
ESAIM: COCV 18 (2012) 1027–1048 ESAIM: Control, Optimisation and Calculus of Variations
DOI: 10.1051/cocv/2011193 www.esaim-cocv.org

AN ANALYSIS OF ELECTRICAL IMPEDANCE TOMOGRAPHY
WITH APPLICATIONS TO TIKHONOV REGULARIZATION

Bangti Jin1 and Peter Maass2

Abstract. This paper analyzes the continuum model/complete electrode model in the electrical
impedance tomography inverse problem of determining the conductivity parameter from boundary
measurements. The continuity and differentiability of the forward operator with respect to the con-
ductivity parameter in Lp-norms are proved. These analytical results are applied to several popular
regularization formulations, which incorporate a priori information of smoothness/sparsity on the inho-
mogeneity through Tikhonov regularization, for both linearized and nonlinear models. Some important
properties, e.g., existence, stability, consistency and convergence rates, are established. This provides
some theoretical justifications of their practical usage.
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1. Introduction

Electrical impedance tomography (EIT) is an emerging imaging modality, and it has attracted much interest
in noninvasive imaging and nondestructive testing. For instance, the reconstructions can be used for diagnostic
purposes in medical applications, e.g., monitoring of lung function, detection of cancer in the skin and breast
and location of epileptic foci [4]. A similar inverse problem arises in geophysics, where one uses electrodes on
the surface of the earth or in bore holes to locate resistivity anomalies, e.g., minerals or contaminated sites.

A typical experimental setup is as follows. One first applies an electrical current through the electrodes
attached to the surface of the object, and then measures the resulting electrical potential on the electrodes.
The procedure is repeated several times with different input currents, which yields a partial information about
the Neumann-to-Dirichlet map (or its discrete approximation). EIT aims at determining a spatially-varying
physical electrical conductivity of the object by using these noisy measurements.

This inverse problem was first formulated by Calderón [9], who also gave a first uniqueness result for the
linearized problem. The mathematical theory of unique solvability of the inverse problem with the complete
Neumann-to-Dirichlet map has received much attention, and many profound theoretical results have been ob-
tained. For a comprehensive overview of uniqueness results, we refer to the survey [55], also [2], where in
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dimension two, the uniqueness in the class of L∞(Ω) functions was shown, and [31] for partial data. Stability
issues of the inverse problem have also been extensively investigated [1].

The broad prospective applications have aroused much interest in designing efficient imaging algorithms. A
large number of numerical methods have been proposed in the literature, and roughly they can be divided into
two categories. The former relies on refined analytical properties of the forward model, whereas the latter applies
general-purposed regularization strategies. Imaging algorithms in the first category utilize powerful analytical
machineries, e.g., spectral analysis and complex geometrical optics, and include factorization method [39], enclo-
sure method [30] and d-bar method [32,40] etc. These methods can be very effective for specific situations, e.g.,
estimating inclusion supports. Among methods of the latter category, the variational idea stands out promi-
nently. It is based on minimizing a certain functional, typically the squared L2 norm of the difference between
the simulated boundary electrical potential due to an assumed conductivity and the measured potential. One
standard approach of this type is described in [10], which applies one step of a Newton method with a constant
conductivity as the initial guess, see also [43]. Some sort of regularization is beneficial to combat the numerical
instability and to fully exploit a priori knowledge for achieving enhanced resolution [20, 54]. As such, imaging
algorithms based on Tikhonov regularization are very popular, and often taken as a benchmark. In [47], the
standard Tikhonov regularization for EIT in unbounded domains was studied. In [52], the Mumford-Shah model
was suggested in the hope of simultaneously segmenting the conductivity image and enhancing the resolution.
In [33], a level set approach was developed for estimating the interface, and in [13], it was used for total variation
(TV ) regularized L2 data fitting to reconstruct a piecewise constant conductivity. Recently, the so-called sparsity
penalty (cf. Sect. 4 for details) was adopted to reconstruct conductivity distributions that have a sparse rep-
resentation in a given basis/over-complete frame [36]. Simulation studies [36] and experimental evaluations [23]
clearly show the great potentials of the sparsity ideas in EIT imaging. Iterative regularization methods, such
as Landweber iteration and Gauss-Newton method, provide an alternative framework [20], see [43, 45] for their
applications in EIT. Also we refer to [37, 41] for statistical inversion.

Although there are numerous numerical studies of these imaging algorithms in the literature, theoretical
justifications of their excellent empirical performances remain scarce. Ikehata and Siltanen [30] investigated
an extracting formula for locating inclusions from a finite number of EIT measurements, and established its
convergence as the noise level tends to zero. Lechleiter [42] established the validity of the factorization method,
regularized by spectral cutoff, for finding inclusions from finite-dimensional data. Knudsen et al. [40] analyzed a
regularized variant of the d-bar method, and derived a convergence rate of logarithmic type in suitable Banach
spaces for C2 conductivities. As to more “standard” imaging algorithms based on Tikhonov regularization, their
mathematical properties and convergence behaviors of related algorithms also have not received due attention
despite their wide-spread practical adoption, and these procedures are largely applied in an ad hoc manner.
Theoretically, we are only aware of [16, 47, 51, 52]. In [16], a regularization approach based on wavelet was
analyzed, especially the convergence of an iterative algorithm was established. However, the analysis allows
only continuously differentiable conductivities. In [47], the consistency, stability and convergence rates were
discussed under a high Sobolev regularity on the conductivity, which can possibly make its numerical realization
inconvenient. In the interesting works [51, 52], the existence and stability were established for Mumford-Shah
and TV penalties, respectively, and also consistency [51]. Therefore, the issue of convergence rate remains
unexplored, and the popular H1-smoothness penalty has not been addressed so far.

In this paper, we attempt to provide partial theoretical justifications of the methods based on Tikhonov
regularization, i.e., with smoothness/sparsity penalty, for linearized and nonlinear models, especially convergence
rates, along the line of [51,52]. We first develop necessary analytical machineries, including continuity and Fréchet
differentiability of the forward operator in Lp-norms. This is achieved with the help of Meyers’ celebrated
gradient estimate [22, 25, 48]. Then we capitalize on recent theoretical developments [8, 24, 28, 34, 35, 46] for
nonsmooth regularization to derive well-posedness and convergence rate results. Finally, when completing the
manuscript, we got to know the interesting work [18], which analyzes the standard Tikhonov regularization for
diffuse optical tomography. Although the underlying ideas of [18] and the present work are similar, there are
some significant differences in the forward model as well as the formulations: The optical tomography forward
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model in [18] has a Robin boundary condition and their focus is on the standard H1-penalty, while the EIT
model has a Neumann-type boundary condition and we are interested in smoothness/sparsity penalty.

The rest of the paper is organized as follows. We develop necessary analytical results, including continuity
and differentiability of the forward operator with respect to Lp norms, for the continuum model in Section 2,
which improve known results in the L∞ norm, and enable us to apply regularization theory in a Hilbert space,
see Section 4. In Section 3 the extension to the practically popular complete electrode model [11,53] is discussed.
Then in Section 4, we describe regularization models with �r penalties, and study their properties, e.g., existence,
stability, consistency and convergence rate, under various conditions. The conventional smoothness penalty is
covered as a special case. We conclude in Section 5 with a brief discussion on related issues.

2. Continuum model

This section studies the basic mathematical model, the continuum model, of the EIT problem. The main part
is devoted to proving analytic properties of the parameter-to-state map and to establishing differentiability of
the forward operator with respect to Lp norms.

2.1. Notation and definitions

Let Ω be an open bounded domain in R
d(d = 2, 3) with a Lipschitz boundary Γ . Throughout this paper, we

shall make use of the space H̃1(Ω), which is a subspace of the Sobolev space H1(Ω) with vanishing mean on the
boundary Γ , i.e., H̃1(Ω) =

{
v ∈ H1(Ω) :

∫
Γ vds = 0

}
. The spaces H̃

1
2 (Γ ) and H̃− 1

2 (Γ ) are defined similarly.
These spaces are equipped with the usual norms.

In the absence of interior current source and in the electrostatic state, Maxwell’s system describing elec-
tromagnetic fields inside the object reduces to the following second-order elliptic partial differential equation

−∇ · (σ∇u) = 0 in Ω (2.1)

with a Neumann boundary condition σ ∂u
∂n = j ∈ H̃− 1

2 (Γ ) on the boundary Γ . We normalize the solution by
enforcing

∫
Γ
uds = 0 to ensure a unique solution u ∈ H̃1(Ω), and denote by F (σ) the forward operator.

In an EIT experiment, one measures a noisy version φδ ∈ L2(Γ ) of the potential φ† = F (σ†)j (σ† refers to
the exact conductivity), with its accuracy measured by the noise level δ = ‖φ† − φδ‖L2(Γ ). For a given pair
(j, φδ), the variational approach seeks an approximation to σ† by minimizing a certain discrepancy functional
together with an appropriate penalty over the following admissible set

A = {σ ∈ L∞(Ω) : λ ≤ σ ≤ λ−1 a.e. and supp(σ − σ†) ⊂ Ω′},

for some fixed λ ∈ (0, 1), where Ω′ is an open subset with a smooth boundary compactly contained in Ω. We
shall endow the set A with an Lp(Ω) norm (1 ≤ p ≤ ∞).

Remark 2.1. The admissible set A is closed and convex, but it has no interior points, i.e., for any σ ∈ A, the
ball Bε = {σ̃ : ‖σ̃ − σ‖Lp(Ω) ≤ ε} is not completely contained in A for any ε > 0. Therefore, all the results
presented below should be understood with respect to the relative topology.

In what follows C denotes some generic constant, which may differ at different occurrences. We first state a
well-known regularity estimate.

Lemma 2.2. For any σ ∈ A, the forward solution F (σ)j satisfies

‖F (σ)j‖H1(Ω) ≤ C‖j‖
H− 1

2 (Γ )
.

Proof. The estimate follows directly from Lax-Milgram theorem. �
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Lemma 2.2 implies that the forward operator F (σ) is uniformly bounded for a fixed j. We also recall the
following norm equivalence result.

Lemma 2.3. On the space H̃1(Ω), the standard H1(Ω) norm is equivalent to the H1(Ω) semi-norm, i.e., there
exist two constants c0 and c1 such that for any v ∈ H̃1(Ω)

c0‖v‖H1(Ω) ≤ ‖∇v‖L2(Ω) ≤ c1‖v‖H1(Ω).

For simplicity, we describe in this section only (continuity and differentiability) results for one fixed input
current j, and suppress the dependence of the solution u = F (σ)j on j hereon. The extension to multiple data
set, i.e., {(ji, φi)}N

i=1 as often in practical scenarios or the full Neumann-to-Dirichlet map, is straightforward. We
remind that, in case of Neumann-to-Dirichlet map, the norm in the discrepancy measure should be understood
as the operator norm, see, e.g., [51, 52].

2.2. Continuity and differentiability

The differentiability of the forward operator F (σ) with respect to the L∞-norm is well-known. For instance,
it was already noted in the pioneering work [9] that the forward map is analytic in σ with respect to the
L∞-norm. In [15], the Frechét differentiability was proved, and a general approach for trilinear forms (or with
bilinear structure) was provided in [44]. However, these results are concerned with L∞ differentiability, which is
insufficient for analyzing some Tikhonov functionals, including conventional H1-smoothness/sparsity penalty.

We will derive a differentiability result in Lp norms, which is crucial for analyzing the regularization for-
mulations in Section 4. We shall prove continuity and Fréchet differentiability by applying Meyers’ celebrated
gradient estimates [48]. The proof techniques in this part are inspired by and closely follow [52]. We start by
stating Meyers’ gradient estimate [48] as formulated in [52].

Theorem 2.4. Let Ω be a bounded Lipschitz domain in R
d(d ≥ 2). Assume that σ ∈ L∞(Ω) satisfies λ < σ <

λ−1 for some fixed λ ∈ (0, 1). For f ∈ (Lq(Ω))d and h ∈ Lq(Ω), let u ∈ H1(Ω) be a weak solution of

−∇ · (σ∇u) = −∇ · f + h in Ω.

Then, there exists a constant Q ∈ (2,∞) depending on λ and d only, Q → 2 as λ → 0 and Q → ∞ as λ → 1,
such that for any 2 < q < Q we obtain u ∈ W 1,q

loc (Ω) and for any Ω1 ⊂⊂ Ω

‖u‖W 1,q(Ω1) ≤ C(‖u‖H1(Ω) + ‖f‖Lq(Ω) + ‖h‖Lq(Ω)),

where the constant C depends on λ, d, q, Ω1 and Ω.

In this theorem the boundary condition for the differential equation can be general. Its effect enters the W 1,q-
estimate through the term ‖u‖H1(Ω). Otherwise, no further regularity has been assumed on the conductivity
σ. In general, a precise estimate of the constant Q(λ, d) is missing, although in the two-dimensional case, a
sharp estimate of Q(λ, d) was derived in [3]. We shall denote by Q(λ) the number defined in Theorem 2.4 by
suppressing its dependence on d.

Assisted with Theorem 2.4 and by repeatedly applying generalized Hölder’s inequality, we show the continuity
of the operator F (σ) with respect to the Lp norm for any p ∈ ( 2Q(λ)

Q(λ)−2 ,∞].

Lemma 2.5. For the operator F (σ) and σ, σ + ϑ ∈ A, we have the following continuity properties.

(a) For any p ∈ ( 2Q(λ)
Q(λ)−2 ,∞] and σ, σ + ϑ ∈ A we have

‖F (σ + ϑ) − F (σ)‖H1(Ω) ≤ C‖ϑ‖Lp(Ω′);



ANALYSIS OF ELECTRICAL IMPEDANCE TOMOGRAPHY 1031

(b) for any p ∈ ( 4Q(λ)
Q(λ)−2 ,∞], there exists q ∈ (2, Q(λ)) such that

‖F (σ + ϑ) − F (σ)‖W 1,q(Ω′) ≤ C‖ϑ‖Lp(Ω′);

(c) for p ≥ 1 and any q ∈ (2, Q(λ)) we have the following estimates

lim
‖ϑ‖Lp(Ω′)→0

‖F (σ + ϑ) − F (σ)‖W 1,q(Ω′) = 0.

Proof. For σ, σ + ϑ ∈ A, the weak formulations of F (σ) and F (σ + ϑ) give
∫

Ω

σ∇F (σ) · ∇vdx =
∫

Ω

(σ + ϑ)∇F (σ + ϑ) · ∇vdx, ∀v ∈ H̃1(Ω),

i.e., ∫
Ω

σ∇(F (σ) − F (σ + ϑ)) · ∇vdx =
∫

Ω

ϑ∇F (σ + ϑ) · ∇vdx, ∀v ∈ H̃1(Ω).

Taking v = F (σ) − F (σ + ϑ) ∈ H̃1(Ω) in the equation and noting that the support of ϑ is within Ω′ give
∫

Ω

σ|∇(F (σ) − F (σ + ϑ))|2dx =
∫

Ω

ϑ∇F (σ + ϑ) · ∇(F (σ) − F (σ + ϑ))dx

=
∫

Ω′
ϑ∇F (σ + ϑ) · ∇(F (σ) − F (σ + ϑ))dx

≤ ‖ϑ‖Lp(Ω′)‖∇F (σ + ϑ)‖Lq(Ω′)‖∇(F (σ) − F (σ + ϑ))‖L2(Ω),

where 1
p + 1

q = 1
2 . The assumption p ∈ ( 2Q(λ)

Q(λ)−2 ,∞] implies q < Q(λ). By Theorem 2.4, there exists a constant
C such that

‖∇F (σ + ϑ)‖Lq(Ω′) ≤ C‖F (σ + ϑ)‖H1(Ω) ≤ C‖j‖
H− 1

2 (Γ )
.

This together with Lemma 2.3 shows

‖F (σ) − F (σ + ϑ)‖H1(Ω) ≤ C‖ϑ‖Lp(Ω′).

This shows the first part of the lemma.
To prove the second part, we fix q ∈ (2, Q(λ)) and choose p = 2q

q−2 , i.e., 1
p + 1

q = 1
2 , and p ∈ ( 4Q(λ)

Q(λ)−2 ,∞]. We
apply Meyers’ theorem and obtain

‖F (σ) − F (σ + ϑ)‖W 1,q(Ω′) ≤ C
(‖F (σ) − F (σ + ϑ)‖H1(Ω) + ‖ϑ∇F (σ + ϑ)‖Lq(Ω)

)
. (2.2)

The first term in the bracket has been estimated in part (a), and thus we only need to bound the term
‖ϑ∇F (σ + ϑ)‖Lq(Ω). Take any small ε such that q′ = q + ε ∈ (q,Q(λ)) and qq′

q′−q ≥ p. By appealing to Hölder’s
inequality, we deduce

∫
Ω

|ϑ∇F (σ + ϑ)|qdx =
∫

Ω′
|ϑ|q|∇F (σ + ϑ)|qdx

≤
(∫

Ω′
|ϑ| qq′

q′−q dx
)1− q

q′
(∫

Ω′
|∇F (σ + ϑ)|q′

dx
) q

q′

≤ C‖j‖q

H− 1
2 (Ω)

(∫
Ω′

|ϑ| qq′
q′−q dx

)1− q

q′
,

(2.3)
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where we have applied Meyers’ theorem to the term ‖∇F (σ + ϑ)‖Lq′ (Ω′). The choice qq′

q′−q ≥ p implies

∫
Ω′

|ϑ| qq′
q′−q dx =

∫
Ω′

|ϑ|p · |ϑ| qq′
q′−q

−pdx ≤ |λ|p− qq′
q′−q

∫
Ω′

|ϑ|pdx. (2.4)

Collecting the exponents in inequalities (2.2)–(2.4) yields

‖F (σ + ϑ) − F (σ)‖W 1,q(Ω′) ≤ C‖ϑ‖
q′−q
q′q

p

Lp(Ω′).

The choice of p ∈ ( 4Q(λ)
Q(λ)−2 ,∞] indicates that q ∈ (2, 4Q(λ)

2+Q(λ) ) ⊂ (2, Q(λ)), and thus q < q′ = 2q
4−q < Q(λ). With

this choice of q′, we have q′−q
q′q p = 1, i.e.,

‖F (σ + ϑ) − F (σ)‖W 1,q(Ω′) ≤ C‖ϑ‖Lp(Ω′),

which shows the second assertion.
Now we turn to the third assertion. By the proof of the second assertion, for any q ∈ (2, Q(λ)) and q′ ∈

(q,Q(λ)) we have
‖ϑ∇F (σ + ϑ)‖Lq(Ω′) ≤ C‖j‖

H− 1
2 (Γ )

‖ϑ‖L qq′
q′−q

(Ω′).

If the exponent p̃ = qq′

q′−q ≤ p, then by Hölder’s inequality, we have

‖ϑ‖Lp̃(Ω′) ≤ |Ω′| p−p̃
pp̃ ‖ϑ‖Lp(Ω′).

As to the other case, by the L∞(Ω) boundedness of the admissible set A, we deduce for p̃ ≥ p ≥ 1

‖ϑ‖p̃
Lp̃(Ω′) ≤ C‖ϑ‖p

Lp(Ω′).

In either case, we have that the term goes to zero as ‖ϑ‖Lp(Ω′) → 0. Hence, we obtain

lim
‖ϑ‖Lp(Ω′)→0

‖F (σ + ϑ) − F (σ)‖W 1,q(Ω′) = 0

for arbitrary p ≥ 1. �

Remark 2.6. For the case of p ∈ ( 2Q(λ)
Q(λ)−2 ,

4Q(λ)
Q(λ)−2 ) and 1

q = 1
2 − 1

p , we have by choosing q′ = Q(λ) − ε

‖F (σ + ϑ) − F (σ)‖W 1,q(Ω′) ≤ C‖ϑ‖r
Lp(Ω′) with r =

2(Q(λ) − ε− q)
(Q(λ) − ε)(q − 2)

·

It is easy to see that r < 2Q(λ)−q
Q(λ)(q−2) ≤ 1.

Let us now proceed to the differentiability of the forward operator F (σ). We fix σ ∈ A, and let ϑ be a
perturbation to σ belonging to L∞(Ω′) and extended by zero outside Ω′. Let w ∈ H̃1(Ω) be the weak solution
to ∫

Ω

σ∇w · ∇vdx = −
∫

Ω

ϑ∇F (σ) · ∇vdx ∀v ∈ H̃1(Ω).

The above equation is the linearized problem of the Neumann forward problem at σ. We shall call F ′(σ) :
Lp(Ω′) → H̃1(Ω) the map from ϑ to w.

Lemma 2.7. For any σ ∈ A, the linear map F ′(σ) defined above has the following continuity properties
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(a) For any p ∈ ( 2Q(λ)
Q(λ)−2 ,∞], the operator F ′(σ) : Lp(Ω′) → H̃1(Ω) is bounded;

(b) for any p ∈ ( 4Q(λ)
Q(λ)−2 ,∞], there exists a q ∈ (2, Q(λ)) such that F ′(σ) : Lp(Ω′) →W 1,q(Ω′) is bounded;

(c) for p ≥ 1 and any q ∈ (2, Q(λ))
lim

‖ϑ‖Lp(Ω′)→0
‖F ′(σ)ϑ‖W 1,q(Ω′) = 0.

Proof. For any p ∈ ( 2Q(λ)
Q(λ)−2 ,∞], we can choose q by 1

q + 1
p = 1

2 , i.e., q ∈ (2, Q(λ)). By the weak formulation of
F ′(σ)ϑ and the generalized Hölder inequality, we have∫

Ω

σ|∇F ′(σ)ϑ|2dx = −
∫

Ω

ϑ∇F (σ) · ∇F ′(σ)ϑdx

= −
∫

Ω′
ϑ∇F (σ) · ∇F ′(σ)θdx

≤ ‖ϑ‖Lp(Ω′)‖∇F (σ)‖Lq(Ω′)‖∇F ′(σ)ϑ‖L2(Ω)

≤ C‖ϑ‖Lp(Ω′)‖F (σ)‖H1(Ω)‖∇F ′(σ)ϑ‖L2(Ω).

This together with Lemma 2.3 implies that the operator F ′(σ) : Lp(Ω′) → H̃1(Ω) is bounded, thereby showing
the first assertion. To prove the second and third assertions, we appeal to Meyers’ theorem to derive

‖F ′(σ)ϑ‖W 1,q(Ω′) ≤ C
(‖F ′(σ)ϑ‖H1(Ω) + ‖ϑ∇F (σ)‖Lq(Ω)

)
.

Therefore, we need to bound the term ‖ϑ∇F (σ)‖Lq(Ω), which can be estimated as in Lemma 2.5. This shows
assertions (b) and (c). �

The next result shows the differentiability of the operator F (σ).

Theorem 2.8. Let p ∈ ( 2Q(λ)
Q(λ)−2 ,∞]. Then the forward operator F (σ) is differentiable in the sense that for any

σ, σ + ϑ ∈ A there holds

‖F (σ + ϑ) − F (σ) − F ′(σ)ϑ‖H1(Ω)

‖ϑ‖Lp(Ω′)
→ 0 as ϑ→ 0 in Lp(Ω′).

Proof. Since ϑ vanishes on the boundary, the function w = F (σ + ϑ) − F (σ) − F ′(σ)ϑ ∈ H̃1(Ω) satisfies∫
Ω

(σ + ϑ)∇w · ∇vdx = −
∫

Ω

ϑ∇F ′(σ)ϑ · ∇vdx ∀ v ∈ H̃1(Ω).

Taking v = w in the weak formulation gives∫
Ω

(σ + ϑ)|∇w|2dx = −
∫

Ω

ϑ∇F ′(σ)ϑ · ∇wdx = −
∫

Ω′
ϑ∇F ′(σ)ϑ · ∇wdx

≤ ‖ϑ‖Lp(Ω′)‖∇F ′(σ)ϑ‖Lq(Ω′)‖∇w‖L2(Ω′).

We observe that p ∈ ( 2Q(λ)
Q(λ)−2 ,∞] implies 2 ≤ q < Q(λ). By applying Lemma 2.7(c) to the term ‖∇F ′(σ)ϑ‖Lq(Ω′),

we arrive at the desired assertion. �

The Lipschitz continuity of the operator F ′(σ) is essential, e.g., in studying convergence rates of regularization
methods [19] and in analyzing iterative algorithms, and it will be used in Section 4.

Theorem 2.9. For any p ∈ ( 4Q(λ)
Q(λ)−2 ,∞], the operator F ′(σ) is Lipschitz continuous with respect to Lp(Ω′) in

the sense that for any σ, σ + ϑ ∈ A
‖F ′(σ + ϑ) − F ′(σ)‖L(Lp(Ω′),H̃1(Ω)) ≤ C‖ϑ‖Lp(Ω′).
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Proof. For any ς ∈ Lp(Ω′), by the weak formulations for F ′(σ)ς and F ′(σ + ϑ)ς, i.e.,
∫

Ω

σ∇F ′(σ)ς · ∇vdx = −
∫

Ω

ς∇F (σ) · ∇vdx ∀v ∈ H̃1(Ω),
∫

Ω

(σ + ϑ)∇F ′(σ + ϑ)ς · ∇vdx = −
∫

Ω

ς∇F (σ + ϑ) · ∇vdx ∀v ∈ H̃1(Ω),

we derive that w = F ′(σ + ϑ)ς − F ′(σ)ς ∈ H̃1(Ω) satisfies
∫

Ω

σ∇w · ∇vdx = −
∫

Ω

ς∇(F (σ + ϑ) − F (σ)) · ∇vdx −
∫

Ω

ϑ∇F ′(σ + ϑ)ς · ∇vdx ∀v ∈ H̃1(Ω).

Letting v = w and applying the generalized Hölder’s inequality with q satisfying 1
p + 1

q = 1
2 and q ∈ (2, Q(λ))

to the two terms on the right hand side of the above identity, we get

−
∫

Ω

ς∇(F (σ + ϑ) − F (σ)) · ∇wdx ≤ ‖ς‖Lp(Ω′)‖∇(F (σ + ϑ) − F (σ))‖Lq(Ω′)‖∇w‖L2(Ω′)

≤ C‖ς‖Lp(Ω′)‖ϑ‖Lp(Ω′)‖∇w‖L2(Ω′),

and
−

∫
Ω

ϑ∇F ′(σ + ϑ)ς · ∇wdx ≤ ‖ϑ‖Lp(Ω′)‖∇F ′(σ + ϑ)ς‖Lq(Ω′)‖∇w‖L2(Ω′)

≤ C‖ς‖Lp(Ω)‖ϑ‖Lp(Ω′)‖∇w‖L2(Ω′),

in view of Lemmas 2.5(b) and 2.7(b), respectively. Combining these two estimates gives

‖∇w‖L2(Ω) ≤ C‖ς‖Lp(Ω′)‖ϑ‖Lp(Ω′),

which shows the desired assertion. �

Remark 2.10. For any p ∈ ( 4Q(λ)
Q(λ)−2 ,∞], by Theorem 2.9 and trace theorem [21], we have the following estimate

for the linear approximation of the operator F (σ)

‖F (σ + ϑ) − F (σ) − F ′(σ)ϑ‖L2(Γ ) ≤ L

2
‖ϑ‖2

Lp(Ω′),

where L is the Lipschitz constant of the operator F ′(σ), which depends on the constant from Meyers’ estimate
and the Sobolev embedding constant.

The adjoint of the operator F ′(σ) is very useful in analyzing the convergence rate as well as in deriving the
gradient of the discrepancy functional. We have the following representation, where p∗ is the conjugate exponent
of p ≥ 1, i.e., 1

p + 1
p∗ = 1.

Theorem 2.11. The adjoint of the operator F ′(σ) : Lp(Ω′) → L2(Γ ) is given by

(F ′(σ))∗ : L2(Γ ) → Lp∗(Ω′),
f �→ −∇ũ · ∇F (σ),

where ũ ∈ H̃1(Ω) solves the adjoint problem
∫

Ω

σ∇ũ · ∇vdx =
∫

Γ

fvds ∀v ∈ H̃1(Ω).
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Proof. For any ϑ ∈ Lp(Ω′), letting v = ũ and v = F ′(σ)ϑ in the weak formulations for F ′(σ)ϑ and ũ respectively
gives ∫

Ω′
−ϑ∇F (σ) · ∇ũdx =

∫
Γ

F ′(σ)ϑfds,

which shows the desired assertion. �

In summary, we have arrived at the following useful corollary under the assumption:

Assumption 2.12. The dimension d is d = 2, or d = 3 and additionally λ is sufficiently close to one.

The closeness of λ to one for d = 3 is due to the finite embedding exponent of H1(Ω′) into Lp(Ω′).

Corollary 2.13. Under Assumption 2.12, the operator F (σ) is differentiable, and the operator F ′(σ) is Lips-
chitz continuous with respect to the topology of H1(Ω′).

Proof. By the Sobolev embedding theorem [21], we have

H1(Ω′) ↪→ Ls(Ω′) for any
{
s <∞, d = 2,
s ≤ 6, d = 3.

Therefore the result holds naturally for d = 2. In case of d = 3, we need some Q(λ) > 2 such that 4Q(λ)
Q(λ)−2 < 6,

i.e. Q(λ) > 6, according to Lemma 2.5 and Theorem 2.9. By Meyers’ theorem, we have Q(λ) → ∞ as λ → 1
and Q(λ) depends continuously on λ [48]. Therefore for λ sufficiently close to 1, we have Q(λ) > 6 as desired.
�

Remark 2.14. Note that the classical L∞ estimates do not imply Corollary 2.13 since H1(Ω′) does not embed
continuously into L∞(Ω′) for d = 2, 3, and thus the Lp estimates derived here are advantageous for justifying
regularization in the Hilbert space H1(Ω′).

The continuity and differentiability results can be used to study various discrepancy functionals. The following
result shows the continuity of the standard least-squares discrepancy J(σ) = 1

2‖F (σ) − φδ‖2
L2(Γ ).

Proposition 2.15. The functional J is Hölder continuous with respect to Lp(Ω′) for any 1 ≤ p ≤ ∞.

Proof. First we fixed p ∈ ( 2Q(λ)
Q(λ)−2 ,∞]. For any σ, σ + ϑ ∈ A, by Cauchy-Schwarz inequality, we observe

|J(σ + ϑ) − J(σ)| ≤1
2
‖F (σ) − F (σ + ϑ)‖L2(Γ )‖F (σ) + F (σ + ϑ) − 2φδ‖L2(Γ ).

The choice p ∈ ( 2Q(λ)
Q(λ)−2 ,∞] implies the existence of a q ∈ (2, Q(λ)) such that 1

p + 1
q = 1

2 . By trace theorem [21],
Lemma 2.5 and the generalized Hölder inequality, we can estimate the term ‖F (σ + ϑ) − F (σ)‖L2(Γ ) as

‖F (σ) − F (σ + ϑ)‖L2(Γ ) ≤ C‖F (σ + ϑ) − F (σ)‖H1(Ω) ≤ C‖ϑ‖Lp(Ω′).

The term ‖F (σ) + F (σ + ϑ) − 2φδ‖L2(Γ ) is uniformly bounded by Lemma 2.2 and trace theorem. Therefore, J
is Lipschitz continuous with respect to Lp(Ω′) for any p ∈ ( 2Q(λ)

Q(λ)−2 ,∞]. The Hölder continuity with respect to
Lp(Ω′) for any 1 ≤ p ≤ ∞ follows from the uniform L∞(Ω) boundedness of the set A. �

Remark 2.16. All the results presented so far are for the admissible set A, which allows only variation of
the conductivity in the interior part Ω′ of the domain Ω. This restriction can be removed by imposing higher
regularity on the flux j, i.e., j ∈ Ls(Γ )∩H̃− 1

2 (Γ ) for sufficiently large s, and on the boundary Γ , see Theorem 3.1
in Section 3. All the results remain valid with this modification.
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3. Complete electrode model

This section discusses relevant analytical results for the complete electrode model (CEM), presently the most
accurate model. This model can achieve an accuracy comparable with experimental precision [11, 12, 53], and
thus it is standard model for medical applications.

In contrast to the continuum model discussed earlier, the CEM utilizes nonstandard boundary conditions to
capture essential features of EIT experiments, e.g., discrete nature of electrodes, contact impedance effect and
shunting effect. Let Ω ⊂ R

d(d = 2, 3) be an open bounded domain with a smooth boundary, and {el}L
l=1 ⊂ Γ

be L electrodes, each with a positive surface measure. We assume that each electrode is connected and they are
disjointed from each other, i.e., ēi ∩ ēj = ∅ for i �= j. Let R

L� := {I ∈ R
L :

∑L
l=1 Il = 0}, and H = H1(Ω) ⊕ R

L�
with its norm defined by ‖(v, V )‖2

H = ‖v‖2
H1(Ω)+‖V ‖2

RL , which is equivalent to the norm defined by ‖(v, V )‖2∗ =

‖∇v‖2
L2(Ω) +

∑L
l=1 ‖v−Vl‖2

L2(el)
[53]. Then the model reads as follows: given an input current I ∈ R

L� and a set
of positive contact impedances {zl}L

l=1, find (u, U) ∈ H such that
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−∇ · (σ∇u) = 0 in Ω,

u+ zlσ
∂u
∂n = Ul on el, l = 1, 2, . . . , L,

∫
el
σ ∂u

∂nds = Il for l = 1, 2, . . . , L,

σ ∂u
∂n = 0 on Γ\ ∪L

l=1 eL.

(3.1)

Then the inverse problem is to estimate the conductivity parameter σ from the measured voltage vector U ∈
R

L� . We note that, theoretically, the (finite-dimensional) current-to-voltage map can be regarded as a discrete
approximation of the Dirichlet-to-Neumann map of the continuum model as the electrodes get infinitesimally
small and cover the whole boundary Γ [29].

We first discuss the forward problem (3.1). The weak formulation is given by [53]: find (u, U) ∈ H such that

∫
Ω

σ∇u · ∇vdx +
L∑

l=1

z−1
l

∫
el

(u− Ul)(v − Vl)ds =
L∑

l=1

IlVl ∀(v, V ) ∈ H. (3.2)

Lax-Milgram theorem yields directly the existence and uniqueness of a solution (u, U) [53]. We denote the
solution operator by F (σ), i.e., (u, U) = (F1(σ)I, F2(σ)I) = F (σ)I ∈ H . Again, we suppress the dependence of
the solution (u, U) on the input current I. The admissible set A for the conductivity σ is given by A = {σ ∈
L∞(Ω) : λ ≤ σ ≤ λ−1 a.e. Ω} for some fixed constant λ ∈ (0, 1).

We first recall the following elliptic regularity estimate [22], Theorem 2, [25], which is analogue of Theorem 2.4
for Neumann problems. It enables exploiting the higher regularity of the Neumann boundary condition in
system (3.1) and thus establishing better regularity for the CEM model.

Theorem 3.1. For any σ ∈ A, there exists a constant Q, which depends on d and λ only and tends to ∞ and
2 as λ→ 1 and λ→ 0, respectively, such that for any q ∈ (2, Q), any s ∈ [q − q

d ,∞] and j ∈ Ls(Γ ) ∩ H̃− 1
2 (Γ ),

f ∈ (Lq(Ω))d, the solution u to the Neumann problem

−∇ · (σ∇u) = ∇ · f in Ω and σ
∂u

∂n
= j on Γ

satisfies the estimate
‖u‖W 1,q(Ω) ≤ C

(‖j‖Ls(Γ ) + ‖f‖Lq(Ω)

)
,

where C is a constant depending on d, λ, Ω and q only.

A first estimate is the uniform boundedness of the operator F (σ).
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Lemma 3.2. The operator F (σ) : A → H is uniformly bounded.

Proof. Setting (v, V ) = (u, U) ∈ H in the weak formulation (3.2) gives

λ‖∇u‖2
L2(Ω) + c0

L∑
l=1

‖u− Ul‖2
L2(el)

≤
∫

Ω

σ|∇u|2dx+
L∑

l=1

z−1
l

∫
el

(u− Ul)2ds

=
L∑

l=1

IlUl ≤ ‖I‖RL‖(u, U)‖H ,

where c0 = min{z−1
l , l = 1, . . . , L}. This shows the uniform boundedness of the operator F (σ). �

The following theorem provides the key regularity result.

Theorem 3.3. For any σ ∈ A, there exists a constant Q > 2, depending on d and λ only and tending to ∞ and
2 as λ→ 1 and λ→ 0, respectively, such that the solution (u, U) ∈ H to (3.1) satisfies for any q ∈ (2, Q(λ))

‖u‖W 1,q(Ω) ≤ C‖I‖RL ,

where C is a constant depending on d, λ, Ω and q only.

Proof. By Lemma 3.2, there exists a solution (u, U) ∈ H such that

‖(u, U)‖H ≤ C‖I‖RL .

Next we rewrite equation (3.1) as {−∇ · (σ∇u) = 0 in Ω,
σ ∂u

∂n = g, on Γ,

where the function g =
∑L

l=1
1
zl

(Ul −u)χel
∈ H̃− 1

2 (Γ ) (the fact that g ∈ H̃− 1
2 (Γ ) follows from (3.2)). Note that

u ∈ H1(Ω) and Ul is a constant. By Sobolev embedding theorem [21], we have g ∈ Ls(Γ ), ∀s <∞ if d = 2 and
g ∈ L4(Γ ) if d = 3. In the case of d = 2, by Theorem 3.1, we have for any q < Q(λ)

‖∇u‖Lq(Ω) ≤ C‖g‖Ls(Γ ) ≤ C‖I‖RL ,

by Lemma 3.2. In the case of d = 3, similarly by Theorem 3.1, we have for any q < min(Q(λ), 6) again
‖∇u‖Lq(Ω) ≤ C‖I‖RL holds. The proof of the theorem is concluded if Q(λ) < 6, otherwise we can repeat the
procedure with the estimate ‖∇u‖Lq(Ω) ≤ C‖I‖RL for q < 6 and Sobolev embedding theorem [21] that W 1,r(Ω)
with r > 3 embeds continuously into L∞(Γ ), and the theorem follows. �

With Theorem 3.3 at hand, we can state analogous continuity and differentiability results for the CEM
forward operator F (σ). The proofs are identical with those in Section 2, and thus omitted for clarity. A first
result is the following continuity result.

Lemma 3.4. For the operator F (σ) and σ, σ + ϑ ∈ A, we have the following continuity properties.

(a) For any p ∈ ( 2Q(λ)
Q(λ)−2 ,∞] and σ, σ + ϑ ∈ A we have

‖F (σ + ϑ) − F (σ)‖H ≤ C‖ϑ‖Lp(Ω);

(b) for any p ∈ ( 4Q(λ)
Q(λ)−2 ,∞], there exists a q ∈ (2, Q(λ)) such that

‖F1(σ + ϑ) − F1(σ)‖W 1,q(Ω) ≤ C‖ϑ‖Lp(Ω);



1038 B. JIN AND P. MAASS

(c) for p ≥ 1 and any q ∈ (2, Q(λ)) we have the following estimates

lim
‖ϑ‖Lp(Ω)→0

‖F1(σ + ϑ) − F1(σ)‖W 1,q(Ω) = 0.

Let us now proceed to differentiability. As before, we fix σ ∈ A, and let ϑ be a perturbation to σ belonging
to L∞(Ω). Let (w,W ) ∈ H be the weak solution to

∫
Ω

σ∇w · ∇vdx +
L∑

l=1

z−1
l

∫
el

(w −Wl)(v − Vl)ds = −
∫

Ω

ϑ∇F1(σ) · ∇vdx ∀(v, V ) ∈ H.

The above equation is the linearized problem of the CEM forward problem at σ. We shall call F ′(σ) : Lp(Ω) → H
the map from ϑ to (w,W ). Then we have the following.

Lemma 3.5. For any σ ∈ A, the linear map F ′(σ) defined above has the following continuity properties.

(a) For any p ∈ ( 2Q(λ)
Q(λ)−2 ,∞], the operator F ′(σ) : Lp(Ω) → H is bounded;

(b) for any p ∈ ( 4Q(λ)
Q(λ)−2 ,∞], there exists q ∈ (2, Q(λ)) such that F ′

1(σ) : Lp(Ω) →W 1,q(Ω) is bounded;
(c) for p ≥ 1 and any q ∈ (2, Q(λ))

lim
‖ϑ‖Lp(Ω)→0

‖F ′
1(σ)ϑ‖W 1,q(Ω) = 0.

Now we can state differentiability of the operator F (σ), and Lipschitz continuity of the operator F ′(σ).

Theorem 3.6. For any σ, σ + ϑ ∈ A, there hold

(a) For any p ∈ ( 2Q(λ)
Q(λ)−2 ,∞], the operator F (σ) is differentiable in the sense

‖F (σ + ϑ) − F (σ) − F ′(σ)ϑ‖H

‖ϑ‖Lp(Ω)
→ 0 as ϑ→ 0 in Lp(Ω);

(b) for any p ∈ ( 4Q(λ)
Q(λ)−2 ,∞], the operator F ′(σ) is Lipschitz continuous in the sense

‖F ′(σ + ϑ) − F ′(σ)‖L(Lp(Ω),H) ≤ C‖ϑ‖Lp(Ω).

As to the adjoint of the operator F ′(σ) : Lp(Ω) → R
L
� , we have the following representation.

Theorem 3.7. The adjoint of the operator F ′(σ) : Lp(Ω) → R
L
� is given by

(F ′(σ))∗ : R
L
� → Lp∗(Ω),

Ĩ �→ −∇ũ · ∇F1(σ),

where (ũ, Ũ) ∈ H solves the adjoint problem

∫
Ω

σ∇ũ · ∇vdx +
L∑

l=1

z−1
l

∫
el

(ũ− Ũl)(v − Vl)ds =
L∑

l=1

ĨlVl ∀(v, V ) ∈ H.

In summary, we have the following corollary for the CEM forward operator F (σ).

Corollary 3.8. If d = 2, or if d = 3 and additionally λ is sufficiently close to one, then the operator F (σ) is
differentiable, and the operator F ′(σ) is Lipschitz continuous with respect to the topology of H1(Ω).
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4. Applications to smoothness/sparsity regularization

Now we apply the analytical results of the previous sections to investigate several Tikhonov functionals for
the EIT inverse problem. The penalties of interest include smoothness and sparsity penalties. The former has
been very popular, while the latter has demonstrated its potential only recently [23, 36].

Due to its relatively recent origin, we would like to briefly describe the sparsity approach. Given an orthonor-
mal basis/overcomplete frame {ψk}, a signal is called sparse if the sequence of expansion coefficients with respect
to {ψk} contains only a finite (or small) number of nonzero entries. Such a prior knowledge can be effectively
used for encoding and decoding signals with far less data via �1 programming [17]. In the context of EIT,
sparsity assumption is plausible for conductivity fields that consist of an unknown but essentially uninterest-
ing background plus a number of interesting features that have relatively “simple” mathematical descriptions.
For instance, inclusions have a sparse representation in pixel basis, and piecewise constant conductivities have
sparse representations in wavelet basis. Recently, a novel reconstruction algorithm of iterative soft shrinkage type
has been developed [36], based on approximately minimizing a Tikhonov functional with the sparsity penalty,
see [36] for intricacies of its efficient implementation. The simulation and experimental results in [36] and [23]
show that sparsity constraint represents one powerful imaging technique in that it is capable of reconstructing
nonconvex/multiple inclusions with correct magnitudes.

The purpose of incorporating a priori knowledge such as smoothness or sparsity is to counter insufficient
amount of information in the data as well as to combat ill-posed nature of the problem. We are interested in
imaging conductivity fields that away from a known background σ0 are either smooth or sparse. Let ϑ = σ−σ0

be the inclusion/inhomogeneity. Here the background σ0 can be quite arbitrary, e.g., discontinuous. The setting
we are going to use for ϑ is a Hilbert space H1

0 (Ω′), i.e., ϑ ∈ H1
0 (Ω′), and we equip the space H1

0 (Ω′) with an
orthonormal basis {ψk}. Then on the sequence {〈ϑ, ψk〉} of expansion coefficients, we endow �r norms, i.e.,

‖ϑ‖r
	r

=
∞∑

k=1

|〈ϑ, ψk〉|r.

We consider the following penalty Rr(ϑ)

Rr(ϑ) =
1
r
‖ϑ‖r

	r
1 ≤ r ≤ 2.

Several remarks on the Rr penalty are in order. First, we observe that the penalty Rr(ϑ) is convex and
weakly lower semi-continuous [6]. Second, the choice r = 2 reproduces the classical smoothness penalty, i.e.,
R2(ϑ) = 1

2‖ϑ‖2
H1(Ω′) in view of the norm equivalence, which is one of most widely used penalties since the

inaugural work [54], see [45] for a survey of its applications in EIT. Third, the choice r ∈ [1, 2) is motivated
by sparsity constraint [14]. Here ϑ is assumed to have a sparse representation in the basis {ψk}, i.e., only
finitely many coefficients {〈ϑ, ψk〉} are nonzero. It is widely accepted that sparsity may be promoted via an
Rr(r ∈ [1, 2)), prominently R1, penalty on expansion coefficients. Therefore, by considering an Rr(r ∈ [1, 2])
penalty, we treat the smoothness/sparsity penalty in a unified way.

We study the linearized and fully nonlinear models separately, by capitalizing on recent progress on nonsmooth
regularization [5, 8, 24, 28, 34, 35, 46, 50]. The analysis of Tikhonov models relies mainly on the boundedness of
the derivative operator F ′(σ) and the differentiability of the forward operator F (σ) in case of linearized and
nonlinear models, respectively. Since these properties hold for both the continuum model in Section 2 and the
complete electrode model in Section 3, we refrain from repeating the statements for both models and present
only results for the continuum model. The complete electrode model can be treated analogously.

4.1. Linearized model

Although the EIT inverse problem is inherently nonlinear, a linearized model has been popular,
see [10, 45, 56, 57] for a rather incomplete list. This is partly attributed to the fact that there are diverse sources,
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possibly significant, of model uncertainties, e.g., in geometry and boundary conditions. However, the analysis
of such linearization procedure lags far behind, and many basic questions about the validity of the procedure
remains unaddressed. Recently [26] shows that such a procedure preserves the outer support of the inclusions.

The linearized model consists of approximately solving the following operator equation

F ′(σ0)ϑ+ F (σ0) − φδ = 0. (4.1)

For the analysis of (4.1), the operator F ′(σ0) should be bounded. Hence throughout this part, we require that
Assumption 2.12 hold (cf. Cor. 2.13). A first remark concerning the linearized problem (4.1) is as follows.

Remark 4.1. By Lemma 2.7 and Corollary 2.13, the linear operator F ′(σ) : H1
0 (Ω′) → H̃1(Ω) is bounded,

and by trace theorem [21], i.e., H̃1(Ω) embeds compactly into L2(Γ ), the map F ′(σ) : H1
0 (Ω′) → L2(Γ ) is thus

bounded and compact. Consequently, the linearized equation (4.1) is ill-posed. The analysis developed here does
not cover the popular TV penalty since the space of bounded variation BV (Ω′) only embeds into L d

d−1
(Ω′) [21],

while the boundedness of F ′(σ) : L d
d−1

(Ω′) → L2(Γ ) (d = 2, 3) is yet to be established.

Remark 4.2. The space �r(r ∈ [1, 2)) is a subspace of �2, and thus the Rr-penalty enforces a stronger penal-
ization than H1(Ω′)-penalty.

According to Remark 4.1 the linear operator equation (4.1) is ill-posed. For its stable numerical solution, we
consider Tikhonov regularization

ΨL(ϑ) =
1
2
‖F ′(σ0)ϑ− φ̃δ‖2

L2(Γ ) + αRr(ϑ),

where φ̃δ = φδ − F (σ0) denotes the linearized noisy data, and α is a scalar compromising the two terms.
A first question regarding any mathematical model is its well-posedness. In light of the analytical machineries

in Section 2 and Remark 4.1, we have the following existence and stability results. Hence the model ΦL is indeed
well-posed, which ensures the good numerical behavior of subsequent minimization procedures. The results
address a linear inverse problem, and follow directly from the general theory in [14].

Theorem 4.3. There exists at least one minimizer ϑδ
α to the functional ΨL. Let {φ̃n} ⊂ L2(Γ ) be a sequence

of noisy data converging to φ̃δ, and ϑn be a minimizer to ΨL with φ̃n in place of φ̃δ. Then the sequence {ϑn}
has a subsequence converging in H1(Ω′) to a minimizer of ΨL.

To state a consistency result, we first recall the concept of an Rr-minimizing solution ϑ†, i.e.,

ϑ† = argmin
ϑ∈S

Rr(ϑ), (4.2)

where the set S = {ϑ ∈ H1
0 (Ω′) : ‖F ′(σ0)ϑ− φ̃†‖L2(Γ ) = 0}. We note that, generally, the set S contains multiple

elements, and the Rr-minimizing solution ϑ† is not necessarily unique. If the linearized map F ′(σ0) is injective,
then the set S consists of only one singleton and ϑ† is necessarily unique. This concept applies also to nonlinear
models upon modifying S to S = {ϑ ∈ H1

0 (Ω′) : ‖F (σ0 + ϑ) − φ†‖L2(Γ ) = 0}, and the foregoing comments
remain valid. In particular, if the given data is the complete Neumann-to-Dirichlet map, then it is expected
that ϑ† is unique, in view of uniqueness solvability of the inverse problem, see [2] for the two-dimensional case.

The functional ΨL employs a linearized model, which represents the nonlinear model only approximately. It
is unclear whether an exact solution for the noiseless data φ̃† = φ† −F (σ0) exists or not, i.e., it may lie beyond
the range of F ′(σ0), which would result in an empty set S. Then the set S may be redefined as parameters ϑ
that attain a minimum of the residual. In order to avoid this complication, we a priori assume the existence of
a solution of the linearized problem (for the data φ̃†) as well as an Rr-minimizing solution. We note that ϑ† is
generally different from the true inclusion σ† − σ0.

Now we can state the following consistency result [14]. The consistency indicates that the minimizer ϑδ
α does

approximate the true solution ϑ† if the noise in the data φ̃δ diminishes to zero.
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Theorem 4.4. If the parameter α = α(δ) satisfies limδ→0 α(δ) = 0 and limδ→0
δ2

α(δ) = 0, then the sequence of
minimizers {ϑδ

α} has a convergent subsequence in H1(Ω′) to an Rr-minimizing solution ϑ† as δ → 0. Further,
if ϑ† is unique, then the whole sequence converges.

In order to obtain quantitative estimates for the minimizer ϑδ
α, additional conditions on the solution ϑ†, are

required. To this end, we need the adjoint of the operator F ′(σ) with respect to the H1
0 (Ω′) inner product.

Theorem 4.5. The adjoint of the operator F ′(σ) : H1
0 (Ω′) → L2(Γ ) is given by

(F ′(σ))∗ : L2(Γ ) → H1
0 (Ω′),

f �→ ũ,

where ũ ∈ H1
0 (Ω′) solves −∇2ũ+ ũ = −∇F (σ) ·∇w in Ω′, and w ∈ H̃1(Ω) is the solution to the adjoint problem

∫
Ω

σ∇w · ∇vdx =
∫

Γ

fvds ∀v ∈ H̃1(Ω).

Proof. For any ϑ ∈ H1
0 (Ω′), we have by Theorem 2.11

〈f, F ′(σ)ϑ〉L2(Γ ) = 〈ϑ,−∇F (σ) · ∇w〉L2(Ω′)

= 〈iϑ,−∇F (σ) · ∇w〉L2(Ω′)

= 〈ϑ, i∗(−∇F (σ) · ∇w)〉H1(Ω′),

where i is the embedding operator from H1
0 (Ω′) into L2(Ω′). The assertion follows directly from the expression

for the adjoint i∗ of the embedding operator i, cf., [49] Corollary 2.3. �

Now we can proceed to the important issue of convergence rate analysis. The estimate bounds the distance
between the minimizer ϑδ

α and the true solution ϑ† in terms of the noise level δ and the parameter α, and
quantitatively indicates the quality of the approximation. We shall measure the error in Bregman distance [7].
We denote by ∂Rr(ϑ) the subdifferential of the convex functional Rr at ϑ, i.e.,

∂Rr(ϑ) = {ξ ∈ H1
0 (Ω′) : Rr(ϑ′) −Rr(ϑ) ≥ 〈ξ, ϑ′ − ϑ〉 ∀ϑ′ ∈ H1

0 (Ω′)},

and define the Bregman distance dξ(ϑ, ϑ†) between ϑ and ϑ† relative to any element ξ ∈ ∂Rr(ϑ†) by

dξ(ϑ, ϑ†) = Rr(ϑ) −Rr(ϑ†) − 〈ξ, ϑ− ϑ†〉.

According to classical regularization theory [20], convergence rates can only be shown under extra conditions
on the Rr-minimizing solution ϑ†. Such conditions are known as source conditions, and usually takes the form
of range inclusion. Generally, it is accepted that it represents a certain smoothness requirement. An alterna-
tive approach is to use variational inequalities, see [27] for an up-to-date account. Mathematically, the source
condition as we shall employ below can be regarded as the necessary optimality condition for the constrained
optimization problem (cf. the definition of ϑ† in (4.2)). We would like to point out that the verification, either
theoretical or numerical, of such conditions in general is beyond reach. Readily interpretable source conditions
are still under development. Here we shall restrict our attention to the following canonical source condition,
and, additionally, sparsity constraint.

Assumption 4.6. Let ϑ† be an Rr-minimizing solution.

(a) ϑ† satisfies the source condition: there exists a w ∈ L2(Γ ) such that (F ′(σ0))∗w = ξ ∈ ∂Rr(ϑ†);
(b) ϑ† has a finite support K with respect to {ψk} and F ′(σ0) is injective on {ψk, k ∈ K}.

Now we can state a first estimate for the linearized model, which follows directly from [8].
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Theorem 4.7. Let the solution ϑ† fulfill Assumption 4.6(a). Then for a choice rule α ∼ δ, there hold

dξ(ϑδ
α, ϑ

†) ≤ Cδ and ‖F ′(σ0)ϑδ
α − φ̃δ‖L2(Γ ) ≤ Cδ.

In case of R2, Theorem 4.7 immediately gives an estimate in H1(Ω′)-norm. Actually this is true for any r ∈ (1, 2],
once noting the following inequality for Bregman distance dξ(ϑ, ϑ†) [5], Lemma 2.7, [24], Lemma 10.

Lemma 4.8. Let r ∈ (1, 2]. There exists a constant cr > 0 depending only on r such that

dξ(ϑ′, ϑ) := Rr(ϑ′) −Rr(ϑ) − 〈ξ, ϑ′ − ϑ〉 ≥
cr‖ϑ′ − ϑ‖2

H1(Ω′)

3 + 2Rr(ϑ) +Rr(ϑ′)

for all ϑ′, ϑ ∈ dom(Rr) for which ∂Rr(ϑ) �= ∅.

Hence the estimate in Theorem 4.7 implies a convergence rate of O(δ
1
2 ) in the H1(Ω′)-norm. However, the

interesting case R1 is not covered. This can be remedied by imposing extra conditions [24, 46].

Lemma 4.9. Let r ∈ [1, 2) and the solution ϑ† fulfill Assumption 4.6. Then for the subgradient ξ ∈ ∂Rr(ϑ†)

‖ϑ− ϑ†‖r
H1(Ω′) ≤ C1‖F ′(σ0)(ϑ − ϑ†)‖r

L2(Γ ) + C2dξ(ϑ, ϑ†).

Proof. The proof can be found in [24], Theorems 14 and 15, for the cases r > 1 and r = 1, respectively. �

Now we can show an enhanced convergence rate of order O(δ
1
r ).

Theorem 4.10. Let the conditions in Lemma 4.9 be fulfilled. Then for a choice rule α ∼ δ there holds

‖ϑδ
α − ϑ†‖H1(Ω′) ≤ Cδ

1
r .

Proof. By Lemma 4.9, we have

‖ϑδ
α − ϑ†‖r

H1(Ω′) ≤ C1‖F ′(σ0)(ϑδ
α − ϑ†)‖r

L2(Γ ) + C2dξ(ϑδ
α, ϑ

†)

≤ C1

(
‖F ′(σ0)ϑδ

α − φ̃δ‖L2(Γ ) + ‖F ′(σ0)ϑ† − φ̃δ‖L2(Γ )

)r

+ C2dξ(ϑδ
α, ϑ

†).

Now the second assertion follows from the choice α ∼ δ and Theorem 4.7. �

Remark 4.11. The injectivity of the operator F ′(σ0) on the finite-dimensional subspace {ψk, k ∈ K} is crucial
for deriving the enhanced convergence rate. It holds for piecewise polynomial/analytic conductivity distributions
in case that the operator F (σ) is the Neumann-to-Dirichlet map [26, 44]. Hence Theorem 4.10 holds with the
further restriction on the basis {ψk} of being piecewise analytic.

Remark 4.12. The current analysis focuses on the a priori choice α ∼ δ. However, one can show that under
certain conditions, with α chosen by the discrepancy principle, i.e., α satisfies ‖F ′(σ0)ϑδ

α − φ̃δ‖ = cδ (c ≥ 1),
the solution ϑδ

α also converges, and analogous estimates as in Theorems 4.7 and 4.10 hold, see, e.g., [35]. The
discrepancy principle is useful if an estimate of the noise level δ is known. In practice, it is also useful to employ
heuristic rules, e.g., balancing principle [34], for which a posteriori estimates can be established.
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4.2. Nonlinear model

Now we turn to the full nonlinear model. Some theoretical studies on the nonlinear EIT model have been
carried out for the Mumford-Shah and TV penalty in [52] and [51], respectively. Here we consider the Rr-penalty,
which covers both conventional H1- and sparsity penalty, i.e.,

Ψ(ϑ) =
1
2
‖F (σ) − φδ‖2

L2(Γ ) + αRr(ϑ), (4.3)

where ϑ = σ − σ0 stands for the inhomogeneity as before. We shall again denote the minimizer to Ψ by ϑδ
α,

and let σδ
α = σ0 + ϑδ

α, likewise σ† = σ0 + ϑ†. Under suitable assumptions, such penalties have been treated for
general nonlinear operators. We will refer to these results whenever appropriate.

We begin with the following existence, stability and consistency result, i.e., the minimization problem as
defined in (4.3) is well-posed.

Theorem 4.13. There exists at least one minimizer ϑδ
α to the functional Ψ(σ) (over the admissible set A).

Let {φn} ⊂ L2(Γ ) be a sequence of noisy data converging to φδ, and ϑn be a minimizer to Ψ with φn in place
of φδ. Then the sequence {ϑn} has a subsequence converging in H1(Ω′) to a minimizer of Ψ . Moreover, if the
parameter α = α(δ) satisfies limδ→0 α(δ) = 0 and limδ→0

δ2

α(δ) = 0, then the sequence of minimizers {ϑδ
α} has

a subsequence converging in H1(Ω′) to an Rr-minimizing solution ϑ† as δ → 0. Furthermore, if ϑ† is unique,
then the whole sequence converges.

Proof. We only sketch the existence proof. The nonnegativity of Ψ implies the existence of a minimizing sequence
{ϑn} ⊂ A, for which {Rr(ϑn)} is uniformly bounded. From the inequality ‖ϑn‖	2 ≤ ‖ϑn‖	r ≤ C for r ≤ 2, we
deduce the uniform boundedness of {ϑn} in H1(Ω′). Therefore, we can extract a subsequence, also denoted by
{ϑn}, and some ϑ∗ ∈ H1

0 (Ω), such that ϑn → ϑ∗ weakly in H1(Ω′). By Sobolev embedding theorem [21], it
converges strongly in Lp(Ω′) for any p < 6 in case of d = 2, 3. Proposition 2.15 implies limn→∞ J(σn) = J(σ∗),
from which and the weak lower semicontinuity of Rr(ϑ) follows the desired assertion. The rest follows from the
general theory of sparsity regularization for nonlinear inverse problems [28]. �

To obtain convergence rates results, the operator F (σ) should be differentiable, and thus Assumption 2.12 is
required such that Corollary 2.13 holds. Similar to Section 4.1, we make the following assumptions.

Assumption 4.14. Let ϑ† be an Rr-minimizing solution.

(a) ϑ† satisfies the source condition: there exists a w ∈ L2(Γ ) such that (F ′(σ†))∗w = ξ ∈ ∂Rr(ϑ†) and the
norm ‖w‖L2(Γ ) is sufficiently small;

(b) ϑ† has a finite support K with respect to {ψk}, and F ′(σ†) is injective on {ψk, k ∈ K}

Next we state a first error estimate for the minimizer ϑδ
α. The proof is standard [19], but we include it for

completeness.

Theorem 4.15 (1 < r ≤ 2). Let r ∈ (1, 2] and Assumptions 2.12 and 4.14(a) be fulfilled. Then for a choice
rule α ∼ δ, there holds

dξ(ϑδ
α, ϑ

†) ≤ Cδ and ‖F (σδ
α) − φδ‖L2(Γ ) ≤ Cδ.

Proof. The minimizing property of ϑδ
α implies

1
2
‖F (σδ

α) − φδ‖2
L2(Γ ) + αRr(ϑδ

α) ≤ 1
2
‖F (σ†) − φδ‖2

L2(Γ ) + αRr(ϑ†).
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For a choice rule α ∼ δ, this yields Rr(ϑδ
α) ≤ C + Rr(ϑ†). Appealing to the source condition in Assumption

4.14(a) and the Cauchy-Schwarz inequality, we arrive at

1
2
‖F (σδ

α) − φδ‖2
L2(Γ ) + αdξ(ϑδ

α, ϑ
†) ≤1

2
‖F (σ†) − φδ‖2

L2(Γ ) − α〈ξ, ϑδ
α − ϑ†〉

≤1
2
‖F (σ†) − φδ‖2

L2(Γ ) + α‖w‖L2(Γ )‖F (σδ
α) − F (σ†)‖L2(Γ )

+ α‖w‖L2(Γ )‖θ(ϑδ
α, ϑ

†)‖L2(Γ ),

(4.4)

where the linearization error θ(ϑδ
α, ϑ

†) is defined as

θ(ϑδ
α, ϑ

†) = F (σδ
α) − F (σ†) − F ′(σ†)(ϑδ

α − ϑ†). (4.5)

By the Lipschitz continuity of F ′(σ) in Corollary 2.13, we have

‖θ(ϑδ
α, ϑ

†)‖L2(Γ ) ≤ L

2
‖ϑδ

α − ϑ†‖2
H1(Ω′). (4.6)

With the help of the triangle inequality and Young’s inequality, we deduce

α‖w‖L2(Γ )‖F (σδ
α) − F (σ†)‖L2(Γ ) ≤ α‖w‖L2(Γ )‖F (σ†) − φδ‖L2(Γ ) +

1
2
α2‖w‖2

L2(Γ ) +
1
2
‖F (σδ

α) − φδ‖2
L2(Γ ).

In view of the preceding three inequalities, we arrive at

α

[
dξ(ϑδ

α, ϑ
†) − L

2
‖w‖L2(Γ )‖ϑδ

α − ϑ†‖2
H1(Ω′)

]
≤ 1

2
(‖F (σ†) − φδ‖L2(Γ ) + α‖w‖L2(Γ )

)2
.

The first assertion follows from this inequality, Lemma 4.8 and the choice of α. Next we estimate the term
‖F (σδ

α) − φδ‖L2(Γ ). From inequality (4.4), we have

1
2
‖F (σδ

α) − φδ‖2
L2(Γ ) + αdξ(ϑδ

α, ϑ
†) ≤ 1

2
‖F (σ†) − φδ‖2

L2(Γ ) − α〈w,F (σδ
α) − F (σ†)〉 + α〈w, θ(ϑδ

α, ϑ
†)〉,

which upon completing the squares gives

1
2
‖F (σδ

α) − φδ + αw‖2
L2(Γ ) + αdξ(ϑδ

α, ϑ
†) ≤ 1

2
‖F (σ†) − φδ + αw‖2

L2(Γ ) + α‖w‖L2(Γ )‖θ(ϑδ
α, ϑ

†)‖L2(Γ ).

The desired assertion on ‖F (σδ
α) − φδ‖L2(Γ ) follows from this and the choice α ∼ δ. �

Remark 4.16. An inspection of the proof indicates that the restriction on ‖w‖L2(Γ ) depends on three factors:
the Lipschitz constant of F ′(σ), the exponent r and Rr(ϑ†). In case of r = 2, the Bregman distance dξ(ϑδ

α, ϑ
†)

reduces to 1
2‖ϑδ

α − ϑ†‖2
H1(Ω′), and thus the condition can be explicitly written as L‖w‖L2(Γ ) < 1 [19].

By Lemma 4.8, Theorem 4.15 gives a convergence rate O(δ
1
2 ) in H1(Ω′). The additional condition from

Assumption 4.14(b) can enhance the convergence rate from O(δ
1
2 ) to O(δ

1
r ).

Theorem 4.17 (1 < r < 2). Let Assumptions 2.12 and 4.14 be fulfilled. Then for a choice rule α ∼ δ there
holds

‖ϑδ
α − ϑ†‖H1(Ω′) ≤ Cδ

1
r .



ANALYSIS OF ELECTRICAL IMPEDANCE TOMOGRAPHY 1045

Proof. By Lemma 4.9, we have

‖ϑδ
α − ϑ†‖r

H1(Ω′) ≤ C1‖F ′(σ†)(ϑδ
α − ϑ†)‖r

L2(Γ ) + C2dξ(ϑδ
α, ϑ

†).

We estimate the term ‖F ′(σ†)(ϑδ
α − ϑ†)‖L2(Γ ) by noting (4.5) as follows

‖F ′(σ†)(ϑδ
α − ϑ†)‖L2(Γ ) ≤ ‖F (σδ

α) − F (σ†)‖L2(Γ ) + ‖F (σδ
α) − F (σ†) − F ′(σ†)(ϑδ

α − ϑ†)‖L2(Γ )

≤ ‖F (σδ
α) − φδ‖L2(Γ ) + ‖F (σ†) − φδ‖L2(Γ ) +

L

2
‖ϑδ

α − ϑ†‖2
H1(Ω′).

The term ‖ϑδ
α − ϑ†‖H1(Ω′) can be bounded as follows

‖ϑδ
α − ϑ†‖2

H1(Ω′) ≤ Cdξ(ϑδ
α, ϑ) ≤ Cδ,

by Lemma 4.8 and Theorem 4.15. The conclusion follows directly from these estimates. �

Theorem 4.17 does not cover the case R1. Nonetheless, an analogous estimate holds.

Theorem 4.18 (r = 1). Let the solution ϑ† be unique, and Assumptions 2.12 and 4.14 be fulfilled. Then for
small δ and a choice rule α ∼ δ, the following estimate holds

‖ϑδ
α − ϑ†‖H1(Ω′) ≤ Cδ

1
2 .

Proof. The minimizing property of ϑδ
α implies

1
2
‖F (σδ

α) − φδ‖2
L2(Γ ) + αR1(ϑδ

α) ≤ 1
2
‖F (σ†) − φδ‖2

L2(Γ ) + αR1(ϑ†),

which together with the choice α ∼ δ yields

‖F (σδ
α) − φδ‖L2(Γ ) ≤ C3δ

1
2 . (4.7)

Appealing to the source condition ξ = (F ′(σ†))∗w ∈ ∂R1(ϑ†) from Assumption 4.14(a) and the definition of the
linearization error θ(ϑδ

α, ϑ
†), i.e., (4.5), we deduce

1
2
‖F (σδ

α) − φδ‖2
L2(Γ ) + αdξ(ϑδ

α, ϑ
†) ≤ 1

2
‖F (σ†) − φδ‖2

L2(Γ ) − α〈w,F ′(σ†)(ϑδ
α − ϑ†)〉

=
1
2
‖F (σ†) − φδ‖2

L2(Γ ) − α〈w,F (σδ
α) − F (σ†)〉 + α〈w, θ(ϑδ

α, ϑ
†)〉.

(4.8)

In particular, this together with the choice α ∼ δ implies

dξ(ϑδ
α, ϑ

†) ≤ C4δ − 〈w,F (σδ
α) − F (σ†)〉 + 〈w, θ(ϑδ

α, ϑ
†)〉.

Next by Lemma 4.9, we have

‖ϑδ
α − ϑ†‖H1(Ω′) ≤ C1‖F ′(σ†)(ϑδ

α − ϑ†)‖L2(Γ ) + C2dξ(ϑδ
α, ϑ

†)

≤ C1

(‖F (σδ
α) − F (σ†)‖L2(Γ ) + ‖θ(ϑδ

α, ϑ
†)‖L2(Γ )

)
+ C2dξ(ϑδ

α, ϑ
†).

These two inequalities together with inequality (4.6), the Cauchy-Schwarz inequality and estimate (4.7) yield

‖ϑδ
α − ϑ†‖H1(Ω′) ≤C2C4δ + (C1 + C2‖w‖L2(Γ ))‖F (σδ

α) − F (σ†)‖L2(Γ )

+ (C1 + C2‖w‖L2(Γ ))‖θ(ϑδ
α, ϑ

†)‖L2(Γ )

≤C2C4δ + (C1 + C2‖w‖L2(Γ ))(δ + C3δ
1
2 ) + (C1 + C2‖w‖L2(Γ ))

L

2
‖ϑδ

α − ϑ†‖2
H1(Ω′).
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Upon letting C5 = (C1 + C2‖w‖L2(Γ ))L
2 and C6 = (C1 + C2‖w‖L2(Γ ))(δ

1
2 + C3) + C2C4δ

1
2 , this gives C5t

2 −
t + C6δ

1
2 ≥ 0 for t = ‖ϑδ

α − ϑ†‖H1(Ω′). For sufficiently small δ, we have 1 − 4C5C6δ
1
2 > 0. Hence, the above

quadratic polynomial in t has two distinct positive roots, and the inequality amounts to

t ≥ 1 +
√

1 − 4C5C6δ
1
2

2C5
or t ≤ 1 −

√
1 − 4C5C6δ

1
2

2C5
·

By virtue of the consistency result in Theorem 4.13, the latter case holds, i.e.,

‖ϑδ
α − ϑ†‖H1(Ω′) ≤ 1 −

√
1 − 4C5C6δ

1
2

2C5
≤ 2C6δ

1
2 ,

where we have utilized the elementary inequality
√

1 − s ≥ 1 − s, ∀s ∈ [0, 1]. This concludes the proof. �
Remark 4.19. The estimate (4.7) yields an upper bound for the discrepancy term, which can be improved by
a bootstrap argument as follows: the estimate in Theorem 4.18 and applying the Cauchy-Schwarz inequality to
(4.8) leads to

1
2
‖F (σδ

α) − φδ‖2
L2(Γ ) ≤

1
2
δ2 + α‖w‖L2(Γ )(δ + C3δ

1/2) + α‖w‖L2(Γ )
L

2
δ

and hence ‖F (σδ
α) − φδ‖L2(Γ ) ≤ Cδ

3
4 .

This improved estimate for the discrepancy term can then be used to obtain an improved estimate for
‖ϑδ

α −ϑ†‖H1(Ω′). By repeating the arguments in the proof above we get an estimate of order ‖ϑδ
α −ϑ†‖H1(Ω′) =

O(δ
3
4 ). This bootstrap procedure can be repeated to derive convergence rate of order O(δs) for any s < 1.

5. Concluding remarks

In this paper we have presented an analysis of two popular EIT models, i.e., continuum model and complete
electrode model, and the continuity and differentiability of the forward operator with respect to Lp norms are
shown. The analytical results are applied to study several regularization formulations with smoothness/sparsity
penalty for the linearized and nonlinear models, which in particular covers the conventional H1 penalty and the
recent sparsity penalty. The existence of a minimizer, stability and consistency are discussed, and convergence
rates are derived. These results partially justify several widely adopted imaging techniques as well as the recent
sparsity approach [36], for which excellent empirical performance has been observed previously.

There are several avenues for further research. Firstly, we have restricted our attention to Tikhonov regu-
larization with an �r-penalty. Alternative approaches, e.g., iterative regularization methods such as Landweber
and Gauss-Newton methods in Banach spaces [38], might also be justified using the presented analytical results.
Secondly, the operator F ′(σ) deserves further attention, e.g. the solvability of the linearized equation. Thirdly,
refined regularity for the forward model is of immense interest. The derivations herein utilize Meyers estimate,
which relies only on the L∞(Ω) bound of the parameter σ, and the extra regularity on the conductivity σ, e.g.,
BV or H1, might enable deriving more refined estimates. Finally, various aspects of numerical implementation
of Tikhonov models are of much practical significance, especially in a functional analytic setting. These in-
clude an appropriate choice of the functional gradient, verifiable convergence proof of optimization algorithms,
e.g., iterative soft shrinkage and Newton type methods, for minimizing relevant Tikhonov models, precondi-
tioning strategies for accelerating convergence, and designing consistent finite-dimensional approximations. The
analytical results presented herein are expected to play an essential role in interrogating these important issues.
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