivative of a
standard Brownian motion (W(¢): 0 <¢ < 1). Let 3 be an m X m positive
definite matrix and let B,,..., B,, be boundary value operators of order
m — 1 or less, that is, B,(8) is a linear form in

B(0), B(1), DB(0), DB(1),..., D™ 18(0), D™18(1).
Assume that Lg =0 and B,(g) = O l1<i<m imply g=0. Then B is
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904 D.D. COX

assumed to be the solution of the stochastic differential equation
LB =w,
B(B) ~N(0,%),

where B(B) = (B{(p), ..., B,(B)). One may avoid the use of a white noise w
by writing an m X m first order system. Perhaps the simplest model of this
type is the integrated Brownian motion with random initial conditions. This is
obtained from D28 = w, (B(0), DB(0)) ~ N(0,%), so that () = B(0) +
(DBt + [EW(s)ds, with B(0), DB(0) bivariate normal. In general, one may
express B through a simple stochastic integral

(1.2)

B = [ 'G(t,s) AW(s) + (1),

where G is the Green’s function for the operator L with homogeneous
boundary conditions B,(8) = 0,1 < i < m [see Section 3.3 and 3.4 of Naimark
(1967)] and B,(t) is a solution to the homogeneous differential equation
(LB, = 0) with boundary conditions that agree with g (B,(B;) = B;(B), 1 <
i<m).

This specifies the prior for . The Bayesian model thus defined is very
similar to others that have appeared in the literature [Kimeldorf and Wahba
(1970a, b), Wahba (1978) and Wecker and Ansley (1983)]. Related models and
applications are discussed by Diaconis (1988). More abstract models are dis-
cussed in Section 2.

One of the attractive features of the Bayesian approach is that in principle
one can solve virtually any statistical decision or inference problem. In particu-
lar, one can provide an accuracy assessment for BA” = E[BY, ] using posterior
probability regions. For instance, letting || - || denote L,[0, 1] norm, one can in
principle determine a number A, such that

P[IA, - BI* < A,lY,] = 0.95,

thus giving a 95% posterior probability bound on the L,-norm of the estima-
tion error. A useful large sample approximation for A, follows from results
given below, namely

A, ~pn, + 16457,
where

1-1/(2m)

fo ~ (2rma; V™) B(1/(2m),1 - 1/(2m))(0%/n) :

2-1/(2m)

T~ (Zwma_l/m)clB(l/(zm),z - 1/(2m))(o?/n)

m

and B(x,y) is the beta function. [See (3.18), Theorem 3.1(a), (8.3), (38.1) and
the remarks after Theorem 4.1.] .
Non-Bayesians often find such Bayesian procedures attractive because as
n — o, the frequentist coverage probability of the Bayesian region tends to the
posterior coverage probability in ‘“typical” cases. It was my hope that this
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TaBLE 1

m 2 3 4 10 0

l-a 89.4% 90.5% 91.2% 92.7% 95%

would hold in the nonparametric regression setting, thus providing a method-
ology for constructing large sample confidence regions. Unfortunately, the
hoped for result is false in about the worst possible way, viz.,

(1.3) liminfP[|Ig, - BI* < A,18] =0, as.

Thus, if one fixes a sample path from the Gaussian prior, then the frequentist
coverage probability of the region {B: |8 — B,/ < A,} will infinitely often be
arbitrarily small as n — «, for almost all sample paths.

Nonetheless, for fixed n (large), the frequentist coverage probability is at
least 95% for ‘“most” sample paths in the following sense:

lim P[P[I1, - BI* < 4,18] = 0.95] =1 - a,

where 1 — o« depends on m as indicated in Table 1 (see Corollary 3.4).
The procedure analyzed here differs from that advocated by Wahba (1983)
and Wecker and Ansley (1983) in the following ways:

1. These authors use a model wherein 8 = 3, + 8, and B, is given a proper

prior of the type above but B, is finite dimensional and given a Lebesgue

prior.

We have assumed o2 is known.

These authors assume B = b, where B, has a given prior and b > O is an

unknown scale factor which is estimated.

4. Wahba (1983) considers the true function 8 to be fixed and smoother than
one generated by the Gaussian prior.

N

I conjecture that 1, 2 and 4 do not change the negative result (1.3). See Cox
(1989). Concerning point 3, (1.3) depends on the law of the iterated logarithm
fluctuations of the bias E[B, — B|B] about its mean (Lemma 3.2). Such
fluctuations undoubtedly impact the smoothing parameter estimation proce-
dure of Wahba (1983), known as generalized cross validation [see also Craven
and Wahba (1979) and Speckman (1983)], so (1.3) may not hold when b is
estimated.

In Section 2 we consider a general Gaussian prior on an abstract space. One
of the essential facts about Gaussian measures is the existence of the
Karhunen-Loeve expansion, which gives in our setup

B(t) = ¥ a,Bn(t),

v=1

where a, a,, ... are constants, B, By, ... are i.i.d. N(0,1) and 7,(¢), ny(®), ...
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is an orthonormal basis for L,[0, 1]. Our model for 8 as a solution of an mth
order stochastic differential equation allows fairly precise determination of «a,
as v - » [(3.2), noting that y, = a; 2]. Many of the results cited below depend
on the particular stochastic differential equation model (through the limiting
behavior of «,), although some generalization is clearly possible. In Section 3,
a continuous time analog of (1.1) is investigated, and in Section 4 it is shown
that the discrete time model (1.1) can be well approximated by the continuous
time model. In Sections 2, 3 and 4 we obtain results on the estimation error in
a family of norms indexed by a parameter p, denoted || - ||,. When p = 0, we
obtain L, norm (and hence the claims above), and when p > 0 the norms are
equivalent to certain Sobolev norms (basically L, norms on derivatives). These
norms allow us to show, for example, that (1.3) holds more generally than just
for L, norms. Section 5 contains some concluding remarks.

2. The abstract Gauss—Bayes linear model. In this section, we formu-
late and solve a general version of the abstract linear model when the error
vector is modeled as Gaussian with known covariance and a Gaussian prior is
used for the parameter vector. Well known results about Gaussian measures
on Banach spaces will be used, for which Kuo (1975) is an excellent reference;
see also Kuelbs (1970, 1971) and Kallianpur (1971). We will drop the subscript
n throughout this section as we only consider a fixed prior and observation.

Suppose ¢ is (modeled as) a mean 0 Gaussian random vector on a real
separable Banach space %/, and % is the generating Hilbert space (GHS) for
the Gaussian measure .~ (¢) = the distribution of £ on % [Z/ is also known as
the reproducing kernel Hilbert space for .#(¢); see Kuelbs (1970), Kallianpur
(1971) or Kuo (1975).] Let B be a mean zero Gaussian random vector on a real
separable Banach space ® with GHS 0, and assume 8 and ¢ are independent.
Now let

X.0->2
be a bounded linear operator, called the design operator, and suppose we
observe

Y = XB + o,

where o > 0 is known. We wish to estimate 8 from Y. To do this, we will show
that a posterior distribution exists and characterize it.

As a remark, we note that % plays little role in what follows—it is 2  that
is important. If it were not for the technical problem that _#(¢) will not live on
% when dim %'= », we could carry .out the analysis using only % with no
mention of Z/. Kallianpur and Karandikar (1985) have an elegant approach to
problems in this vein. Our approach here is in the more classical style using
ordinary measure theory, for which it is necessary to keep 2’ around.

ProposiTiON 2.1. There is a regular conditional posterior distribution
ZL(BIY), and in fact .Z(B|Y) is absolutely continuous w.r.t. the prior .2 (B),
written Z(BlY) < .Z(B).
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Proor. The assumption that the range #(X) € % guarantees the sam-
pling distribution #(Y|B) < #(o¢) by Theorem 3.1, page 118 of Kuo (1975).
An elementary Fubini argument completes the proof. O

As the inclusion map «: ® — @ is continuous, it follows that the restriction
X of X to O is in #(0, %), the set of all bounded linear operators from
O - Z. Let X* € #(%,0) denote the adjoint and put

U=X*X c #(0),

where Z(0) = #(0, ©). The description of the posterior is most easily accom-
plished using the singular value decomposition of X, given next.

LemMA 2.2.  There exist complete orthonormal systems (abbreviated c.0.n.s.)
(P v=1,2,...) for ® and {n,: v=1,2,...) for #(X), the closure of
R(X) in %, and constants a2 v = 1,2,...) such that Uy, = a2y, for all v,
and

(2]‘) Xl/’y = av"h, V v,
(2'2) X*nv = au"/’u’ V v,
(2.3) Y a2 < oo,

Proor. X =Xou and ¢ is a compact operator. Hence X, U and V = XX*
are compact. U is also self-adjoint and nonnegative definite on 0, so there are

nonnegative eigenvalues a?, a2,... and eigenvectors ¢, ¢,, ... such that (b,
is a c.o.n.s. for O, and Uy, = a%y, [Theorem 1.8, page 8 of Kuo (1975)]. We
assume w.lo.g. that af >af> ---. Put 1, = o, Xy, for a, > 0 and then

(2.1) and (2.2) hold. Now we have B = L (B, ¢,)e¥, with convergence -#(f)
a.s. in O, so XB =X, a, {B,¥,)en,. As this latter series converges .£(8) a.s.
in 2, and (B, ¢)e,{B,¥s)e,... are iid. N(0,1), it follows that Ta? < «,
Alternatively, one checks that V is the covariance of X8 in %, so trace
V=Xa?<w O

Even though 8 € ® with probability 0, the “stochastic linear functional”
B — (8, B)e is defined a.s. as a measurable map ® — R, for each fixed 6 € ©.
The properties of these maps are given by Kuelbs (1971) and Kuo (1975),
Lemma 4.7, page 78. Similar remarks hold for ¢ and <{¢,79)%, n € %. Note
that <Y, n)2 = (XB,n>z + 0{e, 1%, as. Since XB € %, the term {(XB,n)a
is defined as an ordinary linear furiction. We also have Karhunen-Loeve
expansions: if e, e,,... is any c.o.n.s. for O, then B =X (B,e,)oe, with
convergence in ®, almost surely. See Kuelbs (1971).

LEmMMA 2.3. Let Y, =<(Y,n,)2 and B, ={B,¥,)e,v=1,2,.... Then

Z(B1, Bz ---1Y) = ® L(B,IY,) = @ N((o? +a2) 'a,%,,[1 + (a,/0)]] ),
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that is, the posterior distribution of By, By, ... is that of independent normal
random variables with the indicated means and variances.

Proor. Put ¢, = (¢,m,)2. Then By, By, ...,£1,€5 ... are iid. N(O,1).
Also Y, = a,B, + o¢,. The result follows from this and elementary calcula-
tions. O

As the inclusion 1: ® — @ is continuous, every ¢ € ®*, the dual of ©,
defines by restriction an element of ©*. If we identify ® = @*, then * €
#(0*,0) satisfies ({,10)g+ 8 = (1*{,0)0, V 6 € ®. An inner product type
notation is being used for the (8*, ®) duality pairing.

THEOREM 2.4 _
(a) The posterior .Z(B|Y) on @O is Gaussian with mean

(2.4) B= (a2 I+U) 'X*Y, _£(B,¢)a.s.
and covariance
V=uI+0o2U) "

(b) 8 = B — B is independent of Y, and has a Gaussian distribution on ©
with mean 0 and covariance V.

ReEMARK. For (2.4) to make sense, we need to show X*Y is defined a.s. and
an element of @. Put

X*Y =Y, X*n, = Yo, Yy,
Note that LE[(,Y,)?] = ZaX(a? + 0%) < , so the series on the right con-
verges a.s. in @. Furthermore, we have for all § € ® that

(0, X*Y)e =(X0,Y)z as.,

as one can check from series expansions of both sides. The covariance operator
for a ® valued mean 0 random vector § is a linear operator V: ©* — 0O

satisfying E<§1, 5>@*,@<§2, 5)@*,@ = <{1,V§2>@*,@ for all {1, 4o € 0*.

Proor or THEOREM 2.4. B = ¥ ¢, with a.s. convergence in 0. Hence, if
{ €07,

(L, BYe*8 = Y BAL W Ye s = 2 BAKL U, )e.

As ¥ (¥, t//,,)% = |e*Z 1% < o, it follows from Lemma 2.3 that LKL, BrexslY)
is Gaussian with mean

p=Y (02 +a) @, Y*, 0,

v
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and variance
= L[+ (aso)] b
Note that :
(L@ + U) " X*Y )5, o = (0% + U) 'L, X*Y),
= L@+ U) ', 8,)o(a,1,)

= Za,,(0'2 + 013)_1<L*§, v,eY, = 1.

Also (¢, (I + a2U) ™ %*{ g+ e = 72. This completes the proof of (a).
Put 6, ={8,¥,)6 =B, + (62 + a®)"'a,Y,. It is easy to check that §, i
Gaussian and independent of Y, hence Y. The rest of (b) is easy. O

Now we introduce a parametrized family of Hilbert spaces which is natural
for the problem. For convenience, assume

(2.5) R (X*) is dense in O,
where Z(X*) = #(U) is the range of X*. Also, put
’YV = a 2 ¢ = a_ldf N

For p € R let ®, be the Hilbert space obtained by completin the set of
finite-norm elements of ® under the norm given by [16ll, = <8, 6),”%, where

<01’ 02>P = Z’YV <017 U¢v>®<027 U¢v>®'
We collect some elementary facts about these spaces.

ProposITION 2.5. Suppose (2.5) holds, then:

(@) (0,0>=(8,U{>e, and {¢,: v =1,2,...) is a c.o.n.s. for ©,.

(b) O, = 0.

() X extends to a Hilbert space isomorphism from ©, to the % closure of
R(X).

(d) If p > 7, then ®, C O, with continuous inclusion.

(e) Letting ¢, denote the mcluszon 0® — 0, where p < 1, and identifying O}
with ©, in the usual way, we have ¢ = Ut "

(f) ©, supports £(B) if and only if T,yf~ 1< w,

Proor. (a) and (b) are elementary. For (c) note that X¢, =, and
(8,Ud,>e = (X8,7,Y2. For (d) note that [|0]> < (max, y*~)IIg|I%, and the
max, y£ " is achieved at a finite, positive Value by . 3) For (e), note that
Ul"’cb =y (1=P¢ and by comparison of the series defining the two sides of
(1,0,m), = {6,1%n)1, one obtains that in =X, vy, ¢ "(n, U, )1, which
gives the result
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Turning to (f), suppose ©,y”~! < . Then the operator D: ® — O given by
Do =X,y V720, ¢, ¢, is Hilbert—Schmidt, so the norm ||| - ||| on ® given
by I8l = |D6ll; is a measurable norm [Exercise 17, page 59 of Kuo (1975)]
and hence the completion of ® under || - || supports #(B) [Theorem 4.1,
page 63 of Kuo (1975)]. One easily checks that ||| - [l = |- |l,. Conversely,
suppose ©, supports -#(B), and let us calculate the covariance operator V for
Z(B)on 0,. For 6 € O,

2
<0’ V0>p = E<073>F?; = E|:(Z‘)/f<6, ¢V>O<B’ d’v)O) :|

2
= E[(va*ww,%)oﬁv) } = Yy X8, Us, N
= Y9240, 0,00(U? 710, 0,50 = (8,U° 18,

and since O is dense in ©,, we can identify V = Uur-l=, o5 Now V must be a
trace class operator {Theorem 2.3(a), page 29, and Definition 2.2, page 16 of
Kuo, (1975)], and the eigenvalues of V are {y? !}, so Zy# ™! < ». O

3. Continuous time estimation. In this section we consider a continu-
ous time analog of the problem from Section 1. It will be seen in the next
section that the sequence of experiments with discrete observations can be
sufficiently well approximated by a sequence of experiments with continuous
observations that the limit theory of the latter is inherited by the former.

Suppose (B(#): 0 <t < 1) is the stochastic process of (1.2) and let {&(¢):
0 <t < 1) be a standard Gaussian white noise. Consider the sequence of
experiments with observations

Y, (t) =B(t) + n 2%0e(t), O0<t<l,
where o > 0 is a constant. We write
(3.1) A, =02=0%/n.
Now the GHS for #(¢) is
%= L,[0,1].
0, the GHS for .Z(B), is equal as a set to the Sobolev space
Wy = W,r[0, 1] '
= {f: f maps[0,1] - R, and
f, Df,..., D™ 1f are absolutely continuous with D™f € L,[0, 1]}

The O inner product is

(8, Y0 = B(OYS'B({) + fol(L())(L{).
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One can show that || - |l is equivalent to | - [|wy:, where
||0||%V2'" = ||D'"19||2L2 + ||0”L2~

Now let © be a Banach space which will support .#(8) and is contmuously
imbedded in L, (i.e., 0 ¢ L, and has a stronger norm), for example, 0=Cm"
or W,° 1. Let X @ — L, be the imbedding operator (X6=20),s0Y=XB+
0,€. Then X, the restriction of X to @, is the imbedding of ® in L,. To
1dent1fy X*, start with

[{(LO)(LX*n) + B(8)Y S 'B(X*n) = [on
0 0

valid for 8 € ® and n € %. Apply integration by parts to the integral [as in
Section 1.5 of Naimark (1967)] and express the L.h.s. as

m-1
[{@ L) (Xm0 + T [Co(X*m)DI0(0) + Cu( X*m) Do(D)].
j=0

Here L* is the formal adjoint of L. Also, C;,({)is a boundary value operator of
order 2m — j whose highest order term 1s of the form +a% D?™7/¢(i). Thus
¢ = X*n can be obtained as a solution of the differential equatlon

L*L{ =,
Ci({)=0, 0<j<m,i=1,2

To derive B = E[BlY,] = (A\,I + U)"'X*Y,, it is convenient to use the fol-
lowing characterization: B is the unique 8 € © such that for all 8 € O,

ALB,8Yo + (XB, X0)9 = (Y,, X0)q.

If one writes this out and uses integration by parts, there results that /§n is
the solution of the stochastic differential equation

(A, L*L + 1) =Y,
Ci(B)=0, 0<j<m,i=12

The ¢,’s and vy,’s are the eigenvectors and eigenvalues of the differential
operator L*L with boundary condltlons C,;=0,0<j<m,i=0,1 Since the
highest order term of C, () is +a? Dz’”_f{(z) the boundary condltlons are
regular by the argument on pages 60 61 of Naimark (1967). By Theorem 2,
pages 6465 of Naimark,

(3.2) y, = a2 (mv)*" (1 + O(v~%?)), v —>o.
(Note that the eigenvalues have to be real and positive.) Put

Cu(A, p) = Zv (1+2y,) "
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These quantities will have many uses. In particular note that
E| = Bl; = 1,Cy(A,, p),

n A 1112
Using (3.2), one can show that if —1/(2m) <p <1 — 1/(2m), then as A — 0
C.(A,p) ~ kA~p+1/@m) ooxz’"” 1+x2m) % gy
(3.3) #(A,p) fo [ ]
= KkA~PTVC™B(p + 1/(2m), k —p — 1/(2m)),

where
K= (27Tma1,,{m) i

and B(u,v) = I'(u)I'(v)/T(u + v) is the beta function. The derivation for the
asymptotic formula for C,(A, p) follows as in Corollary 5.4 of Speckman
(1981). The evaluation of the integral is given in Gradshteyn and Ryzhik
(1965), Formula 3.194.3, page 285.

Now 0, = L,, so our results for p = 0 will imply the claims made in the

Introduction. Also, ®;, = W,", where = means equal as sets and with equiva-
lent norms. From this it follows that
(3.4) 0,=W,"", 0<p<l.

The proof is most easily accomplished with the K-method of interpolation; see
Theorem 3.4 of Cox (1988).

One of the reasons the norms || - ||, are so useful is because we can derive
explicit limiting distribution results as A, — 0 for the norm of the error vector

anzﬁ_ﬁn'

THEOREM 3.1. Let —1/2m) <p <1—1/(2m).

(a) Put
pn(p) = A, Ci(A,, p),
T(p) = 2A%,Cy(A,,, 2p).
Then
L1815 ~ o] /m) = N(,1)
asn — o,
(b) Put

Q.(p,B) = 2Ly (L + A,y,) %(B82 - 1),

n2(p) = 214 [Cy(A,,20) + 4, CylA,, 1 + 20)].
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Then
L([184017 = 1 = Q] /malB) = N(O,1)
asn — o, Z(B) a.s.

ReMARKs. In view of Theorem 2.4(b), part (a) gives the asymptotic poste-
rior distribution for |I8n||§. Part (b) gives the asymptotic sampling distribution
of |I8n||§. Note that 1, is random as it depends on B.

Proor oF THEOREM 3.1. For (a), note that

18,115 = X v¢8,, 6,00 = Ly X6, 4,06

and <3,,¥)e,¢d,,¥se,... are independent normal with mean 0 and vari-
ance Var(s,,¥,0¢ = 1,7,(1 + A,y,)" L. The result follows from Lindeberg’s
central limit theorem after suitable truncation of the infinite series for |I8n||§.

Part (b) is somewhat more difficult. The conditional distribution of
(8,,¥10,{8,,¥3)0,... given B is that of independent normals with mean
A,%,8,(1 + A,y,)"! and variance A,y (1 + A,y,) 2 From this it follows that
Ell5,1218] = u,, + Q, and

Var(lls, 18] = n2 + 403 Lyl 2(B2 - 1)(1 + A,y,) ~*

From (8.3) we have 72 = A2~2¢~1/2™) while from Lemma 3.2, the second term
above is 0(A%"2¢~1/@m) 3.5 Now the proof follows as in part (a). O

LEmmMa 3.2. Let 7> 1/(2m) and k be such that

(3.5) k>71+1/(4m).
Put

wo(n) = X (A) (1 + Ayw) (82 - 1).

v=1
Then for some C € (0, »),

lim sup A4 (loglog n) " ?w(n) = C, a.s.,

n—wo

lim inf AL/#™(loglog n) ™ ?w(n) = —C, a.s.
n—ow

Proor. The first step is to show that there is a probability space carrying a
probabilistic replica of w(n), also denoted w(n), and a standard Wiener process
{W(): ¢ = 0} such that the process given by

V(s) = — [ W(st)g(t)dt, s=0,
0

g(t) = (d/dt)r(t*™),  h(x) =x7/(1 +x)"
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satisfies
(36)  |w(n) —22V((cr,) ™)| = o(a; /4™ (loglog n)"?)
almost surely, where

¢ = (2mmal/™)".

Note that (3.5) guarantees convergence of the integral defining V.
Let S, = ¥%_27%(B? - 1) and

Dy(n) =272w(n) = = X S,[A(A%r1) — R(A7)],
where the last formula follows by partial summation. By Theorem 2.6.1, page
107 of Csérgs and Révész (1981), there is a probability space carrying a version

of {S,: v = 1,2,...} and a Wiener process {W(¢): ¢ > 0} such that for all § > 0,

as v — o
(3.7) |S, — W(v)| =0o(v°) aus.
Let

Dy(n) = - LW@)[A(A11) — R(A7)]

Note that
|h(A7V+1) - h(/\YV)i = A[YV+1 - YV]ih,(/\i/V)l’
where y, < ¥, < vy,.,. Utilizing (3.2) one can show that
(3.8) Yor1 = % = 2mv®™ (1 + O(v™17%)).
Also,
| (My,)] < Cl[()\vzm)T_l(l +ear?™) T b (Aw2m) (1 + cap?m) BT
for some C; € (0, «). Collecting things together we have

[Dy(n) = Dy(n)] = Co7?/Em Y (A, 07

(3.9) X [(Aw2m) (1 + ey
F(A?) (14 er,pom) e,

where C, € (0,%) is random [from (8.7)] and depends on §. Note that the
summation above tends to a finite integral as n — «. Hence, taking 6 < 1/2
gives that

|Dy(n) = Dy(n)| = o(A; /4™ (loglog n)"%).
Next we show that Dy(n) is suitably close to
Dy(n) = = LW(r)(cd,) ™ g((cr,) ™).



BAYESIAN INFERENCE 915

Two applications of the mean value theorem along with (3.8) yield
| Dy(n) — Dy(n)|

< CTIW@) (2,22 1) (1 + O(v V) W' (cA, v [1 + O(v 1))

for some C € (0, »), almost surely. If one uses the fact that |W(v)| = O(») a.s.
and applies the same argument that was used on (8.9), it can be shown that
the last expression is O(1) a.s., which is o(A,“™)loglog n)/?). [The as-
sumption 7 > 1/(2m) is needed here to guarantee that a summation con-
verges to a finite integral.]

Now let D(n) = V((cA,)”/®™), Then

(3.10) |Ds(n) = Dy(n)| < (er,) V™ L Z,d

nv?

where
Z,- sup |W(t) - W()|

v
v<t<v+1l

is a sequence of i.i.d. random variables and

g/([ex, "y + @)
for some «,, €1[0,1]. Now P[Z, > y] = 4P[W(1) > y], so as v — o,
Z,=0(logv) a.s.

Plugging this into (3.10) and using a familiar argument shows that for any
6>0

d =

nyv

|Dg(n) — Dy(n)|=0(A,%) as.

as n — ., This completes the proof of (3.6).
Now we show that if s, = 7~ A /®™) then for some C € (0, %)

(3.11) lim sup (s,, loglog sn)_l/zV(sn) =C as.
Since loglog s, = loglog(m 1o~ 1/™nl/@m™) ~ loglog n, the lemma will follow

from (8.6) and (3.11). (Note that the corresponding lim inf in (3.11) will be —C
by symmetry.) Put

Y(u)e %*V(e*), —o<u<wo,
un=logsn=A+(2m')7llogn, n=12,...,

where A = —log mo!/™ is a constant. One can check that Y(u) is a stationary

mean zero Gaussian process with covariance
(u) = e 2 [ G(e™"t)G(t) dt,
0

G(t) = h(t™).
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Equation (3.11) will follow by showing
(3.12) lim sup (log « ;) 2¥(u,) = (2F(O))1/2 a.s.

To prove this latter we will apply Case 2 of Theorem D of Qualls (1977) with
a = 2. Assuming this result applies, it states that for ¢ > 0,

P[Y(u,) > ¢(T(0)logu,)"*] =0 or 1

according as the integral
fwt_cz/z(log £)¢/*(log ¢ — % loglog t)_l/2 dt <o or =oo.
1

This latter integral converges for ¢ > 2'/2 and diverges for ¢ < 2'/?, which
establishes (3.12).

In order to apply the aforementioned result in Qualls (1977), it is necessary
to check that Y has continuous paths, I'(x) = o(1/log u) as u — «, and
I"(0) < 0. To show Y is a.s. continuous, it suffices to show that V is a.s.
continuous on [0, ), and for this it suffices to show V is a.s. continuous on any
finite interval [0, b] and then let b — « through some countable set. Now let A
be an event of probability 1 on which W is continuous and for which there
exists T, (depending on the path of W) such that for all T > T,

(3.13) (2T loglog T)™"/? sup |W(t+s)— W(t)|<2.
0<t<T/2
0<s<T/2

Such an event A exists by equation (1.2.4), page 30 of Csorgé and Révész
(1981). Let £ > 0 be given. Pick T, > T, such that

(3.14) 4[:/%4(1»5 loglog bt) /% g ()| dt < £/2.

This is possible by (3.5). Now
sup  [V(s1) — V(sy)]
0<s,<sy<b

<[ sup | W(syt) — W(syt)|1g(2)]dt

T1/2b 0<s;<sy<b

T,/2b
+[0 sup  |W(sy2) — W(syt)|lg(t)|dt=1, + I,.

0<s,<sy<b
Since
sup |W(st) — W(spt)| < sup |W(u+v)— W(u)

0<s,<sy<b O<u<bt
O<v<bt

it follows from (3.13) and (3.14) that I, < e/2. A straightforward uniform

continuity argument shows that there is a § > 0 such that [s; — s,/ <8
implies I, < £/2. This completes the proof of continuity.
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To show I'(x)=o0(l/logu) as u — », we have for u >0 and 7 #
1/2)k - m

I'(u) < e tr2rr/@mu [flt‘/’”[l 4 em] T g
0

+ feut(zT‘k’/(2m> dt + ek”/<2m>fwt<7—k>/m dt]
1 ou
= O(e—(1/2+7/(2m))u) + O(e((T—k)/(Qm)+1/2)u)‘

As all the exponents are negative, the desired result follows. If r = (1/2)k — m,
then the middle integral is treated differently but the result still holds.
To show that I'"(0) < 0, first note that

(3.15) I"(0) = i[sz(t) dt + fw[2tg(t) + t2g'(¢)|G(¢) dt.
0 0

The calculation is carried out by differentiating under the integral sign which
is justified by the dominated convergence theorem and by the fact that there
exists a constant c¢ such that for all u €[—1,1], |G(e *#)|, |tg(e *t)| and
[t?g'(e~“t)| are all bounded by ¢ min{1, £}2™"~%) which is square integrable on
(0, ) by (3.5). Noting that the quantity in brackets on the r.h.s. of (3.15) is
(d/dt)t%g(#)], an integration by parts will yield

I"(0) = ij:Gz(t) dt - f:tzgz(t) dt.

Let I; denote the first integral in this last expression and I, the second. Then
integration by parts gives

I = —2fwtg(t)G(t) dt
0

and Cauchy-Schwarz applied to this integral gives I, < 2I}/?I})/? which
implies I; < 41, and hence I'"(0) = (1/49)I, - 1, < 0. O

CoroLLARY 3.3. Let —1/(2m) <p <1 - 1/(2m). Suppose that A,, > 0 is
chosen so that

(3.16) PlIB, - BIZ<4,Y,]=1-a
for some a € (0,1). Then
(3.17) lim infP[II8, — I} < A,18] =0, a.s.

Proor. By Theorem 3.1(a)
(3.18) A, ~p, +z,71,
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where z, is the upper 100a% point of the N(0,1) distribution. By Theorem
3.1(h)

P18, — Bl < 4,18] = @((z.r — Q) /7,)| = 0

a.s. as n — », where ® denotes the N(0, 1) distribution function. [Note that
convergence in distribution to N(0,1) implies uniform convergence of the
distribution function to ®.] Now r,/7n, tends to a finite limit and

~ \l—-p-1/(4
nn~/\np /(4m)

by (3.3). Hence, by Lemma 3.2
liminf(z,7, — Q,)/n, = —,

which proves (3.17). O

CoroLLARY 3.4. With the setup of the previous corollary, the prior probabil-
ity that the (1 — a) Bayesian posterior probability region {6 € ©,: [|B,, — ol <
A,} is conservative in its frequentist coverage probability tends to P(z, (1 —
ri2X1 — r2)~1/%), where

ri=(1-p—-1/(4m))(2p/3 - 1/(6m)).
Proor. We wish to calculate
P{p: P[IIB, - Bl < A,18] = 1 - a}.
The difference between this and
PlO((2,7, = 0,)/n,) = 1 - a] = P[Q, < (7, = n,)2]

tends to 0. One can show as in Theorem 3.1(a) that £(Q,, /(72 — n2)1/?) =
N(0,1). Using this and (3.3) one can show that the last displayed probability
tends to a limit of the form ®(z, R) where R is an algebraic form in some beta
functions. If one substitutes B(x,y) = ['(x)['(y)/T'(x + y) and uses the recur-
rence relation T'(x + 1) = xT'(x), then the claimed result follows after some
algebraic manipulation. O

4. Discrete time estimation. In this section we consider the original
discrete time problem in (1.1), where 8 is given the prior specified in (1.2). By
virtue of the next result, it follows that Theorem 3.1 and Corollaries 3.3 and
3.4 hold in this setting as well, thus justifying the statements made in the
introduction.

THEOREM 4.1. Suppose that m > 2 and
-1/2m) <p<1-1/(2m)
and that
E|8<|2+8 < o,

14
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where
6=6/(2m — 3).

Then there exists a probability space carrying versions of B, €1, &q4,... and a
sequence {£,(¢): 0 < ¢t < 1} of Gaussian white noises such that if

Y, =8(i/n) +e, 1<i<n,
B, =E[BY,], 5,=B. -8B,
Y, (t) =B(t) + on~Y2%,(t), 0<t<]l,
B.=E[BIY,], 8.=8.-8
then
18, — 8,112 = 0,(A,*).
REMARKS. Note that [15, /12 = O,(AL77~1/@™) follows from E|I5,|I5 = u,(p).

Since 118, — 5,112 = 0,(AL,71/@™) it follows that [3,]7 = O,(AL P ~1/@m),
Hence

[ 18,05 = 18,151 < 3, = 8,1, 13,1, + 15,1,
= 0, (XLP/2)Q (AL=P=1/@mN/2) ¢ ()N =p=1/Gm)Y,

Now 7, = AL72~1/@m) gand 5 = AL7#~1/4m) g0 we may replace the continuous
time estimation error (now denoted 5,) with the discrete time estimation error
8, in Theorem 3.1, and the results still hold. Corollaries 3.3 and 3.4 depend
only on these results and the properties of 2, which depends only on B.

Proor or THEOREM 4.1. We have
18, = 8,12 < 2lir, — 5,12 + 2| (B, - B,)B].
where
r.=B.~E[B.B], s.=B. - E[B.I8],
BB =E[f, - BIB] = [(1\.I+ U, 'U, - 1],

B,B=E[f,-pig] = (1. 1+U)'U-1]B.

We will show that each of the two quantities on the r.h.s. of the inequality
above has the correct order as n — x.
Now

ro= (AT +U,) ' X5g,
and following the notation of Cox (1984b) put
Fo= (A, 1+ U) "X,
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Now we apply some results in Section 4 of Cox (1988). One can show that for
all x;,x, in ®

K(U = U, xy, x9 6| < Cn Yzl mlixsllo + llagllollxalli/ m],

where C € (0, ») is a constant, so Assumption 4.1(f) of Cox (1988) holds with
k,=Cn"',s=1/m, j = 2. See the remarks after this assumption for a proof
of the above inequality. Now by equation (4.6) of Cox (1988),

Elr, — Fl2 < Cn=2[Cy(A,, p + 1/m)Ellr,lI§ + Co(Ay, p) Ellr,3 m] -

This latter inequality can be inverted for p = 0, 1 /m to give bounds on E Hrnll(z)
and EHran/m in terms of EHFnH% and EHFan/m. When these are substituted
back into this inequality and the estimates on C, are used there results

Ellr, — 7 lI2 < Cn=3 ¢ =2/,
It is easily seen that this last quantity is o(A}, ") as m > 2.
Now put
= 12 {1 -1
§,=on 2 [{(A,I+U)'E(2) dB, > F,(2),
0

where F,(¢) = n"'[nt] as in (3.7) of Cox (1984b), then following (3.9) of that
paper,

7, — 5,012 = n71Cy(A,, p + 1/m)o(n=2/C+)

a.s. Using the estimate of C,, the definition of A,, and the hypothesis that
8 = 6/(2m — 3), it follows that the last displayed quantity is o(A*), a.s.
Next, we have from (3.10) of Cox (1984b) that

15, — 8,15 = 0,(n" (n""log n)Cy(A,, p + 1/m))
and this is 0,(A}*). This completes the proof that
I, = 8,15 = 0,(A47°).

Finally we must take care of |(B, — B,)BIl%, where B, and B, denote the
bias operators for the respective problems. Let max{p,1/m} <7<1—
1/(2m), and let || - ||;,, denote the operator norm of a linear operator from @,
to ®,. Then by equation (4.6) of Cox (1988),

1B, ~ B,ll., < CnHC3% (A p + 1/m)lIB, o
+Czl/2()‘ns p+ l/m)/\lrz/(zm)llgnll"‘,l/m
+C3/%(Ay, ) A VE™INB, - o

+021/2(/\n, p)“B-n”'r, l/m}'

Now by Theorem 2.3(c) of Cox (1988), |B,|l,., < CA™»/2 aslong as p < 7 <
p + 2. Plugging this into the above expression and using the estimates on C,
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yields

5 —p— 1/2
IB, = B,ll,,, < C{(xg»=3/@m+e)1/2,

Now
(B, - B,)8l; < cxre—vem g2,

As r <1~ 1/(2m), lIBlI2 < » a.s., by (3.2) and Proposition 2.5(f), and so the
last expression is a.s.

0,(AP3/@m 7Y — o (XL=P). o

5. Concluding remarks. To provide more insight into the foregoing
analysis, consider the case where dim ® = k < «, Then it is easy to obtain the
analog of Theorem 3.1. Calculating the asymptotic posterior distribution of
16,112, we have

k
A1512) = | 2 A1+ ) )

v=1
Since (1 + A,y,) ' > lasn - «for v =1,2,..., k, it follows that
k
L(ANS,IE) = /( z %”83),
v=1

where the distribution on the right is a weighted sum of y? random variables.
The corresponding calculations for the sampling distribution are

k
Z(118,11318) ==/(An v (L +A,y,) el
v=1
k
+AY2 Y 2R (1 4 Ay,) T2, B,
v=1

&

LR T (1 4 mrzfss).
v=1

The second and third summations on the r.h.s. (which result from the bias) are

each 0,(A; 1), so

k

A58 =~ | 5 )
! v=1
Thus, the asymptotic posterior and sampling distributions are identical, so a
(1 — @) posterior probability region of the form in (3.16) has (asymptotically)
the right coverage probability from the sampling point of view. This results
from the fact that the random (conditional on B) variability dominates both
the sampling and posterior distributions, with the bias E[ ﬁn — BIB] being of
smaller order.
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In the setting of the foregoing analysis, the bias and random variability are
always of the same order of magnitude. This is the driving force behind
Corollaries 3.3 and 3.4.

Concerning extensions of the major results (Theorem 3.1, Lemma 3.2 and
Theorem 4.1), one would like to loock at more general Gaussian priors and
more general quantities than HBnHi. I believe that analogous results can be
obtained for Hb‘nll,z, in any setting wherein y, = v” for some r > 0 [see Cox
(1988)]. The specific setting here allowed us to use the sharp eigenvalue
asymptotics (3.3) at some points in Lemma 3.2 [see (3.8)]. The extension to
other quadratic forms can also probably be accomplished. As in Wahba (1983),
we would like to construct a confidence interval for 8(¢) for some ¢ € [0, 1]. In
the setup of Section 3, note that

A(3,(0) = N[0, (1 + 4,2) 7620

(5.(018) = N[ M0, E 1+ A0) *62(1))
where

Mn = ’\nZ'le/z(l + )\n‘)’v)_lﬁuqbu(t)'

I conjecture that both variances above are approximately AL~ /™) and also
that

lim sup [ A¢~/@™)(loglog 1/A,,)] 2M, € (0,%), as.

n—o

This would imply analogs of Corollaries 3.3 and 3.4 for the ‘“confidence”
intervals for §,(¢). The difficulty here is in obtaining results on the behavior of
¢,(¢). In the setting of periodic smoothing splines, one can obtain concrete
results [Cox (1989)].
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