AFOSR-TN- 57.707
 $A D$ No. $13670 /$

Institution:

Duke University

Mathematics Division
Air Force Office of Scientific Research $A R D C$, Washington 25, D. C.

Title:

Authors:

Date of Report:

Contract ivumber:

Sullivan G. Campbell, Goraon H. Rosiser, Jr.

September, 1957

AF 18(600)-1539

File Number:

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Qualified requestors may obtain copies of this report from the ASTIA Document Service Center, Dyton 2, Ohio. Department of Defense contractors must be established for ASMIA services, or have their 'need-to know' certified by the cognizant military agency of their project or contract.

AN ANALYSIS OF CARRY TRANSVISSION IN

CONFUTER ADDITION

Since all arithmetic operations reduce ultimately to addition, the basic consideration in designing a high speed computing automaton is fast addition; and the basic difficulty in achieving fast addition is the carry problem, inasmuch as a single carry may propagate through an entire adaition. The carry probiem is particularly serious in binary addition. To see why, we observe that there are four basic situations:

1	0	0	1
1	$\frac{0}{10}$	$\frac{1}{01}$	$\frac{0}{01}$

The first two will not propagate carries; the second two will propagate but will not ori inate carries; and only the first will originate carries. Hence the probailiity that a randomly chosen stage in a binary addition will generate a carry is $1 / 4$, but the probability that a randomly chosen stinge will prosagnte a carry is $1 / 2$. More genernlly, in I radix R system, there are R^{2} possible situntions (2^{2} in binary, ns we have seen) of which $1+2+\ldots+\ldots$ Will originate carries. If we sum this arithmetic progression, we see that carries can originute in $R(R-I) / 2$ wnys, giving the probabil1ty $R(R-1) / 2 R^{3}$ or $(R-1) / 2 R$ thet a randomly chosen stage will originate a carry. A carry will be propagnted if and only if the units digit is $R-1$, which can be the sum of two digits in R different ways, so that the probability that a randomly chosen stage will propagnte a carry is R / R^{2} or $1 / R$. A carry will, of course, be 0 or 1 regardless of the radix, because the worst possible case is $(\mathrm{R}-\mathrm{l})+(\mathrm{R}-1)=$ $2 R-2=R+(R-2)$ so that the carry digit will be nt most $a 1$, and
in that case the units dight will be nt most R-2.
The probabilities that λ random stage of an addition in radix R will originate a carry or propagate in incoming carry make it clear that, as the radix increases, carry generation is essentially unchanged is it appronches the limit $1 / 2$, while carry propagation approaches 0 as $1 / R$. Binary addition thus gives the worst possible carry situation.

Inasmuch as computer construction generally calls for the use of binary arithmetic on account of high storage efficiency and easy mechanization, we shall consider methods of facilitating carry transmission in binary addition. To do this, we first introduce some operations of the classical two-valued logic, in which events are either true or arse, a pair of steady states which can be represented by 1 and 0 respectively. The operands of our logical reprosentations will correspond to signals (0 or 1) on wires in the eleatronic circuitry of the computer. The operations which we wish to consider are:

Logical Operation

1. Conjunction
2. Negation (Inversion) \bar{a}
3. Inclusive disjunction
4. Exclusive disjunction

Logical
Representation Interpretation
$a \cdot b$ (or, $a b) \quad a$ "and b
a mot"a
$a \mathrm{v} b$
$a \neq b$
a morn b
amor" b but not both.

The arithmetic interpretation of these operations is demonstrated by the so-called truth table definitions of the operations.

	$a=0$	$a=1$
$b=0$	$a \cdot b=0$	$a \cdot b=0$
$b=1$	$a \cdot b=0$	$a \cdot b=1$

a	\bar{a}
0	1
1	0

	$a=0$	$a=1$
$b=0$	$a \neq b=0$	$a \neq b=1$
$b=1$	$a \neq b=1$	$a \neq b=0$

In electronic circuitry, we shall represent these logical operations by the following diagrams:

1. Conjunction

2. Negation (Inversion) $\xrightarrow{a} 0 \longrightarrow \bar{a}$
3. Inclusive disfunction
4. Exclusive disjunction

These are the diagrans of "and", "complementr, "or", and "exclmor" grates respectively. Although exclusive disjunction is usunlly given as a combination of other operations, we have chosen to use it as a basic operation for convenience, inasmuch as "excl-or" gates of simplicity comparable to the other gates may now be built. The logical design of a computing automaton may be described with these diagrammatic symbols.

At any given stage s_{1} of a binary addition, a bit (binary digit) u_{i} of the sum and an out going carry c_{1} (0 or 1) are developed from the corresponding $b_{1} t s$ of the augend and addend, α_{1} and b_{i}, and the incoming carry c_{1+1}. (The possibilities for such stages are subsequently tabulated). Adaition may be accomplished logically in several apparently different ways, but we choose the following logical functions to define u_{i} and c_{1} :

$$
\begin{aligned}
& u_{1}\left(a_{1}, b_{1}, c_{1+1}\right)=\left(a_{1} \not \equiv b_{1}\right) \not \equiv c_{1+1} \\
& a_{1}\left(a_{1}, b_{1}, c_{1+1}\right)=a_{1} b_{1} \quad v\left(a_{1} \not \equiv b_{1}\right) c_{1+1}
\end{aligned}
$$

Inamuch as the truth value tables of these logical functions correspond exactly to values for c_{1} and u_{1} given below in Table l, the functions correctly define the carries and the bits of the sum. These logical functions are reflected in the circuit diagram for an addition unit s_{1} in Figure 1.

In order to add two n-bit nurbers, we need either n of the individual addition units connected linearly (in parsilel) as in Figure 2, or suitable delay rechanisr such that one addition unit of the type shown in Figure 1 could develop the hits u_{1} at successive noments of tine (with the a_{1} and b_{1} changing at each moment of time and the c_{1} of one mor:ent being fed back in as the c_{1+1} of the next noment). The former course is much more desirable in nccomplishing rapid addition. The signals a_{1} and b_{1} are then applied ateadily until the number ropresenting the sur, $u_{1} u_{2} u_{3} \ldots \ldots \ldots u_{n}$, reaches a steady state.

We should like to note riefly that binary subtraction may be accomplished by the unit in Figure 3 which is sufficiently sinilar to our addition unit that borrow transmission with our subtraction unit pirtakes of the same general transformations subsequently to te developed in this paper for carry transrission. Again the validity of the logical functions er:odied in the circuitry nay fe deronstrated by truth table analysis.

A clear picture of what the carry situation is suggests alternative solutions. On one extreme, the easiest way out is simply to allow enough time for a complete carry of n places; the most difficult is to adopt a systen of siriultaneous corry for all digits, which
will be shown to involve a very inrge anount of equipment, but which will speed up the addition process considerably. Between these extremes are various other possihilities, including simultaneous carry within each successive group of m digits (where n / m is an integer) and immediate transmission of carries entering major stages s_{1} (composed of several adjacent minor stages s_{1}) when the incoming carry will be propagated through the entire stage S_{i}. Thus, a sort of carry sensing is involved in the latter, to be acconplished by what we shall call "groupea" circuitry. Various other nore complex methods of handing carry transmission will present thenselves as we progress. For several methods of handilng carries, we shall give a circuitry diagram and also seek an expression of the effective transformation as to the number of places traveled which carries undergo in such a circuitry. The effective number of places traveled hy carries is, in one sense, an expression of the rapidity of an addition. For exnmple, consider a parallef asynchronous adder in which adition times vary fron t_{1} to $t_{i}+t_{a}$; essentially t_{1} is the $t_{1 m e}$ required for an addition in which there are no carries and t_{a} is the time required for a full n stage carry. Then, reducing the longest carry fron n to k by some carry transformation will reduce adation tine approxinately to $t+\frac{k}{n} t_{z}$; that is, the reduction will be by $t_{a}\left(\frac{n-k}{n}\right)$.

Assume that parallel adaition circuitry is grouped as shown in Figure 4, each group of m addition units having an ($m+1$)-fold and" gate to facilitate the transmission of carries. A carry of g places in ordinary non-grouped parallel addition circuitry becomes effectively a carry of only R places with the grouped circuitry given in Figure 4 . That $1 s, c_{j} \rightarrow c_{R}$.

For convenience in annlysis, let us provide that $\mathcal{I}=\mathrm{mk}+\mathrm{p}$,
where p is always less then m. The point of origination of a carry within sone stage (or group) s_{i} will be denoted by σ. For original ion at the first addition unit (ta the left) in S_{i}, $C=1$; for origination at the second, $\sigma=2$; etc. For origination at the (m-I)st addition unit, $\sigma=m-1$. But we shall temporarily provide that origination at the moth addition unit in S_{1} be denoted by $\sigma=0$ rather than by $\sigma=\mathrm{m}$.

For given values of J and σ, the value of R may be determined by consideration of the circuitry. Such values are given in Table 2 , for the general case. The general case may be made specific by as m signing a value to π. For purposes of illustration, we have given the addition circuitry and the corresponding table for $m=4$. (See Figure 5 and Table 3).

It is obvious that R must be a function of j and σ; that is, $R=R(j, \sigma)$. Examination of the tables shows that we may define R thus:

$$
\begin{aligned}
& R(j, \sigma)=j \quad \text { for } j \leq m \\
& R(j, \sigma)=R(j-1, \sigma)+1-(n-1) \delta_{\sigma}, P_{j} \quad \text { for } j \geq m
\end{aligned}
$$

where $\delta \delta, p_{j}$ is the Kronecker delta function and p_{g} is that part of j which is not a multiple of m. ($j=m k+p, p<m)$.

Inasmuch as application of this recursive formula to obtain a numerical value for R may be somewhat cumbersome, we shall simplify the functional definition of R as follow:

$$
\begin{aligned}
& \left.R_{1}^{\prime} j, \sigma\right)=1-(m-1) \sigma, P_{j}+R(j-1, \sigma) \quad j>m \\
& R(j-1, \sigma)=1-(m-1) \sigma, P_{j-1}+R(j-2, \sigma) \\
& R(j-2, \sigma)=1-(m-1) \quad \sigma, P_{j-2}+R(j-3, \sigma)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{R}\left(\mathrm{~m}+1, \sigma^{\circ}\right)=1-(\mathrm{m}-1) \delta_{\sigma}, \mathrm{P}_{\mathrm{m}+1}+\mathrm{R}(\mathrm{n}, \sigma) \\
& \mathrm{R}\left(\mathrm{~m}, \sigma^{\prime}\right)=\mathrm{m}
\end{aligned}
$$

Adding these equations, we obtain:

$$
\begin{aligned}
R(j, \sigma)=(j-m)(1)+m-(m-1) & \left(\delta_{\sigma, P_{g}+} \delta_{\delta, P_{g-1}+\delta_{\delta, P}}\right) \\
& \left.+\cdots+\delta_{\gamma, P_{m+1}}\right) .
\end{aligned}
$$

Empirical consideration of Table 2 reveals that exactly

$$
\left[\frac{1-\sigma}{\square}\right]
$$

of the above Kronecker delta functions have the value unity, where the brackets indicate that only the integral part of the number $\frac{1-\sigma}{m}$ is to be taken, and where we now let σ take on the value m for origination of a carry at the moth addition unit in S_{1}.

The non-recursive definition of R is given, then, as:

$$
\begin{aligned}
& R(j, \sigma)=j \quad \text { for } 0 \leq j \leq m \\
& R(j, \sigma)=j-(m-1)\left[\frac{1-\sigma}{m}\right] \text { for } m<g<n .
\end{aligned}
$$

We may disallow the value zero for j and define R more simply as

$$
R(j, \sigma)=j-(m-1)\left[\frac{1-\sigma}{m}\right] \quad \text { for } 1 \leq j \leq n .
$$

Taking the amount of tine necessary for a carry to travel through one addition unit as a unit of tire, we state that a 1 place carry is speeded up by some multiple of ($\mathrm{m}-\mathrm{I}$) units of time when the addition units are grouped, m units to a group, as shown in Figure 4, and $j-\sigma \geq \mathrm{m}$.

Assuming that n is an integral factor of n , a carry with $\mathrm{g}=\mathrm{n}$ (and $\sigma=m$, necessarily) becomes a carry of

$$
n-(m-1)\left[\frac{n-m}{m}\right] \text { or } \frac{n}{n}+m-1 \text { places, }
$$

while a carry with $j=n-1$ and $\sigma=m$ becomes a carry of

$$
(n-1)+(m-1)\left[\frac{n-1-m}{m}\right] \text { or } \frac{n}{m}+2 n-3 \text { places }
$$

which is the longest possible carry under the given carry transformation (grouped ciropitry transformation), provided that $m>2$.

Another method of facilitating carry transmission may be found in simultaneous ${ }^{\text {rwiring }} \boldsymbol{F}$ of the addition circuitry. A completely simultaneaus circuitry would provide the fastest carry transmissi on but would require many more component parts, thus entailing much greater expense and possibility of mechanical failure than the less rapid circuits. A completely simultaneous adder for $n=4$ is show in Figure 6a. For n addition units, this type of circuit requires $n(n-1) / 2$ multi-fold mand gates in addition to the $5 n$ two-input gates necessary for adition with linear carry transmission (1.e., 2n and " gates, $2 n$ "excl-or" gates, and n "or" gates).

The simultaneous carry principle may he effectively used in another way, however. The n addition units of an adder may be divided into n / m stages, each stage having simultaneous carry transmission within that stage. This type of circuitry provides all the benefits of the grouped circuitry (Figure 4) and in addition gives nore rapid carry transmission within the individual stages. A diagram of a simultaneous carry stage is given in Figure 6.

Let us say that a carry of 3 places in ordinary linear circuitry becomes effectively a carry of N places with circuitry having simultaneous stages (linearly connected). Once again, we introduce σ, a position variable, to indicate the point of origination of a carry within a given stage: $1 \leq \sigma \leq \mathrm{m}$. Some of the values of σ and J are systematically tabulated in Table 4 for general m and in Table 5 for
$\mathrm{m}=4$.
By empirical consideration of these tables, we define \mathbb{N} as follows:

$$
\mathbb{N}(\jmath, \sigma)=\mathbb{N}(j-1, \sigma)+\delta_{\sigma}, \mathbb{E}_{j-1} \quad \text { for } j>m,
$$

where $\delta_{\sigma, P_{j-1}}$ is the Kronecker delta function and P_{j-1} is that part of ($j-1$) which is not a multiple of m. (As before, $j=m k+p, p<m$);
and

$$
\begin{array}{ll}
\mathbb{N}(j, \sigma)=2+\sum_{x=2}^{j-1} \mathcal{S}_{\sigma, x} & \text { for } 2<j \leq m, \\
\mathbb{N}(j, \sigma)=j & \text { for } 0 \leq j \leq 2 .
\end{array}
$$

To obtain a non-recursive definition of N over the range $m<j \leq n$, we observe that:

$$
\begin{aligned}
& \mathbb{N}(j, \sigma)=M(j-1, \sigma)+\delta_{\sigma, P_{j-1}} \\
& N(j-1, \sigma)=N(j-2, \sigma)+\delta_{\sigma, F_{j-2}} \\
& N(j-2, \sigma)=N(j-3, \sigma)+\delta_{\sigma, P_{j-3}} \\
& N(j-3, \sigma)=N(j-4, \sigma)+\delta_{\sigma, P_{j-4}} \\
& \vdots \\
& \vdots \\
& N(m+1, \sigma)=\mathbb{N}(m, \sigma)+\delta_{\sigma}, P_{m} \\
& N(m, \sigma)=2+\sum_{x=2}^{m m i} \delta_{\sigma, x}
\end{aligned}
$$

Adding these equations, we obtain

$$
\mathbb{N}(j, \sigma)=2+\sum_{y=m}^{j-1} \delta_{\sigma, P_{y}}+\sum_{x=2}^{\pi-1} \gamma^{2} \sigma, x \quad \text { for } j>m
$$

An alternative empirically formed definition of $i \mathrm{for}$ f om is

$$
N(j, \sigma)=3-S_{\sigma, 1}+\left[\frac{1-\sigma-1}{\mathrm{n}}\right],
$$

where the brackets indicate that only the integral part of the
number $\left[\frac{1-\sigma-1}{m}\right]$ is to be trken. Since the latter is the more convenient formula to apply, we shall use the following definition of the simultaneous-stage carry transformation:

$$
\begin{aligned}
& \mathbb{N}(j, \sigma)=j \quad 0 \leq j \leq 2 \\
& \mathbb{N}(j, \sigma)=2+\sum_{x=2}^{j-1} \delta_{\sigma, x} \quad 2<j \leq m \\
& N(j, \sigma)=3-\delta_{\sigma_{1}}+\left[\frac{j-\sigma-1}{m}\right] \quad \text { m }<j \leq n .
\end{aligned}
$$

Having considercd the basic stages S_{1}, let us now briefly consider macro-stages \sum_{j}, each composed of q of the S_{1}. The effectiveness of such a macro-stage lios, of course, in its ability to transmit relatively long carries very rapidly. The type of analysis needed to define the carry transformation from a table of its values is already fanlilar. However, we must introduce a new position varianle, \mathcal{T}, to denote the S_{1} of \sum_{ϕ} within which a carry originates. For origination in the first s_{i} to the left in $\sum_{\phi}^{\boldsymbol{T}}, T=1$. etc. $I \leq T \leq q$.

Let us take q grouped stages S_{1} and combine them into a grouped macro-stage ζ_{ϕ}. We shall designate the resulting carry transmission circuitry as grouped grouped (giving first the type of macro-stage and then the type of component stages). This type of circuitry is shown in Figure 7, and values of its characteristic carry transfomation are given in Tahle 6 for the general case. This general case may be specifically illustrated by assigning values to q and m. A carry of g places in ordinary linear circuitry becones a carry of T places in grouped grouped circuitry, and T is obviously a function of j, σ, and T_{0} That is, $T=T(3, \sigma, T)$.

From empirical consideration of Table 6, we observe that the following recursive function gives the appropriate values of $T:$

$$
\begin{aligned}
T(j, \sigma, T)= & T(j-1, \sigma, T)+1-(m-1)\left(1-\frac{j}{r-1, k}\right) \\
& -(m+q-2) \delta_{T-1, k} \delta_{\sigma} \quad j>m \\
T(m, \sigma, p)= & m
\end{aligned}
$$

where $\sigma=0$ for carry origination at the moth unit in S_{1}
We may derive a non-recursive definition in the manner previously demonstrated. A non-recursive definition of T is, then:

$$
\begin{aligned}
T(j, \sigma, T)=j-(m-1) & {\left[\frac{1-\sigma}{m}\right] } \\
& -(q-1) \quad\left[\frac{1-(T-1) m-\sigma]}{m q}\right] \quad
\end{aligned} \begin{aligned}
& j>0 \\
& 1 \leq \sigma \leq m
\end{aligned}
$$

It is quite apparent that we may form a grouped macro-stage in which the S_{1} are simultaneous stages and a simultaneous macro-stage in which the S_{1} are either simultaneous or grouped. That is, we may construct grouped simultaneous, simultaneous simultaneous, and simultaneous grouped carry transmission circuits as well as the grouped grouped circuitry, making use of macro-stages \sum_{β}. Other possibilities include the construction of ky rid macro-stages in which some S_{1} are grouped, some simultaneous, and/or sone linear as well as the construction of even larger stages consisting of some combination of macro-stages \sum_{ϕ}. In each case, we might follow the type of analysis used heretofore: after drawing the circuitry, we could construct tables characterizing the carry transformation embodied in the of rcuitry and then obtain an empirical formulation of that transformalion.
\# Note: In the construction of hybrid stages mentioned above, a probabilistic analysis of the carry problem is invaluable in deter mining the strategic location of the various types of stages along the carry transmission line, so as to facilitate a profitable compromise between rapidity of addition and economy of construction of the

After considering these transformations, we sinould also note that the speed of computer addition may be increased by a sensing device for the completion of all carries. In the case of an asynchronous parallel adder with addition times varying between t_{1} and $t_{1}+t_{2}$ (as previously considered), this procedure would reduce the average time in tems of the longest expected carry to $t_{1}+\left\{t_{2}\right.$. $\left.\left(\log _{2} r / n\right)\right\}$ since the longest expected carry in binary addition is less than $\log _{2} n$ for n bits. This is a rather pessimistic bound for the average time; with forty bits the actual figure is about t_{I} * $1.15 t_{2}$. Thus some of our carry transformations are virtually equivalent to sensing completion of carries, and some of them are better. The transformations have the further advantage that there is much less dispersion about the average value when they are used; with carry sensing there can still the from 0 to n carries while with carry transformations $c_{n} \rightarrow c_{x}$ and X is the longest possible carry.

Actually, the two approaches may be combined, in which case the longest possible carry now becomes o_{x} where $c_{n} \rightarrow c_{x}$ under the transformation. If the longest expected carry for the system is C_{E}, then the transformation sends $C_{E} \rightarrow C_{g}$, so that C_{j} is the longest expected carry in the transformed system. Since $4<E<5$ for most reasonable binary computers, the transformation tables included with this paper show what happens when a combination of carry transformation and carry sensing is used; addition time becomes $t_{1}+t_{2}(C j / n)$.

(Ñote - continued)

circuit. Such an analysis is briefly undertaken in S. G. Campbell's Numerical Analysis, now heing prepared for prepared for publication. One particularly interesting result of this analysis gives the probability that a carry will be emitted from any given stage of an addition, whether from originatiom in that stage or from propagation of a carry originated in some previous stage. Thus, it is shown that, in radix R, adding two n digit numbers with circuitry having each m

Finally, we should like to note that such results as are developed in this paper make it possible to transform immediately any information about ordinary binary carry into equivalent information about any transformed circuit. For this reason, the enalysis of carry transformations is quite valuabie in approaching the general problem of carry transmission in computer addition.

Some characteristics of some of the carry transforming circuits which we have mentioned in this paper are tabulated below.
(Note - continued)
of the basic addition units combined into a stage S_{1}, with σ the position varialle as heretofore used and 1 the number of the major stage, $1 \leq 1 \leq n / n$, the probability of carry emission fron the ($\sigma+1$) st unit of the 1 th stage is

$$
\frac{1-R^{\mathrm{r}(1-1)}+\sigma-\mathrm{n}}{2}
$$

$R(j, \sigma)=j-(m-1)\left[\frac{1-\sigma}{m}\right] \quad$ for $1 \leq j \leq n$
$N(j, \sigma)=j \quad$ for $0 \leq j \leq 2$
$N(j, \sigma)=2+\sum_{x=2}^{j-1} \delta_{\sigma, x}$ for $2<j \leq m$
$N(j, \sigma)=3-\delta_{0,1}+\left[\frac{1-\sigma-1}{n}\right]$ for $m<j \leq n$.
$T(j, \sigma, T)=j-(1,1-1)\left[\frac{1-\sigma}{m}\right]-(q-1)\left[\frac{j-(T-1) m-\sigma}{m q}\right]$ for $1 \leq j \leq n$

TABLE 1

TABLE 2

$\mathrm{g}=\mathrm{nk}+\mathrm{p}$	$\sigma=1$	$\sigma=2$		$\sigma=\mathrm{m}-1$	$(\sigma=0)$ $\sigma=m$
	$R=\begin{array}{r} 0 \\ 1 \\ 2 \end{array}$ $\mathrm{m}-\mathrm{I}$	$\begin{array}{r} R=0 \\ 1 \\ 2 \\ \\ \\ m-1 \end{array}$		$R=\begin{array}{r} 0 \\ 1 \\ 2 \end{array}$ $\mathrm{m}-1$	$R=\begin{array}{r} 0 \\ 1 \\ 2 \end{array}$ $\mathrm{n}-1$
$k=1$$\quad \begin{aligned} & \text { a }\end{aligned}$	$\begin{aligned} & m \\ & 2 \\ & 3 \\ & \\ & \\ & 0 \end{aligned}$	$\begin{gathered} m \\ m+1 \\ 3 \end{gathered}$ m		$\begin{gathered} m \\ n+1 \\ n+2 \end{gathered}$ m	$\begin{gathered} m \\ m+1 \\ m+2 \end{gathered}$ $m+m-1$
	$\begin{gathered} m+1 \\ 3 \\ 4 \\ \\ \\ m+1 \end{gathered}$	$\begin{gathered} n+1 \\ m+2 \\ 4 \\ n+1 \end{gathered}$		$\begin{aligned} & m+1 \\ & n+2 \\ & m+3 \\ & n+1 \end{aligned}$	$\mathrm{n}+1$ $\mathrm{n}+2$ $[+3$ $n+m$
$\begin{aligned} & \mathrm{k}=3 \quad \mathrm{p}= 0 \\ & 1 \\ & \dot{2} \\ & \dot{\square} \\ & \dot{n}-1 \end{aligned}$	$\begin{gathered} m+2 \\ 4 \\ 5 \\ \\ m+2 \end{gathered}$	$\begin{gathered} \mathrm{n}+2 \\ \mathrm{n}+3 \\ 5 \\ \mathrm{~m}+2 \end{gathered}$		$\begin{aligned} & n+2 \\ & n+3 \\ & n+4 \\ & n+2 \end{aligned}$	$\begin{aligned} & \mathrm{n}+2 \\ & \mathrm{~m}+3 \\ & \mathrm{~m}+4 \end{aligned}$ $n+m+1$
$\stackrel{\square}{\bullet}$					
	$\begin{aligned} & n+\frac{n-a}{m} \\ & n / n \\ & 1+n / m \\ & m-2+\frac{n}{m} \end{aligned}$	$\begin{gathered} n+\frac{n-\infty}{m} \\ n-1+n / m \\ 1+n / m \end{gathered}$		$\begin{gathered} \frac{m+n-2}{m} \\ m-1+n / m \\ m+n / m \end{gathered}$	$\begin{gathered} m+\frac{n-2}{m} \\ m-1+n / m \\ m+n / m \end{gathered}$

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{$\mathrm{m}=4 \quad \mathrm{TSELS} 3$}

\hline $j=4 k+p$ \& $\sigma=1$ \& $\sigma=2$ \& $\sigma=3$ \& $(\sigma=0)$
$\sigma=4$

\hline $\mathrm{k}=0 \quad \mathrm{p}=00$ \& $R=$

1
2
3 \& $R=0$
1
2
3 \& $R=$
0
1
2

3 \& $$
R=\begin{array}{r}
0 \\
1 \\
2 \\
3
\end{array}
$$

\hline $k=1 \quad p=0$ \& 4
2
3
4 \& 4
5
3
4 \& 4
5
6

4 \& $$
\begin{aligned}
& 4 \\
& 5 \\
& 6 \\
& 7
\end{aligned}
$$

\hline $\mathrm{k}=2 \quad \mathrm{p}=0 \begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3\end{aligned}$ \& 5
3
4
5 \& 5
6
4
5 \& 5
6
7

5 \& $$
\begin{aligned}
& 5 \\
& 6 \\
& 7 \\
& 8
\end{aligned}
$$

\hline $\mathrm{k}=3 \quad \mathrm{p}=00$ \& 6
4
5
6 \& 6
7
5
6 \& 6
7
8

6 \& $$
\begin{aligned}
& 6 \\
& 7 \\
& 8 \\
& 9
\end{aligned}
$$

\hline $\stackrel{-}{\bullet}$ \& \& \& \&

\hline $\mathrm{k}=9 \quad \mathrm{p}=00 \times 1{ }^{1} \mathrm{l}$ \& 12
10
11

12 \& $$
\begin{gathered}
12 \\
13 \\
11 \\
(12)
\end{gathered}
$$ \& \[

$$
\begin{gathered}
12 \\
13 \\
(14) \\
12)
\end{gathered}
$$
\] \& $\left(\begin{array}{l}12 \\ (13) \\ (14) \\ 15\end{array}\right.$

\hline
\end{tabular}

TABLE 4

TABLE 5

\begin{tabular}{|c|c|c|c|c|}
\hline $\mathrm{J}=4 \mathrm{k}+\mathrm{p} \quad \mathrm{p}<\mathrm{r}$ \& $\sigma=1$ \& $\sigma=2$ \& $\sigma=3$ \& $(\sigma=0)$
$\sigma=4$

\hline $\begin{aligned} & \mathrm{k}=0\end{aligned} \mathrm{p}=\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3\end{aligned}$ \& N \& $N=$

1
2

3 \& $N=\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 2\end{aligned}$ \& $$
\begin{array}{r}
N= \\
1 \\
1 \\
2 \\
2
\end{array}
$$

\hline $k=1 \quad p=0$
1
2
3 \& 2
2
3
3 \& 3
3
3
4 \& 3
3
3

3 \& $$
\begin{aligned}
& 2 \\
& 3 \\
& 3 \\
& 3
\end{aligned}
$$

\hline $\begin{aligned} k=2\end{aligned} \quad p=0$ \& 3
3
4
4 \& 4
4
4
5 \& 4
4
4

4 \& $$
\begin{aligned}
& 3 \\
& 4 \\
& 4 \\
& 4
\end{aligned}
$$

\hline $\mathrm{k}=3 \quad \mathrm{p}=$

1
2
3 \& 4
4
5
5 \& 5
5
5
6 \& 5
5
5
5 \& 4
5
5
5

\hline $\mathrm{k}=4 \quad \mathrm{p}=$

1
2
3 \& 5
5
6
6 \& 6
6
6
7 \& 6
6
6
6 \& 5
6
6
6

\hline - \& - \& - \& - \& -

\hline - \& - \& - \& - \& -

\hline - \& - \& - \& - \& -

\hline - \& - \& - \& - \& -

\hline - \& - \& - \& - \&

\hline
\end{tabular}

TABLE 6 (continued)

$$
\begin{aligned}
& k<q \\
& p r m \\
& j=m q h+m k+p
\end{aligned}
$$

Addition Unit

Subtraction Unit

Note: because of the similarity of Figure 1 to Figure 3, the carry of Figure 1 is the same as the borrow of Figure 3 for the same inputs a_{i}, b_{i}; hence the .. andysis of this paper applies equally well to both borrow transmission in subtraction and carry transmission in addition, and in general, any analysis of carry probabilities becomes automatically an analysis of borrow probabilities.

Figure 7
(ONE COPY UNLESS OMHERWISE NOTED)
ALABAIA
Commanतant
Headquartcrs Air Univorsity
Naxwcll Ar Forco Basc, Alabama
BELGIUA
Commandor 3 COPIES
Europoan Cfficc, $A R D C$
60 Ruo Ravonstoin
Brusscls, Bolgium
ChLIPOMIA
Applicd Mathomatics and Statistics Laboratory
Stanford University
Stanford, California
Dopartmont of Mathomatics
University of Califormia
Eorkoloy, California
Commandor
Air Force Flight Tost Contor
ATMi: Technical Library
Zdwards Air Forco Basc, California
Tho Rand Corporation
Tochnical Library
1700 Main Stroct
Santa lionica, California
Diroctor of Advanced Studies
Air Forcc Office of Sciontific Rescarch
Post Office Box 2035
Pasadena 2, California
Commandur
Wostorn Development Division
ATTN: WDSIT
P. O. Box 262
Inglowood, Califormia
CONIECTICUT
Dopartment of Mathomatics
Yalo Univorsity
Now Haven, Connocticut
DISTRICT OF COLUMBIA
Chiof of Naval Oporations
Dopartment of the Navy
ATTN: OFO3EG; Mr. Arthur Kaufman
Washiret on 25, D. C.
Human Factors Oncrations Rescarch Laboratories
Air Roscarch and Devolopment Command
Bolling Air Forco Basc
Washingt on 25, D. C.
Officc of Naval Roscarch 2 COPIES
Dopartment of the Navy
ATTI: Code 432
Washington 25, D. C.
Dopartmont of Commerce
Office of Tochnicel Scrvices
Washington 25, D. C.
Dircctor National Sccurity Agoncy
ATTN: Dr. H. H. Campaignc
Washington 25, D. C.
Library
National Burcau of Standards
Washington 25, D. C.
National Applicd Nathomatics Laboratorics
Netionel Bureau of Standarcs
irashiniton 25, D. C.
Hoadquartors, USAF
Lirvetor of Cperations
ATTi: Operations Analysis Division, AFOOP
Wesininton 25, D. C.
Commandor 2 COPIES
Air Forco Officc of Sciontific Roscarch
ATTN: SRDB
Weshington 25, D. C.
Commander 2 COPIES
Air Forco Offico of Scicntific RoscarchATTN: SRE
Tashington 25, D. C.
National Scioncc Foundation
1520 解 Streot, N. W.
Washingt on 25, D. C.
FLORIDA
Commandor
Air Forco Amment Conter
ATM: Tochnical Library
Esin Air Force Baso, Florida
Commendoz
Air Forco Missile Tost Contor
ATMN: Tochnical İbrary
Patrick Alr Forcc Besc, Floride
ILLITOIS
Dopertmont of Mathomatics
Northwestorn Univorsity
Evanston, Illinois
Institutc for A1r Veapons Rescarch
IUscum of Science and Industry
Univorsity of Chicago
Chicago 37, Illinois
Depertment of Mathomatics
University of Chicago
Cinicago 37, Illinois
Dopartmont of inathonatics
University of Illinols
Uroana, Illinois
INDIMA
Dopartment of Nathomatics
Purduc University
Laxisyotto, Indiana
MARYLATD
Institutc for Fluid Dynamics and Applicd inathematics
University of Liaryland
Collog' Park, itarylend
Mathomatics and Physics Library
Tho Johns Hopkins University
Boltimore, liarylpnd
Commender
Hoadquartors Air Rosearch and Dovelopment Command
ATMH: Tochnical Library
F. O. Eox 1395
Bnitimore 3, Marylnad

MASSACHUSETTS

Dopartmont of Mathomatics
Harvard Univer $\ddagger 1 t y$
Combridge 38, Hassnchusctts
Dopertmont of iathomatics
Lassaciusctits Institutc of Tochnology Canbridsc, Hassachusetts

Commentor
Air Force Cambridgo Roscarch Contor
ATM: Goophysius Roscarch Library
L. G. Henseom Froid

Bodford, Zaceachusotts
Comandor
Air Forco Cambridgo Rescarch $\operatorname{Con}_{\mathrm{C}} \mathrm{ntor}$
ATTN: Elcotronic Rosearch Library
L, G. Henscom Ficid
Bedford, Lassnchusctts
MICHIOAN
Dopartmont of Mothomatics
Wayno Univorsity
ATM: Dr. Y. V . Chon
Dotroit 1, Wíchign
Willow Run Rescarch Conter
Univorsity of linchigen
Upsilanti, Michig.n
MINVESUTA
Dopertmont of Mathematies
Folwoll Holl
Univorsity of Minnesota
Minnonpolis, Minnosota
Depertmont of Mathematics, Institute of Technology
Engincoring Builling
University of 21 nnesot?
Minnopolis, Minnosot?
MISSCURI
Dopartment of Mnthomatics
inshington Univorsity
St. Louls 5, Lissourl
Dopertmont of Mathomatics
University of Missouri
Columbir, Missouri
LAnd Hill Library
APTN: Tr. Thomas Gillis
Document Division
5109 Cherry Stroct
Kansas City 10, Missour1
NEBRiSKA
Commander
Strotegic Air Command
ATHN: Oporations malysis
Cffutt wir Force Baso
Omahe., Nobraska
NEH JYRSEY
The James Forrestal Research Center Iibrary
Princeton University
Princeton, New Jorscy
Ilbrary
Institute for advanced Study
Princeton, Now Jerscy
Department of Mrthomatics
Fine Holl
Princoton University
Princoton, Now Jersoy
NEW MEXICO
Commaner
Holloman alr Dovelopnent Conter
ATMN: Tochnical Librnry
Hollomn Air Force Basc, Now Mexico
Commnicer
air Forec Special Wonpons Contor
ATMN: Tcchnicel Library
Kirtlinn is Forco Brso
Albuquerque, New Vextco
NEA YORK
Prof. J. Wolfowitz
Mathonatics Dopartment
Whito Hall
Cornoll University
Ithnca, Now York
Depertmont of linthematics
Syrncuse Univorsity
syracusc, New York
Sathematics Resenrch Group
New York University
ATTN: Professor :. Kline
45 Astor Plnco
Now York, Now York
Dopartmont of Inthomatics
Columbia Uni versity
ATTN: Jrofossor B, O. Koopmnn
Now York 27, ITow York
Dopartmont of Mrthomatical Statistics
Fayewneather Hall
ATTM, Dr. Horbert Robbins
Conumbir Uatrorsity
Now York ing, Now York
Comanner
Romo fir Dovelopment Contor
ATWI: Tochnienl Library
Griffiss air Forco Beso
Fowe, Now YOrk
Inciituto for Acronautical Scionces
ATMiN: Jibrerinn
2 Enst 64th Stroct
Now York 21, Now York
NORTH CAFOLINA
Institutc of Stentistics
North Corolum Strico Collogo of A an? E
Roloigh, North C?rolime
Depnrtment of Ir,thomntics
University of North Cncolinn
Chapel Hill, Horth Carolina
Officc of Ordmanco nesorrch 2 COPIES
Eox Cl:
Duke StationDurhem, North Crrolinn
Dopnrtmont of Mnthomatics
Duko Untvorsity
Duko Etntion
Durhnm, Worth Corolinn
OHIO
Commnder
Air Tochricel Intclligence Contor

Winght-P它tcrson Air Force Ensc, Ohio
Comirncior
Wright Air Devolopmont Contor
ATTN: Tochnicnl Iubrery
Vrignt-Pattorson air Force Bnso, Ohio
Commonior 2 COPIES
Wright Air Developmont Contor
ATMN: ARL Tcehnicol Library, VCRR
Wright-Pntterson Air Force Bnsc, Ohio
Conmendent 2 COPIES
USAF Instituto of Tochnology
ATTN: Tcchnicall Iibrary, WCLI
Viright-Pattorson Air Force Bnsc, Ohio
Chicf, Document Sorvice Centor 10 COPIES
Amed Sorvices Tochnicol Information Agency
Knott Builing
Dayton 2, Ohio
PENISYLVATIA
Dopartnent of Mathomatics
Cornogic Institutc of Tochnology
Pittsburgh, Pennsylvania
Dopartment of Mathematics
University of Ponnsylvenia
Philacolphia, Pennsylvaina
TENTESSEE
Commancor
Arnol? Englncering Devolomment Conter
ATTN: Technicil Library
Tullinomn, Tonnessce
TEXAS
Defenso Resoarch inboratory
University of Texns
Austin, Toxis
Doportmont of Mathomatios
Ricc Instituto
Houston, Texns
Commander
Air Forco Porsonnel and Training Rosenrch Conter
ATMN: Tochnionl Librney
Lnckland Air Force Brse
Snn Antonio, Texas

WISCONSIN

Depnertment of Mathemntics University of Wisconsin Madison, wisconsin

```
Mathematics Rosenreh Contor
ATTN: R. E. Lnnger
University of wisconsin
Mincison, wisconsin
```

