
An Analysis of BGP Convergence Properties

Timothy G. Griffin Gordon Wilfong

griffin@research.bell-labs.com, gtwQresearch.bell-labs.com

Bell Laboratories, Lucent Technologies

600 Mountain Avenue, Murray Hill NJ

Abstract

The Border Gateway Protocol (BGP) is the de facto inter-
domain routing protocol used to exchange reachability infor-
mation between Autonomous Systems in the global Internet.
BGP is a path-vector protocol that allows each Autonomous
System to override distance-based metrics with policy-based
metrics when choosing best routes. Varadhan et al. [18] have
shown that it is possible for a group of Autonomous Systems
to independently define BGP policies that together lead to
BGP protocol oscillations that never converge on a stable
routing. One approach to addressing this problem is based
on static analysis of routing policies to determine if they are
safe. We explore the worst-case complexity for convergence-
oriented static analysis of BGP routing policies. We present
an abstract model of BGP and use it to define several global
sanity conditions on routing policies that are related to BGP
convergence/divergence. For each condition we show that the
complexity of statically checking it is either NP-complete or
NP-hard.

1 Introduction

Dynamic routing protocols for II’ come in two basic flavors.
Interior Gateway Protocols (IGPs) are used for routing within
Autonomous Systems (ASes) while Exterior Gateway Proto-
cols (EGPs) are used for global routing between ASes [15, 91.
Currently, there is only one EGP in use - the Border Gate-
way Protocol (BGP) [16, 7, 171. BGP is a path-vector pro-
tocol, which is a type of distance-vector protocol where best
route selection for an Autonomous System is a function of its
routing policies and the best routes of its neighbors. BGP al-
lows routing policies to override distance-based metrics with
policy-based metrics.

While the routing policies of each individual AS may be
locally reasonable, there is no guarantee that the interaction of
independently defined policies will be globally reasonable. We
are not referring to the misconfiguration of BGP. The BGP
policies are currently implemented locally with little global
knowledge. A collection of locally well-configured policies can
still give rise to global routing anomalies.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan-

tage and that copies bear this notice and the full citation on the first page.

To copy otherwise, to republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

SIGCOMM ‘99 S/99 Cambridge. MA, USA

0 1999 ACM l-58113-135~6/99/0008...$5.00

While most routing policy conflicts are of a manageable
nature, with BGP there is the possibility that they could lead
the protocol to diverge. That is, such inconsistencies could
cause a collection of ASes to exchange BGP routing messages
indefinitely without ever converging on a set of stable routes.
While pure distance-vector protocols such as RIP [8] are guar-
anteed to converge, the same is not true for BGP. The proof
of convergence for RIP-like protocols (see for example [3]) re-
lies on the monotonicity of the distance metric. Since BGP
allows individual AS routing policies to override the shortest
path choice, this proof technique cannot be extended to BGP.
Indeed, Varadhan et al. [18] have shown that there are routing
policies that can cause BGP to diverge.

Is it possible to guarantee that BGP will not diverge?
We call this the BGP wnwergence problem. BGP divergence
could introduce a large amount of instability into the global
routing system. Several studies [6, 12, 14, 131 have examined
the dynamic behavior of interdomain routing and have high-
lighted the negative impact of unstable routes. However, we
are not aware of any instance where routing instability has
been caused by protocol divergence, and it is impossible to
say if divergent BGP systems will arise in practice. On the
other hand, given the economic importance of the Internet, we
believe that it is worthwhile to consider worst-case scenarios
and to provide safeguards where possible.

Broadly speaking, the BGP convergence problem can be
addressed either dynamically or statically. A dynamic solution
to the BGP divergence problem is a mechanism to suppress
or completely prevent at “run time” those BGP oscillations
that arise from policy conflicts. Using route flap dampening
[19] as a dynamic mechanism to address the BGP convergence
problem has two distinct drawbacks. First, route flap damp-
ening cannot eliminate BGP protocol oscillations, it will only
make these oscillations run in “slow motion”. Second, route
flapping events do not provide network administrators with
enough information to identify the source of the route flap-
ping. Route flapping caused by policy conflicts will look the
same as route flapping caused by unstable routers or defective
network interfaces. In Section 6 we consider what is required
of a dynamic solution.

A static solution is one that relies on programs to ana-
lyze routing policies to verify that they do not contain policy
conflicts that could lead to protocol divergence. This is essen-
tially the approach advocated by the Route Arbiter Project
as described in Govindan et al. [5]. This project has three
components. First, the Routing Policy Specification Lan-
guage (RPSL)[l] is a high-level vendor-independent language
for specifying interdomain routing policies. Second, Internet

377

Route Registries (IRRS) [lo] are used to store and distribute
RPSL specifications. Third, a collection of software tools,
called the RAToolSet [2], gives network administrators the
ability to manipulate and analyze RPSL specifications that
have been stored in the IRR. For example, the tool RtConfig
generates low-level router configuration files from high-level
RPSL specifications.

In this paper, we explore the worst-case complexity for
convergence-oriented static analysis of BGP routing policies.
We present an abstract model of BGP and use it to define
several conditions on routing policies that are related to BGP
convergence/divergence. For each condition we show that the
complexity of statically checking it is either NP-complete or
NP-hard. These results suggest that the static analysis ap-
proach to the BGP convergence problem may not be a prac-
tical one.

Given that routing policies may not be publicly available,
if unsolvable BGP policies are causing route-flapping, then the
“source” of the problem may be difficult to locate and may
require a high degree of inter-AS cooperation to debug. This
argues in favor of using a high-level specification language,
such as RPSL [l], for interdomain routing policies. High-level
policy specifications could be easily shared, at least when the
need arises.

Paper outline. In Section 2 we introduce an abstract
BGP to provide a framework in which we can formalize our
complexity results. Abstract BGP is simpler that the real-
world protocol. For example, we ignore address aggregation.
The model is based on an evaluation graph that captures all
possible asynchronous executions of the abstract BGP proto-
col. If this graph contains a state with a stable routing, then
the system has a solution and the corresponding set of routing
policies is solvable. Otherwise, the set of policies is unsolvable,
which means that the protocol can never converge.

In Section 3 we present several examples of BGP systems
that illustrate distinct types of routing anomalies. The system
called BAD GADGET is unsolvable, and is similar in spirit
to examples of [18]. Operationally, BAD GADGET causes a
divergence of the BGP protocol. The system SURPRISE is
solvable and will always converge on a stable routing. How-
ever, a single link failure is enough to transform SURPRISE
into one that will never converge. This shows that solvabil-
ity is not robust under link failure. The system DISAGREE
demonstrates the fact that BGP systems can have multiple
distinct solutions and that a solvable system does not always
converge on a solution. However, the type of divergence pos-
sible with DISAGREE might be called weak divergence (in
contrast to the strong divergence of BAD GADGET) since it
is possible to exit the “evaluation cycle” and arrive at a solu-
tion. Operationally, DISAGREE could give rise to a transient
route oscillations that are unlikely to persist. Finally, the sys-
tem PRECARIOUS shows that a BGP system may have a
solution and contain a “trap” that leads to strong divergence
and persistent route oscillations.

The complexity results are presented in Section 4. Among
the problems we consider are

REACHABILITY Given a BGP system, will AS
X be able to import routes originated from AS
Y?

ASYMMETRY Does a BGP system allow an
asymmetric routing?

SOLVABILITY Does a given BGP system have a
solution?

SINGLE DESTINATION SOLVABILITY
Does a given BGP system with a single
destination originated by a single AS have a
solution?

UNIQUENESS Does a given BGP system have a
unique solution?

ROBUSTNESS Given a solvable BGP system,
will it remain so after any possible failure of
k links?

We show that SINGLE DESTINATION SOLVABILITY,
ASYMMETRY, and REACHABILITY are NP-complete,
while SOLVABILITY, UNIQUENESS, and ROBUSTNESS
are NP-hard.

In Section 5 we discuss how abstract BGP of Section 2
and the complexity results of Section 4 carry over to the more
complex real-world BGP. We argue that the complexity results
for each question provide a lower bound on the complexity of
answering this questions for real-world BGP policies.

2 An abstract model of BGP

This section presents an abstract version of BGP that is de-
signed for a formal investigation of properties related to pro-
tocol convergence. The reader not familiar with the BGP
protocol may wish to consult [16, 7, 171. The model abstracts
away many of the nitty-gritty details of BGP, making it easier
to address convergence-related issues. The most important
simplifications we have made are (1) network addresses are
treated as a flat space, ignoring containment and aggregation,
(2) the attributes MED, ORIGIN, ATOMIC AGGRE-
GATE, and AGGREGATOR are ignored, (3) we assume
that there is at most one link between any two ASes, (4) all is-
sues relating to internal BGP (iBGP) are ignored, (5) default
routes arc ignored, (6) we assume that no two ASes can orig-
inate the same destination address, (7) we assume that there
is one global default value for the LOCAL PREFERENCE
attribute.

2.1 Networks and Routes

The Internet is modeled as an undirected graph G = (V,E),
called the AS graph, where the vertices V represent Au-
tonomous Systems and the edges E represent peering relation-
ships. Every vertex v “learns” a set of route announcements
from its immediate neighbors. Route announcements undergo
transformations as they pass from one autonomous system to
the next.

Route announcements are records with the following at-
tributes

nlri : network layer reachability information
(a destination’s network address)

next hop : next hop (vertex number)
as-path : ordered list of vertices traversed
lot-pref : local preference

278

We will often call a route announcement simply a route. The
as-path attribute records the path that a route has tra-
versed through G as it passes from one vertex to the next.
Suppose vertex v has learned a route r with raspath =
[vk, . . . ,212, vi]. This indicates r was originated at vi, was
passed to ‘~2, and so on, until finally vk passed it to v. In this
case r.nexthop is the vertex that passed this information to
v, and so this should be the same as vk, the first vertex in
r.aspath. In other words, nexthop is not actually needed
in our model, but we retain it here to simplify the presenta-
tion. The local preference attribute, lot-pref, is used only
within an AS and is not passed between ASes. This attribute
is used to indicate the relative ranking of different paths to a
destination. We assume that there is a default value for the
lot-pref attribute, dlp.

2.2 Best Route Selection

If vertex v has a choice between two different routes ri and
r2 with the same network destination, rlnlri = rZ.nlri, then
it uses the choice function Select, to select one best route.
If we assume rl.nexthop # rz.nexthop, then the function
Select (ri, ~2) is defined to be

if rl.loc-pref # rr.locpref, then pick ri with highest
lot-pref,

otherwise, if length(ri.aspath) # length(rz.as-path),
then pick ri with shortest as-path,

otherwise, pick ri with lowest nexthop (break tie).

It is rule (1) that allows policy-based metrics to override
distance-based metrics.

A set of routes R is consistent if for any two distinct routes
rl and r2 in R, if rl.nlri = ra.nlri, then ri.nexthop #
rz.nexthop. If R is consistent, then the notation Select(R)
denotes that subset of R arrived at by repeatedly applying
Select to pairs of routes with the same nlri value. It is easy
to see that Select(R) cannot contain distinct routes ri and
r2 with rl.nlri = r2.nlri.

2.3 Route Record Transformations

Two types of transformations can be applied to the route
records as they pass from one vertex to the next. The first
is a BGP-specific transformation that is fixed in the proto-
col definition. The second type is encoded in transformation
policies which are defined independently by each AS.

If v, w E V and R is a set of routes, then PVT(w t v)[R]
represents the BGP-specific path-vector transformation of R
as the routes of R pass from v to w. This transformation
enforces three rules: (1) the as-path records the path of
vertices that a record has traversed, (2) lot-pref values are
not passed from one vertex to another, and (3) a vertex v
never accepts a route r if r.aspath contains v. This is de-
fined on singleton sets as follows. If w E r.aspath, then
PVT(w t v)[{r}] = {}. Otherwise PVT(w t v)[{r}] =
{r’}, where r’.nlri = r.nlri, r’.aspath = v]] r.as-path,
r’.nexthop = v, and r’.loc-pref = dlp. Here the notation

v]] 1 is used to denote the list formed by prepending v onto
the beginning of 1. We then define PVT(v t w)[{rl, . . . , rn}]
to be PVT(v t w)[{rl}] U.. . U PVT(v + w)[{r,}].

For each {v, w} E E there are four transformations poli-
cies. These are the import and export transformations for
AS v on this link and the import and export transformations
for w on this link. The notation import(v t w) denotes
the transformation policy that defines how routes are trans-
formed when importing them into v from w. The notation
export(v + w) defining how routes are transformed when
exporting them from v to w. If R is a set of routes, then
the sets import(v t w)[R] and export(v + w)[R] denote
the application of the corresponding transformation policies
to the routes in R.

A transformation policy P is defined by a list of policy
rules

HI * Al
Hz a A2

.

H, 2 A+,

The head of each rule Hi is a boolean predicate formed
over route attributes. We will consider only predicates con-
structed from basic predicates nlri = d, v E as-path, and
as-path = [pl,pz,... ,p,], where each pattewa pi is either an
AS number or the wildcard ?. Basic predicates are then closed
under the boolean operations of conjunction, disjunction, and
negation. The action of each rule Ai is either reject, allow,
or an attribute assignment (with an implicit allow). Only
assignments to the attribute locpref are allowed. These pol-
icy rules define a function on sets of routes in the following
way. If R is a set of routes, then T’ E P(R) if and only if
there is an r E R and for some i, Hi(r) is true, while Hj(r)
is false for j < i, and r’ = A;(r). (Note that allow(r) = r
and that reject(r) is not defined.) An example of an import
transformation is

17 E as-path a reject
as-path = [12, ?, 161 * lot-pref := dlp + 1

true a lot-pref := dlp

This policy would reject any route with AS 17 in the as-path.
The as-path value [12, ?, 161 includes a wildcard ? that
matches any number. So the second rule accepts any route
r with r.as-path of length three that starts with 12 and ends
with 16. It then sets lot-pref attribute to dlp + 1. Finally,
this policy would accept all other routes records with the de-
fault value for lotpref.

2.4 Evaluation States

Each i E V has an initial set of route records, cp, which models
the destinations originated by i. We will assume that for any
r E cp that r.as-path is empty and that nexthop is not
defined. We will also assume that no two i and j in V originate
the same destinations. That is, we assume that for each ri E
cl, and r2 E cj”, that rl.nlri # r2.nlri.

Suppose G = (V, E) and V = (0, 1, . . , n}. An evaluation
state is a tuple (co, cl,. . . , c,) where each ci is a set of route
records that represents the “contents” of AS i in this state.
This set can be empty, meaning that AS i has not learned of

279

or accepted any routes. The evaluation state (cz, cy, . . , cx) is
called the initial slate, and is denoted by se.

2.5 Dynamic Behavior

A BGP system, S = (G, Policy(G), se), comprises an AS graph
G = (V, E), a set Policy(G) containing the import and export
policies for every i E V, and an initial state se that defines
the destinations originated by each i E V.

Informally, if the BGP system is in a state s and i E A,
then i is activated and can compute its best routes based on
the routes it obtains from its immediate neighbors, after the
appropriate transformations. The set of choices available to i
in state s = (ce,ci,... , c,,), denoted Choices(i, s), is defined
to be

u import(i t j)[PVT(i t j)[export(j + i)[cj]]]

{i,j)EE

An evaluation state s’ is reachable from se ifs’ = se, or if there
is a reachable state s, and a non-empty set A c V of activated

ASes, such that s -% s’, where this transition relationship

(CO,CI,... ,cn) 3 (cb,c:,...,c:)

is defined as

1

Ci if i @A,
c: =

cy U Select(Choices(i, s)) otherwise.

It is easy to prove, by induction, that the set to which the
best route selection function is applied is always consistent in
the sense of Section 2.2.

With this definition it is clear that the import policy
H a lot-pref := dlp is equivalent to H a allow.
Also note that if all import and export rules are of the form
true a allow, then the dynamic model reduces to a pure
distance-vector protocol.

In terms of the terminology of [16], the set ci cor-
responds to the LOC-RIB of AS i, the set import(i t
j)[PVT(i t j)[export(j + i)[cj]]] corresponds to AS i’s
ADJ-RIBs-IN for peer j, while the set export(j + i)[cj] cor-
responds to AS j’s ADJ-RIBS-OUT for peer i.

Note that all of the i E A are activated simultaneously.
The intent is to model all possible evaluations in an asyn-
chronous distributed execution of the BGP protocol. An ac-
tivation sequence is any path, finite or infinite, starting at the

initial state, se 3 si -% s2 3 Since the initial state
is unique, we will identify an activation sequence with the
sequence of subsets Al, AZ, As,. . . . An infinite activation se-
quence Al,Az,Aa,... is fair if no i E V is ever “starved out.”
That is, for any i E V, and for any t, there must be a k > 0
such that i E i&k.

2.6 Evaluation Graphs, Solvable and Unsolvable

BGP Systems

It is easy to check that there are only finitely many reachable
states. For a system S, the evaluation graph, Eval(S), is de-
fined to be the directed graph, where for each reachable state

s, there is a vertex labeled by s in Eval(S), and if s and s’

are reachable states and s A s’ for some non-empty A C V,

then there is a directed edge from s to s’ labeled by s & s’ in

Eval(S). A state s E Eval(S) is called a final state if s 3 s
for every v E V. That is, if the system S enters a final state,
then no matter what collection of ASes A C V is activated,
the system will remain in that state. Note that in a final state
some nodes may have no routes to certain destinations.

A BGP system is solvable if there is at least one final state
in Eval(S). Otherwise, system S is unsolvable. Notice that an
unsolvable system can never converge to a stable state, since
none exists. Operationally, this means that for unsolvable
systems, BGP is likely to go into a “protocol oscillation” that
will never terminate. For an example of an unsolvable system,
see BAD GADGET in Section 3.

2.7 Solutions and Routing Trees

Suppose r E cp is an initial route record for destination d =
r.nlri and that s = (CO,. . . , c,) is any state in Eval(S). Vertex
j E V, (i # j), is said to have a path to d in state s if there is a
route record r’ E cj with r’.nlri = d. Note that it will always
be the case that r’.as-path = [. . . , i]. It is also easy to see
that for each state s and each destination d there is a subgraph
of G defined by the as-path at each node for the correspond-
ing route record. This graph is denoted routing(d, s). More
formally, routing(d, (CO, cl,. . . , c,)) = (V’, E’), where

V’ = {j~V]!lr~cj,r.nlri=d}
E’ = UjEV,{{w,v} E E 1 3r E cj,r.nlri = d

Ar.as-path = [VI, 212,. . . , ?&]
A((w = j A v = VI) v (w = vt A v = vt+1))}

This graph is connected, since each path ends in the vertex
that originates d. Next, we show that this graph is a routing
tree when s is a final state.

Theorem 2.1 Suppose s is a final state. For ever-g possible
destination d, the graph routing(d,s) is a tree (an acyclic,
connected graph).

Proof: Suppose that s is a final state and d is a destination
originated by vertex i. We know that routing(d, s) = (V’, E’)
is connected (see discussion above), and so all that needs to
be shown is that routing(d,s) is acyclic. We assume that
there is a cycle in routing(d, s) and derive a contradiction. If
there is a cycle then there must be two paths in routing(d, s),

Pl = [Vl,VZ,... ,vk,i] and p2 = [w~,~uz,...,‘w~,~], whose
union contains a cycle. That is, there is a vertex v E V’ such
that v = v. = wi, for some x and y, but v,+i # wy+i. Since
AS vi thinks that v’s route to d is [vz, vz+i,. . . , vk, i] while AS
wi thinks that v’s route is [wr, wy+i,. . . , wm, i] at least one of
them must be wrong. Without loss of generality, assume that
it is vi that is wrong. Let r 2 1 be the largest index less than
x such that v,‘s route in s is [up, v,.+i, . . . , vk, i]. There is al-
ways such an index since vi has such a route but up is the one
that is closest to v = vI on the path [vi, ~2, . . . , ?&I. There-
fore in s, v,+i does not have the route [v,+i, v,+2,. . . , vk, i].
We can conclude that if vr is activated, then it must change

280

its route because it learns that the one it currently has is no
longer valid. N

We now show how a routing tree can be used to con-
struct an activation sequence that will arrive in a final state.
Suppose T is a tree with root i of height m. Let A(j, i, T),
for 1 < j 5 m be the set of vertices in T that are dis-
tance jfrom root i. Define the activation sequence A(i,T)
to be A(l,i,T),A(2,i,T),..., A(m,i,T). That is, A(i,T) is
the sequence that activates the vertices of T in a breadth-

first order w.r.t. vertex i. Let se Az) sn denote the path
so 4.‘) s1 --Ws+~T) . . . A(%T) sm in Eval(S),

Theorem 2.2 Let S be a BGP system that contains a single
destination d. Suppose that destination d is originated by ver-
tex i and that s is a final state. Let T = routing(d, s) be the

routing tree rooted at i. Then SO A((,T) s.

Proof: By induction on the depth of T. If at any point in
the activation sequence of length k the routing graph is not
the subtree of T of height k, then we can find a vertex that
will switch routes in state s. This means that s is not a final
state, which is a contradiction. n

Let 5’ be a BGP system that contains a single destina-
tion d. The analysis above suggests the following brute-force
algorithm for checking solvability of S:

Enumerate all subgraphs T of G that are trees rooted at
d.

Attempt to find a tree T such that se A%’ s, where s is
a final state.

The system is solvable if and only if at least one such tree
exists.

Given any one tree, checking step (2) is polynomial in the size
of the system S since checking if a state is final requires only
checking that it does not change if all nodes are fired at the
same time. However, in the worst-case, step (1) is exponential
in the number of ASes.

3 A Managerie of BGP Systems

This Section presents several examples of BGP systems that
illustrate distinct types of routing anomalies.

3.1 BAD GADGET

We now present an example of an unsolvable BGP system,
called BAD GADGET, which is similar in spirit to examples
of [18]. That is, no execution of the BGP protocol can possibly
arrive at a stable routing. BAD GADGET is presented in
Figure 1, where each node represents an AS. Suppose that
there is a single destination with d originated by AS 0.

Each AS prefers the counter-clockwise route of length 2
over all other routes to the 0 That is, AS 3 prefers the route
3 - 2 - 0 over 3 - 0. The policies of BAD GADGET can be

Figure 1: The AS graph for BAD GADGET.

implemented as follows. Let i @ 1 denote i + 1 (mod 3) and
i 8 1 denote i - 1 (mod 3). All export rules have the form
nlri = d a allow. For import, each node i will have the
following set of policies: import(i t i 83 1) is

nlri = d A
as-path = [i @ l,O] >

* lot-pref := dlp + 1

nlri = d --*. lot-pref := dlp

while import(i t i 8 1) is nlri = d a allow. That is, each
AS assigns the counter-clockwise path of length 2 a locpref
of dlp + 1, while all other routes get the default value dlp.

Figure 2: Possible routing trees for BAD GADGET.

We now show that BAD GADGET has no solution. For
BAD GADGET, we need only consider the sixteen spanning
trees rooted at AS 0. Any tree that does not span this graph
cannot be a solution because AS 1, 2 and 3 each has a direct
route to d. Furthermore, since this system is symmetric, we
need only consider the six cases presented in Figure 2. In this
figure we have marked with a solid circle those ASes that will
change their selection of the best route to d. Each marked
AS will either pick the counter-clockwise route of length 2, or
revert to the direct route to d. It is easy to see that the system
has no solution.

3.2 SURPRISE

The BAD GADGET example was constructed to illustrate
a very simple unsolvable system. Certainly from a network
operator’s perspective it might seem rather contrived. We
now present what is arguably a more plausible system, called
SURPRISE, that is “good” in the sense that it is solvable.
However, after a single link failure this reasonable system falls
into one that is equivalent to BAD GADGET, and so becomes

281

unsolvable. (This system inspires the definition of the “k-
ROBUST" problem of Section 4.)

Figure 3 presents a system called SURPRISE. AS 5 origi-
nates destination d, a popular web portal. The labels C2, C3,
and C4 indicate the capacity of three links, with C2 having a
low capacity, C3 an intermediate capacity, and C4 the high-
est capacity. These capacities will be relevant to the backup
policies of AS 1, 2, and 3.

AS 4 is a high quality network, with a very high speed
link to AS 5. AS 1, 2, and 3 all have high speed links directly
to AS 4. On the other hand, AS 0 has a low quality link to AS
5, and for this reason AS 1, 2, and 3 all prefer to go through
AS 4 to reach destination d, rather than using AS 0.

Figure 3: AS graph for SURPRISE.

AS 1 and 2 implement the same policies (modulo ro-
tational symmetry) in the same way, each preferring their
counter clockwise peer in the backup case.

This system is clearly solvable, since the system will enter
a stable state as soon as AS 1, 2 and 3 have each picked their
two-hop routes to d going through AS 4. We would argue that
these policies are fairly plausible. One objection that might
be raised is that for AS 1, the choice of AS 3 as a backup does
not seem right, since the link to AS 2 is of higher capacity.
That observation is correct, but the explanation is simple.
Link {1,2} has only recently been upgraded from a very low
Cl capacity (lower than C2) to the high-speed capacity C4.
AS 2’s network administrators have updated their policy to
reflect this, but the overworked administrators of AS 1 have
been fighting other fires and simply haven’t had time to update
this (as yet never-used) backup policy.

Now suppose that the BGP session on link {4,5} is lost.
This could be the result of a cable cut or a misbehaving router.
Note that the backup policies of AS 1, 2, and 3 have not
explicitly planned for this failure. It is not hard to see that
this system is immediately transformed into one equivalent to
BAD GADGET, and so becomes unsolvable. The same thing
happens if links {1,4}, {2,4}, and {3,4} all go down at the
same time (this could happen if at some point they are all
riding over the same strand of physical fiber and this fiber is
cut).

AS 3 has a simple backup plan for destination d, designed 3.2-1 DISAGREE
with the failure of link {3,4} in mind. AS 3 would like to
go through AS 2 if link {3,4} fails for two reasons. First, The system DISAGREE, presented in Figure 4, illustrates the

as already mentioned, nobody likes AS 0 (at least not for fact that a BGP system can have multiple solutions.

destination d). Second, AS 3 decides in favor of AS 2 over
AS 1 simply because its link to AS 2 is of higher capacity.
Implicit in AS 3’s backup plan is the assumption that AS 2’s
direct link to AS 4 will most likely remain operational in the
event that {3,4} fails.

In the policy notation described in detail in Section 2, the
relevant import policy fragment for AS 3 is

as-path = [4,5] a locpref := dlp + 2
as-path = [2, ?, 5] & lot-pref := dlp + 1

true * lot-pref := dlp

The first rule matches any route record that was originated in
AS 5 and traversed AS 4 before arriving at AS 3. Any such
record has its LOCAL PREFERENCE incremented by 2 (over
some default LOCAL PREFERENCE dlp). The second rule
matches any route record that was originated in AS 5, tra-
versed any AS (indicated by the wildcard ?), then traversed
AS 2 before arriving at AS 3. Such records have their LO-
CAL PREFERENCE incremented by 1. The reason that the
second rule uses a wildcard in the AS-PATH attribute, rather
than explicitly writing the path [2,4,5], is that the network
administrator who implemented this rule had heard that AS
4 might change its AS number (since it recently merged with
a larger ISP) and thought it best not to hard-code the AS
number into the rule. This administrator was unaware of the
direct link that AS 2 maintains with AS 0. Finally, the last
rules accepts all other routes with default value for LOCAL
PREFERENCE.

Figure 4: AS graph for DISAGREE.

Only AS 0 originates a single destination with nlri = d.
In this system, both AS 1 and AS 2 will prefer to go through
the other to get to d (hence the name DISAGREE for this
system). The rules implementing this policy are as follows.
For i, j E (0, 1,2}, i # j, export(i + j) is true 2 allow.
For i E {1,2}, import(i t 0) is

nlri = d A as-path = [0] a locpref := dlp.

Finally, import(1 t 2) is

nlri = d A as-path = [2,0] ==s lot-pref := dlp + 1

and import(2 t 1) is

nlri = d A as-path = [l, 0] a lot-pref := dlp + 1.

The initial state of the system is ({T}, {}, {}), where
r.nlri = d, r.aspath = [1, and r.locpref = dlp. Figure 5

282

shows the evaluation graph for DISAGREE (all arcs with la-
bels containing a 0 have been ignored for simplicity, since AS
0 does not import any routes). The contents of each node
indicate the paths to destination d from AS 1 and 2. For ex-
ample, a state containing 2 - 1 - 0 indicates AS 2 has a route
to d with as-path = Il.01. Final states are indicated with
double borders. Note thai there are two final states in this
graph. For each final state, the corresponding routing tree is
depicted to its right.

1 2

k” 0

1 2
v 0

Figure 5: Evaluation graph and two routing trees for DIS-
AGREE.

Note also that the fair activation sequence
{1,2},{1,2},{1,2},~~~ leads to protocol divergence. This
sequence seems unlikely to arise in practice because it relies
on a precise sequence of events occurring repeatedly. If either
AS 1 or AS 2 ever activates by itself, then the system will
converge on a solution.

3.3 PRECARIOUS

Solvable systems are “good” in the sense that there is at least
one activation sequence that will converge on a solution. How-
ever, as the DISAGREE example illustrated, having a solution
does not mean that every activation sequence will converge on
a solution.

The “weak divergence” of DISAGREE should be con-
trasted with the “strong divergence” of BAD GADGET,
whose evaluation graph has a “trap” from which it can never
exit to a final state. We can formally define a trap to be a
subgraph of Eval(S) that (1) does not contain a final state,
and (2) has no arcs directed out of this subgraph. An unsolv-
able systems is truly pathological in the sense that its entire
evaluation graph is a trap.

Can a solvable BGP system have a trap in its evaluation
graph? The answer is “yes.” Consider the system PRECARI-
OUS, whose AS graph is presented in Figure 6. A subgraph of
this system is equivalent to the system DISAGREE presented
above, with AS 0 originating the single destination dl. Re-
call that DISAGREE has two distinct routing trees associated
with destination dl. Attached to AS 1 is a link that goes to
the center of BAD GADGET 1, which accepts a route to di
only if AS 1 takes the direct route to di. BAD GADGET

BADGADGETI

Figure 6: AS graph for PRECARIOUS.

1 is configured to oscillate only when its center node accepts
this route to dl. Therefore, this system has only one solution:
when AS 2 accepts the direct route to dl and AS 1 accepts the
route through AS 2 to dl. This example shows that a solvable
system - one with a unique solution - can contain a trap.
Starting at the initial state of the evaluation graph, any arc
labeled A, where 1 E A and 2 6 A, will lead to a trap.

4 Complexity Results

This section presents our complexity results concerning vari-
ous global properties of BGP systems. For a review of NP-
completeness, the reader is encouraged to consult [4]. We will
consider the following problems.

REACHABILITY: “Given a system S, AS v in S, AS w
in S and a destination d originated by w, does
there exist a final state in s E Eval(S) in which
w is a node in routing(d, s)?”

ASYMMETRY: “Given a system S, AS v in S, AS w in
S, a destination dl originated by w, a destina-
tion d2 originated by v, does there exist a final
state in s E Eval(S) in which the route from v
to dl is not the reverse of the route from w to
dz?

SOLVABILITY: “Given a system S, does there exist a
final state in Eval(S)?”

UNSOLVABILITY: “Given a system S, is there no final
state in Eval(S)?”

SOLVABILITY (SD): “Given a system S having only a
single destination d originated by some AS w,
does there exist a final state in Eval(S)?”

UNSOLVABILITY (SD): ‘<Given a system S having only
a single destination d originated by some AS w,
is there no final state in Eval(S)?”

TRAPPED: “Given a system S, does Eval(S) contain
a trap?” (See Section 3.3 for the definition of a
trap.)

~-ROBUST: “Given a solvable system S having only
a single destination d originated by some AS w,
will S remain solvable under any possible failure
of k links?”

UNIQUE: “Given a system S, does there exist exactly
one final state in Eval(S)?”

UNIQUE (SD): “Given a system S having only a single
destination d originated by some AS w, does
there exist exactly one final state in &al(S)?”

283

import(x; t xi-l) nlri = d A h-1 # as-path a locpref := dlp (1)
2<i<n import(xi t Fi-1) nlri = d A xi-1 $ as-path ==s lot-pref := dlp (2)

2<i<n import(Vi t 2;-1) nlri = d A ci-1 @ as-path lot-pref := dlp (3)
import(fi t Fi-1) nlri = d A xi-1 e as-path a locpref := dlp (4)

import(x1 t w) nlri = d ==s locpref := dlp (5)

imnort(t t x,)
nlri = d * lot-pref := dip I id
nlri = d A % 6! as-path =+- lot-nref := din (7)

import (.z c
import(zi t%)

import(Zi tZi)

nlri = d A x,, $! as-path lot-pref := dip
nlri = d a lot-pref := dlp + 1
nlri = d --*. lot-pref := dlp + 1

Figure 7: Import policies of ASSIGN (n).

MULTIPLE: “Given a system S, does there exist more
than one final state in E&(S)?”

MULTIPLE (SD): “Given a system S having only a
single destination d originated by some AS w,
does there exist more than one final state in
Eval(S)?”

Cur proofs will rely on a reduction from Q-SAT, a well-
known NP-complete problem. An instance of Q-SAT consists
of a set of boolean variables and a formula based on these
variables and their negations where the formula has the form
of a conjunction of terms each of which is a disjunction of
three literals (a literal is either a variable or its negation).
The Q-SAT problem asks if there exists a satisfying assignment
for a given instance. For example, an instance of Q-SAT might
consist of variables zr,22,zs and the formula

(~~VX~VC~)A(Z~V~‘ZVZ~)A(~~V~~‘/~~)

where Zi denotes the negation of variable xi. Notice that
setting 21 to be true and x2 and x3 to be false is a satisfying
assignment for this formula.

fl 5 %I

Figure 8: AS graph for ASSIGN (n).

Suppose we are given n variables, X = {zi,xs, . . . , zn}.
In order to construct the reductions from Q-SAT we will use

a BGP system, called ASSIGN (n), having nodes w and z
where w originates a single route d. Furthermore, ASSIGN
(n) is constructed such that (1) every boolean assignment for
X corresponds to a unique path from .z to w, and (2) every
path from z to w corresponds to a unique boolean assignment
for X.

The AS graph of ASSIGN (n) is presented in Figure 8.
The policies of ASSIGN (n) must enforce the rules: (1) if xi is
in the as-path of a route to d, then fi is not in the as-path
of this route, (2) if ??i is in the as-path of a route to d, then

xi is not in the as-path of this route, (3) once a route to d
is chosen, it can be “locked in” so that it will not change. In
this way, the as-path of a route record at z will correspond
to a assignment for the variables of X.

All export policies are true --z allow. The import poli-
cies of ASSIGN (n) are defined in Figure 7. The predicates
of the form xi-1 e as-path (+I $ as-path) guarantee that
any path from z to w cannot contain both xj and Tj. Rules
(9) and (10) are similar to the rules of DISAGREE, and they
allow each pair xi, and fi to lock into one of two states.

Figure 9: Example of ASSIGN (3).

For example, Figure 9 presents the system ASSIGN (3),
and the routing tree that corresponds to the assignment xi =
true, x2 = false, z3 = false.

Note that the size of ASSIGN (n) must be polynomial
in n. The construction of ASSIGN (n) demonstrates that a
solvable system of size U(n) can have U(2”) final states.

Figure 10: AS graph construction for REACHABILITY.

Theorem 4.1 REACHABILITY is NP-complete.

Proof: Consider any state 8. To check whether s is a fi-
nal state can be done in time polynomial in the size of the
BGP system, since all we need do is activate each node and
check if its state remains unchanged. Testing if v is a node in
routing(d, s) just requires seeing if v contains a route to d in
state s. Thus REACHABILITY is in NP.

284

BAD GADGET

Figure 11: AS graph construction for SOLVABILITY (SD).

Notice that an instance of REACHABILITY is determined by
a tuple (S, w, d, v) specifying the system S, AS w, destination
d, and AS v. We describe the construction of R = (S, w, d, v),
an instance of REACHABILITY, from an instance I of 3-SAT
such that I has a satisfying assignment if and only if d is
reachable from v. The instance R is constructible in time
polynomial in the size of I.

Let I consist of clauses Ci, Cr, . . . , C,, where each C;
is a disjunction of three literals and each literal is one of
xl,TiYl,..., xn or C,. The graph G = (V,E) defining the
topology of the system we wish to construct has vertex set
V = {w,z,xi,?i?i ,..., x,,,?&,,Ci ,..., C,,,}, and edge set de-
picted in Figure 10. Notice that this graph is ASSIGN (n)
extended with the nodes Ci and the corresponding edges.

All nodes export all routes to all immediate neighbors.
For the portion of the system that implements ASSIGN (n),
the import policy rules are given in Figure 7. If Ci = li,i V

li,a V li,a, then for 2 5 i 5 m, define import(Ci t Ci-1) to
be

(

1;~ E as-pathv
li.2 E aspathv

1

a locpref := dlp (1)
li,3 E as-path

and import (Cl t z) to be

(

11,1 E aspathv
11,~ E as-pathv

1

a locpref := dlp (2)
11.3 E as-path

Our instance of REACHABILITY is R = (S, w, d, v), where
v = cm. Our claim is that d is reachable from C,,, if and only
if I has a satisfying assignment. That is, there is an activation
sequence p that results in a final state where a route T from
C,,, to d exists if and only if there is a satisfying assignment
to I. First, assume that a satisfying assignment A exists. Let
li be xi if x; is true in A and otherwise li = Zi, 1 < i 5 n.
Consider the activation sequence

It is easy to check that after completion of p the fact that A is
a satisfying assignment implies that a route from C,,, to w has
been established. Suppose some node 1; is activated after p.
Then due to the settings of the lot-prefs (see Figure 7) ii will
always choose li as its next hop. Define activation sequence

p’ = {ii}, . . . , {in}. Consider the activation sequence pllp’
obtained by performing p’ after p. We claim that this results
in a final state. By the construction of ASSIGN (n), activating
any of w, z, xi or YiYi will not cause a change and a trivial
inductive argument shows that no Ci can change its state if
activated. Thus the activation sequence pllp’ results in a final
state. By the policy rules for the Ci’s, it is the case that
the path from w to z passes through a satisfying assignment
for I, each Ci will accept the route announced to it by Ci-1
(and similarly Ci accepts the route announced by 2). Thus
the activation sequence pllp’ results in a final state in which a
route has been established from C,,, to d.

Suppose on the other hand that there is some activation
sequence p leading to a final state in which C,,, has a route to
d. It is trivial to check that any such route must go through
each Ci and Z. The policy rules of the Ci’s guarantee that at
least one of li,j, 1 5 j 5 3, must be in the route. The policy
rules guarantee that the route from z to d does not contain
both zi and ?& in the route. Thus setting xi to true if zi is in
the route and to false otherwise (that is, if Zi is in the route)
gives a satisfying assignment for I. n

Theorem 4.2 ASYMMETRY is NP-complete.

Proof: Modify the construction of Figure 10 in the following
way. Change destination d to dl , and have node C, announce
destination d2 (C,,, will be node v in the statement of the
ASYMMETRY problem). Add the link {w, Cm} to E. Node w’s
import rules prefer the direct route to dz while C,,,‘s import
rules prefer the route to dl that traverses the ASSIGN (n)
subgraph. It then follows that an instance of Q-SAT is satisfi-
able if and only if there is a final state of this system with an
asymmetric routing between destinations dl and d2. To com-
plete the proof we observe that checking any state to see if it
is a final state with asymmetric routing for two destinations
can be done in polynomial time. n

Theorem 4.3 SOLVABILITY (SD) is NP-complete.

Proof: As argued in the previous proof, determining if a
state is a final state can be done in polynomial time and hence
SOLVABLE (SD) is in NP. We use the construction in the proof
of Theorem 4.1 and BAD GADGET from Section 3.1 to define
a reduction from Q-SAT to SOLVABILITY (SD). That is, the
reduction will be such that the instance of Q-SAT will have a
solution if and only if there is a final state for the system.

BAD GADGET

l *e

Figure 12: AS graph construction for TRAPPED.

The construction of an instance c of SOLVABILITY (SD)

from an instance I of Q-SAT is shown in Figure 11. Node 0
has a policy rule stating that it accepts a route if and only if
it is from w. Thus, 0 obtains a route to d the first time it is
activated, and this will cause BAD GADGET to diverge un-
less something is done to interrupt this loop. To accomplish
this interruption, we give nodes i, 1 5 i 5 3, additional policy
rules that say that they will accept a route from C,,, with high-
est local preference (a value greater than the local preference
of any other connection). Therefore if there is an activation
sequence that results in C, having a route to d, then subse-
quent activations of 1, 2 and 3 result in establishing C,,, as
their next hop and they never change thereafter. It is easy
to check that after executing the activation sequence pllp’ as
given in the proof of Theorem 11, followed by activating 1, 2,
and 3, the system has reached a final state. Any activation
sequence that does not result in C,,, establishing a route to d
will not reach a final state because of the behavior of BAD
GADGET. Thus if there is no activation sequence that results
in establishing a route from C,,, to d then the system is un-
solvable. Therefore by previous arguments, I has a satisfying
assignment if and only if C, establishes a route to d, and we
have shown that this is true if and only if there is a final state.
n

Corollary 4.4 (1) UNSOLVABILITY (SD) is NP-hard, (2)
SOLVABILITY is NP-hard, and (3) UNSOLVABILITY is NP-hard.

Proof: Since SOLVABILITY (SD) and UNSOLVABILITY (SD) are

complements, (1) follows from Theorem 4.3. Claims (2) and
(3) follow from that fact that we have shown special cases of
these questions to be NP-hard. H

Theorem 4.5 TRAPPED is NP-hard.

Proof: We can use a construction similar to the one used to
prove Theorem 4.3. Modify the AS graph of Figure 11 in the
following way. First delete the arcs between C,,, and AS 1, 2
and 3. Second, replace the arc between w and the center of
BAD GADGET (AS 0) with an src between C,,, and AS 0.
Finally, configure BAD GADGET to diverge if and only if C,,,
obtains a route to d. The resulting AS graph is pictured in
Figure 12. This construction now allows us to reduce Q-SAT

to TRAPPED. That is, an instance of Q-SAT is satisfiable if and
only if the evaluation graph of the BGP system of Figure 12
has a trap. n

Theorem 4.6 For each k > 0, k-ROBUST is NP-hard.

Proof: Let k be any integer greater than 0. Given an instance
I of Q-SAT, we construct a BGP system whose AS graph is
pictured in Figure 13. This system has a subgraph equivalent
to the REACHABILITY construction used in Theorem 4.1 (Fig-
ure lo), where C, can obtain a route to d if and only if I
has a satisfying assignment. This graph is augmented with an
instance of BAD GADGET, whose center AS is linked to w.
In addition, AS 2 has k paths to w via ASes wi, ’ . . , Wk, and
AS 3 has an edge directly to C,,,.

The BAD GADGET subsystem is configured to diverge
if and only if the edge {w, 0) is the only edge connecting BAD
GADGET to the rest of the graph. That is, AS 2 prefers every
path through the wi’s over the path [l, 0, w]. AS 3 prefers to
reach d through C,,, over the path [2,0, w]. Note that this
system is always solvable, regardless of whether or not I is
satisfiable.

We claim that I is satisfiable if and only if this BGP sys-
tem is k-robust. Assume that I is satisfiable. Suppose that
a subset E’ C E of k edges is removed from the BGP sys-
tem, and that the resulting system is no longer solvable. This
means that every path p = [2, wi, w], must include exactly one
edge from E’, otherwise the system would have a solution. But
this means that no edges were removed from the rest of the
AS graph, so there is a evaluation sequence that results in C,,,
having a route to d. In this case, the BAD GADGET subsys-
tem will not diverge, since AS 3 will take the a route through
C,,, to d. Therefore, this system is solvable, and we have a
contradiction. We conclude that there cannot exist such a set
E’, and that the BGP system is k-robust.

In the other direction, suppose that the BGP system of
Figure 13 is k-robust. This means that we can remove the
k links from AS 2 to the Wi and the system is still solvable.
Therefore, AS 3 must have a path to d through C,, which
implies that I is satisfiable. n

Theorem 4.7 UNIQUE (SD) is NP-hard.

Proof: The problem UNIQUE Q-SAT, is the problem of deter-
mining if there is a unique solution to a Q-SAT instance, and is
know to be NP-complete [ll]. Using the construction in The-
orem 4.3 to transform instances of UNIQUE Q-SAT to UNIQUE

(SD), we can conclude that UNIQUE (SD) is NP-hard. n

Corollary 4.8 UNIQUE is NP-hard.

286

Figure 13: AS graph construction for k-ROBUST.

Theorem 4.9 MULTIPLE (SD) is NP-complete.

Proof: Verifying that two states are final states can be done

in polynomial time and hence MULTIPLE (SD) is in NP. Note

that the construction in the proof of NP-hardness of UNIQUE

Q-SAT in [ll] takes any instance 1 of Q-SAT and creates an

instance u of UNIQUE Q-SAT that has exactly one solution if

1 has no solution and multiple solutions if I has one or more

solutions. Therefore it is also the case that MULTIPLE Q-SAT,

the problem of deciding if a Q-SAT instance has more than

one solution, is also NP-hard. Then we can again use the

construction in Theorem 4.3, this time to transform instances

of MULTIPLE ~-SAT to instances of MULTIPLE (SD) to show that

this problem is NP-hard. n

Corollary 4.10 MULTIPLE as NP-hard.

5 What about real-world BGP?

The dynamic behavior of real-world BGP is considerably more

complex than that of our model. When BGP peering is estab-

lished (using TCP), BGP peers initially exchange all route

information. After this initial exchange, only incremental

“deltas” are exchanged. That is, each BGP border router

must store in a local database all routes that it learns from

its peers. Changes are accomplished by sending messages that

announce new routes or withdraw routes that are no longer

reachable. An implementation of BGP may involve many pro-

cesses running asynchronously, performing tasks such as re-

ceiving messages from peers, processing routes according to

import policies, choosing best routes, processing best routes

according to export policies, and sending messages to peers.

For these reasons a more complete model of real-world BGP

dynamics requires a rather complex formalization.

In contrast, our simplified model assumes that the local

database of route records is computed in one atomic step that

includes the real-world operations of importing route records

from all peers, selecting best routes, and exporting best routes

to all peers. The model dispenses with update messages by

assuming that a peer’s best routes are “directly visible.” In

other words, the states in our evaluation graph correspond to

states that could be arrived at with real-world BGP after all

messages in transit or in queues have been processed.

We chose to present our analysis using the simplified

model because it substantially reduced the complexity of stat-

ing and proving the complexity results. However it should

be noted that despite this simplification, all of these results

remain valid for a more complicated message-based mode of

real-world BGP. To see this, consider the construction used

in the proof of NP-hardness of REACHABILITY. The fact that

cnl establishes a route to d if and only if the Q-SAT instance

has a solution only depends on satisfying the conditions of the

various import rules and is independent of the actual evalua-

tion model. This same observation can be made for the other

constructions described in Section 4 since they are based on

the same basic construction used for REACHABILITY. Together

with the simplifications listed at the beginning of Section 2,

this implies that the complexity results of Section 4 provide

lower bounds for the complexity of the corresponding questions

for real-world BGP.

BADGADGET \

j&!Gq
DISAGREE

Figure 14: AS graph for INTERFERE.

We do not mean to imply that all types of analysis will

carry over from our simplified model to real-world BGP. For

example, when multiple destinations are considered, it may

be that the set of solutions is model dependent. To illustrate

this, consider the BGP system INTERFERE pictured in Fig-

ure 14. This system extends the AS graph of PRECARIOUS

(Section 3.3), and AS 0 originates two destination, dl and dz.
BAD GADGET 2 is attached to AS 2 in the same way that

BAD GADGET 1 is attached to AS 1, and it is configured to

diverge only if AS 2 accepts the direct route to d2.

287

In our simplified model, PRECARIOUS is solvable with
the single destination c&, or with the single destination dz,
but it has no solution for destinations dz and dl together.
This is because when AS 1 or AS 2 update they compute best
routes to both destinations. However, with a formalism closer
to real-world BGP it would be possible to solve this system
by a (somewhat improbable) sequence of events : (1) AS 2
establishes the direct route to dl, (2) AS 1 establishes the
indirect route to dl. (3) AS 1 establishes the direct the route
to dz, and (4) AS 2 establishes the indirect route for to da.

6 Implications and Further Research

The static analysis approach to solving the BGP convergence
problem faces two practical challenges. First, autonomous sys-
tems currently do not widely share their routing policies, or
only publish incomplete specifications. We don’t believe this
situation will change. Second, even if there were complete
knowiedge of routing policies, the complexity results presented
in this paper show that checking for various global convergence
conditions is either NP-complete or NP-hard. Therefore, any
approach based on static analysis would most likely rely on
heuristics rather than exact solutions.

For these reasons, we believe that a practical solution to
the BGP convergence problem must be a dynamic one. As
we pointed out in the Introduction, route flap dampening [19]
does not provide enough information to differentiate between
policy-induced route flapping and other sources of routing in-
stability. One possible solution is to extend the BGP protocol
to carry additional information that would allow policy con-
flicts to be detected and identified at run time. Such an exten-
sion would have to supply network administrators with enough
information to identify routing oscillations as being policy-
induced, and to identify those autonomous systems whose
policies are involved. Routers could then be configured to im-
mediately stop announcing routes involved in policy-induced
oscillations. If all routers where configured in this way, then
we could guarantee that policy-induced protocol oscillations
would not persist. Of course, it is a difficult challenge to de-
sign such a dynamic mechanism that is scalable, robust, and
compatible with address aggregation.

Several theoretical problems remain open. We do not
have a complexity bound for determining if a BGP system is
inherently convergent. We also do not know if it is possible
for an inherently convergent system to have more than one
solution. Note that answers to these questions may depend on
the choice of the dynamic evaluation model (see Section 5).
Finally, we lack a complete characterization of BGP policy
inconsistencies that can give rise to protocol oscillations.

Acknowledgements. We would like to thank Brenda
Baker, Anindya Basu, Dave Kristol, Leonid Libkin, Suvo Mit-
tra, Joann Ordille, Jerry Ryan, Bruce Shepherd, and Kannan
Vaxadhan for their helpful comments on drafts of this paper.

References

[l] C. Alaettinoglu, T. Bates, E. Gerich, D. Karrenbcrg,
D. Meyer, M. Terpstra, and C. Villamizar. Routing Policy

PI

[31

PI

[51

Fl

[71

PI

PI

PO1

Ill1

P21

1131

[I41

Specification Language (RPSL). RFC 2280, 1998.

C. Alaettinoglu. RAToolSet : A Routing Policy Analysis
Tool Set. http://www.isi.edu/ra/RAToolSet.

D. Bertsekas and R. Gallagher. Data Networks. Prentice
Hall, 1992.

M. R. Garey and D. S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness.
W.H. Freeman and Co., 1979.

R. Govindan, C. Alaettinoglu, G. Eddy, D. Kessens,
S. Kumar, and W.S. Lee. An architecture for stable, an-
alyzable internet routing. IEEE Network, 13(1):29-35,
1999.

R. Govindan and A. Reddy. An analysis of inter-domain
topology and route stability. In INFOCOMM’97, 1997.

B. Halabi. Internet Routing Architectures. Cisco Press,
1997.

C. Hendrick. Routing information protocol. RFC 1058,
1988.

C. Huitema. Routing in the Internet. Prentice Hall, 1995.

IRR. Internet Route Registy. Internet Route Registy
Project, http://www.merit.edu/radb/docs/irr.html.

D. S. Johnson. The NP-completeness column: An ongo-
ing guide. Journal of Algorithms, 6(2):291-305, 1985.

C. Labovitz, G. R. Malan, and F. Jahanian. Internet
routing instability. In SIGCOMM’97, 1997.

C. Labovitz, G. R. Malan, and F. Jahanian. Origins of
internet routing instability. In INFOCOM’SS, 1997.

V. Paxson. End-to-end routing behavior in the internet.
Dansactions on Networking, 5(5), 1997.

[15] R. Perlman. Interconnections: Bridges and Routers.
Addison-Wesley, 1995.

[16] Y. Rekhter and T. Li. A Border Gateway Protocol. R.FC
1771 (BGP version 4), 1995.

[17] J. W. Stewart. BGP4, Inter-Domain Routing in The In-
ternet. Addison-Wesley, 1998.

[18] K. Varadhan, R. Govindan, and D. Estrin. Persistent

route oscillations in inter-domain routing. IS1 technical
report 96-631, USC/Information Sciences Institute, 1996.

[19] C. Villamizar, R. Chandra, and R. Govindan. BGP route
flap damping. RFC 2439, 1998.

288

