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ABSTRACT 

 

 

Over the last years, centrality measures have gained importance within complex and social 

networks research, e.g., as predictors of behavior, identification of powerful and influential 

elements, detection of critical spots in communication networks and in transmission of diseases. 

New measures have been created and old ones reinvented, but few have been proposed to 

understand the relation among measures as well as between measures and other structural 

properties of the networks. Our research analyzes and studies these relations with the objective 

of providing a guide to the application of existing centrality measures for new environments 

and new purposes. We shall also present evidence that the measures known as Walk 

Betweenness, Information, Eigenvector and Betweenness are substantially better than other 

metrics in distinguishing vertices in a network by their structural properties. Furthermore, we 

provide evidence that each metric performs better with respect to distinct kinds of networks. In 

addition, we show that most metrics present a high level of redundancy (over 0.8 correlation) 

and its simultaneous use, in most cases, is fruitless. The results achieved in our research 

reinforce the idea that to use centrality measures properly, knowledge about their underlying 

properties and behavior is valuable, as we show in this dissertation. 

 

Keywords: Centrality Measures. Complex Networks. Social Networks.



 
 

RESUMO 

 

 

Recentemente, as medidas de centralidade ganharam relevância nas pesquisas com redes 

complexas e redes sociais, atuando como preditores comportamentais, na identificação de 

elementos de poder e influência, na detecção de pontos estratégicos para a comunicação e para 

a transmissão de doenças. Novas métricas foram criadas e outras reformuladas, mas pouco tem 

sido feito para que se entenda a relação existente entre as diferentes medidas de centralidades, 

assim como sua relação com outras propriedades estruturais das redes em que elas são 

frequentemente aplicadas. Nossa pesquisa visa analisar e estudar essas relações para que sirvam 

de guia na aplicação das medidas de centralidade existentes em novos contextos e aplicações. 

Nós apresentamos também evidencias que indicam um desempenho superior das medidas 

conhecidas como Walk Betweenness, Information, Eigenvector and Betweenness na distinção 

de vértices das redes somente pelas suas características estruturais. Ainda, nós propiciamos 

detalhes sobre o desempenho distinto de cada métrica de acordo com o tipo de rede em que se 

trabalha. Adicionalmente, mostramos que várias das medidas de centralidade apresentam um 

alto nível de redundância e concordância entre si (com correlação superior a 0,8). Um forte 

indício que o uso simultâneo de várias métricas é improdutivo ou pouco eficaz. Os resultados 

da nossa pesquisa reforçam a ideia de que para usar apropriadamente as medidades de 

centralidade é de extrema importância que se saiba mais sobre o comportamento e propriedades 

das mesmas, fato que salientamos nessa dissertação. 

 

Palavras-chave: Medidas de Centralidade. Redes Complexas. Redes Sociais.
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1 INTRODUCTION 

 

 

Human beings naturally present social behavior as an important aspect that increases 

their adaptation to the environment. The association of any kind and purpose between several 

individuals form and characterize a social network. The construction of an optimal social 

network is relevant and pursued by every social being to accomplish any complex task, for 

instance, food manufacture (chain of production), reproduction (relationship networks) and 

knowledge production (scientific contributions). 

The study of these networks are subject of complex networks analysis, which also 

includes networks composed by machine and any other kinds of elements. Their analysis are of 

fundamental importance not only to understand human behavior, but also to improve their 

effectiveness in several tasks and to apply it to artificial intelligence domains where individuals 

are simulated by agents and machines (BARABÁSI, 2002). 

The fast development of the internet, the web and of powerful computers makes it 

possible to retrieve and analyze large amounts of data about social behavior for many 

application areas. This creates several new fields of study of complex and social networks for 

many objectives and opens new possibility of analysis in large scale with more complex 

algorithms and techniques (EASLEY and KLEINBERG, 2010). 

The measurement of numerous characteristics and properties of networks is one of the 

most important tools for their analysis and understanding. However, they are most of the time 

related to graph theory and linear algebra. There are plenty of metrics for distinct and similar 

purposes that are applied in many contexts and studies of the area, such as, measures related 

with distance, clustering and cycles, degree distribution, vertex types, entropy, spectral and 

hierarchical measures, fractal dimensionality, correlations and centrality (COSTA et al., 2008). 

Every one of them have their applications and importance for complex and social 

networks analysis but centrality measures are one of the most widely used metrics nowadays as 

a good alternative to uncover intrinsic behavior contained in networks structural properties. 

They are also especially useful in the context of social behavior and simulation, and they will 

be the focus of our work. 

The concept of central position is relative to a particular context. For example, it can 

mean the center of a circle (perfectly defined by a formula) or the most important person within 

an organization or group (most of the time it is hard to identify with precision). As one can 

imagine, its meaning goes from a physical position to an abstract idea, such as, power, 
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influence, or responsibility. Nevertheless, it is important to identify the most central element 

for many applications and areas with different objectives in mind. 

Centrality measures look to quantify how much central is an element, considering a 

defined environment and objective. Diverse environments and objectives have specific 

centrality measures, but whenever the central concept is abstract, it is generally undefined 

which centrality measure is more adequate to use (THILAGAM, 2010). Furthermore, many 

metrics can be used for the same application, which leads to distinct results that are difficult to 

compare. 

Complex networks are an example where centrality plays an important role to identify 

powerful, critical or relevant elements, but it is difficult to detect which measure is adequate, 

given the large number of objectives and structural properties found in complex networks 

studies (EVERETT and BORGATTI, 2005). That are the several reasons for the intense 

expansion in studies about centrality measures in the last years. 

Back in the 1940s, Bavelas (1948) introduced the centrality idea within the social 

context as an important element. He studied communication among groups and related 

centrality with influential individuals. Later, the idea of centrality was used by many authors in 

several studies: 

 to identify prominence differences of individuals in distinct social networks 

determined by their position in their local network or community network (ADAH 

et al., 2013); 

 in the analysis of individuals vulnerability to disease and infectivity in disease 

transmission networks (BELL et al., 1999); 

 in the evaluation of vulnerable spots in communication networks (BORBA, 2013); 

 in the identification of key players sets in social networks (BORGATTI, 2006; 

ORTIZ-ARROYO, 2010); 

 in the reinforcement of communication networks to prevent attacks 

(CUNNINGHAM, 1985); 

 in the mapping of actors social networks (DANOWSKI and CEPELA, 2010); 

 in the visual analysis of networks (BRANDES et al., 2003; CORREA, 2011; 

DWYER et al., 2006); 

 to identify the relationship between academic employment and departments 

prestige (HEVENSTONE, 2008); 

 in network analysis of USA air transportation network (HUA et al., 2010); 
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 in the identification of high-status elements on knowledge and scientific networks 

(KAZA and CHEN, 2010); 

 in the selection of influencers for optimal spread of viral marketing (KISS and 

BICHLER, 2008); 

 in biological network analysis (KOSCHUTZKI and SCHREIBER, 2004); 

 in the analysis of scientific collaboration networks (NEWMAN, 2001); 

 to find community structures in networks (NEWMAN and GIRVAN, 2004); 

 to identify the impact of structural location to individual and collective 

performance in social problem solving systems (NOBLE et al., 2015); 

 to rank pages in the web (PAGE et al., 1999); 

 in targeting optimization of intrusion detection systems in social networks (PUZIS 

et al., 2010); 

 in the measurement of individual’s connectedness and reachability in a network 

(VALENTE and FOREMAN, 1998); 

 in journal impact analysis in coauthorship networks (YAN and DING, 2009). 

Network measurements are therefore essential as a direct or subsidiary resource in many 

network investigations, including representation, characterization, classification and modeling 

(COSTA et al., 2008). 

This expansion caused the creation of many new centrality measures and improved the 

algorithms used in its computation, but few were done to understand their actual relations 

between the network structure and among themselves. Some measures appear to lack theoretical 

focus because they may be applied in diverse contexts. For example, although networks terms 

such as centrality, prestige and power have coherent measurement definitions, theoretical 

definitions of these terms tend to be vague. 

Some efforts have been done to classify the centrality measures and verify their actual 

usefulness or precision. This line of research started with Freeman (1978/79) and Freeman et 

al. (1979/80), who organized centrality measures in three main groups: degree (representing 

vertex visibility), betweenness (representing vertex control of communication), and closeness 

(representing vertex independency). In addition, they separated the concept of point centrality, 

which focuses on each element of a network, and network or graph centrality, which aims to 

measure how central is an entire network. He also made experiments to verify how close the 

metrics values are to real case environments where the correct values or at least a rank is known 
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earlier. Their experiments achieved many promising results by indicating that the centrality 

measures are highly correlated with real environments variables. 

More recently, Borgatti (2006) highlighted the importance of traffic flow to determine 

the significance of a vertex. For him, the selection of centrality measures must take into 

consideration the kind of network flow to guarantee accuracy. Furthermore, he reinforces that 

most centrality measures do not specify characteristics about network structure and network 

flow, both relevant for its use. In addition, Borgatti and Everett (2006) proposed a new 

classification for centrality measures based on the concepts of nodal involvement (radial or 

medial), property of the walk assessed (volume or length) and type of walk considered (random 

or guided). 

 Our objectives do not involve creating a new centrality measure or discovering which 

measure is more accurate in a determined environment. These elements have already received 

a lot of attention from many researchers. Moreover, only point centrality measures for social 

networks are considered thus present lack of theoretical foundation and are gaining importance 

in many applications. 

 Our main objective is to improve the selection of new centrality measures for a problem, 

making use of network structure properties and/or the information about previously applied 

centrality measures to that problem. 

 We will accomplish that through the following tasks: 

 selecting the main and most known centrality measures applied to social networks; 

 comparing experimentally different centrality measures, and classifing them using 

a similarity criterion; 

 relating network properties such as density (number of edges, diameter, maximum 

distance mean, clustering coefficient), connectivity (minimum degree, maximum 

degree, mean degree) and size (number of vertices), with each centrality measure; 

 simplifying the variety of centrality measures by using similar experimental results 

to show which measures are significantly divergent from the others and which ones 

are best applied in different kinds of networks. 

 Both the characterization and classification of natural and human-made structures using 

complex networks imply the same important question of how to choose the most appropriate 

metrics and evaluations of structural properties. While such a choice should reflect the specific 

interests and application, it is unfortunate that there are no general model or formal procedure 

for identifying the best measurements. In addition, there is an unlimited set of metrics 
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variations, and they are often correlated, implying redundancy in many situations. Ultimately, 

one has to rely on his knowledge of the problem and available measurements in order to select 

a suitable set of features to be considered. For such reasons, it is of paramount importance to 

have a good knowledge not only of the most representative measurements, but also of their 

respective properties and interpretation (CORREA and MA, 2011; BRANDES et al., 2003). 

 Currently, the fast pace of developments of more sophisticated measures and new results 

reported in this very dynamic area makes it particularly difficult to follow and to organize the 

existing measurements (COSTA et al. 2008). 

Bolland (1988), Nakao (1990), Friedkin (1991), Costenbader and Valente (2003), Goh 

et al. (2003), Koschützki and Schreiber (2004), Zemljič and Hlebec (2005), Borgatti et al. 

(2006), Butts (2006) are some of the most relevant work about centrality measures relation’s 

with structural properties of the network and among themselves. Their work differs from ours 

because one or more of the following reasons: they considered only graph centrality (our work 

focus on vertex centrality), their experiments were restricted to few real networks (our 

experiments use thousands of random networks with distinct properties), they studied few 

centrality measures (we use not only the classical measures but also many of the newer 

measures), their analysis or objectives are distinct from ours. Further comparisons with their 

work will be presented in the coming Sections. 

The importance of our work comes from the fact that it is useful to predict the behavior 

of a measure or its performance before applying it onto a network, using for that, information 

about both measure and network properties. This helps to select among several measures the 

one that will be most relevant for the application analyzed, preventing the need to try over all 

the measures, an increasing number nowadays, and yet achieve the desired objective. 

Second, knowing in what way centrality measures relate to each other provides an 

important idea of how similar they are, creating an opportunity to use other close measures 

when it is known in advance at least one that is adapted for a determined problem. This is 

especially relevant if one wants more precision or accuracy and to achieve that, wants to select 

other measures like to the one already used. Applying similar measures on the same network 

can produce a small, but relevant, increase on precision, desired when dealing with hard 

objectives and especially whenever you already have reasonable but still not good enough 

results with a known measure. Another advantage can be achieved when it is possible to change 

a complex measure for a simpler one, the simpler are always more easily interpreted and faster 

to calculate. 
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The first part of this work (Section 2) explains the characteristics of general complex 

models and important studies done in the area. It also presents five complex network models 

that will be later used to generate synthetic networks for our experimental analysis. 

Section 3 contextualizes and defines centrality measures, presenting eight of the most 

relevant metrics applied in many research applications. These metrics will be the focus of our 

research and analysis. 

Section 4 explains the procedures of our experimental methodology in details, justifying 

our choices of steps and parameters with arguments retrieved from important references and 

from trial experimental tests. 

The results of our experiments and their associated discussion and analysis are in 

Section 5, where we present all the important information retrieved from our experiments and 

discuss their implications in real world domains, exemplifying their importance and 

contribution for the area of complex and social networks. 

The last part of this work (Section 6) concludes with the main results and contributions 

of our work, and we also discuss possible further investigations and the next steps of 

complementary research. 

 



 
 
2 COMPLEX NETWORKS 

 

 

 A complex network is characterized for not being regular i.e., it does not present a clear 

and homogenous pattern of connections and its elements are usually unique in its environment. 

Complex networks appear frequently in various technological (internet, world wide web), social 

(scientific collaboration networks, lexicon or semantic networks, friendship networks, business 

relationships) and biological (neural networks, food webs, metabolic networks, interaction 

between proteins) domains. They are usually mapped (modeled, represented) by graphs where 

each vertex represents a node of the network (person, animal, company, object, element) and 

each edge represents any arbitrary relationship between entities. 

 Although graph theory is a well-established and developed area in mathematics and 

theoretical computer science, many of the recent developments in complex networks have taken 

place in areas such as sociology, biology and physics. The recent studies of complex networks 

where mainly supported by the availability of high performance computers and large data 

collections, providing important results and increasing the interest in this area. Current interest 

has focused not only on applying the developed concepts to many real data and situations, but 

also on studying the dynamical evolution of network topology (COSTA et al., 2008). 

 Stephenson and Zelen (1989) and Hevenstone (2008) reinforce the idea saying that 

networks are implicit in a wide range of social phenomena and that the overall structure of a 

network has consequences not only for individual members, but also for the entire group, 

extending well beyond individual behaviors and social roles. Assessing the quality of relations 

between entities and understanding connections patterns has generated much interest and 

research in various disciplines (KEARNS, 2012). 

 In the early history of the area, technical ideas often raced ahead of applications leading 

to a criticism that network analysis provided nothing more than a superfluous language that 

served to recognize what was patently obvious. Such criticism failed to recognize that these 

techniques yielded results that added substantially to our understanding of social and cultural 

processes and could not have been obtained by simple common sense notions for large and 

complex networks (STEPHENSON and ZELEN, 1989). Today, complex network analysis is 

viewed as fundamental to the understanding of human, social and economic activities and 

relationships (EASLEY and KLEINBERG, 2010; KEARNS, 2012). 
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 Before we advance in the subject and explain the details of the complex networks 

models we will revise briefly some important mathematical definitions of graph theory, used 

also in the definitions of centrality measures and in the experimental analysis in later sections. 

 

2.1 Mathematical Definitions 

 A graph consists of a set of vertices (points, vertices) and a set of edges (lines, links) 

connecting pairs of vertices. The edges can be valued (weighted) or unitary (unweighted), 

directed or undirected, but only unitary and undirected edges will be considered in the 

definitions below because our experiments use only undirected and unweighted graphs. The 

number of vertices of a graph will be represented by n and the number of edges by m. 

 Whenever two vertices are connected by an edge, they are adjacent, and the number of 

vertices that one is adjacent to is called the degree of that vertex. 

 A path between two vertices is a sequence of edges starting from one vertex to the other 

(possibly with many other vertices amid the way). If there exists a path between all pairs of 

vertices in the graph, the graph is considered connected. The number of edges in a path is a 

definition of distance between two vertices and the smallest path between two vertices is called 

geodesic. 

 There are a great number of useful structural properties of graphs, the ones used in this 

work are: minimum degree (minimum degree value of the graph), maximum degree (maximum 

degree value of the graph), mean degree (sum of all vertices degree values divided by the 

number of vertices), diameter (maximum geodesic distance between all pairs of vertices of the 

graph), maximum distance mean (sum of geodesics distances between all pairs of vertices 

divided by the number of vertices), clustering coefficient (three times the number of closed 

triangles divided by the number of connected triples) and density (number of edges divided by 

the maximum number of edges possible). 

 Recent studies of complex networks have shown that these networks have some 

interesting properties, such as, high clustering coefficients, “small-world” effect, scale-free 

effect and community organization. Such studies proposed distinct models of randomly 

generated networks mapping each of these characteristics with the objective to understand how 

real networks are organized (NEWMAN, 2003). These models are presented and briefly 

explained below where sample pictures generated by each model algorithm are also presented. 

The sample pictures of the network graphs were generated with a free software called Gephi 

where force atlas 2 (a simpler and faster version of force atlas) was used to organize the layout 

of the vertices. Force atlas layout algorithm simulates a gravitational force using vertices degree 
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value and their connections (attracting the ones which a vertex is connected to and, at the same 

time, repelling those which it is not). The resulting layout gives a perceptible idea of community 

structural organization and visually identifies their presence in a network. 

 

2.2 Complex Networks Models 

 Each complex network (or class of networks) presents specific topological features, 

which characterizes their connectivity and highly influences the dynamics of processes 

executed on the network. The analysis, discrimination, and synthesis of complex networks 

therefore rely on the use of measurements capable of expressing the most topological features 

(COSTA et al., 2008). 

 Complex networks research can be conceptualized as lying at the intersection between 

graph theory and statistical mechanics, which endows it with a truly multidisciplinary nature. 

The main reason that complex networks became a focus of attention recently is the discovery 

that real data networks involve community structure, power-law degree distributions and hubs, 

among other structural features not explained by uniformly random connectivity (COSTA et 

al., 2008). 

 Some relevant works in the area include: Erdős and Rényi (1959), Watts and Strogatz 

(1998), Barabási and Albert (1999), Newman and Park (2003). Their main purpose was to 

create models that are capable of generating synthetic networks with pre-defined sizes and 

properties, which simulate the main characteristics presented by real social networks structures 

while keeping random elements that allows the creation of unique networks. 

Their ideas will be explained in detail in the following Sections and will be used in our 

further experiments. The algorithms/procedures proposed by each author for the generation of 

networks with determined properties were implemented and tested by us in Java programming 

language. Later, these algorithms are used in our research to generate thousands of sample 

synthetic networks, useful to simulate numerous real networks samples and increasing the 

analysis statistical relevance. We show also that these models are substantial attributes for the 

appropriate selection and prediction of centrality measures behavior before the need of their 

actual computation. 

 We start presenting the more ancient models and finalize with the newer ones. This is 

important because many of the later models use ideas already discussed by the other models 

and some of them can be viewed as extensions to the previous model properties. 

2.2.1 Random Graphs of Erdős and Rényi (Mer) 
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 That is considered the simplest model for complex networks, introduced to generate 

random graphs (ERDŐS AND RÉNYI, 1959). This model defines a fixed number of vertices n 

and a probability p of connection between each pair of vertices. The probability p is the same 

for all pairs of vertices. 

Their model does not fit well social networks structural properties, but some artificial 

agent networks are assembled in a very similar way. 

 The networks generated by the model are mainly characterized by an expected average 

degree of p(n-1) and by a degree distribution similar to a Poisson distribution. 

 For our experiments we used p = {0.1, 0.3, 0.5}, the higher is p, higher is the mean 

degree, clustering coefficient and density, and lower is the diameter. Higher values of p were 

not sampled because networks with such density are rare in real applications. 

 Figure 1 presents an example of network generated by this model with our algorithm 

(vertices size represents their degree value). We can see that this model generates a homogenous 

distribution of connections and presents no formation of distinguishable community structures 

or any other regular pattern structure format. 

 

Figure 1 – Mer sample with 100 vertices and p = 0.5 

 

Source: author (picture generated with Gephi) 

2.2.2 Small-World Model of Watts and Stogatz (Msw) 
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 Complex real networks usually present the Small-World properties, also known as the 

so-called “six degrees of separation”, where most vertices can be reached with short paths. In 

addition, these networks show a large number of small cycles, especially the ones of size three 

which represents the idea of the closely related communities (a close group of friends in a social 

network, for example). 

 Watts and Strogatz (1998) proposed a model to generate random networks with both 

properties, starting with a ring of connected vertices, each one adjacent with the k nearest 

neighbors. Then with a probability p, each edge can be random (uniformly) reassigned for any 

available position. This relinking method, with an intermediate or small p, will create paths 

among distant vertices while it keeps a high clustering coefficient among close neighbors. 

 We tried every combination of k = {4, 8, 16} with p = {0.1, 0.3, 0.5}, resulting in nine 

distinct configurations for the experiments. The higher is k, higher is the mean degree, 

clustering and density, although diameter decreases. In addition, the higher is p, lower is the 

clustering coefficient and diameter. 

Higher values of p distort the properties of the model, turning it very similar to the 

random graphs of Erdős and Rényi (1959) and that is why we do not sample p values above 

0.5. At the same time, k values could not be larger, relative to the size of the networks, to keep 

a faithful representation of real application networks behavior and properties where a large 

number of a closely fully connected community is pretty rare. 

Many actual real networks present Watts and Strogatz model’s properties but they are 

generally not as homogenous and simple as the proposed generative model suggests. Still, it 

can represent very well many structural properties of many real social networks and it is very 

distinguishable from the other complex network models. 

 Figure 2 presents an example of network generated by this model with our algorithm 

(vertices size represents their degree value). It presents the ring layout of vertices forming 

distance related communities, and also the long range edges relinked in the generation process, 

which are responsible to lower the diameter of the network giving the small-world effect of the 

model while maintaining the high clustered groups of vertices. It is also visible that the degree 

distribution among vertices are closely homogenous due the fact that the random and uniform 

probability of edge relinking retains mostly the initial fully homogenous degree’s distribution. 
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Figure 2 – Msw sample with 100 vertices, p = 0.1 and k = 16 

 

Source: author (picture generated with Gephi) 

 

2.2.3 Scale-free Networks of Barabási and Albert (Msf) 

 The analysis of large networks data show that degree follows a scale-free power-law 

distribution. Barabási and Albert (1999) explained this fact by the facts that networks expand 

continuously by adding new vertices and, that these new vertices attach preferentially to vertices 

already well-connected (with higher degree). 

 The model proposed by them with both characteristics starts with a k number of fully 

connected vertices and keeps adding new vertices with k connections, defined by a preferential 

attachment formula. The probability of a vertex pi to receive a new connection takes into 

consideration the degree d of the vertex divided by the sum over the degree of all vertices, this 

formula (presented below) gives higher chance for a vertex with higher degree to receive new 

connections than for a vertex with lower degre. 𝑝𝑖 = 𝑑𝑖∑ 𝑑𝑗𝑛𝑗  

 The parameter k = {2, 3, 5} was applied to the experiments, the range was chosen to 

keep the properties of the model which are altered with increasing values of k. With higher k, 

the mean degree, clustering coefficient and density is higher, while the diameter sinks. 
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 Barabási (2002) presents evidence that the web and the internet are examples of 

networks represented by the model with high reliability. He also explains that this fact is related 

to the similarity of the generative model process with the network evolving reality, i.e., both 

model and real networks, such as the web, involve an analogous growing methodology of 

preferential attachment. 

 Figure 3 presents an example of network generated by this model with our algorithm 

(vertices size represents their degree value). It clearly presents the main characteristic of this 

model: a strong difference in vertices degree with few high degree vertices, also called hubs, 

and a large amount of vertices with low degree which represents the power-law degree 

distribution created by the preferential attachment formula during the generation of the network. 

This model also does not show a clear division into communities or groups of elements, being 

very similar in network structure (organization) of the networks generated by the model of 

Erdős and Rényi (1959) despite, of course, the noticeable difference in the degree’s distribution. 

 This model is also the one presented in this work that shows the largest degree value for 

a given vertex and the largest difference between the lowest degree vertex and the highest 

degree vertex. 

Figure 3 – Msf sample with 100 vertices and k = 5 

 

Source: author (picture generated with Gephi) 

2.2.4 Networks with Community Structure of Newman and Park (Mcs) 
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 More recently, Newman and Park (2003) analyzed several social networks and 

discovered that these networks are formed by communities where each vertex has many 

connections with vertices inside the same community and less with vertices of others 

communities. In addition, they discovered that in these networks, vertices with high degree tend 

to be connected with vertices also with high degree and vertices with small degree connected 

with vertices with small degree (disassortativity behavior). 

 They proposed a model to generate random networks with these properties, their model 

starts defining c communities and an uneven distribution of vertices for each community that 

need to represent distinct sizes of groups to create a disassortativity behavior, also, each vertex 

can be assigned to more than one community. Then, each vertex has a fixed high probability p 

of being connected to each element of its communities and zero probability to be connected 

with vertices that do not share a community. 

 The number of communities was based on the size of network n, so c = {n/10, n/20, 

n/50} was used for experiments. Each vertex has 10% chance to belong to each community. 

The probability p = {0.5, 0.7} is used to define connections between members of the same 

community. Community sizes followed an arithmetic progression. The first community has 𝑎1 = 1002𝑐  percent of elements and with ratio r, defined by the equation below. The other 

communities’ percentiles are calculated (the sum of all percentiles is a hundred percent) by: 𝑟 = 200𝑐2 − 𝑐 − 2𝑎1𝑐 − 1 

 All configurations of c and p are combined for the experiments, resulting in six total 

combinations. The higher is p and the lower is c, higher is the mean degree, clustering and 

density, although diameter decreases. All parameters range took into consideration sample trials 

where more combinations of parameters were tested. To select the range of the parameters used 

in our experiments we analyzed the consistency of model’s properties with real networks. That 

process was necessary because no formal guidance was provided by Newman (proposer of the 

generative model) to select the best-suited parameters values in such a way that the models 

characteristics were preserved. 

 The community structure model also presents many of the characteristics of the small-

world model proposed by Watts and Strogatz (1998), such as low diameter and a high number 

of small cycles. Therefore, it can be viewed as an extension of the small-world generative 

model. 

 Figure 4 presents an example of network generated by this model with our algorithm 

(vertices size represents their degree value, and colors represents the dominant community of 
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each vertex). Each vertex can belong to multiple communities, but the dominant community is 

the one assigned for that vertex on the first step of the algorithm. Later, some vertices will be 

connected to members of multiple communities representing the hubs (larger degree) of the 

network. 

The main characteristics of this model are visible in the Figure 4: a clearer separation 

between communities, communities of distinct sizes and disassortativity behavior (vertices 

belonging to the same dominant community have similar degree). The vertices that are 

connected to multiple communities and play a role of hub are also the ones that deviates most 

of the disassortativity behavior. Another noticeable point is the fact that the difference between 

vertices degree in different communities becomes increasingly larger with network size and, at 

the same time, smaller with an increasing number of communities. 

Figure 4 – Mcs sample with 100 vertices, 5 communities and p = 0.7 

 

Source: author (picture generated with Gephi) 

 

2.2.5 Geographical Models (Mgr) 

 Complex networks are generally considered as lying in an abstract space, where the 

position of vertices has no particular meaning, but several kinds of networks model’s physical 

interactions and so, in these latter networks, the positions of vertices characterize a higher 

probability for interaction with close neighbors than with distant ones. 
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 A way to model this behavior is presented by Costa et al. (2008) where distances sij 

between vertices i and j are defined. Then the probability of vertices i and j are connected can 

be defined to decay with distance as shown in the formula below. 𝑝𝑖𝑗 = 𝑒−𝑠𝑖𝑗  

 Exploratory results showed that using the equation above the chance of creating a 

connected network is small, so instead of e we used a value k = {1.2, 1.5, 2} in our experiments. 

That is because when k increases, the diameter grows and the mean degree, clustering 

coefficient and density are lowered. 

 The distance sij between vertices i and j was calculated with the formula below 

(representing a square grid of vertices). The formula used by us is based on the Manhattan 

distance metric. 𝑠𝑖𝑗 = |⌊ 𝑖√𝑛⌋ − ⌊ 𝑗√𝑛⌋| + |(𝑖 𝑚𝑜𝑑 √𝑛) − (𝑗 𝑚𝑜𝑑 √𝑛)| 
 The choice of parameters for this model is quite arbitrary, because each environment 

will have a specific configuration of parameters that suits better the reality. The choice of 

parameters can also produce networks with similar properties of the ones generated by the scale-

free, small-world and community structure models. 

Our choice of parameters for our experiments was biased by roads configurations inside 

a city (represented fairly well by a square grid of crossroads and a planar Euclidian distance 

formula). We also expect that our choice of parameters models equally well other bidimensional 

environments where the Euclidian distance makes sense. It does so because parameter k can 

simulate distinct arrangements of vertices in a way that the initial square grid organization are 

substantially and randomly modified to more complex configurations. 

Figure 5 presents an example of network generated by this model with our algorithm 

(vertices size represents their degree value). 

Differently from the other complex network models, as shown in Figure 5, the 

geographic model is sparser (restriction posed by the two dimensional space used in our 

experiments) and presents a more positional community structure with peripheral and central 

groups of vertices. Also, it is noticeable that the initial square grid formation of vertices 

(formation used in our implementation) is hugely modified in the process. 
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Figure 5 – Mgr sample with 100 vertices and k = 2 

 

Source: author (picture generated with Gephi) 

 

 Apart from these characteristics, clearly visible in Figures 1 to 5, another important 

properties are representative for each model and were calculated during the generation of the 

networks used in our experimental analysis. 

Table 1 and Table 2 summarize the means and standard deviations of the main properties 

of a hundred samples of each combination of parameters for each complex network model. 

Table 1 presents the data about the networks generated with 100 vertices while Table 2 presents 

the data of networks with 500 vertices. The standard deviation is not present in the cells where 

the mean value is equal to the absolute value of all networks generated, standard deviation in 

these cases are obviously zero. For example: the small-world model fixes the degree of the 

vertices on the first step of the generation method with parameter k, the relinking step does not 

change the number of edges present in the network, so the mean degree and the mean density 

remain unaltered while diameter and clustering coefficient varies. 

There are cells that present zero standard deviation, but this happen when we rounded 

off the value, reducing the precision to a couple decimal cases to better fit the table length. 
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Table 1 – Mean and Standard Deviation of Networks with 100 vertices 

Model Degree Diameter Clustering Density 𝑀𝑐𝑠 (p = 0.5; c = n/10) 18.62±1.62 3.85±0.48 0.37±0.02 0.19±0.02 𝑀𝑐𝑠 (p = 0.5; c = n/20) 21.04±1.85 3.55±0.52 0.41±0.02 0.21±0.02 𝑀𝑐𝑠 (p = 0.5; c = n/50) 34.42±2.20 3.05±0.22 0.48±0.01 0.35±0.02 𝑀𝑐𝑠 (p = 0.7; c = n/10) 25.52±2.36 3.12±0.33 0.49±0.02 0.26±0.02 𝑀𝑐𝑠 (p = 0.7; c = n/20) 29.10±2.46 3.02±0.14 0.56±0.02 0.29±0.02 𝑀𝑐𝑠 (p = 0.7; c = n/50) 48.79±2.80 2.58±0.52 0.66±0.01 0.49±0.03 𝑀𝑒𝑟 (p = 0.1) 9.91±0.43 4.00±0.00 0.10±0.01 0.10±0.00 𝑀𝑒𝑟 (p = 0.3) 29.73±0.64 2.24±0.43 0.30±0.01 0.30±0.01 𝑀𝑒𝑟 (p = 0.5) 49.50±0.69 2.00±0.00 0.50±0.01 0.50±0.01 𝑀𝑔𝑟 (k = 1.2) 34.43±0.57 2.43±0.50 0.38±0.01 0.35±0.01 𝑀𝑔𝑟 (k = 1.5) 13.50±0.41 4.00±0.00 0.22±0.01 0.14±0.00 𝑀𝑔𝑟 (k = 2) 5.76±0.29 6.64±0.70 0.15±0.02 0.06±0.00 𝑀𝑠𝑓 (k = 2) 3.94 5.40±0.49 0.06±0.01 0.04 𝑀𝑠𝑓 (k = 3) 5.88 4.40±0.49 0.11±0.01 0.06 𝑀𝑠𝑓 (k = 5) 9.70 3.86±0.35 0.17±0.01 0.10 𝑀𝑠𝑤 (p = 0.1; k = 4) 4.00 10.58±1.29 0.36±0.03 0.04 𝑀𝑠𝑤 (p = 0.1; k = 8) 8.00 5.41±0.51 0.48±0.02 0.08 𝑀𝑠𝑤 (p = 0.1; k = 16) 16.00 3.78±0.42 0.54±0.02 0.17 𝑀𝑠𝑤 (p = 0.3; k = 4) 4.00 7.35±0.52 0.17±0.03 0.04 𝑀𝑠𝑤 (p = 0.3; k = 8) 8.00 4.26±0.44 0.25±0.02 0.08 𝑀𝑠𝑤 (p = 0.3; k = 16) 16.00 3.00±0.00 0.32±0.01 0.17 𝑀𝑠𝑤 (p = 0.5; k = 4) 4.00 6.63±0.51 0.08±0.02 0.04 𝑀𝑠𝑤 (p = 0.5; k = 8) 8.00 4.01±0.10 0.13±0.01 0.08 𝑀𝑠𝑤 (p = 0.5; k = 16) 16.00 3.00±0.00 0.21±0.01 0.17 

 

 Noticeably, all the complex network models, despite the parameters values, presented a 

low relative diameter to the size of the networks. All other properties are affected widely by the 

choice of the parameters values, but these variations were expected and predicted by each 

models’ characteristics. 
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 It is also important to highlight that the random seed used in our algorithm is very stable. 

This can be easily verified by looking at the density standard deviations of Erdős and Rényi 

model which are close to zero with just a hundred samples. It also visible that the mean degree 

values were also really close to the ones expected for the model given a parameter value. 

Table 2 – Mean and Standard Deviation of Networks with 500 vertices 

Model Degree Diameter Clustering Density 𝑀𝑐𝑠 (p = 0.5; c = n/10) 158.60±4.73 2.78±0.48 0.41±0.01 0.32±0.01 𝑀𝑐𝑠 (p = 0.5; c = n/20) 113.12±3.66 3.00±0.00 0.36±0.01 0.23±0.01 𝑀𝑐𝑠 (p = 0.5; c = n/50) 92.92±3.71 3.00±0.00 0.37±0.01 0.19±0.01 𝑀𝑐𝑠 (p = 0.7; c = n/10) 207.07±4.79 2.29±0.46 0.51±0.01 0.41±0.01 𝑀𝑐𝑠 (p = 0.7; c = n/20) 151.90±5.27 3.00±0.00 0.46±0.01 0.30±0.01 𝑀𝑐𝑠 (p = 0.7; c = n/50) 128.44±5.19 3.00±0.00 0.49±0.01 0.26±0.01 𝑀𝑒𝑟 (p = 0.1) 49.93±0.41 3.00±0.00 0.10±0.00 0.10±0.00 𝑀𝑒𝑟 (p = 0.3) 149.67±0.59 2.00±0.00 0.30±0.00 0.30±0.00 𝑀𝑒𝑟 (p = 0.5) 249.57±0.71 2.00±0.00 0.50±0.00 0.50±0.00 𝑀𝑔𝑟 (k = 1.2) 69.16±0.40 3.00±0.00 0.23±0.00 0.14±0.00 𝑀𝑔𝑟 (k = 1.5) 18.92±0.25 5.88±0.36 0.16±0.00 0.04±0.00 𝑀𝑔𝑟 (k = 2) 6.97±0.14 10.88±0.67 0.13±0.01 0.01±0.00 𝑀𝑠𝑓 (k = 2) 3.99 6.95±0.22 0.02±0.00 0.01 𝑀𝑠𝑓 (k = 3) 5.98 5.54±0.50 0.03±0.00 0.01 𝑀𝑠𝑓 (k = 5) 9.94 4.18±0.39 0.05±0.00 0.02 𝑀𝑠𝑤 (p = 0.1; k = 4) 4.00 15.61±1.20 0.36±0.01 0.01 𝑀𝑠𝑤 (p = 0.1; k = 8) 8.00 7.87±0.42 0.46±0.01 0.02 𝑀𝑠𝑤 (p = 0.1; k = 16) 16.00 5.00±0.00 0.51±0.01 0.03 𝑀𝑠𝑤 (p = 0.3; k = 4) 4.00 10.16±0.55 0.16±0.01 0.01 𝑀𝑠𝑤 (p = 0.3; k = 8) 8.00 6.00±0.00 0.22±0.01 0.02 𝑀𝑠𝑤 (p = 0.3; k = 16) 16.00 4.00±0.00 0.25±0.01 0.03 𝑀𝑠𝑤 (p = 0.5; k = 4) 4.00 8.94±0.40 0.06±0.01 0.01 𝑀𝑠𝑤 (p = 0.5; k = 8) 8.00 5.16±0.37 0.09±0.01 0.02 𝑀𝑠𝑤 (p = 0.5; k = 16) 16.00 4.00±0.00 0.11±0.00 0.03 
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 Further comparison between complex networks properties will be presented in the 

further sections, together with the centrality measures analysis, which have the potential to 

discover existing informal network patterns and behavior that are not noticed before and helps 

to understand networks and their members by its location and structure (ABBASI and 

HOSSAIN, 2013). 

 As a structural property, vertex’s centrality was considered to be related to visibility, 

importance, involvement, control, independence or activity. The next Section will present and 

explain the centrality measures used in this work. 

 



 
 
3 CENTRALITY MEASURES 

 

 

 Centrality measures can be viewed as a mathematical heuristic applied in social network 

analysis to identify important elements of the network from its structural properties. The 

heuristic nature of centrality measures is due to the inexistence of a formal definition of what it 

should measure. 

 Freeman (1978/79, p. 217) emphasizes that 

[...] centrality is an important structural attribute of social networks. All concede that 
it is related to a high degree to other important group properties and processes. But 
there consensus ends. There is certainly no unanimity on exactly what centrality is or 
on its conceptual foundations, and there is very little agreement on the proper 
procedure for its measurement. 

 Bell et al. (1999) reinforces the idea that there is no necessary relationship between a 

given problem and a centrality measure and many can be applied to the same problem and with 

the same objective in mind. 

 Over the years, many centrality measures have been proposed and applied to several 

contexts within social networks. Everett and Borgatti (2010) presented a method to construct 

centrality measures based on virtually any graph invariant, by simply calculating the invariant 

value difference between the complete network and the network without a given vertex. 

 The development of measures should help to clarify a concept by specifying its 

components and relationships. However, several measures are vaguely related to intuitive ideas 

they purport to index, and many are so complex (especially in number of parameters and 

algorithm complexity) that it is hard to discover what, if anything, they are measuring. Besides, 

complex measures are difficult or impossible to calibrate and use in huge networks due to time 

constraints. 

 This is why the proper selection of centrality measures is fundamental to a successful 

application in a problem. In this Section, we present the selected centrality measures for the 

experiments. They were chosen taking into consideration their use in the literature, simplicity 

(no parametric measure was chosen) and applicability inside social network environment. 

 Moreover, as our experiments (explained in details on Section 4) focus only on 

undirected and unweighted networks, no centrality measure exclusive for directed and weighted 

networks were selected. Many of the selected measures can be applied to any kind of network 

with the appropriate modifications, but no detailed explanation about their use on other kinds 

of networks besides the one used in our experiments will be presented in this Section. 
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 As regards the use of centrality measures, it is not relevant which kind of relationship 

exists between the vertices and what does each vertex represents. Only the structural pattern of 

the graph/network is important. 

 We start by presenting the three main and simplest centrality measures: closeness, 

betweenness and degree. Then, we will explain the newer and more complex measures: 

eigenvector, information, eccentricity, subgraph and walk-based betweenness.  

Table 3 classifies each one of the eight metrics used in our work according to the 

definitions of Freeman (1978/79). Each group reflects the underlying idea of centrality that each 

measure is trying to identify. It is important to notice that the presence of centrality measures 

belonging to a common group does not mean that they will rank vertices at the same order or 

evaluate them at the same magnitude in a network. 

 

Table 3 – Centrality Measures Grouped by their underlying Theoretical Foundations 

The central element is 

located between many paths 

The central element is 

close to all other elements 

The central element is the one 

that interacts with many others  

Betweenness (𝐶𝐵) Closeness (𝐶𝐶) Degree (𝐶𝐷) 

Walk Betweenness (𝐶𝑊) Information (𝐶𝐼) Eigenvector (𝐶𝐸) 

 Eccentricity (𝐶𝑋) Subgraph (𝐶𝑆) 

 

3.1 Closeness Centrality 

This centrality measure was the first used in a study of social networks. It was specially 

proposed for this purpose even though the term centrality measure was not widespread at that 

time. 

The idea of closeness centrality measure (𝐶𝐶) was presented first by Bavelas (1948) and 

rigorously defined by Sabidussi (1966) as being the sum of the geodesics inverse distances from 

the vertex analyzed to all other vertices. 

 𝐶𝐶  (𝑝𝑘) =  1∑ 𝑑 (𝑝𝑖, 𝑝𝑘)𝑛𝑖=1  𝑑 (𝑝𝑖, 𝑝𝑘) = 𝑔𝑒𝑜𝑑𝑒𝑠𝑖𝑐 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑝𝑖 𝑡𝑜 𝑝𝑘 

 

Freeman (1978/79) affirms that this measure is related to the concept of independency 

and efficiency of the vertex. In addition, Freeman (1980) highlights that both betweenness and 
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closeness are determined by the same structural elements of the network: betweenness a 

measure of control and closeness of independency from that control. For Borgatti (2005), 

closeness refers to time-until-arrival of “something” flowing in the network. 

 This measure has time complexity O(mn) for all vertices using the algorithm of Brandes 

(2001, 2008). The algorithm performs a simple breadth-first search, in which distance and 

shortest-path counts are determined from each vertex. 

Closeness centrality measure is undefined for disconnected graphs. A common approach 

for unweighted disconnected graphs is to define 𝑑 (𝑝𝑖, 𝑝𝑘) = 𝑛 whenever there is no path from 𝑝𝑖  to 𝑝𝑘 because it is larger than the maximum distance possible between two vertices (𝑛 − 1) 

in such graphs. This algorithm is unsuitable for directed networks because it considers that 𝑑 (𝑝𝑖, 𝑝𝑘) =  𝑑 ( 𝑝𝑘, 𝑝𝑖), restriction that is not fulfilled by most directed graphs. 

 

3.2 Betweenness Centrality 

 A vertex that is part of many communication paths between other points exhibits a 

potential communication control, thus it influences the group by withholding, distorting or 

facilitating the information being communicated during its transmission. Betweenness 

centrality (𝐶𝐵) tries to measure this structural aspect of a vertex and was first presented by Shaw 

(1954), but only strictly defined later by Freeman (1977, 1978/79). 

 𝐶𝐵 (𝑝𝑘) =  ∑ ∑ 𝑔𝑖𝑗(𝑝𝑘)𝑔𝑖𝑗
𝑛

𝑗=𝑖+1
𝑛

𝑖=1  

 𝑔𝑖𝑗  (𝑝𝑘) = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑜𝑑𝑒𝑠𝑖𝑐𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑖 𝑎𝑛𝑑 𝑝𝑗  𝑡ℎ𝑎𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑝𝑘 

Borgatti (2005) sees betweenness as a heuristic method to predict frequency of arrival 

of “something” flowing through the network. 

 This measure also has time complexity O(mn) for all vertices (BRANDES, 2001, 2008). 

Similar to the closeness centrality algorithm, it starts performing a simple breadth-first search, 

in which distance and shortest-path counts are determined from each vertex. An additional step 

to calculate betweenness is executed by the algorithm. It visits all vertices in reverse order of 

their discovery, i.e. those farthest from the analyzed source first, to accumulate pair-wise 

dependencies using a recursive relation that allows the computation of a cubic number of 

dependencies without computing them all explicitly. 
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 Betweenness centrality measure is defined for disconnected graphs, but its interpretation 

turns out to be confusing because each component of the graph needs to be calculated 

separately. It is also inapplicable for directed networks because it considers that 𝑑 (𝑝𝑖, 𝑝𝑘) = 𝑑 ( 𝑝𝑘, 𝑝𝑖) and it has little use on weighted graphs because its algorithm does not consider 

valued edges distinct from unitary ones. There is a variation of this algorithm proposed by 

Brandes (2001, 2008) which considers weighted edges, but its time complexity increases to 

O(nm + n2log n). 

 

3.3 Degree Centrality 

 Degree centrality was first introduced by Shaw (1954) as an index of vertex’s 

importance and formally defined by Nieminen (1974). It is important to remind the reader that 

the vertices degree, degree distribution of a network and mean, minimum and maximum degree 

are also important network properties studied and applied by many other applications outside 

the centrality context. 

 The degree centrality (𝐶𝐷) is simply calculated by the number of adjacencies of a vertex. 

 

𝐶𝐷 (𝑝𝑘) =  ∑ 𝑎 (𝑝𝑖, 𝑝𝑘)𝑛
𝑖=1  

𝑎 (𝑝𝑖, 𝑝𝑘) = {1 𝑖𝑓 𝑝𝑖 𝑎𝑛𝑑 𝑝𝑘 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 } 

 

 Freeman (1978/79) says that a vertex with a high degree value is considered to have 

high visibility and potential for communication activity. In addition, a vertex with high degree 

is defined as a hub. 

 This measure has time complexity O(m) for all vertices by counting each edge for both 

vertices connected by it. It is clearly the simplest and less complex centrality measure, but still 

useful in many studies and applications. 

 Degree centrality can be approximated by a normal distribution, with high accuracy, in 

random networks where the number of edges is at most 1/5 of the possible maximum (complete 

graph). Denser graphs are not well approximated because normal distribution does not have an 

upper bound while degree is at most n-1 (DONNINGER, 1986). 

 This measure is split into two measures for directed graphs, indegree and outdegree. 

Each of them can led to contrasting interpretations inside a specific application and are 

frequently used for different purposes. There are variations of degree centrality which consider 
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the values of the edges to compose the degree importance of a vertex, but they are rarely used 

in real world applications. 

 

3.4 Eigenvector Centrality 

 Bonacich (1972) suggested a new centrality measure based on the eigenvector of the 

largest eigenvalue of an adjacency matrix. He justified his preference for the largest eigenvalue 

since it grants better accuracy. This is so because each eigenvector is a factor of the matrix 

(being that symmetric) and the associated eigenvalue measures the precision with which it can 

reproduce that matrix. 

 Unlike degree, which weights every neighbor equally, the eigenvector weights contacts 

according to their centrality (e.g. links with influential people makes you more powerful than 

links with powerless people). Moreover, eigenvector can be seen as a weighted sum of not only 

immediate contacts but also by indirect connections with every vertex of the network of every 

length. These characteristics rely on the idea that a central vertex is connected with vertices that 

are all also centered. 

 Bonacich (1987) generalized the eigenvector centrality adding a parameter called β to 

characterize inverse relationships, where being a friend of powerful elements makes you weak 

and vice-versa, and to control the weights of indirect connections. 

 The calculus of the largest eigenvalue and its respective eigenvector can be done directly 

via a series of mathematical operations and methods, but it suffers due to the precision needed 

that should be infinite along all the process involving its computation. To avoid that drawback, 

an iterative way known as “power method” is used instead (BONACICH, 1991; RICHARDS 

and SEARY, 2000), where the precision can be controlled as needed and the algorithm is 

feasible even for large networks. 

 The power method requires an infinite number of steps (worst case) to achieve the same 

or a multiple of the result achieved by the direct method but, as the number of steps increases, 

the precision of the measure increases. Therefore, the number of decimal places without value 

change can be used as a stopping criterion for early convergence and/or a maximum iteration 

value can be settled for the same purpose. 

 The complexity of both direct computation and iterative algorithm are based on the 

numerical precision required, being infinite in the worst case. However, an interesting fact 

analyzed in real world networks domains is that their sparsity generally causes a large difference 

between the largest eigenvalue to all other eigenvalues (remember that a matrix of order n can 

have a maximum of n distinct eigenvalues). Bonacich (2007) notices that this fact accelerates 
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the convergence of the power method because the larger is the differences between the 

eigenvalues the faster is the convergence of the power method to the largest one (the only 

eigenvalue needed for the metric). 

 

𝐶𝐸  (𝑝𝑘) =  𝐸𝑘∞ 𝑤ℎ𝑒𝑟𝑒 𝐸∞ = ∑ 𝐸𝑖𝑡𝐴∑ 𝐸𝑖𝑖𝑡−1𝑛𝑖=1
+∞

𝑖𝑡=1  

𝐴 = 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 𝑤𝑖𝑡ℎ 𝑢𝑛𝑖𝑡𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝐸0 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑤𝑖𝑡ℎ 𝑢𝑛𝑖𝑡𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒𝑠 lim𝑖𝑡→+∞ 𝐸𝑖𝑡 = 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐴 

 

 Eigenvector centrality measure is poorly defined for disconnected graphs (each 

component must be calculated separately) and for directed graphs where vertices with no 

outedges will accumulate the centrality importance entirely, leaving the other vertices equal to 

zero (known as the sink problem). This measure is applicable in weighted graphs, but its 

interpretation became unclear and its algorithm (power method) takes a larger number of 

iterations for convergence (RICHARDS and SEARY, 2000). 

A similar centrality measure for directed networks proposed by PAGE et al. (1999) 

solved the sink problem and was highly relevant in the development of the Google engine. This 

newer measure serves as a ranking metric for webpages helping to order the results of a search 

in the engine. 

 

3.5 Information Centrality 

 This centrality measure was proposed by Stephenson and Zelen (1989) and is based on 

the information contained in all possible paths between pairs of vertices. It is related to the 

closeness centrality, differing from it because it takes into consideration not only geodesic 

distances but also all other path distances. It has also the same restrictions of the closeness 

centrality measure, restricting its appropriate use for connected unweighted and undirected 

graphs. 

 The idea behind this measure is probabilistic. It gives uniform probability to each path 

that information can flow throw the network, considering these paths lengths and their 

probabilities to occur, to create a mean length distance from a vertex to all other vertices. The 

largest the length of a path, the lowest is the probability of it to occur and the least it will 

contribute for the centrality value of a vertex for the metric. 
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 𝐶𝐼 (𝑝𝑘) = 1𝑏𝑘𝑘 + (𝑇 − 2𝑅)/𝑛 

𝑇 =  ∑ 𝑏𝑗𝑗𝑛
𝑗=1  𝑎𝑛𝑑 𝑅 =  ∑ 𝑏𝑖𝑗𝑛

𝑗=1  𝑓𝑜𝑟 𝑎𝑛𝑦 𝑓𝑖𝑥𝑒𝑑 𝑖 
𝐵 = (𝐷 − 𝐴 + 𝑈)−1 𝐷 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 𝑤𝑖𝑡ℎ 𝑑𝑒𝑔𝑟𝑒𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝐴 = 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 𝑈 = 𝑚𝑎𝑡𝑟𝑖𝑥 ℎ𝑎𝑣𝑖𝑛𝑔 𝑎𝑙𝑙 𝑢𝑛𝑖𝑡𝑎𝑟𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 

 

 This measure has time complexity O(n³) for all vertices due the inversion of a matrix 

(done once) using Gaussian elimination. There are optimization methods and more elaborated 

algorithms to calculate the inverse of a matrix that grants better bounds for the time complexity, 

but they are applicable mostly for huge entrance sizes. Simple optimizations that helping 

Gaussian elimination process were considered and applied in our algorithm. 

 

3.6 Eccentricity as Centrality 

 The eccentricity of a vertex is the inverse maximum distance between that vertex and 

any vertex of the graph. The diameter of a graph is the maximum eccentricity of a vertex being 

the radius the minimum eccentricity of a vertex (HAGE and HARARY, 1995). 

 This centrality measure is closely related to closeness, but it ranks differently the 

vertices and clearly is less fine-grained. It also presents the same problems and restrictions that 

closeness centrality do. Vertex eccentricity and the diameter of a graph are properties also used 

for many purposes in network analysis and are considered to be important distance measures 

inside graph theory. 

 𝐶𝑋 (𝑝𝑘) =  1max 𝑖∈𝑉 𝑑 (𝑝𝑖, 𝑝𝑘) 𝑑 (𝑝𝑖, 𝑝𝑘) = 𝑔𝑒𝑜𝑑𝑒𝑠𝑖𝑐 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑝𝑖 𝑡𝑜 𝑝𝑘 

 

 This measure has complexity O(mn) for all vertices adapting the algorithm of Brandes 

(2001, 2008) and can be calculated simultaneously with closeness centrality by simply taking 

the largest path length (since closeness requires the calculus of all geodesic lengths). 
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3.7 Subgraph Centrality 

 Estrada and Rodríguez-Velázquez (2005) idea was to consider the number of closed 

walks, starting and ending at a vertex, to characterize its centrality value. Closed walks are 

weighted such that their influence on the centrality decreases as the order of the walk increases 

which gives more importance to smaller walks than longer ones. 

 Each order of closed walk is associated with a connected subgraph, which means that 

this measure counts the times that a vertex takes part in the different connected subgraphs 

(motifs) of the networks (trivial and non-trivial, acyclic and cyclic), with smaller subgraphs 

having higher importance for the metric. This metric is related with the idea of contribution and 

involvement (participation) in closely related groups (represented by the subgraphs). 

 

𝐶𝑆 (𝑝𝑘) =  lim𝑒→+∞ ((𝐴𝑒)𝑘𝑘𝑒! )∑ 𝐴𝑖𝑖𝑛𝑖=1  𝐴 = 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 𝑚𝑎𝑡𝑟𝑖𝑥  
 

 The complexity of the iterative algorithm (similar to the eigenvector centrality) is based 

on the numerical precision required (convergence), being infinite in the worst case. Despite 

being very similar to the algorithm applied to the eigenvector centrality, this algorithm is quite 

more demanding of memory space than the one needed by the eigenvector centrality. While 

subgraph algorithm requests the allocation of two matrixes for the power-method multiplication 

step, the eigenvector algorithm only needs to allocate one matrix and one support vector. 

However, the successive multiplication of the adjacency matrix by itself can also be used to 

calculate the largest eigenvalue. Therefore, the algorithm applied to the subgraph centrality can 

simultaneously calculate both centrality measures in nearly the same time. 

 Since subgraph’s algorithm is closely related to the one of eigenvector centrality, both 

measures suffer with the same restrictions due the kind of graphs they are applicable. Therefore, 

its appropriate use is restricted to connected unweighted and undirected graphs. 

 Subgraph and eigenvector are also present within the spectral graph theory area. Their 

application extends well beyond centrality in many other graph and linear algebra applications 

being studied and is important in many domains, especially in chemistry where the molecular 

connections spectral structure affects their behavior. 
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3.8 Walk-based Betweenness Centrality 

 The traditional betweenness centrality (FREEMAN, 1977) takes into consideration only 

geodesic paths, so Newman (2005) proposed a new centrality measure that considers all paths 

by using random walks. 

 His ideas were inspired by electrical circuits in which the current flows through the 

network in proportion to the resistance of each path. Resistance can be viewed in social 

networks as path distances and the current passing through each considering all paths between 

all pairs of vertices will be the centrality value. 

 𝐶𝑊 (𝑝𝑘) = ∑ ∑ 𝐼𝑖𝑗(𝑝𝑘)𝑛
𝑗=𝑖+1

𝑛
𝑖=1  

𝐼𝑘𝑗(𝑝𝑘) = 1 𝑎𝑛𝑑 𝐼𝑖𝑘(𝑝𝑘) = 1 

𝐼𝑖𝑗(𝑝𝑘) = 12 ∑ 𝐴𝑘𝑡|𝑇𝑘𝑖 − 𝑇𝑘𝑗 − 𝑇𝑡𝑖 + 𝑇𝑡𝑗|𝑛
𝑡=1  𝑓𝑜𝑟 𝑘 ≠ 𝑖, 𝑗 

𝑇 = ((𝐷 − 𝐴), 𝑟𝑒𝑚𝑜𝑣𝑒 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑟𝑜𝑤 𝑎𝑛𝑑 𝑖𝑡𝑠 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑐𝑜𝑙𝑢𝑚𝑛)−1,  𝑎𝑑𝑑 𝑏𝑎𝑐𝑘 𝑡ℎ𝑒 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑟𝑜𝑤 𝑎𝑛𝑑 𝑐𝑜𝑙𝑢𝑚𝑛 𝑤𝑖𝑡ℎ 𝑣𝑎𝑙𝑢𝑒𝑠 𝑧𝑒𝑟𝑜  𝐷 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 𝑤𝑖𝑡ℎ 𝑑𝑒𝑔𝑟𝑒𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝐴 = 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 

 

 The complexity of the measure is O(mn²) to evaluate the first equation for all vertices 

O(n³) for matrix inversion using Gaussian elimination, resulting in O(mn² + n³) for the complete 

algorithm. Brandes and Fleischer (2005) proposed a faster algorithm with complexity O(n3+mn 

log n) where it is possible to calculate, simultaneously, the information centrality as well. The 

same considerations about matrix inversion presented for information centrality are also valid 

for the walk betweenness algorithm, so this metrics time complexity can be improved with a 

more elaborated algorithm of matrix inversion. 

 This metric has the highest time complexity between the ones analyzed in our work 

being also one of the most complex ones. Higher time complexity are not even considered 

because their application on real social and complex networks becomes too narrow. The 

networks analyzed by many studies consider graphs of several hundreds or thousands of 

vertices and/or dynamic networks (COHEN et al., 2014; EASLEY and KLEINBERG, 2010; 

CORREA and MA, 2011). This impose a severe computational problem for these high 

complexity kind of metrics. 
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 Walk betweenness centrality also presents some of the restrictions of betweenness 

centrality. It is undefined for directed networks and each component of a disconnected graph 

needs to be calculated separately. The difference is that this measure, differently from classical 

betweenness, is perfectly defined for weighted graphs. 

 The next section will detail about the methodology followed in our research and our 

experimental set up characteristics together with related explanations that justify our choices. 

 



 
 
4 EXPERIMENTAL METHODOLOGY 

 

 

 This section presents detailed information about our experiments and the main reasons 

that led us to choose the applied methodology. We carefully carry out preliminary tests to 

choose the best parameters and take the best decisions before the final experiments are set up 

and executed. Here, we only present the final experimental choices to keep it as simple and 

objective as possible. 

 First, we chose five complex network models (presented in Section 2), which are good 

approximations of real networks properties and behavior (BARABÁSI, 1999 and 2009; 

COSTA et al., 2008; EASLEY and KLEINBERG, 2010; NEWMAN, 2003). We planned the 

experiments to reflect real networks behavior, thus all parameters range and implementation 

choices to generate the random networks take this into consideration. 

 All complex network models were implemented by us in Java and validated by running 

a comparative analysis between the properties of the generated networks with the expected 

theoretical results presented in each paper (the ones that proposed each model). 

 We also used for our experiments all non-isomorphic1 connected graphs of six (112 

total) and seven vertices (853 total), available on a website dataset2. They are useful to illustrate 

an idea of extreme possible formations for centrality values (not probable in the random 

models). The sizes (six and seven vertices) were chosen because they are not so small 

(conceding more variability) and do not create too many networks (for example, there are 

11,716,571 non-isomorphic connected networks with ten vertices). 

 The networks generation set up is summarized on Table 3. Each combination was 

represented by a hundred samples (trials) for the generated models. The number of trials takes 

in consideration the execution time required and the statistical relevance (confidence level) 

necessary to create generalizable and useful results. 

 A total of 5,765 synthetic networks were used in our experiments, summing 1,446,643 

vertices and 39,655,102 edges. The main properties of the networks generated by each model 

are summarized in Table 5. 

In addition, in our experiments, we used four real networks samples, which are: the 

Facebook ego network (MCAULEY and LESKOVEC, 2012), the USA airport connections 

(BATAGELJ and MRVAR, 2006), the Erdős collaboration network (BATAGELJ and 

                                                 
1 Two isomorphic graphs can be drawn the exact same way despite having a distinct adjacency matrix. 
2 http://cs.anu.edu.au/~bdm/data/graphs.html 
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MRVAR, 2006) and the USA power grid (WATTS and STROGATZ, 1998). Table 5 presents 

information about these real networks. 

For instance, Mcs represents Facebook and Erdős networks properties, Mgr represents 

USA Airlines and Msw represents USA Power Grid (see Section 2.1 for complex network 

models main characteristics). The relation between the real network samples and the complex 

network models will be important for a complementary analysis of centrality measures behavior 

in distinct contexts and useful to reinforce the results obtained with the synthetic networks. 

 

Table 4 – Summary of Networks Sample 

Model Parameters Combinations 

Community Structure (𝑀𝑐𝑠) 

p = {0.5, 0.7} 

c = {n/10, n/20, n/50} 

n = {100, 500} 

12 

Erdős and Rényi (𝑀𝑒𝑟) 
p = {0.1, 0.3, 0.5} 

n = {100, 500} 
6 

Geographical (𝑀𝑔𝑟) 
k = {1.2, 1.5, 2} 

n = {100, 500} 
6 

Scale-free (𝑀𝑠𝑓) 
k = {2, 3, 5} 

n = {100, 500} 
6 

Small-world (𝑀𝑠𝑤) 

p = {0.1, 0.3, 0.5} 

k = {4, 8, 16} 

n = {100, 500} 

18 

Non-isomorphic Networks (𝑁𝑛𝑖) n = {6, 7} 2 

 

Table 5 – Real Networks Main Properties 

Network Vertices Edges Diameter Clustering 

USA Airport 
Connections 

332 2126 6 0.1031 

Facebook Partial 
Snapshot 

4039 88234 8 0.5192 

USA Power Grid 4941 6594 46 0.3964 

Erdős Collaboration 6927 11850 4 0.0357 

 

For each network, several properties were calculated: number of edges, minimum, 

maximum and mean degree, diameter, clustering coefficient, density and the mean distance 
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from all pairs of vertices. These properties, together with the complex network model, were 

used to create a simple guide for the selection of centrality measures based on the knowledge 

of simple properties of the networks. Our idea is that if one wants to apply and select a proper 

centrality measure, from the many ones that exists, one can use information about the networks 

of one’s environment (application) as guidance to make a good choice, without losing valuable 

time testing and trying each one of them. 

 For each vertex, in each network, eight centrality measures (presented on Section 3) 

were calculated: betweenness (𝐶𝐵), closeness (𝐶𝐶), degree (𝐶𝐷), eigenvector (𝐶𝐸), information 

(𝐶𝐼), subgraph (𝐶𝑆), walk-based betweenness (𝐶𝑊) and eccentricity (𝐶𝑋). The algorithms for 

each centrality measure followed strictly the implementations proposed by the papers cited on 

Sections 3.1 to 3.8 to achieve the best known theoretical complexity. All the algorithms passed 

also by test sample graphs, in which the centrality values were previously published to check 

their accuracy and effectiveness. Some of the metrics and the networks were run in separate 

computers to speed up the experiments. It still took several weeks to generate all the synthetic 

networks using the complex network model algorithms, to calculate all the centrality measures 

in both synthetic and real network samples and finally to compute and generate elements for 

the analysis of the results, such as correlation values. 

The main steps of the final experimental setup are summarized in Figure 6. 

Figure 6 – Experimental Set-up Process 

 

 

To keep all data organized, with easy access and proper backup, we used the database 

management system PostgreSQL. It also facilitated the process of parallel execution of 

experiments in several computers. 
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It is important to emphasize that the language and database system chosen will not 

interfere in the results (as well as the used hardware), since computation time will not be 

relevant to our analysis, therefore other similar technologies could be used to reproduce the 

same results presented in the next section. 

Execution time and other temporal properties were not considered in any part of our 

analysis since we are not focused on performance constraints at this time. Even so, we pointed 

out some important characteristics about execution time and algorithm complexity because in 

real world applications they might be relevant. 

 After all the experimental data was gathered, we started the analysis process. Our 

analysis is divided into two moments: the comparison (similarities and differences) between 

centrality measures and their performance in different kinds of networks. 

For the first part, we calculated the Kendall rank correlation coefficient between every 

combination of two metrics for each network. Recall that this coefficient evaluates the degree 

of similarity between two sets of ranks given to a same set of objects. It gives a score in a range 

[-1, 1], where the extreme values represent perfect correlation (+1) or perfect inverse correlation 

(-1) and values close to zero represent very low correlation. 

 Kendall’s correlation is especially useful for centrality measures because normalization 

and distribution issues that can vary between metrics do not affect it. In addition, centrality 

measures values are used frequently as ranking factors where the absolute value is irrelevant. 

These characteristics can be a problem when using Pearson’s correlation (most common 

correlation), which measures the difference between absolute values. 

 We also used the EM (Expectation-Maximization) algorithm (DEMPSTER et al., 1977) 

iteratively (starting with two and ending with eight clusters) to build a hierarchical relationship 

using a similarity criterion between the centrality measures. The EM algorithm tries to find a 

set of multivariate normal distributions (one for each cluster) that maximizes the likelihood of 

the data observed. The attributes provided for the algorithm in our experiments were the 

centrality values for each vertex. The number of clusters (parameter of the algorithm) was set 

iteratively from two to eight to create a hierarchy which indicates the metrics more distant to 

each other (separated early in the hierarchy) and the ones closer to each other (separated last). 

 The resulting hierarchy will give a clearer idea of the relationship between centrality 

measures, making it easier to have a notion of distance between groups of metrics (levels of the 

hierarchy) than correlation values and at the same time it helps to reinforce our conclusions. 

 For the second part of our analysis, we calculate the percentage of distinct centrality 

values for each metric in each network. For example, if we say that there are 50% distinct values 
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in a network of 500 vertices for a determined metric, it means that there are 250 distinct 

centrality values. 

This information can be valuable in most applications where centrality measures are 

used. It is frequently required that the metric differentiates all vertices of the network, especially 

in social networks when we know in advance that each element of the network must be unique. 

Ties between centrality values of distinct vertices can be viewed as lack of information or 

incapability of the metric to differentiate properly the elements. 

Moreover, correlation analysis between centrality measure values and domain specific 

ones are a common research methodology to measure the metric fitness for a given application. 

However, most correlation methods are impacted negatively by tied values, reducing their 

accuracy and distorting the analysis. 

With this in mind, we can see that values close to 100% of distinct centrality values are 

always desirable. That is why we used the percentage of distinct centrality values as a generic 

performance gauge for the centrality analysis in our synthetic networks. 

The final part of our analysis relates the results and behavior of centrality measures in 

the real network samples with the synthetic networks generated by the complex network 

models. This is important to reinforce our conclusions and exemplifies their applicability in 

real-world domains and applications. 

 The next Section will provide more detail about the networks generated for the 

experiments as well as the correlation, EM and performance results of the metrics. It will also 

present our developed guide (based on our experimental results) for the selection of centrality 

measures in new applications. Also, all the results are discussed and their implications 

explained and detailed. 

 



 
 
5 EXPERIMENTAL RESULTS AND DISCUSSION 

 

 

 The first step of our experiments was the generation of the networks to provide sample 

graphs data to calculate the centrality measures. The main characteristics of the synthetic 

networks generated by the five complex models and the non-isomorphic networks samples are 

summarized in Table 6 grouped by size (number of vertices). Each cell of Table 6 represents 

all combinations of parameters for each model and that is why high standard deviations were 

expected. 

 

Table 6 – Means and Standard Deviation of Networks’ Main Properties 

n = 100 

Model Degree Diameter Clustering Density 𝑀𝑐𝑠 29.58 ± 10.27 3.20 ± 0.57 0.49 ± 0.10 0.30 ± 0.10 𝑀𝑒𝑟 29.71 ± 16.20 2.75 ± 0.93 0.30 ± 0.16 0.30 ± 0.16 𝑀𝑔𝑟 17.90 ± 12.14 4.36 ± 1.81 0.25 ± 0.10 0.18 ± 0.12 𝑀𝑠𝑓 6.51 ± 02.40 4.55 ± 0.78 0.11 ± 0.05 0.07 ± 0.02 𝑀𝑠𝑤 9.33 ± 04.99 5.34 ± 2.41 0.28 ± 0.15 0.09 ± 0.05 
 

n = 500 

Model Degree Diameter Clustering Density 𝑀𝑐𝑠 142.01 ± 36.91 2.85 ± 0.36 0.43 ± 0.06 0.28 ± 0.07 𝑀𝑒𝑟 149.72 ± 81.64 2.33 ± 0.47 0.30 ± 0.16 0.30 ± 0.16 𝑀𝑔𝑟 31.68 ± 26.99 6.59 ± 3.29 0.17 ± 0.04 0.06 ± 0.05 𝑀𝑠𝑓 6.63 ± 02.48 5.56 ± 1.20 0.03 ± 0.02 0.01 ± 0.00 𝑀𝑠𝑤 9.33 ± 04.99 7.42 ± 3.59 0.25 ± 0.16 0.02 ± 0.01 
 

Model Degree Diameter Clustering Density 𝑁𝑛𝑖 (n = 6) 2.83 ± 0.69 2.54 ± 0.68 0.45 ± 0.26 0.57 ± 0.14 𝑁𝑛𝑖 (n = 7) 3.20 ± 0.70 2.68 ± 0.70 0.46 ± 0.20 0.53 ± 0.12 

 

 We can see through Table 6 that all networks have low diameter values, Mcs and Mer 

are denser than the others and, together with Msw they are highly clustered. Both Mgr and Msf 
have lower density and clustering coefficient, especially the latter. It is visible that each 
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complex network model has unique characteristics not present in the others. This fact becomes 

even clearer when each combination of parameter settings is analyzed separately. More detailed 

information about the networks generated, separated by each parameter combination, can be 

checked at Table 1 and Table 2. 

 Table 7 present the same properties from the real network samples used in our 

experiments. Further characteristics of these networks were presented in Table 5. 

 

Table 7 – Real Networks Main Properties 

Network Mean Degree Diameter Clustering Density 

USA Airport 
Connections 

12.8072 6 0.3964 0.0387 

Facebook Partial 
Snapshot 

43.6910 8 0.5192 0.0108 

USA Power Grid 2.6691 46 0.1031 0.0005 

Erdős Collaboration 3.4214 4 0.0357 0.0005 

 

 The next step of our analysis and the first one due to centralities similarities was 

calculate the Kendall rank correlation coefficient between every pair of metrics for each 

network. The mean correlation values grouped by each complex network model are shown in 

Table 8, Table 9, Table 10, Table 11, Table 12 and Table 13. 

 The highest overall mean correlation values between two metrics in all networks were 

dark in the table and the text color is white while the lowest values were grey shadowed. 

 Interesting patterns can be noticed looking at the Tables. Community structure and the 

random graphs of Erdős and Rényi were responsible from the highest correlation values among 

all metrics showing values above 0.8 for most pairs of metrics in the first model and above 0.9 

for the second one. Eccentricity centrality measure is the only one opposing the trend, showing 

the lowest correlation values in the random graphs of Erdős and Rényi and the highest values 

in non-isomorphic networks. Later we present further details that explain this contrasting 

behavior of Eccentricity. 

 At the same time, the lowest overall correlation values were found in scale-free and 

small-world networks for most metrics. Still, several pairs of metrics do not shown correlation 

values lower than 0.5. 

 Interestingly, the geographic model presented median correlation values for all pairs of 

centrality measures, showing not a single top or bottom score for correlation between any 

metrics. 
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Table 8 – Mcs Mean Correlation Values 𝐶𝑐        

0.82 𝐶𝑏       

0.96 0.83 𝐶𝑑      

0.89 0.74 0.91 𝐶𝑒     

0.95 0.82 0.99 0.91 𝐶𝑖    

0.89 0.74 0.91 1.00 0.91 𝐶𝑠   

0.80 0.89 0.81 0.71 0.90 0.71 𝐶𝑤  

0.35 0.32 0.33 0.31 0.33 0.31 0.32 𝐶𝑥 

 

 

Table 9 – Mer Mean Correlation Values 𝐶𝑐        

0.88 𝐶𝑏       

0.96 0.91 𝐶𝑑      

0.92 0.81 0.93 𝐶𝑒     

0.95 0.88 0.97 0.93 𝐶𝑖    

0.92 0.81 0.93 1.00 0.93 𝐶𝑠   

0.89 0.95 0.93 0.83 0.89 0.83 𝐶𝑤  

0.13 0.11 0.12 0.12 0.12 0.12 0.11 𝐶𝑥 

 

 

Table 10 – Mgr Mean Correlation Values 𝐶𝑐        

0.71 𝐶𝑏       

0.75 0.74 𝐶𝑑      

0.79 0.61 0.77 𝐶𝑒     

0.78 0.73 0.95 0.80 𝐶𝑖    

0.78 0.62 0.80 0.96 0.82 𝐶𝑠   

0.69 0.84 0.85 0.64 0.81 0.65 𝐶𝑤  

0.47 0.37 0.34 0.39 0.36 0.38 0.34 𝐶𝑥 
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Table 11 – Msf Mean Correlation Values 𝐶𝑐        

0.51 𝐶𝑏       

0.53 0.81 𝐶𝑑      

0.87 0.46 0.51 𝐶𝑒     

0.61 0.72 0.88 0.59 𝐶𝑖    

0.87 0.46 0.51 1.00 0.59 𝐶𝑠   

0.35 0.77 0.87 0.31 0.67 0.31 𝐶𝑤  

0.53 0.36 0.37 0.51 0.40 0.51 0.26 𝐶𝑥 

 

 

Table 12 – Msw Mean Correlation Values 𝐶𝑐        

0.66 𝐶𝑏       

0.53 0.62 𝐶𝑑      

0.52 0.41 0.59 𝐶𝑒     

0.69 0.66 0.80 0.61 𝐶𝑖    

0.40 0.34 0.63 0.79 0.53 𝐶𝑠   

0.59 0.82 0.70 0.41 0.71 0.36 𝐶𝑤  

0.42 0.32 0.26 0.27 0.34 0.17 0.29 𝐶𝑥 

 

 

Table 13 – Nni Mean Correlation Values 𝐶𝑐        

0.79 𝐶𝑏       

0.94 0.78 𝐶𝑑      

0.85 0.59 0.88 𝐶𝑒     

0.88 0.76 0.86 0.76 𝐶𝑖    

0.85 0.60 0.90 0.98 0.76 𝐶𝑠   

0.88 0.86 0.82 0.63 0.78 0.63 𝐶𝑤  

0.57 0.53 0.49 0.45 0.49 0.45 0.49 𝐶𝑥 
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 These results pointed out that most metrics present very similar results for most 

networks tested, while network properties and models considerably affect metrics correlation 

values, a clear tendency between several pairs of metrics high and low correlated is present on 

almost all networks. 

To help in identifying the pairs of centrality measures that present a strong or weak 

relationship and redundant behavior, we take the mean correlation values over all synthetic 

networks used in our experiments. They are summarized in Table 14. 

 

Table 14 – All networks Mean Correlation Values 𝐶𝑐        

0.73 𝐶𝑏       

0.75 0.75 𝐶𝑑      

0.58 0.76 0.75 𝐶𝑒     

0.75 0.80 0.89 0.75 𝐶𝑖    

0.56 0.72 0.77 0.93 0.72 𝐶𝑠   

0.85 0.69 0.80 0.57 0.76 0.56 𝐶𝑤  

0.34 0.41 0.32 0.33 0.35 0.30 0.31 𝐶𝑥 

 

 The highest correlation values between metrics are highlighted in bold in Table 14, they 

show five very redundant (above or equal 0.8) pairs of metrics: betweenness and information, 

degree and information, eigenvector and subgraph, closeness and walk betweenness, degree 

and walk betweenness. This is a strong indicative that the simultaneous use of the pairs of 

metrics that presented high correlation values will not be of much use since it will grant very 

similar results. Remember that a Kendall correlation coefficient value of 0.8 or more indicates 

roughly that at least 80% of the vertices rank produced by a pair of centrality measures values 

in order agree, i.e., the two metrics produce a centrality rank for the vertices of a given network 

80% similar. 

Table 15 presents the standard deviation related to the average values presented on Table 

14. The lowest (smaller than or equal 0.20) standard deviation values are highlighted in bold. 

The highest correlation values also present the lowest standard deviations which evidences that 

these metrics are with a high confidence margin redundant (i.e. agree on their vertices ranking) 

in most networks. An overall high standard deviation value was expected already for all metrics 

correlation values due the variability of networks used in our experiments. 
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Table 15 – Standard Deviation of Correlation Values 𝐶𝑐        

0.15 𝐶𝑏       

0.24 0.17 𝐶𝑑      

0.21 0.23 0.20 𝐶𝑒     

0.15 0.14 0.13 0.19 𝐶𝑖    

0.29 0.26 0.18 0.17 0.24 𝐶𝑠   

0.20 0.11 0.14 0.23 0.13 0.26 𝐶𝑤  

0.26 0.22 0.22 0.23 0.22 0.25 0.21 𝐶𝑥 

 

 Nakao (1990) and Goh et al. (2003) present sample networks in their experiments where 

betweenness centrality is strongly correlated with degree centrality but in our experiments, their 

correlation (0.75) was not that strong compared to the others. Moreover, we can see that just a 

few pairs of centralities have a correlation value below 0.7, which means that despite all 

centrality differences, they all have a certain amount of common agreement. Eccentricity 

presented the lowest correlation values by far, but this statement is mainly due to the fact that 

it evaluates many vertices as being equally central, i.e., they receive the same centrality value. 

 In addition, we use the EM (Expectation Maximization) algorithm (DEMPSTER et al., 

1997) iteratively (starting with two and ending with eight clusters) to build a hierarchical 

relationship using similarity criterion between the metrics. Each metric is an instance and the 

attributes are the centrality rank for each node of all networks. Therefore, in our training set 

there were 8 instances (number of centrality measures) with 1,446,643 attributes each (number 

of vertices of all networks used in our experiments). The algorithm tries to find the best 

multivariate Gaussian distributions (one for each pre-defined clusters number C) that explain 

statistically better (maximum likelihood) using the attributes provided. There was a possibility 

that between each iteration, the groups found by the algorithm could be mixed, which will not 

result in a perfect hierarchy, but it did not happen in our experiments. 

The resulting hierarchy is presented in Figure 7. The hierarchy is a good visual guide to 

easily identify how the centrality measures are related and at which order. It clearly shows an 

order of relationship and similarity between the centrality measures. The most distinct ones are 

separated first in an individual group while the most redundant are split later in the hierarchy. 



50 
 

Figure 7 – Metric’s Hierarchical Clustering 

 

 

 Both techniques (correlation values and EM algorithm) agree in their results. 

Eccentricity (CX) is the centrality measure less similar to the other metrics. It shows a low 

correlation value and it is separated first in the hierarchical clustering. We can also see three 

close pairs of centralities in both analyses: eigenvector and subgraph, walk betweenness and 

closeness, degree and information. Interestingly, these pairs (excluding eigenvector and 

subgraph) are not the expected ones as suggested by their underlying foundations, shown in 

Table 3. 

 The information presented on Table 14 and Figure 7 can be used for the proper selection 

of metrics that will be most useful at bringing distinct results. This is very important when the 

idea of centrality in the context worked is undefined and so, different points of view (provided 

by distinct centrality measures) are valuable for analysis and discussion. Another use of this 

study is to suggest metrics that will give very similar results despite their different formulations. 

Such information can be used to replace a metric with higher complexity or to make different 

relationships between the application environment and the metrics underlying ideas. 

 The second step of our analysis tries to identify the best metrics. Due to the fact that our 

experimental environment is general where the vertices and edges play no specific meaning 

(synthetic networks), there was not a real parameter to compare with the centralities measures 

to quantity their performance. However, we use the percentage of distinct values given to the 

nodes in a network by a centrality measure as a generic performance gauge or metrics 
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granularity. For example, if we say that a given metric achieved 75% of distinct values in a 

network with 500 vertices, there were 375 distinct centrality values given to the vertices. 

 It is frequently required that the metrics differentiate all vertices of the network as much 

as possible, especially in social networks when we know in advance that each element of the 

network must be unique and whenever the metrics are used as a ranking system (which is 

common in many applications). Ties between centrality values among different vertices from 

the same network can be viewed as lack of information or incapability of the metric to 

differentiate the elements. In addition, correlation with metrics are a common tool to the 

analysis of the metrics fitness in many applications. Most kinds of correlation are affected by 

tied values, reducing its accuracy. All these reasons reinforce the idea that values closer to a 

100% of distinct values are always desirable for all centrality measures applications. 

 Figure 8 presents the mean percentage of distinct values with the standard deviations 

for each metric grouped by each kind of network analyzed in our experiments and by the 

average between all networks. 

Our results show that eccentricity is the poorest metric with a high number of tied 

vertices, followed by degree and then by closeness centralities. These three measures are by far 

worse than the others in distinguishing vertices by their structural properties while walk 

betweenness has the best overall performance. It is always better than betweenness centrality 

(its simpler counterpart) but is worse than information centrality in geographic networks and 

eigenvector centrality in non-isomorphic networks. 

 Nonetheless, walk betweenness, subgraph, information, eigenvector and betweenness 

show more than 95% of distinct values in most of the bigger networks (complex networks 

models) and around 70% in the smaller networks (non-isomorphic networks set, which contains 

extreme cases such as complete graphs). 

These results reinforce Freeman’s (1978/79) experimental results, he also concluded 

that degree measure is less finer-grained than closeness and both are inferior to betweenness in 

this aspect. However, our results go against to Bonacich’s (2007) conclusion that the 

eigenvector centrality is appropriate when centrality is ultimately driven by differences in 

degree in which a high degree position is connected to many low degree positions and vice-

versa. If this was true, eigenvector should present better results in scale-free networks and worse 

ones in networks with community structure and that did not happen in our experiments. 
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Figure 8 – Mean Percentage of Distinct Values 

 

 Regarding the standard deviation, closeness and subgraph present the highest relative 

values, indicating that their results are highly volatile. A high standard deviation was expected 

for non-isomorphic networks due to their high variability and smaller sizes. Further, the last 

block of Figure 8 composed by all networks data presented also higher standard deviations 

which reinforces the idea that each kind of network affects differently the behavior of the 

metrics. In addition, the centralities that present the highest scores also present the lowest 
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standard deviation values, offering a robust and reliable reference to the selection of centralities 

with high performance at distinguishing vertices. 

 Figure 9 shows the percentage of distinct values distribution of each metric over all 

networks. The first point comprehends [0%, 5%), the second [5%, 10%) and so goes on the 

subsequent points until the last one [95%, 100%]. It illustrates better the differences between 

the performances of the metrics at distinguishing vertices and strengthens the relevance of the 

averages shown in Figure 8 by showing little variance (high peaks) in centralities distribution 

of percentage of distinct values for the top four metrics (betweenness, eigenvector, information 

and walk betweenness). 

Figure 9 – Metrics Distribution 

 

 Another interesting aspect of centralities performance (percentage of distinct vertices) 

analyzed in our experiments was the amount of times each metric achieved the best-known 

solution (highest number of vertices being distinguished) among all metrics. This information 

shows the amount of times one metric is better than the others are in distinguishing the vertices 

of the networks. The results are summarized in Table 16, the cells highlighted in bold present 

the highest values. The columns sum is higher than 100% because there are many networks 

where more than one metric achieves the best result. 

 We can check in Table 16 that despite a very close granularity performance between 

several metrics in Figure 8 and Figure 9, a clearer difference between the top five metrics is 

present. 
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 Betweenness stayed way behind the other top metrics in non-isomorphic networks while 

keeping good scores for community structure and Erdős networks, but it always kept an equal 

or lower performance than its more complex counterpart, walk betweenness. 

 Closeness centrality did better than degree and eccentricity in non-isomorphic networks 

but all three measures are overly outmatched by the other metrics in all complex network model 

samples. 

Eigenvector did really well for non-isomorphic networks with a considerable difference 

from the other metrics, but it lost several points in all other kinds of networks. It still showed 

considerable better scores than subgraph centrality in all samples despite their high similarity. 

 Information centrality is indeed a powerful metric at distinguishing vertices together 

with walk betweenness. However, the information centrality is quite inferior than walk 

betweenness and even betweenness in the random graphs of Erdős and Rényi. 

 When we analyze walk betweenness scores we realize that its higher algorithm 

complexity paid off. It is by a large amount superior on most networks, it only loses for 

information centrality in geographic networks and for eigenvector centrality in non-isomorphic 

networks (this time just for a few percentage points). 

 

Table 16 – Percentage of time where best performance is achieved 

Metric  Net 𝑵𝒏𝒊 𝑴𝒄𝒔 𝑴𝒔𝒇 𝑴𝒔𝒘 𝑴𝒈𝒓 𝑴𝒆𝒓 All 𝐶𝑏 38.8% 97.6% 62.8% 78.3% 70.2% 100.0% 75.5% 𝐶𝑐 33.7% 0.0% 0.0% 0.0% 0.0% 0.0% 5.6% 𝐶𝑑 21.5% 0.0% 0.0% 0.0% 0.0% 0.0% 3.6% 𝐶𝑥 4.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.8% 𝐶𝑒 98.4% 87.7% 51.7% 47.9% 62.0% 55.0% 67.2% 𝐶𝑖 90.6% 98.0% 92.8% 90.6% 98.8% 67.3% 90.8% 𝐶𝑠 93.4% 32.4% 31.3% 34.2% 34.3% 32.0% 43.2% 𝐶𝑤 92.0% 99.8% 100.0% 99.9% 76.5% 100.0% 96.2% 

 

 We constructed Table 17 aiming centrality measures with a high performance at 

distinguishing vertices by their structural properties and reduced redundancy by only using 

simultaneous metrics when they presented low correlation values. Its purpose is to serve as a 

guide for the best-suited centrality measure for an application, before real testing, taking into 

consideration the kind of networks used and the application goals (the centrality measure 

underlying idea most appropriate for the environment where it will be applied). 
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Table 17 – Centrality Measures Guide 

Net  Goal Control Independency Visibility General 𝑴𝒄𝒔 𝐶𝑏 , 𝐶𝑤 𝐶𝑖 𝐶𝑒 𝐶𝑏 , 𝐶𝑤, 𝐶𝑖 𝑴𝒔𝒇 𝐶𝑤 𝐶𝑖 𝐶𝑒 𝐶𝑤, 𝐶𝑖 𝑴𝒔𝒘 𝐶𝑤 𝐶𝑖 𝐶𝑒 𝐶𝑤, 𝐶𝑖 𝑴𝒈𝒓 𝐶𝑏 , 𝐶𝑤 𝐶𝑖 𝐶𝑒 𝐶𝑖 𝑴𝒆𝒓 𝐶𝑏 , 𝐶𝑤 𝐶𝑖 𝐶𝑒 𝐶𝑏 , 𝐶𝑤 

Unknown 𝐶𝑤 𝐶𝑖 𝐶𝑒 𝐶𝑤, 𝐶𝑖 
 

 The goals are the ones defined by Freeman (1978/79), which represent the underlying 

idea of what is centrality using a given metric (Table 3 explains better the goals and classifies 

the metrics). The general goal is applied whenever there is no defined centrality meaning in a 

given application or it did not fit well in any other category. 

 We picked the complex network model as the metrics main selection attribute because 

it was the most descriptive networks property among the ones tested (number of edges, 

minimum, maximum and mean degree, diameter, clustering coefficient, density and the mean 

distance from all pairs of vertices) to determine the metrics ability of distinguishing vertices. 

To get to such a conclusion we have run several attribute selection algorithms, used for rule 

learning and decision trees. They all selected as prior attributes the network model in which the 

networks generation were based as the most important attribute to determine the metrics 

performance. We also add an unknown line to be used when the network being analyzed for an 

application does not fit very well in any complex network model. The metrics suggested, for 

this case and for the general goal column, are the overall best ones considering all networks 

tested in our experiments. 

 For example, walk betweenness is the most appropriate measure if one has an application 

where networks present scale-free model properties and when the objective is to rank or identify 

objects by their control of communication or when the objective is generic/general, such as 

power. Whenever more than one measure is indicated in Table 17 in a determined cell, it means 

that the metrics will produce distinct results from each other and that they grant a high 

performance at differentiating vertices. Therefore, they can be used simultaneously to identify 

different aspects of the centrality concept for that application or another aspect of the centrality 

measures can be used to pick one over the other, such as algorithm complexity. 

The last part of our experiments focused on four real networks samples (Table 5). The 

resulting centrality correlation values are summarized in Table 18. 



56 
 

Table 18 – Correlation Values 

Network Metric Highest Value Mean±Std. 

USA Airport Connections 

(Mgr) 

𝐶𝑏 0.80 (𝐶𝑤) 0.59±0.15 𝐶𝑐 0.84 (𝐶𝑒 , 𝐶𝑠) 0.66±0.16 𝐶𝑑 0.91 (𝐶𝑖) 0.70±0.18 𝐶𝑥 0.44 (𝐶𝑐) 0.36±0.04 𝐶𝑒 1.00 (𝐶𝑠) 0.68±0.22 𝐶𝑖 0.91 (𝐶𝑑) 0.71±0.18 𝐶𝑠 1.00 (𝐶𝑒) 0.68±0.22 𝐶𝑤 0.80 (𝐶𝑏 , 𝐶𝑑) 0.61±0.16 

Facebook Partial Snapshot 

(Mcs) 

𝐶𝑏 0.69 (𝐶𝑤) 0.43±0.20 𝐶𝑐 0.52 (𝐶𝑠) 0.41±0.08 𝐶𝑑 0.83 (𝐶𝑖) 0.44±0.25 𝐶𝑥 0.47 (𝐶𝑐) 0.10±0.21 𝐶𝑒 0.78 (𝐶𝑠) 0.33±0.30 𝐶𝑖 0.83 (𝐶𝑑) 0.50±0.21 𝐶𝑠 0.78 (𝐶𝑒) 0.40±0.28 𝐶𝑤 0.69 (𝐶𝑏) 0.34±0.19 

USA Power Grid (Msw) 

𝐶𝑏 0.67 (𝐶𝑑) 0.29±0.21 𝐶𝑐 0.74 (𝐶𝑥) 0.38±0.22 𝐶𝑑 0.67 (𝐶𝑏) 0.32±0.22 𝐶𝑥 0.74 (𝐶𝑐) 0.37±0.23 𝐶𝑒 0.48 (𝐶𝑥) 0.23±0.14 𝐶𝑖 0.53 (𝐶𝑐) 0.41±0.10 𝐶𝑠 0.45 (𝐶𝑖) 0.31±0.10 𝐶𝑤 0.66 (𝐶𝑏) 0.29±0.20 

Erdős Collaboration (Mcs) 

𝐶𝑏 0.82 (𝐶𝑑) 0.57±0.13 𝐶𝑐 0.85 (𝐶𝑒 , 𝐶𝑠) 0.63±0.21 𝐶𝑑 0.82 (𝐶𝑏) 0.63±0.12 𝐶𝑥 0.54 (𝐶𝑏) 0.41±0.08 𝐶𝑒 1.00 (𝐶𝑠) 0.69±0.24 𝐶𝑖 0.82 (𝐶𝑒 , 𝐶𝑠) 0.66±0.18 𝐶𝑠 1.00 (𝐶𝑒) 0.69±0.24 𝐶𝑤 0.80 (𝐶𝑐) 0.60±0.15 

 

The correlation results obtained in the real networks samples are similar to the results 

showed on Table 14 and Figure 7. We can see in Table 18 that eccentricity is still the lowest 

correlated centrality measure and that the strongest groups of correlated measures are still 
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present: degree with information and betweenness, subgraph with eigenvector. The exception 

is the relationship between walk betweenness and closeness that did not appear as much evident 

as it did in the synthetic networks. In addition, the overall correlation shown by all metrics are 

at similar amplitude, i.e. higher than 0.8 correlation in most cases. 

Table 19 presents the metrics granularity performance on the real networks samples. 

They agree with the results obtained by the generation of synthetic networks using the complex 

network models (Figure 8 and Table 16). The order of the metrics granularity performance 

remains the same, eccentricity, followed by degree and closeness with the lowest values and 

subgraph, eigenvector and betweenness followed by information and walk betweenness with 

the highest ones. 

 

Table 19 – Percentage of Distinct Values 

Metric 
USA Airport 

Connections 

Facebook Partial 

Snapshot 
USA Power Grid 

Erdős 

Collaboration Cb 55.42% 86.63% 59.28% 21.93% Cc 57.83% 0.99% 0.22% 0.20% Cd 17.47% 5.62% 0.32% 1.33% Cx 1.20% 0.12% 0.49% 0.04% Ce 82.83% 25.25% 2.25% 30.62% Ci 83.13% 95.67% 88.54% 33.95% Cs 62.65% 7.45% 3.97% 8.34% Cw 74.40% 95.37% 63.75% 35.20% 

 

Moreover, considering the fact that the community structure model represents Facebook 

and Erdős collaboration networks, we can see that Table 16, Table 19, and Figure 8 show higher 

values for betweenness, information and walk betweenness centrality measures. While, USA 

Airports (a geographic network) presented higher values for information centrality and USA 

Power Grid (related to the “small-world” model properties) presented higher values for 

information followed by walk betweenness centralities. 

That is, both the synthetic generated networks based on the complex network models 

and the real networks samples analyzed in our experiments agree on their results due to the 

behavior presented by each metric, considering their granularity performance and correlation 

values. 
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We also can see that the suggested metrics showed in Table 17 (based on the synthetic 

networks results) were valid for all the real networks samples tested in our experiments, which 

strengthens the idea that one can use it as a useful and reliable guide for the selection of 

centrality measures based on their granularity and correlation values. 

 Final conclusions about our experiments and results, and possible future work are 

presented in the next section. 

 



 
 
6 CONCLUSIONS AND FURTHER WORK 

 

 

Today we have access to networks with millions of devices. Technological, biological 

or social networks data are available for study as never before, and they are just a small fraction 

of our connected world that we are trying to understand. Therefore, their analysis and 

understanding requires several tools and techniques. 

We already know that network structure plays an important role in many applications 

and define many characteristics of the population being mapped by the network. That is the 

exact purpose of centrality measures applications. The analysis of the networks structural 

properties is relevant to a number of applications, in particular to artificial intelligence and 

computer science. Various measurements that are available in complex network analysis, such 

as vertex centrality, have the potential to provide useful knowledge about patterns and behaviors 

in complex and social networks. 

 The increasing availability of data on large networks and the greater variability of 

centrality applications have led to the creation and development of many centrality measures. 

Nonetheless, among all these centrality measures little is known or provided about them to help 

one choose the best metric for a specific environment or application. Most works in this area 

have focused only on showing in which kind of networks their metrics are unique or better 

applied when compared to the others. However, analyses of their differences and use as well as 

studies about when they can be best applied are still open issues. Thus, our work tries to fill 

part of this important gap. 

Our work aims at analyzing the main centrality measures by using structural properties 

of the network, statistical methods such as correlation and machine learning. Using this 

methodology, we provided information that helps in the selection of centrality measures by 

complex network models properties as guidance. Our experiments show that the measures 

known as walk betweenness, information, eigenvector and betweenness centralities can 

distinguish vertices in all kind of networks with performance of at least 95% in most of the case 

studies (Figure 9 and Table 16). Further, each of these centralities achieve a better result in a 

determined kind of network, mainly defined by a structure model rather than by simpler 

properties (Figure 8). 

While classifying a network to such models is not always an easy task, this classification 

can on its own define, with a high degree of precision, which centralities should be applied to 
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grant the best results. They can also be a strong index of centralities behavior about their 

granularity and their similarity with other metrics (Table 19). 

We demonstrate also, by means of experimental evidence, that pairs of metrics achieve 

high correlation values, despite their theoretical foundations and underlying centrality concepts 

suggests otherwise (Figure 7, Table 14 and Table 18). Five pairs of metrics achieve very close 

results: betweenness and information, degree and information, eigenvector and subgraph, 

closeness and walk betweenness, degree and walk betweenness. Some of them are surprising 

by the fact that their theoretical foundations and algorithms are clearly distinct. 

We can see that out of the eight centrality measures tested, half of them (closeness, 

degree, eccentricity and subgraph) are outmatched in every experiment by at least one of the 

others (betweenness, eigenvector, information and walk betweenness). Among the best four 

centralities only betweenness and walk betweenness, also eigenvector and walk betweenness 

present low redundancy if applied together.  

The correlation values were surprisingly high even for very distinct measures 

considering their formulations and algorithms. The data presented in Table 8, Table 9, Table 

10, Table 11, Table 12 and Table 13 showed a considerable difference in correlation values 

among metrics considering different kinds of networks (represented by the complex network 

models). However, the overall similarity among pairs of metrics followed a strict tendency as 

summarized in Table 14 and Table 15. In addition, Table 18 reinforced the trend presented by 

the synthetic network with real sample networks. 

This helps to reduce even further the available options for many kinds of applications 

depending on their goals and network properties (as illustrated in Table 17). In addition, it 

suggests that the application of many centrality measures simultaneously can lead to fruitless 

results demanding more processing time to produce analogous results. 

More importantly, we showed that the structural properties of the networks can be used 

as good predictors of centralities granularity and correlations. The guide presented in Table 17 

can naturally be used in practice for the selection of the most appropriate centrality measures. 

They can be applied for a determined objective and network if one aims at high granularity of 

centrality values and for distinct results when applying more than one metric. 

We also presented evidence that the use of the information retrieved with the synthetic 

networks would be useful and accurate about the behavior of the centrality measures in all real 

samples analysis despite the larger size of their networks. We uncovered that using only casual 

information about the networks’ structural properties inherited from their application domain 

and their relation to the complex network models characteristics. 
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Centrality measures are a very useful tool for networks analysis. However, their 

application and proper selection requires analyses and information about their behavior. Our 

main contribution in this research is to provide information about centrality measures that helps 

in their selection for a given application domain. Our results can be used as a guide to select the 

best centrality measures if one knows characteristics of its network or which complex network 

model it fits in. Furthermore, centralities can be selected by excluding similar ones, reducing 

redundancy and optimizing resources. 

Further research work includes the investigation of other network properties and their 

relationship with centrality measures, the application and comparison between metrics in 

directed and weighted networks, the study of parametric measures in other real world network 

domains and the analysis of the relationship between centrality measures and other network and 

graph measurements. 
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