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FOREWORD

The analyses described in this report were performed by TRW Systems

Group for the Defense Atomic Support Agency under Contract DASAOI-70-C-0135,

Blast Wave Boundary Layers and Particle Entrainment. This final report

consists of two separate parts. Part I contains the results of the boundary

layer study, and Part II describes the results of the particle entrainment

investigation. The first part is independent of the second, while the

second part occasionally refers to the first.

V. Quan was the project engineer, and R.M. Traci and J.F. Farr, Jr.

contributed significantly to this study. J.E. Melde and V.R. Hlyman also

contributed to the numerical results. The interest and support of

H.J. Carpenter and C.W. Busch in this work are acknowledged. The DASA

technical monitor was C.B. McFarland.
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BLAST WAVE LAMINAR BOUNDARY LAYERS
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ABSTRACT

The laminar boundary layer flowfields generated by plane, cylindrical,

and spherical strong blast waves are studied. Solutions are obtained

using two different methods. In the first method, the governing equations

ae reduced to ordinary differential equations by using a similarity trans-

lnnation and a parametric integral technique. In the second method, the

' su pLions of quasi-steady state and local similarity are invoked. Results

obtained using each method are presented. A method of solving the turbulent

boundary layer equations is also outlined in detail in this report.
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NOMENCLATURE

A = constant defined by Equation (3-3)

c = specific heat at constant pressureP

C = constant related to explosion strength

F = function given by Equation (A-5)

h = specific enthalpy

k = conductivity

= distance in n at which the velocity reaches (1-e -1 ) of the local

free-stream value.

tt = distance in n at which the temperature reaches (1-e - l ) of the local

free-stream value.

m = geometry factor, = 2/(3+o)

p = pressure

Pr = Prandtl number, =

qw = heat flux to the wall

Q = time scaling factor defined by Equation (5-4)

R = function given by Equation (A-4)

t = time

u = velocity in x-direction

u = shock velocity

v = velocity in y-direction

V = function defined by Equation (A-6)

W = time scaling factor defined by Equation (5-7)

x = distance along surface from explosion point

x = distance between shock and explosion point
S

y = distance normal to surface

Y6 = boundary layer velocity thickness
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NOMENCLATURE (Continued)

Y6 = boundary layer temperature thickness

A = geometry factor, = (m-l)/m

y = specific heat ratio

6 = distance in q at which local free-stream velocity is reached

6t = distance in n at which local free-stream temperature is reached

T = transformed coordinate defined by Equation (3-2b)

= viscosity

= transformed coordinate defined by Equation (3-2a)

p = density

T = transformed coordinate defined by Equation (3-2c)

T = shear stress at the wall
w'K = 0 for two-dimensional boundary layer and 1 for axisymmetric boundary

layer

a = 0, 1, and 2 for plane, cylindrical, and spherical shock, respectively.

= function given by Equation (A-3)

= stream function defined by Equation (3-1)

Subscripts

e free-stream (at edge of boundary layer)

w = wall condition

n = derivative with respect tofl

= derivative with respect to

= ambient condition

(Reverse of Page is Blank)
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1. INTRODUCTION

The occurence of an intense explosion at or near the earth's surface

results in a complex fluid-surface interaction. The main characteristics

of such an explosion are indicated in Figure 1-1. The intensely hot, low

density region of air and vaporized earth form what is known as the fire-

ball shortly after burst. Within seconds the fireball begins to rise

due to its buoyancy, carrying with it large amounts of vaporized and

pulverized surface material. As it rises it is cooled by entraining

ambient air and by radiation to the surrounding air and surface. In the

meantime the explosion is communicated to the surrounding air by the

advancing shock front. A more extensive description of the explosion
1*

phenomena is given by Brode. The fluid-surface interaction can result

in large amounts of ground material being lifted into the air. Several

such lofting mechanisms, including vaporization, crater splashing, thermal

expansion, elastic rebound, jetting from cracks, and aerodynamic entrain-

ment, have been identified by Trulio and others.
2

Of prime interest to this study is the boundary layer produced by the

spherically expanding shock wave flowfield. In order to assess the aero-

dynamic entrainment of surface materials, it is necessary to determine

the boundary layer shear stress on the surface. Also, boundary layer

properties are required for the design of surface and subsurface installa-

tions which are hardened to the thermal and dynamic environment of the

blast wave. Antennas, silo closures, and air entrainment systems are

examples of such facilities. Knowing the boundary layer properties such

as the velocity and temperature profiles, one can calculate the aerodynamic

forces on the facilities. Test techniques such as (proposed) NEST

Superscripts indicate references.

CONFIDENTIAL
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(Nuclear Explosion Simulation Technique) require information about the

boundary layer characteristics to properly evaluate the test technique

and to interpret test data. To adequately determine the degradation of

underground facilities caused by the blast environment, the flow properties

of air which enters weapon system ducts are required. In addition, the

rate of heat transfer to exposed surfaces can be estimated. The total

heat transfer consists of the heat convected from the hot boundary layer

gases and the heat radiated from the fireball. Of particular importance

to the calculation of the heat transfer is the generation of airborne

dust by entrainment into the boundary layer. The dust cloud so generated

may block a significant portion of the fireball's thermal radiation by

absorption or dispersion, thus decreasing the total heat rate to exposed

surfaces.

In the present study, the boundary layer behind a strong shock moving

into a stationary fluid is investigated. The solution is presented as a

model for the blast wave boundary layer caused by an explosion at or near

the earth's surface. Although the primary interest here is on spherical

blast waves, the solutions are formulated such that they are applicable

to plane and cylindrical as well as spherical shocks. Since the boundary

layer flow is laminar within a short distance from the shock front in

which the shear stress and heat transfer are high and since it is of

interest to assess the character of the boundary layer if it were to

remain laminar throughout the blast wave, the major effort of the present

study is devoted to laminar flow. However, a method of solving the

turbulent boundary layer equations has been conceived and formulated and

is included in the present report.

The equations governing the two-dimensional transient flow in a

laminar boundary layer are presented in Section 2 of this report and are

solved using two distinct methods. The first method involves a similarity

transformation coupled with a parametric integral technique and is describ-

ed in detail in Section 3. This method is believed to yield accurate

boundary layer solutions for strong-shock conditions (i.e., when the

2 CONFIDENTIAL
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ambient pressure is negligible compared to the shock overpressure). This

condition is satisfied for early time blast waves which are of most

practical and theoretical interest. The second solution method involves

the assumption of quasi-steady state and local similarity and is discussed

in Section 4. This method is being investigated because the solution can

be extended to non-ideal blast waves including weak shocks. Results

obtained using the present analyses are illustrated in Section 5, and a

discussion of the present work and conclusions are given in Section 6.

A complete definition of the flowfield involves determining the

inviscid flow and the boundary layer flow. The inviscid flowfield,

calculated by neglecting the presence of the boundary layer, has been

analyzed by a number of investigators and is rather well defined. For

ideal gas and strong shock conditions, Taylor 3 obtained an exact numerical

solution and an approximate closed-form solution while Sedov4 obtained an

exact closed-form solution. Sedov's inviscid solution is used in the

present study and is presented in Appendix A.

The laminar boundary layer associated with strong shocks has been
5

investigated by Mirels and Hamman; however, their solution is limited

to the region very close to the shock. The method of analysis, results,

and region of applicability of this solution is described in Appendix B.

This solution provides the only rigorous source of comparison to the

results of the present study, and such a comparison is discussed in

Sections 3 and 4. Mirels 6 and Murdock 7 have applied integral techniques

to obtain solutions to the boundary layer behind shocks of constant

velocity. Such a shock has a uniform flowfield behind it, whereas the

flowfield for a blast wave is far from uniform. Thus, those solutions

do not apply to the problem of interest here. To adequately define the

blast wave boundary layer, a more comprehensive solution than those

presently available in the literature is needed. The need is for a

boundary layer solution valid throughout the region of the influence of

the blast wave, from the explosive source to the shock front. The purpose

of this study is to present such a solution for the laminar case. Although

CONFIDENTIAL 3
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the actual blast wave boundary layer probably becomes turbulent very near

the shock front and boundary layer theory probably is invalid near the

explosion point where the density is extremely low, it is believed that

the laminar solution is a necessary first step in the description of

the physical problem. For turbulent boundary layers, a method of solution

as derived by Quan8 is shown in Appendix C. The actual numerical results

for turbulent flow will be computed at a later date.

4 CONFIDENTIAL
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2. GOVERNING EQUATIONS

A blast wave is by nature unsteady and produces a high temperature,

high velocity flowfield. Thus, transient and compressibility effects must

be necessarily be considered in the solution of its associated boundary

layer. The unsteady, compressible laminar boundary layer equations form

the starting point for the solution performed in this report, and are pre-

sented in this section. A schematic of the boundary layer which defines

the parameters used is given in Figure 2-1. Both two-dimensional (a=O) and

axisymmetric (c=l) boundary layers are considered. The y coordinate is

measured perpendicular to the surface and the x coordinate is measured

along the surface from the point of origin of the blast. A point explosion

generates an axisymmetric boundary layer, a plane explosion generates a

two-dimensional boundary layer, and a line explosion can generate either an

axisymmetric or a two-dimensional boundary layer.

The boundary layer equations applicable to both cases 
are:5 ,

9

Continuity

2P + 1 a(puxa) + (pv) 0  (2-1)

at a ax ayx

Momentum

Du rPe +(2 u2P a-+ ]  
(2-2)

~Dt ax a~y~ ay)

Energy

Dh DPe 1 (akI)+(iu 2

Dt Dt yP yy-, 2-3)

where u and v are flow velocities in the x and y directions respectively,

t is time, p is pressure, p is density, h is enthalpy, p is viscosity,

and Pr is Prandtl number. The subscript e denotes free-stream properties,

the subscript - denotes ambient fluid properties, and

CONFIDENTIAL 7
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D - + u - (2-4)
Dt 3t ax 3 (-

Air is assumed to be an ideal gas with an equation of state given by

p = [(y-l)/y]ph (2-5)

where y is the ratio of specific heats. In Equation (2-3) it is assumed

that the constant pressure specific heat (c p) and Prandtl number (pc p/k)

are constant where k is the fluid conductivity. The general boundary

conditions for the governing equations are:

u(x,O,t) = v(x,O,t) - 0, h(x,O,t) hw (x,t) at y = 0

(2-6)

u(x,w,t) = u (xt), h(x,-,t) he(xt) at y

where the subscript w refers to the flow properties at the wall (y=O).

The location and velocity of a strong shock are given by

x = Ctm, u = Cmtm -  (2-7)

where the constant C is related to the energy liberated during the

explosion (see Appendix A) and the constant m is given by m=2/(3+0)

where a=O, 1, and 2 for a plane, cylindrical, and spherical shock,

respectively (see Figure 2-2).

If a similarity variable is defined by =l-x/x, the inviscid flow

properties can be express as

2F

pe /p = Us F(C), pe/ = R( )

(2-8)
ue = us () h = y! Pe = u2

S e y-1 P e y-i S R(C)

where the functions F, R, and 4 depend on a and y as well as on C and

they are given in Appendix A.

8 CONFIDENTIAL
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FIGURE 2-2 PLANE, CYLINDRICAL, AND SPHERICAL MOVING

SHOCKS IN VICINITY OF PLANE WALLS
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3. INTEGRAL SOLUTION

The equations given in Section 2 which describe the laminar boundary

layer behind a shock have been reduced by Mirels and Hamman5 to two

partial differential equations involving two dependent and two independent

variables. Equation (2-1) is satisfied by a function such that

Y, v -y x(3-1)

Px Px \T. , (

The following independent variables are introduced:

"- 1 - x/t" (3-2a)
I

~ Y _P dy

0 ,.

(3-2b)

-%T = t (3-20)

where A is a constant defined by

A-2mC2(o+l) (3-3)A - 2mF C" (oik/Poo(-3

The independent variables are assumed to have the following form

S U e,) (3-4a)

h/h p - g(/,P) (3-4b)

and the boundary conditions are taken as

f(c,O) = f (CIO) = 0, f (1 (3-5a)

, /g( ,0) 
= 
0, g($,-) a i (3-5b)

0!! .CONFIDENTIAL
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Similar to the treatment in Reference 5, the wall temperature has been

assumed to be negligible compared to the free-stream temperature.

Using the equations given above, Equations (2-2) and (2-3) reduce to

. f + (n-f)f = 2 f + - (1+a f
0 (I-f)'° Fo2'n' '"Cf n

cT + (l-)-Iff) + i f- F- g - (3-6a)n Ie

_E_ 8 + (fl .1
PrF nn y F nn n

2 [ 1P+f-t+(- (2o+cx)n g] + + g (3-6b)

where a=(m-l)/m. In deriving Equations (3-6a) and (3-6b) it is assumed

that viscosity is proportional to temperature. Equations (3-6a) and

(3-6b) must be solved simultaneously for f and g in terms of and n.

It is noted that the independent variable i has been eliminated.

The shear and heat transfer at the wall cai be calculated from

= Kw (7/

" /2

2 s(0(3-7a)

112L\ h (3-7b)
Pr F0p(u s(xs) Pe he gn

(l 0 )

12 CONFIDENTIAL
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The wall temperature, which has been neglected in computing the coeffi-

cients of drag and heat transfer, can be determined by the procedure out-
5

lined by Mirels and 
Hamman.

Mirels and Hamman obtained a solution by expanding the variables f

and g in power series of C (see Appendix B). Their solution, however,

is valid only within a short distance from the shock front. The purpose

of employing the integral technique is to obtain a solution that may be

valid, under the assumption of laminar flow, for all distances from the

shock front.

3.1 POLYNOMIAL PROFILES

The integral method of obtaining approximate solutions to boundary

layer problems has been explained in textbooks (e.g., Reference 10). In

the present analysis, f and g are represented by polynomials in n. The

coefficients of the polynomials are chosen to satisfy the boundary condi-

tions. Equations (3-6a) and (3-6b) are integrated from n=O to n =. This

results in Lwo first-order ordinary differential equations describing

6 and 6 as functions of where and 6 are the distances of n at which

f 1 and g - 1, respectively, it should be pointed out that 6 and 6t

are not the physical boundary layer thicknesses. The actual boundary

layer thicknesses are the distances in y at which n - 6 and n - 6, and

can be found irom Equation (3-2b) once 6 and 6 are deterxnined.
t

In the present analysis, fourth-degree polynomkials are chosen to

represent f nand g

u= f a z + a z 2 + a z3 + a z4 (3-8a)

Ue 3

h 1 2 3 4
h g(E,n) b w + b w + b w + b w (3-8b)

1 3 4e

where z=n/6 and w=n6 t . The a, bI , 6, and 6t are functions of .

CONFIDENTIAL 13
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Equations (3-8a) satisfies the condition of f (4,0). Upon integration,

Equation (3-8) yields an additional constant which, to satisfy the condi-

tion of f(4,0)=O, turns out to be zero. The four coefficients a are

determined by the four conditions of f (4,)=l, f nn(F,,)-, fnn (t,)=0,

and f (4,0)-0. The second and third conditions are consistent with thefnn
definition of 6, i.e., all derivatives of f vanish at n-S, and the fourth

condition is obtained by satisfying Equation (3-6a) at q-0.

Similarly, Equation (3-8b) satisfies the condition of g(4,O)>O. The

four coefficients bi are determined by the four conditions of g(4, 6 t )l,

(&,6 )-0, 8nn (6 )-0, and g (,O)m -Pr(y-l)R2 f (,0)/YF where then M t )T nn

fourth condition is derived by evaluating Equation (3-6b) at n-0.

The resulting expressions for f and g are

f - 6(z 2 - z + 3i z 5  "-a)

-3  
w4  1 4

g 2w 2w - b 2 (w - 3w 2 + 3w3 -w 4 ) (3-9b)

where

b 2Pr(y-l)R A (3-10)

and

z W w 1/6 A4) 6 /6 (3-11)

Integrating Equations (3-6a) and (3-6b) from n-0 to n= and using

Equation (3-9a) and (3-9b), one obtains two coupled first-order ordinary

differential equations governing 6 and 6 t . These equations, after simpli-

fication by a vast amount of algebra, are given by

d6 B6 - _ D

d- 3 -) 37 (3-12a)

10 CO 0DE TAL
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G+ () 12  (3-12b)

(100+ 1~ b2 )+( + b 2 )

where

B = 3-- a (2+.a i A - b2  F (3-13aI)

D =-(i 2a 2 F (3 37 (

Tac 131
0

- R R + - bH (3-13c)

)O1A 60

Kd6 - b 2d+ (3-13d)
2  6 d R F

=, 2 (1-c 26 -,b + 6t11O + 0 b)- 6H

PrFo3t5A 21 /0
(3-13e)

and

2 2 3 A4 1 A5 1
H -A 2-3-A + A + -1 b2AN for A < 1

15 140 180 3 2

(3-14a)

3 3 A + + -+- bAN for A ' 1
10 10 150 140A3 180A4 3 2

2 2 9 A4 1 5 1 1( 3 3 1 4) fur A < 1

15 140 45 3 2 3 140 126

(3-14-b)

3 5 + - 3~ +- 1- b 2 + 9jfor A '.1
30 15A 356 3 2Y5A 14A 2  70A 36A
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SA + A3 1 A4forA<1
15 35 -36

(3-14c)

3 2 9 1

M = - -- + 2 9 + for A > 1
10 15A 2  140A 4  45A 5

N = -A - - + - A 4 for A < 1

30 140 504
(3-14d)

1 1 1 9 1
N + + 1 for A > 1

20 15A2 14A3 280A4 180A5

Equations (3-12a) and (3-12b) along with Equations (3-13a) to (3-14d)

are programmed for numerical solution using a standard Runge-Kutta-Adams-

Moulton method. The initial values of 6 and 6t are obtained by requiring

d6/dC and d6 /dC to be finite at C=0. The free-stream properties (F, R,
t

and p) used are those given in Appendix A; F, R, and 4 are derivatives

of F, R, and , respectively, with respect to C. The results for

Pr=0.72 and y=l.4 have been obtained for all four geometries illustrated

in Figure 2-2. The results of 6 and 6t, along with other results to be

obtained in the following section, are shown in Figures 3-1 through 3-4.

It should be noted that once 6 and 6 are determined, any physical property

in the laminar boundary layer can be computed using the appropriate

equations.

3.2 EXPONENTIAL PROFILES

In Section 3.1, the velocity and temperature profiles are representedIby fourth-degree polynomials. It is highly useful to obtain an alternate

solution, which is probably less accurate but is simpler to derive, by

employing profiles of another form. A simple representation that satisfies

the boundary conditions is an exponential profile. If the results to be

obtained using the exponential representation resemble those obtained

using the polynomial representation, then one may infer that the integral

solution is probably not too sensitive to the particular profile representa-

tion employed as long as they are physically realistic.

16 CONFIDENTIAL
%V=W.



CONFIDENTIAL

The exponential forms of the velocity and temperature profiles are

f = 1 - exp(-n/9.) (3-15a)

g = 1 - exp(-n/k t) (3-15b)

where Z and k are functions of E and are the distances in n at which thet -

velocity and temperature, respectively, reach (1-e- 1) of the local free-

stream values. It should be noted that k and 2. are measures of, but havet

values less than, the transformed velocity and temperature boundary layer

thicknesses, respectively.

Integrating Equations (3-6a) and (3-6b) from y=0 to y=- and using

Equations (3-15a) and (3-15b), one obtains two coupled first-order

differential equations governing 2 and kt". These equations are given by

1 d2 [k 2a+ F 1
(1 - - ~ ~z - 2 - (1-Q

2aF 1 1 + (3-16a)

- - + + (l-).]~ -.-- ( + ) 2c + - _._-

d2. 1+0 2 1 1_'l a F2o 1i + y-l R4 2

d (l+Q)2 2 PrF2. y F

where a= t/2.
t

Equations (3-16a) and (3-16b) are programmed for numerical solution

using the Runge-Kutta method. The initial values of k and Xt are obtained

by requiring dk/d and dt /d to be finite at E=O. The free-stream

CONFIDENTIAL 17
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properties used are those given in Appendix A. The results for Pr=0.72

and y-1.4 have been obtained for all four geometries illustrated in

Figure 2-2. The results of Z and £t, which are sufficient to determine

all boundary layer properties, are shown in Figures 3-1 through 3-4.

3.3 DISCUSSION OF INTEGRAL SOLUTION

The integral solution for laminar boundary layer has been obtained

using two distinct representations for the flowfield. The exponential

profile representation is simpler for computation than the polynomial

representation; but based on experience with simple problems such as flat

plate flow, the former is also expected to be less accurate. The velocity

and temperature profiles obtained using the two methods are compared in

Figures 3-5 to 3-8, respectively, for =0, 0.02, 0.1, and 0.5 and spherical
5

shock. Mirels and Hamman's solution, which is exact as -0, is also

included for comparison in Figures 3-5 and 3-6. Beyond &-0.02, however,

the accuracy of their solution is questionable (see Appendix B) and is

therefore not shown for comparison in Figures 3-7 and 3-8. The factors

that determine the shear stress and heat transfer at the wall, f ( ,0)

and g ( ,0), for spherical shock are plotted in Figure 3-9. They are

magnified and compared to Mirels and Hamman's solution in Figure 3-10

for small values of C. Also, f (0,0), g n(0,0), [df n(E,0)/d] 0 and

[dgn( ,0)/d]o0 for plane, cylindrical, and spherical shocks are tabulated

in Table 3-1 below; the results of Mirels and Hamman's are included for

comparison. The values of f (0,0) and g (0) are independent of a and a.
fnn

From Figures 3-5 through 3-10 and Table 3-1, it is seen that the

exponential profile solution agrees closely with the polynomial profile

solution. It is also seen that the polynomial solution yields better

overall agreement with Mirels and Hamman's solution in the region where

their solution is applicable.

1CONFIDENTIAL



16118-6002-R7-00

CONFIDENTIAL

TABLE 3-1

COMPARISON OF SHEAR STRESS AND HEAT TRANSFER FACTORS

NEAR SHOCK FRONT FOR Pr 0.72 AND y = 1.4

Mirels Integral- Integral-

Hamman Polynomial Exponential

fnI (0,0) 0.66141 0.63579 0.76376

g (0,0) 0.89693 0.88779 0.89032

0 -1/2 1.1819 1.1167 1.6487

[df nT( 0)1 0 -1 1.7201 1.6139 2.2971

0 1 -1 2.5051 2.4036 3.3336

1 -3/2 3.0432 2.9008 3.9820

0 -1/2 -1.2891 -1.3824 -1.4124

[dg) (CO)] 0 -1 -2.7270 -2.8319 -3.1753

o 1 -1 -1.6291 -1.7548 -2.0089

1 -3/2 -3.0671 -3.2044 -3.7718

C
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4. QUASI-STEADY SOLUTION

The second method Of solving the blast wave laminar boundary layer

is referred to as the quasi-steady solution. Two solution procedures

performed in a quasi-steady sense, along with rationale for attempting

them are discussed in this section. The two procedures, though independent

in method and application, are complementary in that they represent vary-

ing degrees of approximation to the actual physical problem. The first

quasi-steady procedure, referred to herein as the "steady and locally

square wave" procedure, is described in Section 4.1. This procedure uses

available solutions 6 ,l for the boundary layer behind a square wave shock

and applies them in a locally similar sense to the decaying, spherically

expanding blast wave. The "quasi-steady and locally similar" shock

boundary layer solution is discussed in Section 4.2. This solution

represents a more complete description of the local free-stream flow

properties and therefore provides a more realistic test of the appropriate-

ness of the local similarity assumption. Both solution schemes are

developed for the Taylor-Sedov self-similar blast wave flow and are compared

near the shock front to Mirels and Hamman's boundary layer solution

(Appendix B). A discussion of the applicability of both solutions to the

self-similar blast wave and possible extension to non-ideal blast waves

is presented in Section 4.3.

4.1 STEADY AND LOCALLY SQUARE-WAVE PROCEDURE

The "steady and locally square wave" solution procedure was an obvious

initial step in examining quasi-steady, locally similar type solutions

to the blast wave boundary layer problem. It was originally performed

with the intention of determining the accuracy of a very crude local

similarity assumption, based on known shock boundary layer solutions.

The comparison of the resulting solution to the other solutions presented

in this document was such that It was deemed proper to briefly discuss the

solution method and results. The solution is discussed in the following

paragraphs with the intention of suggesting a simple procedure for getting

rough estimates for the general blast wave boundary layer.

CONFIDENTIAL 31
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The complete solution for a square wave shock boundary layer is given

by Mirels in References 6 and 11. The solution was obtained by solving

the boundary layer equations in a steady, shock fixed coordinate system.

The solution was effected by reducing the equations to non-linear ordinary

differential equations with a similarity transformation based on the

similarity parameter:

- u dw P.fy d_(_s-Ue)_ - dy (4-1)

The subscript q refers to the square wave boundary layer solution.

A numerical solution of the resulting two point boundary value problem

was then obtained for various strength shocks as defined by the ratio of

the shock velocity to fluid velocity in the shock fixed coordinates or

us/(us-ue). These solutions are tabulated in References 6 and 11. The

procedure for applying these square-wave solutions to the boundary layer

for a transient, spacially decaying blast wave is to use the tabulated

solution for the local, instantaneous value of the velocity parameter

u s/(u s-Ue). This parameter is calculated from any blast wave solution

(Taylor-Sedov or numerical) using the instantaneous shock velocity at

the time of interest and using the free-stream velocity (u e ) at the

position behind the shock of interest. In this simplified sense, then,

the solution is both quasi-steady and locally similar; that is the boundary

layer solution is assumed to depend only upon the instantaneous shock front

and local free-stream properties (us, xs, ue9 Te, 0e).

The relevant boundary layer parameters from Mirels solution are

written below in terms of the variables used in the present report. The

boundary layer velocity and enthalpy are given by:

u -u
U - =f' (n) (4-2)

u u e qs e

where the prime denotes differentiation with respect to the independent

variable n and:
q
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h+-e =  + Ui-Ue] Q(q) - r(Q)S~lq - S(Sq)

(4-3)

2 
2(Us-ue)

M = 2u5 + (y-l)u

The wall shear stress (Tw ) and heat transfer (qw) are given by:

TUs (u (u- Ue f't (0) (4-4)
w sw( s- q

and

(u-u) 'bT yc4ue 1 ' T

w =kw 2w(XsX) s' T e + 2-(uUe) M] ) e r( -r w

The boundary layer thickness is:

U s-_U e  T us u a
__ 10 - n + y-7 n + ,

v - Te 2 e (u U)2 6 +q

where (4-6)

315(u - UeY

S=2 189u 74u
S e

and where y6 is the physical momentum boundary layer thickness. The

boundary layer thickness is derived in Reference 11 by using an approximate

integral technique which compares with the exact numerical technique

within 5%.

Curves for the wall shear stress parameter [f'(O)] and heat transfer

parameter [s'(0)] and recovery factor [r(O)] are plotted as functions of

the free-stream velocity parameter in Figure 4-1 below. Data presented

in Reference 11 was used in these plots.

For purposes of comparison with Mirels and Hamman's solution, the

solution procedure outlined above was completed for the Taylor-Sedov blast

wave flow given in Appendix A. The assumptions made in the square wave

boundary layer solution are consistent with the assumptions of Mirels and

Hamman for the self similar blast wave boundary layer (i.e., constant Pr

CONFIDENTIAL
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and c and p linearly proportioned to T) so that these assumptions will

not affect the validity of the comparison. To compare the two solutions

requires a transformation from the square wave similarity variable

[Equation (4-1)] and the Mirels and Hamman similarity parameter. Equations

relating the relevant parameters are given below. The similarity

variables are related by:

2 2 1/2

q ( y+l) F() (4-7)

The non-dimensional velocity [f'(n)] and non-dimensional temperatures

[g(N)] are related through Equations (4-8) and (4-9):

u U -u

f'(n) s f,(nq (4-8)
e Ue

2 e r(nq - r(O) S(n + - S

((:nu Me [riq 'qjlSO

(4-9)

It is reiterated that the prime denotes differentiation with respect

to the independent variable (n or n ). The parameters which determine
q

the shear and heat transfer are related through Equations (4-10) and

(4-11).

Se(-) / "Th\

=~ -se iIf ''n)(4-10)
u e knI/ q q

[Twe,
g'(ri) 

=  -i-12 e rO s(2 (-i

where nq /3n is derived from Equation (4-7).

A meaningful comparison of the two solutions can be made by comparing

the values of f''(0) and g'(0) as calculated by Mirels and Hamman and as

calculated from the steady and locally square wave procedures. This

essentially compares the wall shear stress and heat transfer. The values

of f''(0) and g'(0) are plotted as functions of the non-dimensional
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distance behind the shock front in Figures 4-2 and 4-3. The results of

the steady and locally similar procedure are compared to Mirels and Hamman's

two term expansion (with respect to ) very near the shock front in

Figure 4-2. As shown in that figure the solutions are identical at the

shock front. This is not very surprising since a square wave is the

"zeroth" order approximation to the decaying self similar blast wave flow-

field which is changing very rapidly with C near the shock front. The

reasons for this will become more apparent when the terms in the boundary

layer formulation which are neglected in the local square wave procedure

are examined in Section 4.2. As will be shown in Section 4.3, the accuracy

of the solution improves with distance behind the shock as compared to

the integral solution and the quasi-steady and locally similar solution.

Some reasons for this will be discussed in that section.

4.2 QUASI-STEADY AND LOCALLY SIMILAR PROCEDURE

The "quasi-steady, locally similar" blast boundary layer solution is

presented in this section. The spirit of the solution is to extend Mirels

and Hamman's solution 5 to all regions of the blast wave and to allow for

the use of non-ideal blast waves (weak shocks, precursors, heights of burst)

in the boundary layer solution. This section includes a description of

the solution method and presents results using the Taylor-Sedov self-

similar inviscid blast flowfieid. Comment on the accuracy of the assump-

tions is reserved for Section 4.3.

The basic boundary layer equations are given in Section 2. The

first step in the solution is to transform the continuity, momentum and

energy equations [Equations (2-1),(2-2), and (2-3), respectively] to a

shock fixed coordinate system and to concurrently apply a similarity

transformation for the y coordinate. The transformation equations used

are identical with those of Mirels and Hamman and are given by Equation

(3-2) of this report. The effect of the transformation is to reduce the

effect of the time varying terms, thereby making the quasi-steady assump-

tion valid, and to stretch the y coordinate to account for compressibility

effects. As was pointed out by Mirels and Hamman, time is eliminated

completely by their similarity transformation for the self-similar blast
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wave flowfield. Thus for this "ideal" blast wave the quasi-steady assump-

tion is superfluous. This, however, is not the case for a "non-ideal"

blast wave.

The flow velocity components (u, v) are assumed to depend upon some

scalar function P(Er,') in such a way that continuity is identically

satisfied as given by Equations (3-1) earlier. The non-dimensional

boundary layer velocity and enthalpy are thus given by:

u -(~)h

- g(,n) (4-12)
Ue he

The momentum and energy equations [Equations (2-2) and (2-3)] are now

transformed as described above into Equations (4-13) and (4-14) below:

12a (l-) 2a (PP) x2a (1-0 2a (p1)
a- f - s T] f

2 2m(o+l)-l nnn 2 2m(a+l)-l nn
Apgo Ap oT

-e +e~ US

+_ +. eff.

e
x f fn - s s f

au ( 2hu u au_ 1e + _ -e s (-)e f
xn u 'r x

5 e L s

(4-13)
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2a (- 0 2a ( ) 2a (1- )2 (P )
ss r

Pr 2 2m(0+1)-l gn n1 Pr 2 2m(a+l)-1 gn
A pWT A p 0T

2o(1_0 2a, 2

(1s Ue Wp~) (f 2
2 2m(o+l)-i h e nr

p AT e

1ahe 1 a 3( e (--e
h+e T P e T X s e

+ e f L egu

- ~[m(a+l)-l/2] * + s 1~)ng

Ue lahe 1 ape f

hx (1 Ue gf)n g

e s Ve (4-14)

where the boundary conditions are taken as:

f(F,O) = f ( ,O) =0, f (4,= 1

(4-15)

h
g(,o) = - , g(,-) -1

The constant A in the above equations is defined by Mirels and Hamman and

given by Equation (3-3). For a general inviscid flowfield the constant C
is defined as xs/tm so that A is represented in a slightly different form

as:

2mF x2(a+l) 11o Os

t 2m(c+l) p(4-16)
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It is important to note that the governing differential equations

(4-13) and (4-14) reduce identically to Mirels and Hamman's equations

(3-6a) and(3-6b) for the self-similar blast wave. For that ideal case,

the coefficients in Equations (4-13) and (4-14) become independent of time.

For a general blast wave flowfield these coefficients are functions of

time so that the quasi-steady assumption is required. By this assumption

then the solution (f, g) is a function of time but only in the sense

that the coefficients in Equations (4-13) and (4-14) vary with time. The

quasi-steady assumption, in essence, involves neglecting all terms which

involve time derivatives of the functions f and g. As noted above this

is justified apriori for the Taylor-Sedov blast wave by the elimination of

time dependence from the differential equations. The assumption essentially

freezes the boundary layer at a given instant of time and the solution is

assumed to depend only upon the instantaneous flowfield. Physically the

assumption is accurate if the rate of diffusion of momentum and heat through

the transformed boundary layer is greater than the time rate of change of

the external flow properties. Some consequences of this assumption are

discussed in Section 4.3.

The problem, as it now stands, requires the quite formidable solution

of a pair of simultaneous non-linear partial differential equations.

To reduce these to a tractable form the assumption of local similarity

is made. This assumption is put forth in the same cavalier spirit as

the quasi-steady assumption. Whereas in the quasi-sLeady assumption time

derivatives of f and g were neglected, local similarity dictates that

space derivatives with respect to of f and g are neglected. This assump-

tion is advanced with somewhat weaker justification than the quasi-steady

assumption. Mirels and Hamman have shown that for the ideal blast wave,

the proper similarity transformation makes the quasi-steady assumption

redundant. Local similarity, however, requires neglecting the underlined

terms in Equations (4-13) and (4-14). The feeling is that away from the

shock front the terms neglected by local similarity become smaller relative

to the other terms in Equations (4-13) and (4-14). The fair agreement

with the integral solution as seen in Section 4.3 is advanced as justifica-

tion for the local similarity assumption.
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bouIn essence the assumption of local similarity requires that all

boundary layer flow parameters (u/uel h/he, pe ) be a function only of the

similarity variable n at any given time () or distance behind the shock

( ). This assumption reduces Equations (4-13) and (4-14) to two simul-

taneous non-linear ordinary differential equations with split boundary

conditions. The resulting two-point boundary value problem can be solved

by standard numerical methods. The method used is known as a shooting

technique wheLeby guesses are made for the higher order derivatives at

the wall [f (4,0), g0 (C,0)). Equations (4-13) and (4-14) are then

integrated numerically to some large value of n. Guesses are then made

for f (4,0), g (4,0) uiutil the resulting solution gives values of

f (4, ) and g(4,-) which are equal to 1 within some arbitrary small error.

This can be carried out by an iteration scheme which is found to converge

quite rapidly and efficiently to the proper solution This process is

repeated for the values of 4-l-x/x of interest. This can be performed
s

for the blast wave flowfield at any instant of time thereby determining

the blast boundary layer as a function of position (x,y) and time t.

Once the tunctions f and g (and their derivatives) are determined for

the values of 4 and T of interest the problem is essentially solved. It

remains to calculate the physical parameters of interest and re-transform

the independent variables 4, n back into physical coordinates (x,y).

This is done using the following equations:

1 1/2

Sxs(l-) [ATm ll --- g(4,n)dn (4-17)

Ux e o

The velocity and enthalpy become:

u = u e(Xy,t)fn[4(x,t) , n(x,y,t)]

(4-18)

h = h (x,y,t)g[R(x,t) , n(x,y,t)]
e
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Parameters of particular interest are the wall shear stress and heat

transfer. These are given by Equations (4-19) and (4-20), respectively.

pF 
-1/2

1 -- Pt ] (-)2 h (PP)wg (C,O) (4-20)qw Pr 2 oplM-1,e WT

Equations (4-13) and (4-14) were solved using the procedure outlined

above for the Taylor-Sedov blast wave flowfield and by assuming Pr, cp'

and p/T to be constant. The results for the shear stress and heat transfer

parameters are given near the shock front in Figure 4-4 and for the complete

flowfield in Figure 4-5. As expected these parameters compare more

favorably with Mirels and Hamman's solution near the shock front than the

steady and locally square-wave solution. It is noted that the solution is

identical with Mirels at the shock front and that very near shock front

the trend in both f and gn compare favorably. Boundary layer velocity

and enthalpy profiles at the shock front and at C=0.5 are given in

Figures 4-6 and 4-7. Of note in these figures is the indicated decrease

in transformed boundary layer thickness with distance behind the shock

front.

4.3 DISCUSSION OF QUASI-STEADY SOLUTIONS

Figures 4-8 through 4-11 provide a comparison of the wall shear

stress and heat transfer parameters as calculated by each of the flow

calculational schemes discussed in this report. Figures 4-8 and 4-9

compare the solutions very near the shock front in which region Mirels

and Hamman's original boundary layer solution is applicable, and Figures

4-10 and 4-11 compare the solutions presented in this report over the

entire blast wave. Figures 4-8 and 4-9 show that all the solutions

compare well near the shock front with the integral solution showing the

best agreement with Mirels and Hamman's solution with respect to variation

of f and g with distance from the shock front (C). This

trend with C is indicative of the inadequacy of the assuniptionG of local
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similarity of both quasi-steady solutions. This point is further veri-

fied by the fact that the quasi-steady and locally similar solution shows

a slightly better trend with respect to 4 than the steady square wave

solution. This is attributed to the better approximation of variations

with 4 in the quasi-steady and locally similar formulation. The rather

good comparison of both quasi-steady solutions with the integral solution

away from the shock front is indication that the assumption of local

similarity improves with distance from the shock front. This is to be

expected since the blast wave flowfield (and boundary layer flow) varies

less rapidly with respect to 4 as 4 increases away from the shock front.

It is thus expected that the terms neglected by local similarity (f4

and f ) will decrease in significance (relative to the other terms in

the boundary layer equation) as , increaoes.

It is difficult to justify or to speculate on the accuracy of the

steady and locally square wave solution. Suffice it to point out that

the above figures show that the solution compares surprisingly well with

the more rigorous integral solution for the Taylor-Sedov blast wave.

The good agreement is fortuitous. The solution's utility rests on themfact that it provides a relatively simple procedure for estimating the
important boundary layer flow parameter (shear stress, heat transfer and

boundary layer thickness). It can also be used to cstimate such para-

meters for the boundary layer of a general non-ideal blast wave. The

relatively good comparison shown here with the more rigorous boundary

layer solutions should add some credibility to the numbers calculated

in such a manner.

The results of the quasi-steady and locally similar solution for the

Taylor-Sedov blast wave are quite satisfying. The primary advantage

of the solution, and the reason for performing it, is that it is not

dependent upon a self-similar inviscid flowfield, i.e., the assumption of

a strong shock is not required. This opens the possibility of extending

the solution to include non-ideal effects in the free-stream. In

particular, a numerical solution valid in the weak shock regime or one

which includes radiation effects (which cause a shock precusor) could be

used for the boundary layer analysis. The accuracy of the quasi-steady
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and local similarity assumptions for such a flowfieid can only be con-

Jectured upon. The quasi-steady assumption could be quite good. As

pointed out earlier, the similarity transformation used eliminates time

from the boundary layer equations [Equacions (4-13) and (4-14)] for

any power law shock (xs=Ct ) for which the trailing blast wave flow

properties have a similar spatial distribution for different times. This

condition at least partially holds for a high explosive or nuclear blast

wave for even late time. That is, even for weak shocks, the spatial dis-

tribution of blast wave flow properties varies little in general shape.

Thus it is conceivable that even for such a case the quasi-steady and

locally similar procedure could give good results. As far as the

applicability of the local similarity assumption is concerned, it can

only be pointed out that the assumption provides quite good results in

comparison to the integral solution for the Taylor-Sedov flowfield.

It is expected that this would carry over to the more general blast wave.

The quasi-steady and locally similar solution also presents the

possibility of being extended to include turbulence by using a phenomeno-

logical theory of turbulence, or the solution could be numerically

coupled to a sami-empirical theory for wall turbulence. The solutions

presented in this report assume viscosity is a linear function of

temperature. This restriction is not: taquired in the quasi-steady and

locally similar solution. In any practical calculation viscosity would

be made a function of temperature using an empirical equation like the

Sutherland viscosity relation. This would be consistent with local

similarity and pp would be some function of the temperature ratio g. In

summary, this solution method is attractive becau.e of the straight-

forward manner in which it may be extended to include effects which are

difficult to handle theoretically but which add considerably to the ac-

curacy of the physical model.
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5. ILLUSTRATION OF RESULTS

The solutions to the blast wave laminar boundary layer equations

have been given in Sections 3 and 4. Of the several solutions presented,

the most rigorous one is the integral solution with the polynomial

representation for velocity and temperature profiles. This solution is

employed to illustrate some physical properties of interest in this

section.

The velocity thickness y6 and the temperature thickness y6  can be

obtained by setting n=6 and n-6t, respectively, in Equation (3-2b). The

result is

s At ~2m-1 1/2 1/2 6 1(5)
Y6 t(5-)

C 2ao R 60 2 )

and

y /( 1 b (5-2)
6 =  t6 i0  60

t

where

1 3 1 for A <1
A If0 60 2fr

(5-3)

i 1 1 1b 1 1 3 1 A
A
2  -2A4 + 5A5 3 2(2A2 A3 

+ 4A
4  5A 5) frA_

Thus, both y, andy, can be given as products of a func tion of t and a

function of ¢.By letting

'A 2-l \1/2
Q(t) , (54)
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the results for y6/Q(t) and y6t/Q(t) are plotted in Figures 5-1 and 5-2

for spherical shock. Since A is proportional to C2(a+l), the scaling

is that y6 and y6  are proportional to C which varies with the explosion

energy E as C-Em / . Also, at given &, y, and y, are proportional to

m-0.5 0.4 tti . For C=3800 ft/sec (corresponding roughly to a 1.0 megaton yield*)
and t=0.l and 1.0 sec, y6 and y~t are shown as functions of x in Figure

5-3. It is seen that the boundary layer thicknesses are quite thin for

a long distance behind the shock, after which the thicknesses increase

rapidly. The velocity thickness for the blast wave at 0.1 second is

compared to the velocity thickness for a square wave (using peak uniform

free-stream properties) in Figure 5-4. It is seen that large differences

exist.

The shear stress T and heat transfer rate q can be written asw

and

y. Y- 1/r2 R 2b2
W(tmtin)F 6 (- r 2 (5-6)

where 
C1

/J0I0 2a 1i/2/ \13

W(t) "P ( t2m )\ - 2 at (5-7)

Thus Tw can be scaled with W(t), and q with W(t)Cmtm - I or W(t)u (t).
From the expression for W(t), it is seen that Tw and qw decrease rapidly

as time is increased. The functions Tw/W(t) and qw/W(t)us(t) are plotted

in Figure 5-5 for the spherical shock. It is seen that near the shock,

both shear stress and heat transfer rate decrease with distance from the

shock. Some distance away, however, the heat transfer rate increases

rapidly. The reason for this is that the free-stream temperature

increases more rapidly than the heat transfer coefficient decreases in

this regime. For C=3800 ft/sec 0 4 and t0. and 1.0 sec, T and are

shown as functions of x in Figure 5-6.

*This is calculated based on 1.0 megaton free air burst which corresponds

roughly to 1/2 megaton surface burst.
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The velocity and temperature distributions shown in Section 3 are

given in terms of n. These distributions can be given in terms of y

through Equation (3-2b) which relates n to y. For the polynomial

solution, the relation becomes

1/2 2 4 5 3_ T,4 5i2 1 + 3 +T,1n

Y =Q(t) + +----b
(t) .-)1/2 R 6 3 56 4  

3 2 6 2 463 56

(5-8)
for n < 6

- t

y = Q(t) 6 t1 2 + - L b for n > 6
(1-)/2 R -- 60 2/ t] t

The results of the velocity and temperature profiles as functions of

y/Q(t) and are shown in Figures 5-7 and 5-8 for the spherical shock.

The following and last illustration does not require the results of

the boundary layer study but may be of interest. It is difficult to

assess the transition point from laminar flow to turbulent flow. However,

one may wish to estimate the Reynolds number variation. For this purpose,

one may define a Reynolds number Re as

u e(x -x) pODt R2 ptZCRe = - (5-9)

Pe p m F pm

The value of Re/(p~t/pom) is plotted in Figure 5-9 for the spherical shock.

It is seen that Re first increases and then decreases as , is increased.
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6. DISCUSSION AND CONCLUSIONS

The blast wave laminar boundary layer equations have been solved by

four procedures. The most rigorous solution is the one obtained using

the integral technique with the polynomial representation for velocity

and temperature. The integral solution with the exponential representation

is simpler to derive and it agrees quite will with the integral solution

with the polynomial representation. The steady and locally square wave

method allows for rapid estimation of the flow properties; however, although

it yields fair agreement with the more rigorous solutions, it lacks theo-

retical justification. The quasi-steady and locally similar method is a more

reasonable approach than the steady and locally square wave method and the

results are generally more accurate, but it requires more extensive computation.

In the region near the shock front, only the integral solution yields
5

close agreement with a previously established solution. Since the integral

solution is obtained using a rigorous method, this solution is recommended

for general use. However, if weak-shock and non-ideal gas effects must

be considered, then the quasi-steady method can be used to obtain rough

estimates of the flow properties.

The integral solution shows that the boundary layer thicknesses

remai quite thin for a long distance behind the shock, then they increase

very rapidly with the distance. This is in contrast to a flat plate or

square-wave solution for which the boundary layer thickness increases

with distance behind the shock to 0.5 power. The integral solution also

shows the temperature thickness to be much greater than the velocity

thickness except for a short distance from the shock. Near the shock

front, both shear stress and heat transfer decrease as the distance

behind the shock is increased. However, at a distance behind the shock

of ab6ut one-third of the length between the shock and the explosion

point, the heat transfer increases very rapidly. This is due to the fact

that the free-stream temperature increases at a much higher rate than

the heat transfer coefficient decreases as the distance behind the shock

is increased.
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The results presented in Section 3 for the integral solution allow

one to compute any physical properties for laminar flow such as shear

stress, heat transfer, velocity and temperature profiles, etc., by using

the appropriate equations. The results can also be used for strong

shocks of various explosion energies by using proper scaling. Some

illustrations of the results are shown in Section 5 where the method of

scaling is also indicated.

The flow is expected to be laminar only for a short distance from

the shock. It then becomes turbulent for a predominant portion of the

flowfield. At less than half the distance between the shock and the

explosion point, the density becomes extremely low and the continuum

boundary layer equations may become invalid. However, the boundary

layer properties near the explosion point are not of primary interest.

Hence the next flow regime that should be investigated is that of

turbulent flow. For turbulent boundary layers, a method of solution

8
has been formulated by Quan and is shown in Appendix C. It is recom-

mended that calculations be carried out to obtain numerical results.
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APPENDIX A

BLAST WAVE INVISCID FLOWFIELD

The inviscid fiowfield generated by an intense explosion in a uniform

atmosphere has been studied by a number of investigators. In a classic

3
paper, Taylor presented a self-similar solution for a point explosion.

He presented an exact solution in numerical form and an approximate

solution in closed-form. Sedov 4 independently arrived at an exact solution

and generalized it to a line explosion (cylindrical shock) and a plane

explosion (plane shock). Sedov's solution is given in analytical form

and is the one used in this report.

A strong shock moves according to a power law in time t of the form

x - m u = Cmt (A-l)

where x is the shock position and u5 is the shock velocity. The constant

m is determined by shock geometry and is given by m=2/(3+c ) where G=0, 1,

and 2 for plane, cylindrical, and spherical shocks, respectively. The

constant C is determined by the explosion strength and is given by

C=(E/p.)m /2 where p is the ambient density and E is a certain constant

which has the dimensions of and is proportional to the energy E0 (kinetic

energy and heat energy) liberated during the explosion, i.e., E=aE . Theo

constant c, which depends on y and a, has been shown in graphical form by

4
Sedov. For air and spherical shock, -1.175. It should be pointed out

that E is not the total energy liberated in an explosion since a large
0

part of the energy is expended in radiation.

The inviscid flow properties behind the shock are given by

pe = Pu sF() Pe = pR( )

(A-2)
u = u c() , h = Y Pee s e y-i Pe
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where p, p, a, and h are the pressure, density, velocity, and enthalpy,

respectively. The subscript e refers to conditions behind the shock,

and - refers to the undisturbed atmosphere; F, R, and P are the solution

parameters given as functions of the non-dimensional blast wave coordinate

=l-x/x . From Sedov's results, one may write
S

= ± V(_ (A-3)

2v

Ia

R = 2TV _ i +2 V •

2y- 2

4

(v+2) (y+l) i- V (A-4

1 (A-5)

where V is an implicit function of given by

+2) (y+)-2 [2+v(y-) 2

and
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V 1i+ a

N (v+2)y -2v(2-y)

a2 = 2+v(y-1) Y( 2 - 2]

(A-7)

a3  -2(y-l)+v

U (v+2)

-4  2-y

5 y-2

The functions 4, R, and F for a=2 (spherical shock) and y=l.4 are shown in

Figure A-i which illustrates the severe nonuniformities near the shock

front.

Only the similar solution as given in this appendix is used in this

report, since the integral boundary layer solution requires the similarity

transformation. It should be mentioned, howev. , that non-similar solu-

tions to the inviscid flowfield are available and they can be used in the

quasi-steady method of boundary layer solution. The non-similar inviscid

solutions involve the numerical solution of the continuity, momentum,

and energy equations which take into account the real gas effects, ambient

pressure, and radiation heat transport. In the strong shock phase,

these numerical solutions agree closely with the similar solution.
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APPENDIX B

MIRELS AND HAMMAN'S BOUNDARY LAYER SOLUTION

As noted in Section 1, Mirels and Hamman performed a solution to

the blast wave boundary layer which is valid near the shock front.
5

For reference purposes, the method and results of that solution are

outlined in this appendix.

The basic transformed equations and boundary conditions used by

Mirels and Hamman are given in Section 3. These equations are partial

differential equations with two independent variables and n. Mirels

and Hamman's solution method is to expand the dependent variables f and

g as power series in . Substituting f and g into the differential

equations and equating coefficients of like powers of reduces the

equations to a series of non-linear ordinary differential equations

which can be integrated using a shooting technique as discussed in

Section 4.2. The solution can thus be continued to any desired order

of approximation although each successive approximation becomes increas-

ingly more complicated.

The functions f and g are expanded in the form

2f

f( ,n) =f (n) + (a )f() + (aO) 2() +

(B-1)

g(cn) = go() + (C(O)g( 0) + (a) 2g 2 (T) +

Sedov's solution to the freestream flowfield parameters is expanded in a

similar power series to the same degree of accuracy as follows:

S2
F( ) - Fo + ( )F + (u4) F 2 

+

2
( = o ) + (X0)212 + ''" (B-2)

R( ) = + ± (C)R 1 + (a) 2 +
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The constant a~ is dependent upon the exponent in the power law shock

relation (Appendix A) with the form a=(m-l)/m. Substituting these

expansions into the transformed differential equations and equating

terms of like order of results in a sequence of ordinary differential

equations. In Reference 5 the solution is carried to first order (linear

in ) and the resulting equations are given here. The zero-order equations

are:

0

(B-3)

f) (inf1

which boar coldwithiho zr-odrnqatosae

(B-4)

00 1 00

-j' + gQof'' + f + 20f' -- + fljn g oo

+ 2 + ~f' 2 (f - L)g k(>
-l ) T o~
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with boundary conditions:

fl (0
) f'(0) = 

fi(o) = 0

(B-6)

g1 (O) = gl(_) = 0

Equations (B-3) to (B-6) have been solved for y=1.4 and Pr=0.72 and
for various values of o and a. The resulting solutions for f' and f'

0 1
are presented in Figure B-i and the solutions for g and g, are given in

Figure B-2.

Because of the nature of the solution technique, this first-order

solution can be strictly applicable only very near the shock. The actual

region in which it is accurate is questionable although some measure can

be obtained by examining the accuracy of the two term expansion of the

external flow properties. The results of Appendix A indicate that the

flow properties, in particular density, change very rapidly near the

shock. The two term expansion of the density function R( ) is given by

extending a straight line from the shock front ( =0) with a slope equal

to the slope of R at C=O. By this straight line approximation, R=O for

2_
E=(y -i)/[3 (y+l) + o(y+5)]. This yields =0.048 for y=l.4 and -=2. The

inviscid flow density is obviously in serious error for less than that

and the boundary layer solution cannot be expected to be any more accurate.

Thus the boundary layer solution presented in this appendix is probably

accurate for F<0.02 at best.
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APPENDIX C

METHOD FOR TURBULENT BOUNDARY LAYER SOLUTION

A method of solving the transient two-dimensional equations that

govern the turbulent boundary layer flows generated by plane, cylindrical,
8

and spherical strong blast waves has been formulated by Quan. Since a

predominant portion of the blast wave boundary layer is turbulent, this

analysis constitutes a logical complement to the laminar boundary layer

study. In the turbulent flow study, the integral momentum and integral

energy equations are utilized to reduce the number of independent variables

from three to two (time and distance along the surface). A similarity

condition further reduces the two independent variables to one. The

resulting ordinary differential equations can then be solved by scandard

numerical procedure. Quan's formulation of the solution is outlined

in this appendix. The nomenclature here is at places different from

that of the main text of this report.

The transient two-dimensional compressible turbulent boundary layer
12

equations have been given by Van Driest. It can be shown that the

equations have the following form for the blast wave problem where the

free-stream flow is nonuniform and time-dependent:

+ L D(pux) + a : 0 (c-l)
at a a x y

x

-- a -u -au +Pe _uT [ + -
at Dy ~ ax y ay ay UP)'

(C-2)

ap 1-a + - ah - h e + -ape + a - - h - (u
S + x + a y t -a Pr ay Sy

+y TL[-(v ' (pv)' u (C-3)
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where the bars indicate temporal mean values and the primes indicate

instantaneous fluctuations from the mean. The symbols p, u, v, h, and v

refer to the density, x velocity component, y velocity component, enthalpy,

and viscosity, respectively; pe is the pressure at the edge of the boundary

layer; Pr is the Prandtl number which is assumed to be constant; and t, x,

and y refer to time, distance along the surface, and distance normal to

the surface, respectively. The temperature is given by T=h/c where c
p P

is a constant specific heat. The value for a is 0 for two-dimensional

boundary layer and 1 for axisymmetric boundary layer.

There are two common methods of solving turbulent boundary layer

equations. The first is to employ semi-empirical expressions relating

the fluctuation, or eddy diffusivity, terms to local mean properties,

and the partial differential equations governing the mean values are

then solved by finite-difference procedure. This method, at least in

the mathematical sense, is quite accurate. However, the accuracy and

reliability of the semi-empirical expressions have not been established

at present. Moreover, this finite-difference procedure is very tedious

even for steady-state problems. For the transient problem at hand, this

method is unappealing, to say the least.

The second method, which is simpler both in treating the physics

of turbulence and in obtaining numerical results, is the explicit integral

method. Here, the differential equations are integrated across the boundary

layer and the dependency on the y-direction is eliminated. With this

method, one is mainly interested in the gross effect of turbulence on the

boundary layer growth and not in the detail mechanics of turbulence.

Instead of evaluating the local diffusivity terms for momentum and energy

as is done in the first method, one prescribes the velocity and tempera-

ture profiles, a skin-friction law explicitly relating sihear stress to

momentum thickness and an explicit relation between heat and momentum

Utransfer The resulting partial differential equations are first-order

and they describe the momentum and energy thicknesses as functions of

x and t. Two questions naturally arise with the integral method here.

First, are the boundary layer growth results sensitive to the velocity

and temperature shapes that are assumed? Second, can a transformation

be found such that x and t are related by a single variable?
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Evidence1 3 shows that the answer to the first question is negative.

In fact, the integral procedure is currently the standard method used in

computing turbulent boundary layers in nozzles 1 4'1 5 where finite pressure

gradients exist. It is also used in shock tube turbulent boundary layer
6 ,16

studies in which pressure gradients are absent. It should be noted,

however, that, especially for the present problem, the skin-friction

law and the heat and momentum correlation, like the eddy diffusivity

expressions, are of uncertain validity.

The answer to the second question is, fortunately, yes. It is shown

below that, indeed, under certain restrictions on the skin-friction law,

a similarity transformation can be found. Thus, the present problem

starting with second-order differential equations with three independent

variables (t, x, and y) is reduced to the relatively simple task of solv-

ing first-order ordinary differential equations. To our knowledge, a

rigorous transient solution to two-dimensional turbulent flow has not

been obtained previously (of course, one can always construct what may

be called a locally-similar and temporally-steady solution of unassessed

accuracy). The method of combining an integral technique and a similarity

transformation appears quite attractive. The governing equations will be

derived below and numerical results will be obtained at a later time.

Equation (C-1) can be used to eliminate pv; Equation (C-2) can be

integrated across the boundary layer to yield:

ue + (_ u2 e) e ue

w =t (Peuew) + Pe t L - + Peue 3x (-4)
X

and Equation (C-3) can be integrated to yield:

DH D X~~~ He'(-5-- e 1+ _ _ + p

(peHeQ) + Pe - L + x au Peu e * (-5)qw t ee e x eee) eea
x

where T is the shear stress at the wall and q is the convective heat

flux to the wall. The subscript e denotes conditions at the edge of the

2
boundary layer; H is the stagnation enthalpy (H=h+u /2) and
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6* 1-P: e dy (G-6a)

0 1 d (C-6b)

o e e

X*= :& (1 L dy (C-6d)

0(C-e)

0 = - P(1 -_U dy(C- 6f)

The dispalcement thickness 6*, momentum thickness 0, and energy thick-

ness 4 are those commonly encountered in steady-state problems. It is seen

that three other th4ckness parameters are introduced in the transient

problem. We shall temporarily call X* the density thickness, w' the

acceleration thickness, and 0 the enthalpy thickness.

In deriving Equations (C--4) and (C-5), it has been assumed that

Jpu dy Jp u dy (C-7a)
o 0

Jpu udy Jp u (C-7b)
0 0

f0pu H dy J0 p u Hdy (C-7c)
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This assumption is generally employed in integral methods for turbulent

flow.1 7 Also, the following boundary conditions have been employed:

u =0, v 0, h =0 at y 0 (C-8a)

u u, h=h at y -* (C-8b)

It is now assumed that the velocity and stagnation enthalpy can be

represented by power law profiles of the form

u = y < 6 (C-9a)

I ua

ue

u 1 y > 6 (C-lb)

e

H - 1 y > A (C-10b)

e

where 6 is the velocity thickness, A is the temperature thickness, and n

is an empirical number usually given the value of 1/7.

From Equations (C-9) and (C-10) and the definition of H, one can

obtain P/Pe as a function of (y/6)n and (y/A)n. Its explicit expression

depends on whether y < A or y > A and whether 6 < A or 6 > A. Integration

of Equation (C-6) yields

f"/ 1 Wl (C-11a)

0/6 - f2 a) (C-llb)

4/6 = f 3 () (C-llc)

A*/6 I f 4 () (C-lid)

6j/6 f5( (C-le)

0/6 = f6 () (C-lf)
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where A/6. Using Equation (C-I), one may write Equations (C-4) and

(C-5) in the form

+ e + 20 ) +

Tw = -t [eUg 3( )e + Pe - - g2()o + - x (xQuPeUe + @ee 7 glI

(C-12)

qH HX eP~ eb + P u

qw -A- eHe 6 () + Pe t g5 ([)e + - ( el + PeUe 9 +4la
x

(C-13)

where

1(c) = f l()/f2() (C-14a)

92(0) = f 4 (W)/2( (C-14b)

93W) = f(/ ) (C-14c)

g4 ( ) = fl(0)/f3 () (C-14d)

g5 () = f4 ()/f 3 () (C-14e)

g6 (0 = f6( )/f (O (C-14f)

It is noted that can be written as a function of 4/6 through

Equations (C-llb) and (C-llc). Equations (C-12) and (C-13) can then be

solved for 0 and v simultaneously provided that relations for t and qw

as functions of e and 4 are given. We are, however, interested in a more

ambitious step, namely, in reducing Equations (C-12) and (C-13) to

ordinary differential equations. In this regard, we note that similarity

exists in the free-stream conditions for strong shocks for which

Pe " p.R() (C-sa)

u = u (TWO (C-iSb)

H M RU2) + 2 ( ) -(T)() (C-15c)

where

= i x (C-16a)
Ct

m

T= t (C-16b)
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and p, y, C. and m are constants, and

u (T) =CMT M1(C-17)

Equation (C-12) can be written as

'UXa (l-)pu -A- (RlP3xC) + P'Rp i- (u 3x%)

p Gex [ (1-o)u d1 + u

We L ~ 2 R th ae Ct p. 2 x6 a di8

We nw asum tha ortheratio p/e depends only on and that

6 can be written in the form

e (x,t) =C1a

or

x a (x,t) = BT a e1 (&) (C-19b)

where the constant a is to be determined and the constant B can be

arbitrarily selected for convenience. Equation (C-18) becomes

1 a m a1) ad Rg1)1Ru

- d

(+P 3 i + T~~e a-+ (utE 1-u )
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Equation (C-20) can be written in the form

)= Tm+a-2-maGM (C-21)

where

G( = m(-.1-) a1 As(R )+ (m-l+a) Rg 3 61

+ Rg2O1[m(1-c) + (m-ljI

m ( 2 1) - mRg 1  (C-22)

The question now is can one find an expression for T that is a
w

:unct:o c: '. and varies with t to some power. Fortunately, a physically

a:cgab~. c×xrtssion ror such purpose does exist. For turbulent flow

in noz-Zes and in shock tubes,6'16 a relation between skin-friction

- an. houn-c.rv laver thickness can be taken as

.-. 2 ' /4

0.0225 j p u -(C-23)

where

/ i/4 (T A3/

and

Tm  0.5 (T w+T e ) + 0.22 (T r-T ) (C-25)

Assuming p1 to vary directly with T, considering T w < T , taking the
1p~/322Cp an usne~ n

recovery temperature to be T -T + (Pr) u /2c, and using hc T, one
re e pp

obtains
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F -1/2

0.5 + 0.11y/32R i( ) (C-26)
(y-l)F""

and

2m-2+(m-l+ma-a)/4 (C-27)

w

where

F Ca 11/4
2 9/4 (FC (1-)W f 2]i

K(E) 0.0225 J pR, 2 (Cm)9 /4  
(C-28)

L(y-l)BpRhe
Equating the powers of T in Equations (C-21) and (C-27), one obtains

mn+a-2-mo = 2m-2+(m-l+mo-a)/4 (C-29)

which yields

a m(a+l) - 1/5 (C-30)

Thus, a similarity solution can be achieved for 6. It may be pointed

out here that, while other power-law expressions for T still allow forw

similarity transformation, certain nonpower-law expressions, which may be

more accurate, do not yield similarity conditions. The sacrifice of such

possible gain in accuracy is of r concern here since turbulent flow is

subject to a great many other inaccuracies and one is interested in obtain-

ing a reasonable solution.

For convective heat transfer, Equation (C-13) can be written as

S m (l_)p U 2 a Us 2Gxo\
qwx  T s - 6 r gx

2 dS 
du 1

+p.Rg xC~ (l-ou -+ 2Su s _
5 1Ts dT dt]

1iPu 3 D (Rx - 1 - Ru 3ig 4x d (C-31)

CT m Us a \ 
0 1

ia- S
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PL iiLet (x,t) be given by

x a (xt) = Bt b 1(YO (C-32)

Then Equation (C-31) can be written in the form

qW T 2b-maL(E) (C-33)

where

p~ B= 2-a m M(l-0) L (Rs 6 )+ (2m-2+a)R g4

+~ (1 (1E +2m1

+ g541 [mi- d d (~l

-m -~ ~~~)-mR*p4 1 ~~ c3

It is now needed to find an expression for qWthat varies with T to some

power. In addition, this expression must yield a value of b that is

equal to a in order for the assumption of /6 as a function of only E to

hold. For this purpose, one may employ an expression that has been used

in shock tube studies: 
6'16

Pr T3  (C-35)

which yields

qw 3m3nmT~ mT-)/ Q(0 (C-36)

where

Q(0) CmPr-' 2/Y1 -L + - Prl P K(E) (C-37)y Rip 2 /
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Equating the powers of T in Equations (C-33) and (C-36) and using

Equation (C-30), it is found that indeed

b = a = m(a+l) - 1/5 (C-38)

Thus, a similarity solution can also be obtained for 0. Equating

G( ) to K(E) and equating L( ) to Q(E) results in two ordinary differential

equations to solve for 1 and @I" The calculations will be carried out

in detail at a later date.

In summary, the equations that govern blast wave turbulent boundary

layer flows are second-order partial differential equations with three

independent variables. In the present report, the integral method is

used to reduce the equations to first-order and the number of independent

variables to two. Similarity transformation is shown to be achievable

and is used to reduce the problem to the relatively simple task of solving

two coupled ordinary differential equations. These equations are derived

in the present report and are to be progremmed for numerical results.

4 CONFIDENTIAL 89

',% , V4 ,', tg,,;)'% ",, , j k "," ' . '",' 'L ,/.L %% '% "\



~16118-6002-R7-00
1CONFIDENTIAL

REFERENCES

1. Brode, H. L., "Review of Nuclear Weapons Effects," Annual Review

of Nuclear Science, Vol. 18, 1968, pp. 153-202.

2. Trulio, J. G., McKay, M. W., and Carr, W. E., "Lofting of Solid

Material by Vaporization, Thermal Expansion and Crater Splash

in a Near-Surface Burst," DASA 2270, Washington, D.C., February 1969.

3. Taylor, G. I., "The Formation of a Blast Wave by a Very Intense

Explosion, I. Theoretical Discussion," Proc. Roy. Soc., London,

Ser. A., Vol. 201, No. 1065, March 22, 1950, pp. 159-174.

4. Sedov, L. I., Similarity and Dimensional Methods in Mechanics,

Academic Press, New York, 1959.

5. Mirels, H., and Hamman, J., "Laminar Boundary Layer Behind Strong

Shock Moving with Nonuniform Velocity," Physics of Fluids, Vol. 5,

January 1962, pp. 91-96.

6. Mirels, H., "Boundary Layer Behind-Shock on Thin Expansion Wave
Moving Into Stationary Fluid," NACA TN 3712, May 1956.

7. Murdock, J. W., "A Solution of Shock-Induced Boundary Layer Problems
by an Integral Method," Air Force Report No. SAMSO-TR-68-435, August

1968.

8. Quan, V., "Blast Wave Turbulent Boundary Layers," IOC 70,4333.2-104,

TRW Systems, 31 August 1970.

9. Stewartson, K., The Theory of Laminar Boundary Layers in Compressible

Fluids, Oxford, 1964.

10. Schlichting, H., Boundary Layer Theory, translated by J. Kestin,

fourth ed., McGraw-Hill, 1960, Chapter XII.

11. Mirels, H., "Laminar Boundary Layer Behind Shock Advancing Into

Stationary Fluid," NACA TN 3401, March 1955.

12. Van Driest, E. R., "Turbulent Boundary Layer in Compressible Fluids,"

* Journal of the Aeronautical Sciences, Vol. 18, 1951, pp. 145-160

and 216.

13. Tucker, M., "Approximate Calculation of Turbulent Boundary-Layer

Development in Compressible Flow," NACA TN 2337, 1951.

14. Elliott, D. G., Bartz, D. R., and Silver, S., "Calculation of

Turbulent Boundary-Layer Growth and Heat Transfer in Axi-Symmetric

90 Nozzles," JPL TR 32-387, 1963.

9CONFIDENTIAL



1611.8-6002-R7-00

CONFIDENTIAL

REFERENCES (Continued)

15. Weingold, H. D., "ICRPG Turbulent Boundary Layer Nozzle Analysis

Computer Program," developed by Pratt and Whitney Aircraft for

the Interagency Chemical Rocket Propulsion Group, 1968.

16. H. Mirels, "The Wall Boundary Layer Behind a Moving Shock Wave,"

in Boundary Layer Research, Proceedings of the International Union

of Theoretical Applied Mechanics," ed. by H. Gortler, 1958, pp.

283-284.

17. Shapiro, A. H., The Dynamics and Thermodynamics of Compressible
Fluid Flow, Vol. II, Ronald Press, New York, 1954, p. 1090.

18. Bartz, D. R., "An Approximate Solution of Compressible Turbulent
Boundary-Layer Development and Convective Heat Transfer in Convergent-

Divergent Nozzles," ASME Trans. Vol. 77, 1955, pp. 1235-1245.

(Reverse of Page is Blank)

CONFIDENTIAL 91



1611 8-6002-R7-00

CONFIDENTIAL

PART II

BOUNDARY LAYER PARTICLE ENTRAINMENT
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ABSTRACT

This second part of the report is on particle entrainment. Using a lift

force generated by the boundary layer velocity gradient, the particle velo-

city is estimated. Sample particle trajectories in strong blast wave flow-

fields are illustrated, and the amount of soil erosion due to aerodynamic

entrainment is assessed.

I
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NOMENCLATURE

a = particle radius

A = particle cross-sectional area; soil surface area

c = specific heat of gas at constant pressure
P

c = specific heat of particle
ps

C = constant related to explosion strength

CD  = drag coefficient

CL  = lift coefficient

d = particle diameter

D = particle diameter; pipe diameter

f = dimensionless average momentum of entrained particles

F = function given by Equation (3-9)

FL  = lift force

F = horizontal drag force

g = gravitational acceleration

G = function given by Equation (3-10)

k = gas conductivity

K = 3p/ 8ps

= boundary layer parameter

= boundary layer parameter

L = heat of vaporization for particle

m = mass of a particle; mass of soil per unit surface area

M = total mass of erosion

Nu = Nusselt number based on particle diameter

p = pressure in gas

PS = pressure in soil
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NOMENCLATURE (Continued)

r = ag/Ku 2

e

Re = Reynolds number based on particle diameter

s = K / 2 CD6/a

t = time

T = gas temperature

T = particle temperatureP

T = vaporization or ablation temperaturepv

u gas velocity in x-direction

u = particle velocity in x-directionp

v = gas velocity in y-direction

v - particle velocity in y-direction
P

V relative velocity between gas and particle

x distance along soil surface

y = distance normal to soil surface

Ye boundary layer thickness

Ym = height reached by a particle due to direct lift

a = a/6

coefficient for soil erosion

y = gas specific heat ratio

6 boundary layer parameter, y e/4.6

T) = boutidary layer parameter

= gas viscosity

v = gas dynamic viscosity

= gas density

Ps = density of a particle
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NOMENCLATURE (Continued)

T = shear stress on soil surface0

T* = restraining stress of soil

Subscripts

e at edge of boundary layer during ascent

f = at edge of boundary layer during descent

g = at ground position

i = initial condition

m = at maximum height of a particle

p = particle

s = particle

w = wall condition

co = ambient condition
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I. INTRODUCTION

In a nuclear explosion, soil can be lifted from the ground by several

mechanisms such as crater splash, vaporization, elastic rebound, etc.

These processes are inter-dependent and a complete study of the simultaneous

processes has not been performed. Not only is the physics of the lofting

mechanisms not yet well understood, but the rigorous mathematical models

that can be proposed are very difficult to solve. The present study is

only concerned with the aerodynamic effects on particle entrainment, and

the interaction effects of other mechanisms are not considered.

On the soil erosion problem, one is mainly interested in answers to

two questions: what is the initial velocity of a particle as it leaves the

ground (or as it leaves the boundary layer) and how much dust of various

particle sizes is entrained? Answers to these questions would allow one to

predict the dust density distribution as a function of space and time for

a given gas flowfield.

The aerodynamic ertrainment of surface particles into free streams

has been investigated analytically and experimentally by workers of various
dicpie al tde,1,2 3

disciplines. Early studies, as well as some recent ones, were con-

cerned with wind erosion of soil. About a decade ago, the aerodynamic

forces on surface particles were investigated in connection with the VTOL

aircraft and helicopters downwash problem.
4 About the same time, studies

were made to assess the dust entrainment caused by the rocket exhaust of a

spacecraft during lunar landing.
5

The investigations indicated above represent the pioneering efforts in

their respective fields, and as such they constitute significant contribu-

tions. However, their results do not appear to be directly applicable to

or sufficient for the problem of predicting the dust entrainment caused by

a blast wave. The wind erosion studies are primarily one-dimensional, i.e.,

the wind variation along the surface and with time is neglected while a

blast wave flowfield is strongly position- and time-dependent. The downwash

impingement results of Vidal 4 provide an estimate of the lift and drag

forces of a particle when it is on the ground, but the subsequent motion

of the particle is not considered. For dust entrainment due to lunar

landing, Roberts 5 assumed that the aerodynamic shear stress on the surface,

CONFIDENTIAL 101



618-6002-R7-00 CONFIDENTIAL

minus some value which represents a restraining stress, is proportional

to the rate of transfer of momentum, per unit area, to the particles. The

proportionality factor is related to the particle size and rocket exhaust

conditions and is not directly applicable to blast wave conditions. Some

of the results and ideas of Vidal and Roberts will be employed, however, in

the present study.

For the problem of aerodynamic entrainment of soil by a blast wave,

several studies have been performed recently. Swatosh and Wiedermann
6

assumed both the mass erosion rate and the vertical velocity (considered

to be due to turbulence in the flow) to be proportional to the free-

steam air velocity; and they performed experiments to determine the propor-

tionality factors. Their results are important contributions to the present

knowledge. However, since these results are not directly related to

boundary layer properties, their applications are probably limited if shear

stress is an important factor in determining erosion. For example, consider

uniform flow over a flat plate. Since the shear stress on the surface

decrease& rapidly with distance from the leading edge, it is reasonable

to expect a higher erosion rate near the leading edge. However, the rela-

tion given by Swatosh and Wiedermann would show a uniform erosion rate.

The fact that boundary layer properties probably play an important role in

determining soil erosion may partially account for the variations in the

experimental data. For example, the erosion constant for variable air

velocity is generally much higher (sometimes by two orders of magnitude)

than that for steady air velocity; this may be due to effects related to

boundary layer build-up.

Trulio and others 7 employed a simple model by assuming that the hori-

zontal impulse delivered to the ground (due to shear stress) is entirely

converted into vertical momentum of particles. The particles are considered

to rotate, slide, or bounce along the surface until they accelerate by the

horizontal aerodynamic drag force to a sufficient speed to bounce, or dis-

lodge other particles, off the surface and into the free stream. The

particles are considered to leave the ground vertically with a speed

inversely proportional to the particle diameter; the maximum speed is taken

to be half the free-stream gas speed. Due to the lack of a rigorous

boundary layer solution, a local one-dimensional steady turbulent boundary
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layer profile, which has been verified to be approximately correct for

sandstorms, is employed to evaluate the shear stress. Again, the blast

wave flowfield is actually highly transient and contains severe spacial

gradients in properties. The validity of using any steady and one-

dimensional model is questionable. It is the desire of obtaining a rigorous

boundary layer solution that led to the current boundary layer studies by

TRW Systems.

In the present study, the particle motion near the surface due to

aerodynamic forces is estimated. Sample particle trajectory calculations

are made. The amount of soil entrained is assessed using the laminar

boundary layer solution developed. Since the blast wave boundary layer is

expected to be predominantly turbulent, a turbulent flow solution is being

8
pursued. When this solution is completed, the amount of soil entrained can

be similarly assessed.

(Reverse of Page is Blank)
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2. PARTICLE LIFT IN BOUNDARY LAYER

The existence of a velocity difference between a particle and a fluid

results in an aerodynamic force between them. The force component in the

direction of the relative velocity is known as the drag and the component

normal to it as the lift. The drag for a spherical particle in uniform,

steady incompressible flow is a function of only the Reynolds number and
9

is well known up to a Reynolds number of about a million. The effects of

particle shape, flow unsteadiness, and compressibility, etc. on drag have

been investigated (e.g., References 10, 11, and 12), and some semi-empirical

correlations are available. However, the lift on a sphere produced by a

nonuniform flowfield such as a boundary layer is still not well understood,

although it has been postulated to be the responsible cause for particle

migration from a lower to a higher velocity region. An indication of the

complexity of the lift mechanisms is the fact that the force on a rotating

sphere in a uniform fluid, which is due to what is known as the Magnus

effect and which accounts for the irregular flight of a tennis ball or

baseball, has been studied for about three centuries and the magnitude of

this force is still undetermined.

Recently, there appeared several analyses dealing with the lift

exerted on a spherical particle by a shear flow. Eichhorn and Small 1 3 per-

formed experiments for spheres suspended in Poiseuille flow and obtained

the following relation

4 [(Ad d1d]2
CL = 7 x 10 [ ) D(2-)

where CL is the lift coefficient (the ratio of the lift force to the product

of the sphere's cross-sectional area and the fluid dynamic pressure), and

d, u, y, D, and Re refer to particle diameter, fluid velocity at center of

particle, distance from pipe wall, pipe diameter, and particle Reynolds

number respectively. The experiments were performed using a 0.419 in. dia-

meter tube and for d ranging from 0.061 in to 0.126 in., Re from 80 to 250,

and (d/u)(du/dy) from 0 to 1.1. The value of CL obtained range from 0 to

about 1.0.
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While Equation (2-1) showed C to vary with the velocity gradient

(du/dy) to the 2.0 power, Saffman found that at low particle Reynolds

number CL varies with the gradient to 0.5 power:

2 - 1/2 1 du1/2
CL = K V U u) (2-2)

where K = 6.46, v is the fluid kinematic viscosity, and the distance y is

measured normal to the flow direction. Saffman's analysis is for uniform

shear flow and restricted to particle Reynolds numbers less than 1.0.

4 15
Vidal , by using Hall's results for the tangential velocity variation

on a sphere in uniform shear flow, found that

CL = 0.998 k (2-3)

where

k =a- du (2-4)
u dy

and a is tne particle radius. Thus, Vidal's relation shows CL to vary

linearly with (du/dy). Equation (2-3) becomes invalid for k > 1.

A purpose of the present study is to illustrate the effects of lift on

dust entrainment. Since there does not exist an established general

formula to predict lift, it is advantageous to choose a least restrictive

relation for the purpose of illustration. For a particle in a high speed

boundary layer, the Reynolds number is very large (compared to 1.0) except

for small particles at or near the ground. Small particles, however, have

large values of drag coefficient; even if they are lifted off the surface,

* they soo-a approach and follow the fluid streamlines and will not reach a

significant vertical distance above the ground. Therefore, Saffman's

results will not be utilized in the present study. The pipe flow experi-

ment, though it can conceivably be applied to external flows by relating,

the pipe diameter to boundary layer thickness, is also limited in particle

Reynolds number range and in the ratio of particle size to boundary layer

thickness. Therefore, the relation for lift coefficient given by Eichhorn

and Small will also not be employed. Vidal's relation, Equation (2-3), is

used in the present study. This relation is simple to apply, and its
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restriction of k < 1, as will be shown later in this section, is not a

severe limitation. It should be noted, however, that Vidal's relation is

based on uniform shear flow over a particle at rest. In the present study

of particle motion in a boundary layer, this relation is applied by using

a local velocity gradient and a local relative velocity.

The particle trajectories inside and outside the boundary layer in

the transient nonuniform blast flowfields will be shown in the next section.

In the present section, it is desired to acquire some physical insight and

some qualitative measure of the effects of various parameters on the

potential motion of a particle as it is lifted off a surface. For this

purpose, a steady one-dimensional boundary layer (i.e., a boundary layer

of constant thickness along a surface) with constant properties is

considered. The velocity distribution is represented by

u = u (1 - e y /6) (2-5)
e

v =0 (2-6)

where ue$ u, v, and y denote the gas free-stream velocity, velocity parallel

to the ground, velocity normal to the ground, and distance from the surface,

respectively. The parameter 6 is a measure of the boundary layer thickness;

at y = 4.6 , the velocity becomes u = 0.99 ue.

The particle is considered to be spherical, and u and y are measured

at the particle center. It is assumed that the particle is initially at

rest and tangent to the ground, i.e., y = a initially. The equations

governing the particle motion are taken as

dv 2 1Up)1 gp

p dy 2 LCL (u up2 + CD V (v- - mg (2-7)

du = 1 P A C V (u (2-8)

p dy 2 D - (p

where m, A, 0, CD, g, U, Vp, and V denote, respectively, the particle mass,

particle cross-sectional area, fluid density, drag coefficient, gravitational

acceleration, particle velocity parallel to the ground, partical velocity
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normal to the ground, and relative velocity between particle and fluid. In

deriving Equations (2-7) and (2-8), it has been assumed that lift is impor-

tant only in the vertical direction and that the lift coefficient is based

on relative horizontal fluid and particle velocities. Considering Equations

(2-3) and (2-4), one may take

L ua du (2-9)L u - u pdy

where the coefficient 0.998 has been replaced by 1.0 for simplicity and-lI-

where u du/dy has been interpreted as (u-u p) du/dy for a particle

in motion. Equations (2-7) and (2-8) with v = 0 can be written as

dv d C 1
v -- = K (u U D v - g (2-10)
p dy p dy a p

du CD

vp dy K a u (2-11)

where

K =3P-- (2-12)
8

V = (u - Up) 2 + Vp2]i / 2  
(2-13)

and where P denotes the particle material density.s

At this point, it appears advantageous to examine the variation of
the lift force FL. From Equation (2-10) it is seen that F is proportional

L L
to (u-u )du/dy. Within a short distance from the surface, u is negli-

p P
gible compared to u, and the lift force is proportional to u(du/dy) which

varies with y according to Equation (2-5) so that

A2

F ( - e- y  -y/6 (2-14)

m

Thus, the lift force per unit mass has a maximum value of Ku 2/46 and
2 e

occurs at y = 0.6936. The variation of FL 6/mKue with y/6 is shown in

Figure 2-1.
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From Equation (2-10), it is seen that K(udu/dy) at y = a must be

greater than g in order for a particle that is initially resting on a flat

surface to be lifted. Using Equation (2-5), this requirement can be

written as

(Kue 2/ag)t >1 (2-15)

where

1(a/6)(1 - e - a / 6  e-a / 6 (2-16)

The function C is shown in Figure 2-2 and has a maximum value of 0.260 at

a/6 = 1.45. The interesting point is that for a given particle size, there

exists a preferential range of boundary layer thickness for initial entrain-

ment. That is, lift may not exist near the leading edge on a surface

where the boundary layer is thin (although the shear stress is very high

there) or near the tail end where the boundary layer is thick. If the

flow conditions are such that Equation (2-17) is not satisfied everywhere

along a surface, then no lift may occur at all. Also, in order for the

particle to be lifted to a significant distance above the ground, the

2
condition of (Kue /ag)C >> 1 is required.

It is interesting to compare the lift force FL with the horizontal

drag force Fx. From Equations (2-10) and (2-11), the ratio is given by

F
L 1 a du

Fx  C V dy (2-7

For an estimate of the value of this ratio, one may approximate V by u to

obtain

FLCD a du a
- = - - = k (2-18)
F x u-dy 6(eY/6 1)

The parameter k is plotted as a function of a/6 and y/a in Figure 2-3. It

is seen that k has a maximum limiting value of 1.0 which occurs when the

particle is at the surface (y = a) and when a/6 - 0. Thus, the condition

of k < 1.0 as required for the lift relation [Equations (2-3) and (2-4)] is

satisfied. (However, if the particle is partially imbedded in the ground
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initially, i.e., y < a, then k > 1.0 initially except for large values

of a/6.) At a distance of a few radii away (say y/a = 10), the ratio of

vertical lift to horizontal drag becomes negligible.

Attention is now directed towards the solution of Equations (2-10) and

(2-11). From these equations, it can be deduced that a particle is first

accelerated off the ground by the lift force, and then decelerated verti-

cally by drag and gravity. During its subsequent return towards the ground,

the particle may get lifted again if the lift at any point within the bound-

ary layer overcomes gravity and a few such damped oscillations may occur.

However, during its descent, a particle generally has attained a horizontal

velocity nearly equal to the fluid velocity and the lift due to (u-u )(du/dy)

is negligible. In fact, u becomes greater than u somewhere within the
p

boundary layer, and a negative lift develops which aids gravity in returning

the particle to the ground.

In order to solve Equations (2-10) and (2-11) analytically, it is

necessary to make some simplifications. The drag coefficient will be

taken as a constant; this is acceptable since the particle Reynolds number

is generally very large. The flow is divided into two regions for solution:

vertical acceleration of the particle within the boundary layer and vertical

deceleration outside the boundary layer.

The boundary layer thickness will be denoted by ye and has a value of

4.66 at which u = 0.99 u . For acceleration in the boundary layer, it ise

assumed that vertical drag and gravity are negligible compared to lift.

Particles that are too small to satisfy this assumption will not be lifted

significantly above the boundary layer and will not be considered. It is

also assumed that u is negligible compared to u in computing lift. These
p

assumptions are somewhat conservative, i.e., they would result in over-

predicting the values of the vertical velocity. The boundary conditions

should be v = u = 0 at y = a if a particle is initially at rest on a flatP P
surface. However, the boundary will be given an arbitrary value of y = yi

instead of y = a in the solution. With these assumptions and boundary

conditions, the solution for v is
P

v = (Ku - Kui2)1 / 2  for y < ye (2-19)

110 CONFIDENTIAL



16118-6002-R7-00

CONFIDENTIAL
where u is given by Equation (2-5) and ui is u at yi. Equation (2-19)

may be written as

2v -z -2X e-2Z
--P- = 

2 e e - z) - e (1 - ) for y < y (2-20)

Ku 2
e

where

X = v /6 (2-21)

z = (y - yi
) / 6  

(2-22)

Equation (2-19) shows that the maximum attainable value of v due to lift

is only a small fraction of u , i.e., v K u where K is on the order3 ep e

of 10 (when the fluid is a liquid, however, K is of order 1). Also,

Equation (2-19) shows that vp is smaller for larger particles since ui is

larger for larger particles.

In using Equation (2-11) to solve for u in the boundary layer, V is

approximated by u and v by K / 2 u. The result is

u - Z -sz
1 -s + - e (e - e (2-23)

e

where

s = K1/2 CD/L (2-24)

a = a/6 (2-25)

If s = 1, the solution for u can be obtained by applying L'Hospital'sP

rule to Equation (2-23).

The time a particle takes to travel from yi to y is given by

t = Y v dy and the horizontal distance x a particle has traveled isYi P

given by x =jyy (u /v ) dy.

p p
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After the particle has reached the edge of the boundary layer, no

lift due to shear exists and the particle is considered to be decelerated

vertically by drag and gravity. In this region, V can be approximated by

u -u It is convenient to choose a transformed time coordinate
e p

instead of z as the independent variable in this region. The solution is

V (fve r r * fr~ue_+ for t > (2-26)

-- =1_ w  
(2-27)

where e denotes values at y and

r = - ag (2-28)

Ku 2
e
Ku

Sw _=2e (2-29)mu
1 + KC D - te)! w t ea (2-30)

The distances y and x are related to t by y y + v dt and

x - xe + t updt, or

z e +- -~ -+-Pe) In (W for t > t (2-31)
e KCDw L(ue 2CDwd DY ltj-

x e

j-+ ( 1 - w In ) for t >_t (2-32)

The maximum height occurs at v = 0 and can be obtained by using
p

Equations (2-26) and (2-31). The time it takes a particle to return to

the ground and the velocity components there can be obtained by setting

z - 0 in Equation (2-31) and using Equations (2-26), (2-27), and (2-30).
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Examination of Equations (2-19) to (2-32) shows that vp/u e and up/u e

are dependent on five dimensionless parameters: K, CD, a, r, and z or 4.

(The boundary of yi = a is being used.) The five parameters encompass

eight variables: p, p s , CD, a, 69, Ue, g, and y or t. The results of

interest are shown in Figures 2-4 through 2-11 for which the values of

CD = 0.5 and K = 0.001 are used. The value of CD = 0.5 is a good approxi-

mation since the particle Reynolds number is generally very high, and

K = 0.001 is typical for blast wave conditions. In Figures 2-4 through

2-11, the subscript e denotes conditions at the edge of the boundary

layer (ye = 4.66) during ascent, m at the maximum height reached by the

particle, and f at the point where the particle has returned to the edge

of the boundary layer during descent. The normalized particle velocity

components at the edge of the boundary layer, which are obtained by assum-

ing drag and gravity to be negligible compared to lift inside the boundary

layer, are shown in Figure 2-4. le maximum height reached by the particle

is shown in Figures 2-5 and 2-6 where different normalization factors are

used. From Figure 2-5, it is seen that the particle cannot travel far

above the boundary layer unless Ku 2 is large (for fixed a and 6). It can

also be deduced from Figure 2-5 that there is some optimum values of the

ratio of particle size to boundary layer thickness for aerodynamic lift.

In Figure 2-6, the nondimensional group 2g(y -y e)/Kue 2 is employed since

it can be shown from Equations (2-26) and (2-31) that 2g(ym-Ye)/Kue  i

as CD - 0 and a/6 - 0. The particle vertical velocity at Ym is zero,

while the horizontal velocity at y is shown in Figure 2-7. The velocity

components of the particle when it has returned to the edge of the boundary

layer are shown in Figures 2-8 and 2-9 from which it can be deduced that

the particle returns to the surface almost horizontally. The nondimen-

sional total horizontal distance traveled by the particle and total time

of particle stay in the gas are shown in Figures 2-10 and 2-11, respec-

tively.

It was indicated earlier that particles for which lift is not sub-

stantially greater than drag and gravity inside the boundary layer will

not achieve a substantial vertical velocity at the edge of the boundary

layer. It is interesting to observe what this condition implies.

Considering the order of magnitude of the various terms in Equation (2-10)
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and using the approximate result of v K1  u, it can be shown that the

following condition must hold in order for the particle to travel far

above the boundary layer:

1I/2

K>> CD + -
(2-33)

a Ku 2
e

The ratio K1/2 CD 6/a, defined as s by Equation (2-24), may be considered

to be a measure of the relative magnitudes of vertical drag and lift.

2 -1
The ratio g6/Ku , which is equal to a times the factor r given by

Equation (2-28), is a comparison betweeii the effects of gravity and lift.

Furthermore, the condition given by Equation (2-15) must be satisfied in

order for a particle to be lifted off a surface.

The above results were obtained by consioering the particle to be

lifted by an aerodynamic force. It may be of int-rest to estimate the

velocity of a particle as it leaves the ground if the particle is partly

imbedded in the soil initially where the soil pressure is higher than the

fluid pressure. For this purpose, consider the soil pressure to be p and

the fluid pressure to be p. Let the initial distance between the particle

center and the soil surface be denoted by yi" The equation fur the particle

motion is given by

dv 3(p s - p) 2
--- _ = (I - L2 

)  (2-34)

p dy 4P a 2
s a

For the boundary condition of vp = 0 at y = yi, the solution is

(y 3 31/2

v (p - p)( - y - y2Y) (2-35)Vp 2P s a - i 3a 2 J

The maximum v is obtained at y = a and for yi 
= 0 and is equal to

]- p)/P . If (P - p) is taken to be the free-stream dynamic

SS2 s1/2
pressure, pu /2, the maximum v is (p/2)1 u . This v is in the

e p s e p
neighborhood of (3p/ 8 p s) 1 /2u which is the estimated maximum v achievableIs e p
due directly to lift.
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3. SAMPLE TRAJECTORIES

The analysis of the previous section shows analytically the effects of

the various parameters on particle trajectory for a selected lift coefficient.

A uniform steady flowfield with constant boundary layer thickness was assumed.

In the present section, the particle trajectories in a blast flowfield tran-

sient and nonuniform' which includes the boundary layer properties obtained

in Part I of this study are investigated. The equations are taken as:

dx U 
(3-1)

dt p

d v 
(3-2)dt p

du
d = F (u-u) 

(3-3)
2t p

-P F(v-vp) + K(u-u )-u gu

'Idt p

.4 dT

G(T-T for < T (3-5)
p p pv

da
-- 0 for T < T (3-6)
dt p pv

dT
P 0 for T - T (3-7)

dt p pv

da .psa G(T-T) for T = T (3-8)

dt 3L p p pv

where K 3p/8p s and

F = KVC D/a (3-9)

D2

KkjTNu/pc a T (3-10)

21/2

V = Up) 2 + (vvp)J 
(3-11)
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In the above equations, F and G are factors for drag and convective heat

transfer, respectively; c is the specific heat of the particle, T is theps pv

vaporization or ablation temperature, L is the heat of ablation, and k, is

the fluid conductivity at the ambient temperature T.. The term involving

3u/3y in Equation (3-4) is used to account for lift. The effects of particles

on the fluid flowfield are neglected. Since mass and heat transfers are only

of secondary consideration in this study, the effects of ablation on the

drag and heat transfer coefficients are also neglected. Furthermore, radia-

tion is not considered. The drag coefficient and Nusselt number Nu are

approximated by

24
CD = 2 + 0.5 (3-12)

D Re

Nu = 2 + 0.459 Re0 .55  (3-13)

where Re is the Reynold- iumber based on particle diameter.

For the fluid pioperties, the vertical velocity v is taken as zero. The

axial velocity u, temperature T, and density p are approximated by u = ue

(1-e- n/k), T = Tw + (T e-T w ) (l-e-"/Z t), P = Pe(Te/T), respectively, where

the subscript e denotes properties for inviscid flow which are computed using

the Taylor-Sedov strong shock solution. The parameters n, k, and Xt are

taken from the laminar boundary layer integral-exponential solution given

in Part I of this report, and T is the wall temperature. The particle is

considered to be initially at rest on a flat surface.

From the numerical results, it is found that a particle of given size

is not subject to direct lift in a region extremely close to the shock front

where the boundary layer is thin nor in the region fa:.. away from the shock

*front where the boundary layer is thick. This is in agreement with the

results of Section 2. It is also found that direct lift does not loft a

particle to sufficient height for suspension except for a very short time

after explosion when the free-stream velocity is extremely high. However,

small particles that are lifted at early times vaporize soon after leaving the

boundary layer because of the high gas temperature. Most of the particles

that get lifted and do not ablate are confined within a few inches above the

ground. They can achieve a vertical velocity of only a small fraction of

the free-stream gas velocity; however, they quickly attain a high horizontal
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velocity, which is comparable to the free-stream velocity, with which they

return to the ground. This substantiates previous assumptions and observa-

tions 1'2'3 that particles are not directly lifted into suspension by a free-

stream. Instead, a particle may bounce off the ground a few times and achieve

a higher velocity with each subsequent bounce until the velocity is suffi-

ciently high to loft the particle or bounce off another particle into sus-

pension. However, lift does aid particle entrainment by placing the particle

in the higher velocity region of the boundary layer to facilitate the accel-

eration of the particle by the gas stream. Also, direct lift can be partially

responsible for a significant amount of dust having bouncing motions, known

as saltation, within a short distance from the ground. Another mechanism

responsible for saltation is horizontal drag which causes a particle to roll

or slide along a surface until the particle accelerates to sufficient speed

to leave the surface upon impacting another particle.

The above paragraph describes the particle trajectories qualitatively.

Some numerical results are presented in Figures 3-1 through 3-5 for illus-

tration. The blast properties correspond to a 1.0 megaton spherical surface

explosion. The physical properties used are: T. = Tw = 530'R, P' = 0.076U/ft 
3

= 0.24 BTU/lb--R, 1.23 x 10- 5 lb/ft-sec, k - 4.1 x 10- 6 BTT.T/sec-ft-

OR, y 1.4, s = 145 lb/ft , c = 0.2 BTU/lb-*R, Tpv = 6400 OR, and L

3700 BTU/lb. Figure 3-1 shows the trajectories (y vs x) of particles of

various sizes; the particles have been assumed to be initially at rest and

get lifted at 0.01 second after explosion and at a distance of 10 feet behind

the shock. Note that drastically different scales have been used for the x

and y coordinates. The smaller particles become ablated by the hot gas soon

after they leave the boundary layer and are indicated in Figure 3-1. The

larger particles are lifted to higher altitudes (there is an increase in

boundary layer thickness as the Farticle is being lifted), but there is a

cutoff diameter (roughly 20,000 microns for the conditions of Figure 3-1)

above which a particle does not get lifted at all because its weight becomes

larger than the lift at the ground position.

Figures 3-2 to 3-4 are similar to Figure 3-1 except that the time of 0.1

second after explosion is used. Also, the locations at which the particles

become lifted are 1 foot, 10 feet, and 100 feet behind the shock for Fig-

ures 3-2, 3-3. and 3-4, respectively. At 0.1 second after explosion, it is

*This is calculated based on 1.0 megaton free air burst which corresponds

roughly to 1/2 megaton surface burst.
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found that the particles do not reach ablation temperature (except for small

particles at locations beyond 100 feet from the shock). The initial free-

stream gas velocity uei and the initial velocity boundary layer thickness

Yei (u - 0.99 ue at y - ye), along with the velocity components Vpg and uPg

when the particles impacts the ground and the length of time Lt in which

the particle stays in the gas, are tabulated in the figures. In Figure 3-2,

the location of the shock, x , when the particle returns to the ground and
sg

the velocity boundary layer thickness, indicated by y eg experienced by the

particle when it returns to the ground are also indicated. It can be

observed that a particle accelerates more rapidly towards the ground as it

returns to the boundary layer region; this is due to a negative lift which

develops since u becomes greater than u inside the boundary layer. How-p

ever, vpg is still very small compared to upg, and a particle is expected to

strike the ground almost horizontally.

From Figures 3-1 to 3-4, it is seen that the particles are lifted not

more than a few inches above the ground except for early time after explo-

sion or from regions of large boundary layer thickness. It is also seen

from the figures that for a given boundary layer thickness, there is some

optimum particle size for entrainment. Particles can be lifted to higher

altitudes if their diameter is roughly equal to the boundary layer thickness,

i.e., D/yei t- 1. It is interesting to note that the analysis of Section 2

predicts a similar result: in Figure 2-5, ym is largest for a/6 t 1.5; since

a = D/2 and 6 = v /4.6, the maximum y corresponds to D/y - 0.7.
-e me

After returning to the ground at high speed, the particles are expected

to rebound from the ground. The rebound speed and direction depend on the

soil properties such as elasticity and surface smoothness. Some rebound

trajectories are illustrated in Figure 3-5. The position from which a

particle rebounds corresponds to the end of the particle's lift trajectory

shown in Figure 3-3. The rebound speed is taken to be the impact speed,

and the rebound angle is taken to be 0, 45, or -45 degree from the normal

direction to surface. As expected, the larger particles can rebound to much

greater heights than the smaller particles because of lower drag forces.

Figure 3-5 also shows that the particle trajectories are similar for all

three rebound angles chosen for illustration. The end of each trajectory

corresponds to 2.0 seconds after explosion. Thus, a particle that is lifted
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off a surface may travel only a short vertical distance and return quickly

to the ground; but after first bounce, it may remain in the gas for several

seconds which is sufficiently long for the particle to be carried aloft by

the rising fireball thermal, Furthermore, the larger particles can

achieve a height of several hundred feet simply by rebound.
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4. EROSION ESTIMATES

In order to analyze rigorously the amount of soil erosion due to aero-

dynamic entrainment, it is necessary to solve the coupled two-phase (particles-

gas) Navier-Stokes equations. The development of such a solution for the

blast flowfield appears prohibitive at present, however, since even the

simple case of erosion over a flat plate has not been solved. Here, only

an extremely simple model is used to estimate erosion. The model is similar

to the one first employed by Roberts5 in regard to soil erosion by a lunar

landing vehicle, and it can be written as

dm *
fu =T - T (4-1)

dt o

where f is interpreted as a dimensionless average momentum of the entrained

particles, u is a gas velocity, dm/dt is the rate of mass entrained per unit

area, T is the shear stress on the surface without dust entrainment, and
* 0

T is the reduced shear stress due to the presence of dust entrainment.

Equation (4-1) states that the impulse due to shear [(T 0 - T*)dt] is con-

verted into particle momentum with the particle velocity being fu. The

value T represents the soil's resistive shear stress to erosion, and

depends on the soil properties such as particle size, cohesiveness,

etc. The value of f is difficult to analyze; in fact it partly depends on

the definition of mass erosion. If only those particles that reach high

altitude are considered, then f should be close to 1.0 since only the parti-

cles with initial velocities that are comparable to the gas velocity can be

lifted to significant height. On the other hand, a great many particles

that are lifted off a surface according the results of Section 2 are confined

within a short distance from the surface; these particles have lower veloc-

ities as they leave the boundary layer and f should be substantially less

than 1.0. In this section, f is taken as an arbitrary constant and -* is

neglected when it is compared to T . The total mass M eroded is then given

by

M = ff - dAdt (4-2)
t A

Using the results of Part I of this study (laminar boundary layer integral

polynomial solution) for To and Sedov's strong shock expression for u, it is
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found that for a spherical explosion

M 1 ° 16 + .c 3 0.
f ( i -I -.- (4-3)

where y is the ratio of the gas specific heats, C is a constant which depends

on the explosion strength, and u,, p_, and p. denote the gas viscosity,

pressure, and density, respectively, at ambient conditions. Since C varies

with the explosion energy E to the 0.2 power, Equation (4-3) shows M to vary

with E to the 0.6 power. Also, M varies with time t to the 0.7 power. Here,

t is bounded by the time when the shock is no longer strong or when the soil

I* exceeds T 0 . Consider a 1.0 megaton explosion (i.e., C = 3800 ft/seco0
4)

in ambient air and take t = 1.0 second. Then M= 35 f- tons. Hence if f is

close to 1.0, M is very small (compared to mass ejected due to cratering).

However, if the particle velocity is taken as the vertical velocity due to

boundary layer lift, then f K /2 where K = 0.001. This yields M = 1,100

tons for laminar boundary layer shear.

It may be mentioned that the total impulse delivered to the surface

due to aerodynamic shear is found to be (for laminar boundary layer):

f Adt2 1/2

dAdt = 1.82 (¥ 1 .F 0 .4 t0.1  (4-4)

For a 1.0 megaton explosion in ambient air and t = 1.0 second, the total

impulse is equal to 4.15 x 108 lb-ft/sec. If the mass eroded, M, is taken

to be equal to this impulse divided by some effective average particle veloc-

0.8 0.2 0.1ity, then M is proportional to E (since C -E 0 ) and t whereas

in Equation (4-3), M is proportional to E and t07

The numbers given in the two preceeding paragraphs are for laminar flow.

For turbulent flow, the values for M is expected to increase by at least one

order of magnitude. Although the assessment of soil erosion behind the

turbulent blast wave should probably be performed only after the turbulent

boundary layer solution is obtained, it may be interesting to make a predic-

tion by employing a simple model and available experimental data. Consider

the model

m G9 (4-5)

1t Cs I A
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where is a constant. Equation (4-5) states that the mass erosion rate

is proportional to the free-stream velocity. This model is similar to that

employed in Reference 6, except particle size and terminal particle velocity

are not considered and a factor P/P. is inserted to account for the varying

density behind a blast wave. The mass eroded, M, then becomes

M .8 f f (-L) u dAdt (4-6)

A t

Using the Sedov solution for p and u for a spherical explosion, it is

found that

M = 0.55BPsC3t 1 . 2  (4-7)

Here, M is proportional to C
3 (or E 0 6 ) and t 1 . Refering to the experi-

mental data of Reference 6, one may suspect that 3 is far from being a con-

stant and may vary between, say, 10 and 10 - . In fact, B for loose soil

is about one order in magnitude higher than that for compact soil. For a

given soil, 8 varies with u. One may suspect that the scatter in data for

B is at least partly due to the data correlation in which the direct effects

of boundary layer growth are not taken into 
account. Taking 6 6 x 10

- 5

3 5
and P = 145 lb/ft , it is found that M = 1.32 x 10 tons for a 1.0 megaton

explosion and t = 1.0 second.

* (Reverse of Page is Blank)
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5. DISCUSSION AND CONCLUSIONS

Using a lift coefficient of CL = a(u - u )l (du/dy) for boundary

layer aerodynamic lift, it is found in the present study that a particle

initially at rest can attain a vertical velocity of only KI/2 times the

free-stream gas velocity where K is equal to 3P/8ps. A similar vertical

velocity is attained if a particle is initially imbedded in the soil and

if the pressure difference between the soil and the free-stream is equal to

the dynamic pressure. Also, spinning of a particle may generate a Bernoulli

force for which the lift coefficient is similar to that due to shear.

The analytical results of Section 2, which are for constant flow condi-

tions, may be applied to obtain rough estimates of particle motion due to

boundary layer lift behind blast waves. The reason for this is that a

particle stays in the gas, especially inside the boundary layer, for only

a short time within which the fluid properties, including the boundary

layer thickness, experienced by the particle do not change drastically.

For given flow conditions and a given particle size, the aerodynamic

lift is not sufficient to overcome the particle weight to lift the particle

if the boundary layer thickness is either too small or too large. Particles

that are more readily entrained are those with diameters of the order of

the boundary layer thickness.

In general, particles are not lifted more than a few inches above the

ground except for early times after explosion when the gas velocity is

high and/or at locations far away from the shock (but not too far) where

the boundary layer is thick and the gas velocity and density are still

high. However, at early times after explosion or at distances near the

explosion point, the temperature is extremely high and the lifted particles

(especially the small ones) soon vaporize.

As a particle is lifted off a surface, it attains a very high hori-

zontal velocity. Although it reaches a vertical height of only a few

inches and stays in the gas for only a fraction of a second, it may travel

a horizontal distance of a few hundred feet before returning to the ground.

It impacts the ground about horizontally at a high speed. The height

reached by the particle after rebounding from the ground is still small for

small particles (say less than 100 microns in diameter) because of drag
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effects, but the height can be on the order of a few hundred feet for

large particles (say 1000's of microns in diameter). The particles after

rebounding can remain in the gas for several seconds. Thus, although

lift may not directly contribute significantly to particle density in a

nuclear cloud, it can aid the particle in acquiring a high rebounding

velocity. The particles after rebound can stay in the gas sufficiently

long to be carried to great heights by a rising nuclear cloud.

In the present study on particle lift, the vertical component of the

gas velocity has been neglected. This vertical velocity may substantially

increase the particle vertical velncity, especially for small particles,

in the regions of thick boundary layers. Turbulent diffusion also aids

entrainment of small particles.

The amount of soil erosion due to laminar boundary layer entrainment

is estimated to be small, say about one thousand tons for a one megaton

explosion. However, for turbulent boundary layers, an increase by two

orders of magnitude appears possible.
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