

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor del artículo publicado en:
This is an author produced version of a paper published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence 31.2 (2009):

245 – 259

DOI: http://dx.doi.org/10.1109/TPAMI.2008.78

Copyright: © 2009 IEEE

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1109/TPAMI.2008.78

1

An Analysis of Ensemble Pruning Techniques

Based on Ordered Aggregation

Gonzalo Martı́nez-Muñoz, Daniel Hernández-Lobato,

and Alberto Suárez, Member, IEEE

G. Martı́nez-Muñoz, D. Hernández-Lobato and A. Suárez are with the Computer Science Department, Universidad Autónoma

de Madrid, C/ Francisco Tomás y Valiente, 11, Madrid 28049 Spain. Emails: {gonzalo.martinez, daniel.hernandez and

alberto.suarez} @uam.es.

February 25, 2008 DRAFT

2

Abstract

Several pruning strategies that can be used to reduce the size and increase the accuracy of bag-

ging ensembles are analyzed. These heuristics select subsets of complementary classifiers that, when

combined, can perform better than the whole ensemble. The pruning methods investigated are based on

modifying the order of aggregation of classifiers in the ensemble. In the original bagging algorithm, the

order of aggregation is left unspecified. When this order is random, the generalization error typically

decreases as the number of classifiers in the ensemble increases. If an appropriate ordering for the

aggregation process is devised, the generalization error reaches a minimum at intermediate numbers of

classifiers. This minimum lies below the asymptotic error of bagging. Pruned ensembles are obtained by

retaining a fraction of the classifiers in the ordered ensemble. The performance of these pruned ensembles

is evaluated in several benchmark classification tasks under different training conditions. The results of

this empirical investigation show that ordered aggregation can be used for the efficient generation of

pruned ensembles that are competitive, in terms of performance and robustness of classification, with

computationally more costly methods that directly select optimal or near-optimal subensembles.

Index Terms

Ensembles of classifiers, bagging, decision trees, ensemble selection, ensemble pruning, ordered

aggregation.

I. INTRODUCTION

Pooling the decisions of classifiers that are complementary can improve the classification

accuracy of an ensemble with respect to individual learners. Two classifiers are said to be

complementary when their errors are uncorrelated. When complementary classifiers are combined

in an ensemble, correct decisions are amplified by the aggregation process [1], [2]. A necessary,

albeit not sufficient, condition for complementarity is that the classifiers be diverse [3].

In bagging, diversity is achieved using different bootstrap samples of the training data to

construct each ensemble member [4]. Bagging does not explicitly encourage the generation

of complementary classifiers. The diversity among the ensemble members has its origin in the

statistical fluctuations of the random bootstrap sampling process. In general, the error of bagging

becomes smaller as the number of classifiers aggregated in the ensemble increases. Eventually,

the error asymptotically tends to a constant level at large ensemble sizes. This asymptotic error

level is generally considered the best result that bagging can achieve. Bagging is a very robust

February 25, 2008 DRAFT

3

learning algorithm under diverse noise conditions [5], [6]. Because of the statistical origin of

the error reduction produced by bagging, the amount of overfitting does not generally increase

with the number of classifiers that are combined [7].

Another very effective ensemble algorithm is boosting [8], [9]. In boosting, the ensemble

grows by incorporating a new classifier that is constructed using the original training data with

modified weights: The weights of the examples that are incorrectly (correctly) classified by the

most recent classifier in the ensemble are increased (decreased). In this way, the new base learners

gradually focus on examples that are harder to classify by previous ensemble members. This

sequential mechanism encourages the construction of learners that are complementary. Boosting

is one of the most effective methods for constructing ensembles [5], [6], [10]. However, its

performance is poor in noisy domains [5], [6], [11] and overfitting is sometimes observed when

large numbers of classifiers are combined [12]. In general, bagging is considered safer and more

robust than boosting [11].

Despite their remarkable performance, a major drawback of ensembles is that, generally, it

is necessary to combine a large number of classifiers to ensure that the error converges to its

asymptotic value. This entails large memory requirements and slow speeds of classification.

These aspects can be critical in online applications [13], [14]. A possible way to alleviate these

shortcomings is the selection of a fraction of the classifiers from the original ensemble. Besides

the reduction in complexity, ensemble pruning has other potential benefits. In particular, a subset

of complementary classifiers can perform better than the complete ensemble [13], [15]–[21].

The selection of the subset of classifiers that has the best generalization performance is a

difficult problem whose solution is computationally expensive. Assuming that the generalization

performance can be estimated in terms of some quantity measured on the training set, the

problem of finding the optimal subensemble is a combinatorial search whose complexity grows

exponentially with the size of the initial pool of classifiers: For an ensemble of T classifiers,

the number of non empty subensembles is 2T − 1. Therefore, computing the exact solution by

exhaustive search is unfeasible for typical ensemble sizes. To overcome this difficulty, it is possi-

ble to use approximate algorithms that, with high probability, select near-optimal subensembles.

In particular, genetic algorithms (GA) [15], [16] and semidefinite programing (SDP) [22] have

been recently proposed to address the problem of ensemble pruning. Despite the fact that the

time complexity of these methods is no longer exponential in the size of the initial ensemble,

February 25, 2008 DRAFT

4

their computational costs are still rather large.

In this work we analyze the properties and performance of a family of ensemble pruning

methods based on ordered aggregation [13], [17]–[21]. Since they are based on reordering, their

computational costs tend to be lower than the direct selection methods. These techniques take

advantage of correlations between the individual classifiers of the ensemble to identify near-

optimal nested subensembles of increasing size. Starting with an optimal subensemble of size

u− 1, a near-optimal subensemble of size u is obtained by incorporating the classifier from the

initial pool of classifiers generated by bagging that is expected to improve the performance of

the augmented subensemble the most. Even if this assumption does not hold exactly, it seems

reasonable to expect that optimal subensembles of sizes u−1 and u share most of their classifiers.

Using this greedy algorithm, the combinatorial search problem is reduced to reordering the

classifiers in the ensemble. The time complexity of this simpler problem is polynomial in the

size of the ensemble.

Pruning based on ordered aggregation can be effective in parallel ensemble methods, which

are composed of individual classifiers that are trained independently, when the decisions of the

classifiers are combined using simple majority voting. In sequential ensembles, such as boosting,

the individual classifiers are generated in an order that is specified by the learning algorithm.

Modifying this ordering in the aggregation stage is not expected to be useful for the selection

near-optimal subsets of classifiers. In fact, pruning does not significantly improve and sometimes

slightly deteriorates the classification accuracy of boosting ensembles [13], [22], [23].

The goal of this investigation is to analyze the performance of pruned ensembles generated via

ordered aggregation in terms of the characteristics of the classification problems and of alternative

configurations of the learning process. In particular, we investigate the following issues: whether

the ordered subensembles have a comparable performance to the optimal ones, identified with

exhaustive search; what is the influence of the conditions for training, namely, the amount of

labeled examples available for training and the use of an independent selection set for ordering;

how large the initial pool of classifiers should be, and how the performance of the pruned ordered

ensembles depends on the complexity of the base learners. We also address questions regarding

the cost of the different pruning methods, the memory requirements for storage, the speed of

classification and the accuracy of the selected subensembles. Finally, we asses the robustness of

their classification performance in problems contaminated with noise in the class labels.

February 25, 2008 DRAFT

5

The organization of the article is as follows: Section II reviews previous work on ensemble

pruning. Pruning methods based on altering the order of aggregation in bagging are described in

Section III. Section IV presents an empirical analysis of the pruning methods based on ordered

aggregation. Their performance is compared with two effective ensemble pruning methods (based

on Genetic Algorithms, and on Semi-definite Programming) and with Adaboost. A summary of

the results and conclusions of this investigation is given in V.

II. RELATED WORK

In a real-world application, it is difficult to justify the use of a classification system that requires

more storage than the data from which it is induced, especially when a simple technique, such

as nearest-neighbors, can also perform sufficiently well. This observation spurred Margineantu

& Dietterich to investigate if, in fact, all the classifiers generated in a boosting ensemble are

essential for its performance [13]. Using pruning heuristics based on measures of diversity and

classification accuracy they empirically show that, in the classification tasks investigated, the

number of classifiers of a boosting ensemble can be substantially reduced (up to 60-80% in some

classification problems) without a significant deterioration of the generalization accuracy of the

ensemble. Similar pruning strategies are investigated in [19], [24]. In [19], the initial complete

ensemble is thinned (using the term proposed by the authors) by a sequential backward selection

process that attempts to maximize the accuracy of the ensemble by eliminating classifiers whose

contribution to the generalization performance (estimated in terms of measures of accuracy and/or

diversity on the training set) is either detrimental or small.

In the investigations carried out by Zhou et al. [15], [16], genetic algorithms (GA) are applied

to the selection of optimal subensembles. In [15], a GA is used to evolve the voting weights

of the individual predictors in an ensemble of neural networks. Once the final chromosome is

obtained, only the classifiers whose weight is above the average of the weights in the selected

chromosome are included in the pruned ensemble. A similar procedure is applied to ensembles

of decision trees using binary chromosomes that directly encode which classifiers should be

aggregated in the final ensemble [16]. This approach has been applied to boosting in [23].

In [22], ensemble pruning is formulated as a quadratic integer programming problem defined

in terms of a matrix G, whose element Gij represents the number of common errors between

classifier i and classifier j. The diagonal term Gii is the number of errors made by classifier i.

February 25, 2008 DRAFT

6

Normalization is applied so that the elements on the matrix are on the same scale

G̃ii =
Gii

N
, G̃ij,i6=j =

1

2

(

Gij

Gii

+
Gji

Gjj

)

, (1)

where N is the number of training instances. Intuitively
∑

i G̃ii measures the overall strength

of the ensemble classifiers and
∑

ij,i6=j G̃ij measures their diversity. The subensemble selection

problem of size k can now be formulated as a quadratic integer programming problem

arg min
z

z
T · G̃ · z, s.t.

∑

i

zi = k, zi ∈ {0, 1}. (2)

The binary variable zi indicates whether classifier i should be selected. The size of the pruned

ensemble, k, needs to be specified beforehand. This problem is a standard binary optimization

problem, which is NP-hard. However, its solution can be approximated in polynomial time by

applying semi-definite programming (SDP) to a convex relaxation of the original problem [22].
In [25], [26], Tsoumakas et al. devise a pruning method called selective fusion that combines

the outputs of a subset of classifiers selected from a heterogeneous ensemble using weighted

voting. The selection of the optimal subsensemble is approached as a multiple comparisons

problem, which is solved by applying statistical tests to detect significant differences in cross-

validation estimates of the prediction errors. In a separate work, these authors propose to use

reinforcement learning to identify optimal subensembles [27]. More recently, Meynet and Thiran

have proposed an information theoretic measure of ensemble performance that can be used for

the selection of a subset from an initial pool of classifiers [28].
Ensemble pruning has also been studied in cost-sensitive applications, where the benefits of

correct classification and the penalties for errors are example-dependent [29]. A greedy approach

based on the total benefit only (i.e. ignoring the possible effects of diversity) allowed pruning

rates of up to 90% without deterioration of performance. Furthermore, the authors note that, for a

given instance, the combined output of the classifiers in the ensemble often converges to its final

value before all ensemble classifiers are queried. Based on this observation, a dynamic instance-

based pruning method is proposed: the combination process is stopped when the probability that

the current prediction will be modified by the contribution of the remaining classifiers falls below

a specified (small) value. Subsets of different sizes are used for classifying different examples.
There are other instance-based (dynamic) techniques for classifier selection based on measures

of local accuracy [30]–[33]. The main goal of these methods is to improve the overall perfor-

mance of the ensemble by selecting and/or giving more weight to the classifiers that perform best

February 25, 2008 DRAFT

7

in instances that are similar to the one that is being classified. In general, these methods do not

reduce the storage and computational needs for classification. Typically, all ensemble members

need to be retained in memory. Furthermore, there is a computational overhead in selecting for

each instance the classifiers involved in the final prediction.

An alternative to selecting a subset of classifiers consists in replacing the ensemble by a single

surrogate classifier that reproduces the decisions of the original ensemble. Combined Multiple
Models [34] builds a single classifier using a training set that, besides the original training

examples, includes synthetic examples labeled by the ensemble.

A technique that is intermediate between the selection of classifiers and the substitution of the

ensemble by a single classifier is described in [14]. First, a new classification task is defined.

This task consists in predicting the class label assigned by the ensemble as a whole to each

of the examples in the original training set, using the outputs of the individual classifiers as

predictor variables. Using this auxiliary training data a CART tree is fully grown and then

pruned using cost-complexity pruning [35]. Finally, a selected subensemble is obtained from the

original ensemble by eliminating those classifiers whose outputs are not used in the decisions

of the CART tree.

In [36], the cost in time of classifying new instances is considered in the selection process.

Ensembles are pruned by maximizing a utility function that explicitly takes into account both

speed of classification and accuracy. Ref. [37] analyzes different methods for selecting subsets

of classifiers from an ensemble in terms of accuracy and diversity.

A different method for ensemble pruning is to replace the ensemble by a set of classifiers

using clustering. The objective is to group classifiers by similarity and to retain one representative

classifier per cluster [38], [39].

Most of these studies focus on small ensembles. A notable exception is [18], where an

extensive library of approximately 2000 models is compiled by inducing classifiers of different

types (support vector machines, artificial neural nets, nearest-neighbors, decision trees, bagged

decision trees, boosted decision trees, and boosted stumps), and with different parameter settings

from the same training data. A subset of models is selected from this library according to different

performance metrics: Accuracy, cross entropy, mean precision, ROC area, etc.

February 25, 2008 DRAFT

8

III. PRUNING IN ORDERED BAGGING ENSEMBLES

 In this section, we introduce a family of pruning methods based on modifying the order in

which classifiers are aggregated in a bagging ensemble. The order of aggregation in the original

bagging algorithm is unspecified. In practice, classifiers are aggregated in the same random order

as they are generated from the different bootstrap samples of the original training data. In

randomly ordered ensembles, the classification error generally exhibits a monotonic decrease as

a function of the number of elements in the emsemble (upper curve in Fig. 1). For large ensemble

sizes these curves approach an asymptotic constant error level, which is usually considered the

best result that bagging can achieve. The number of classifiers that should be included in the

ensemble can be determined using heuristic rules [40].

 Before describing the pruning methods in detail, it is useful to introduce some notation. The

input of the learning algorithm consists in a set of labeled

instances . Each instance is characterized by a feature

vector (also known as the vector of attributes or predictor variables), , and a class

label . The objective of the learning algorithm is to induce from the training

data , a hypothesis that predicts the class label of a new example characterized by the

vector of attributes .

 Ensemble methods generate a variety of hypothesis (training phase) that are pooled to produce

a final prediction by either weighted or unweighted voting, stacking, or some other combination

methodology (classification phase). The result of combining the predictions of the classifiers in

Fig. 1. Error curves that trace the dependence of the classification error as a function of ensemble size for bagging (upper curve)

and ordered bagging (lower curve). The shape of these curves is similar for most of the classification problems investigated.

9

ensemble ET ≡ {ht(x)}T
t=1 using equally-weighted voting is

HET
(x) = arg max

y

T
∑

t=1

I (ht(x) = y) , y ∈ Y . (3)

where I(·) is an indicator function (I(true) = 1 and I(false) = 0), ht(x) is the class label

predicted by the tth member of the ensemble, and Y = {1, 2, . . . , l} is the set of possible class

labels. In this work, ties are resolved by discarding the votes of the last classifiers included in

the ensemble, one at a time, until the tie is broken. The ordering rules make use of a selection

set composed of Nsel labeled examples Zsel = {(xi, yi), i = 1, . . . , Nsel} to guide the order of

aggregation. In general, the training set is also used for selection (i.e. Zsel = Ztrain).

The pruning strategies proposed are based on modifying the order of aggregation in the bagging

ensemble: classifiers that are expected to perform better when combined are aggregated first.

From the subensemble Su−1 of size u − 1, the subensemble Su of size u is constructed by

incorporating a single classifier selected from the set ET\Su−1, which contains the classifiers

from the original ensemble not included in Su−1. This classifier is identified using a rule that

attempts to optimize the performance of the augmented ensemble Su. The original random order

of the pool of classifiers t = 1, 2, . . . , T is replaced by an ordered sequence s1, s2, . . . , sT , where

sj is the original label (in the randomly ordered bagging ensemble) of the classifier that occupies

the jth position in the newly ordered ensemble. The curves that trace the evolution of the error

as a function of the number of classifiers included in the ordered ensemble generally exhibit

a minimum at intermediate ensemble sizes (lower curve in Fig. 1). This minimum corresponds

to subensembles whose misclassification rates are below the error of the complete bagging

ensemble. In this manner, approximate solutions to the problem of identifying near-optimal

subensembles can be obtained in polynomial time. Finally, depending on the desired amount of

pruning, the first τ classifiers in the sequence are selected. If the goal is to improve accuracy, τ

should correspond to the minimum in the test set. Determining the location of the minimum in

the test error curve using information only from the training set is a difficult task since test and

train minima can occur at different subensemble sizes. Nonetheless, the minimum observed in

the ensemble test error curves is fairly broad, which means that it is easy to improve the results

of bagging by early stopping in the aggregation process in the ordered bagging ensembles. A

heuristic that performs well in ensembles of standard (pruned) CART trees consists in stopping

the aggregation process after 20 − 40% of the classifiers in the ordered ensemble have been

February 25, 2008 DRAFT

10

incorporated [17], [21].

It is known in the literature that neither the accuracy of the base classifiers nor diversity are

by themselves sufficient to identify effective ensembles [3], [41]. Successful ensemble creation

methods need to take into account both accuracy and diversity [28], [42]. Preliminary experiments

using ordered aggregation [17] confirm that the properties of individual classifiers are not useful

to identify subensembles with good generalization performance, and that it is necessary to take

into account the complementarity of the classifiers. In particular, an individual classifier may have

a poor performance but its contribution can be important when combined with other classifiers

in the ensemble, provided that it correctly classifies examples in which the rest of the ensemble

errs. Some rules that can be used to guide the aggregation ordering are: Reduce-Error pruning

[13], Kappa Pruning [13], Complementarity Measure [17], Margin Distance Minimization [17],

Orientation Ordering [20] and Boosting-Based pruning [21].

1) Reduce-Error pruning: This method was proposed by Margineantu and Dietterich in [13].

The first classifier incorporated to the ensemble is the one with the lowest classification error, as

estimated on the selection set Zsel. The remaining classifiers are then sequentially incorporated in

the ensemble, one at a time, in such a way that the classification error of the partial subensemble,

estimated on the selection set, is as low as possible. In particular, the subensemble Su, is

constructed by incorporating to Su−1 the classifier

su = arg max
k

∑

(x,y)∈Zsel

I

(

HSu−1 ∪hk
(x) = y

)

, k ∈ ET\Su−1, (4)

where the index k runs over the classifiers that have not already been selected up to that iteration.

In the original algorithm proposed in [13], backfitting is applied after each step. Backfitting

sequentially attempts to replace one of the selected classifiers by another classifier not yet

included in the ensemble. A replacement is made if a classifier that reduces the subensemble

error is found in the pool of unselected classifiers. If one or more classifiers are substituted then

backfitting is applied repeatedly with a limit of 100 iterations. In bagging ensembles, when the

training set is used as the selection set, backfitting does not significantly reduce the generalization

error of the selected subensembles [20]. Since it dramatically increases the execution time,

backfitting is not used in the present investigation. Pruning using the reduce-error heuristic has

been applied, with small modifications, by other authors [17]–[19].

February 25, 2008 DRAFT

11

2) Kappa pruning: This method attempts to select the subset of most diverse classifiers [13].

The amount of diversity is measured by the κ statistic. This quantity is computed on Zsel as

the fraction of examples from that selection set where the two classifiers agree, normalized to

account for the measure of agreement expected by chance [6], [13]. The value κ = 0 corresponds

to classifiers whose agreement equals that expected by chance. The value κ = 1 (minimum

diversity) corresponds to classifiers that agree on every example in Zsel. The classifiers of the

ensemble are then ordered by iteratively selecting pairs of classifiers with the highest diversity

between them. Finally, the first classifiers are aggregated in a subensemble of a prescribed size.

The generalization accuracy of the pruned subensembles obtained with this method is generally

poorer than that of the complete ensemble [22]–[24]. This can be explained by the fact that this

technique considers only the pairwise diversity and not the diversity of the unselected classifiers

with respect to the selected subensemble as a whole. Here, we propose an improved version of

kappa pruning that takes this observation into account: The process initially selects the pair of

classifiers that has the lowest value of κ. At step u the algorithm incorporates the classifier with

the highest diversity (lowest value of the κ statistic, estimated on the selection set) with respect

to the selected subensemble of size u − 1

su = arg min
k

κZsel

(

hk, HSu−1

)

, k ∈ ET\Su−1. (5)

In [19], a similar algorithm is proposed. It proceeds from the complete ensemble by iteratively

removing the classifier that produces a thinned ensemble with the largest average diversity, as

measured by the average value of the κ statistic.

3) Complementarity Measure: This method attempts to incorporate at each iteration the

classifier whose performance is most complementary to that of the selected subensemble [17]. As

in reduce-error, the first classifier incorporated is the one with the lowest error on the selection

set Zsel. Subensemble Su is obtained from Su−1 by incorporating the classifier that has the

highest classification accuracy in the set of examples that are misclasified by Su−1

su = arg max
k

∑

(x,y)∈Zsel

I

(

y = hk(x) and HSu−1
(x) 6= y

)

, k ∈ ET\Su−1. (6)

The quantity maximized can be thought as the amount by which the classifier considered shifts

the decision of the ensemble toward the correct classification. A similar method is proposed

February 25, 2008 DRAFT

12

in [19] under the name concurrency thinning. In that work, it is implemented using sequential

backward selection.

4) Margin Distance Minimization: This method is introduced in [17]. Given a labeled selec-

tion set Zsel of size Nsel, the signature vector c
(t) of classifier t is defined as the Nsel−dimensional

vector whose ith component is

c
(t)
i = 2 I (ht(xi) = yi) − 1, (xi, yi) ∈ Zsel. (7)

The quantity c
(t)
i is equal to 1 if the tth classifier correctly classifies the ith example in Zsel,

and −1 otherwise. The ensemble signature vector, cens, is defined as the sum of the signature

vectors of the classifiers in the ensemble. The average ensemble signature vector is

〈c〉 = T−1

T
∑

t=1

c
(t) . (8)

In a binary classification problem, the ith component of 〈c〉 is the margin of the ith example,

defined as the difference between the correct and incorrect votes that this example receives,

normalized in the interval [−1, 1] [43]. In problems with more than two classes, this quantity is

equal to (1− 2edge(i)), where edge(i) is the difference between the votes corresponding to the

correct class and the votes for the other (incorrect) classes, normalized in the interval [0, 1] [44].

The ith example is correctly classified by the ensemble if the ith component of 〈c〉 is positive.

In consequence, a subensemble whose average signature vector 〈c〉 is in the first quadrant of

the Nsel-dimensional hyperspace (i.e. all the components are positive), correctly classifies all the

examples in Zsel. The objective is to select a subensemble whose average signature vector is as

close as possible to a reference position placed somewhere in the first quadrant. We arbitrarily

select this objective position as a point o with equal components, namely

oi = p with i = 1, . . . , Nsel and 0 < p < 1. (9)

The first classifiers that are incorporated into the ensemble are those that reduce the distance

from the vector 〈c〉 to the objective point o the most. In particular, the classifier selected in the

uth iteration is

su = argmin
k

d

(

o, T−1

(

c
(k) +

u−1
∑

t=1

c
(t)

))

, k ∈ ET\Su−1, (10)

where d(v,u) is the usual Euclidean distance between points v and u.

February 25, 2008 DRAFT

13

The constant p should be sufficiently small (e.g. p ∼ 0.075) so that easy examples (those

correctly classified by most of the base learners) quickly achieve a value close to p. Subsequently,

their influence in the selection of the next classifiers becomes smaller. This allows the algorithm

to progressively focus on examples that are more difficult to classify. By contrast, if a value

of p close to 1 were used, there would be a similar attraction for all examples throughout the

selection process, which would diminish the effectiveness of the method. In this article, we

propose a small improvement of this procedure and use a moving objective point o in (9), by

allowing p(u) to vary with the size of the subensemble, u. Exploratory experiments show that a

value p(u) ∝ √
u is appropriate.

5) Orientation Ordering: This method, proposed in [20], uses similar ideas as the previous

one. Classifiers are ordered by increasing values of the angles of the signature vectors (8) with

a reference vector cref , which is defined as the projection of the diagonal of the first quadrant

onto the hyperplane defined by 〈c〉 . The vector cref is selected to maximize the torque on 〈c〉
(which represents the classification given by the whole ensemble) with respect to the direction

that corresponds to an ideal classification (the diagonal of the first quadrant)

cref = o + λ 〈c〉 , (11)

where o is a vector oriented along the diagonal of the first quadrant, and λ is a constant such

that cref is perpendicular to 〈c〉 (cref⊥〈c〉). In the ordering phase, a stronger pull is applied

along the dimensions corresponding to examples that are harder to classify by the complete

ensemble. The estimation of cref becomes unstable when the vectors that define the projection

(i.e. 〈c〉 and the diagonal of the first quadrant) are close to each other. This makes the selection

of cref less reliable and renders the ordering process less efficient. This behavior occurs when

the training set is used as the selection set for ensemble construction algorithms that quickly

reach zero training error, such as boosting or bagging ensembles of unpruned trees.

For an ensemble composed of T members, this ordering procedure can be carried out using

quicksort, which has a time complexity O(T log(T)). If only the first τ classifiers need to be

extracted, quickselect can be used. This further reduces the average running time to O(T). This

rule is the most efficient of the heuristics analyzed: The time required to perform the ordering

is nearly linear in the number of elements of the original ensemble. The linear complexity of

orientation ordering is related to the fact that, in contrast to the other ordering heuristics, it uses

February 25, 2008 DRAFT

14

properties of the complete ensemble as a reference in the ordering phase.

6) Boosting-based Ordering: This method, proposed in [21], consists in constructing a se-

quence of subensembles of increasing size from a pool of classifiers previously generated by

bagging. The ensemble grows by selecting at each step the classifier that minimizes a weighted

error on the selection set. The voting weights used in the computation of the error are determined

following the prescription given by Adaboost [8]. The algorithm is very similar to boosting.

However, instead of generating a hypothesis from the weighted training data at each iteration,

the classifier with the lowest weighted error on Zsel is selected from the pool of classifiers in the

initial bagging ensemble. If no classifier has a weighted training error below 50%, the weights

of the examples are reset to 1/Nsel and the process is continued. In contrast to regular boosting,

when the selected classifier has zero error on the selection set, the aggregation proceeds until

all the classifiers from the initial pool have been included in the ensemble. Note that bagging

rarely generates classifiers with 0 training error and that, if this were the case, they would be

selected in the first iterations of this algorithm. The final decision is performed by unweighted

majority voting as recommended in [21].

IV. EMPIRICAL ANALYSIS

This section is devoted to the analysis of the pruning methods based on ordered aggregation

described in the previous section. First, the optimality of the ordering heuristics is investigated.

Experiments using exhaustive search on ensembles of 25 classifiers show that the greedy or-

dering strategies identify subensembles that are very close to being optimal. A second group

of experiments analyzes how the performance of the ordering heuristics is affected by factors

such as the size of the training data, the use of an independent selection set for ordering,

the size of the initial pool of the classifiers, or the complexity of the base learners. The actual

performance of the pruning methods in terms of classification accuracy, training time and speed of

classification is assessed in experiments on different classification tasks. These include synthetic

and real-world problems from different fields of application obtained from the UCI repository

[45]. Finally, the robustness of the pruned ensembles is investigated in classification problems

with different levels of noise in the class labels. The pruning techniques based on ordered

aggregation are compared to effective ensemble pruning techniques based on genetic algorithms

[16] or semidefinite programming [22] and to Adaboost [8].

February 25, 2008 DRAFT

15

A. Optimality of the Ordering Algorithms

Ordered bagging proceeds by incorporating at each iteration the classifier that is expected to

improve the performance of the ensemble the most. This greedy strategy can in fact lead to the

selection of subensembles that are suboptimal. In this section, we investigate the effectiveness of

these techniques by comparing the composition and the generalization performance of ordered

subensembles with subsets of classifiers that exactly minimize the error in the training set.

The goals of the experiments prerformed are, on the one hand, to assess how effective the

greedy optimization based on ordering is, and, on the other hand, to determine whether there

are significant differences in generalization performance between subensembles that are optimal

with respect to the training set error and the (suboptimal) ordered subensembles.

All the experiments are performed on the Waveform classification problem [35] using the

reduce error heuristic or margin distance minimization with p = 0.075. Qualitatively similar

results are obtained for other classification problems investigated.

The experiments consist in constructing 100 different bagging ensembles composed of 25

standard (pruned) CART trees. In each of the 100 executions, the classifiers are aggregated

either using the random order of generation in bagging, or after being ordered using the reduce
error heuristic or margin distance minimization with p = 0.075. The original training data is used

as the selection set to compute the metrics that guide the ordering process. Finally, exhaustive

search is used to identify subensembles of increasing size that are optimal with respect to the

classification error in the training set. In the remainder of this section, these subensembles will

be referred to as ”optimal subensmebles”. It should be understood that their optimality is only

with respect to the training set error.

Fig. 2 displays the evolution of the average training (left plot) and testing errors (right plot) of

the different ensembles as a function of ensemble size. The curves for the optimal subensemble

in this figure do not correspond to a nested sequence of subensembles of increasing size, as in the

ordered case. In particular, the optimal subensemble of size u may not include all classifiers from

the optimal subensemble of size u − 1. The training error curves corresponding to the optimal

subensembles are a lower bound to the learning curves of subensembles obtained through ordered

aggregation. This need not be the case for the error curves on the testing set. The training error

curve for Reduce-Error is closer to the optimal subensembles than Margin distance minimization

February 25, 2008 DRAFT

16

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0 5 10 15 20 25

er
ro

r

number of classifiers

 waveform - train

bagging
optimal (train)

reduce-error
distance p=0.075

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0 5 10 15 20 25

er
ro

r

number of classifiers

 waveform - test

bagging
optimal (train)

reduce-error
distance p=0.075

Fig. 2. Average training and test error curves for randomly ordered bagging ensembles (continuous line), subensembles that

are optimal with respect to the training set error (dashed line) and ordered ensembles of increasing size using reduce error

(dotted line) and margin distance minimization (p = 0.075) (dashed-dotted line). The curves correspond to averages over 100

executions of bagging for the Waveform classification problem. In each execution, a bagging ensemble composed of 25 standard

(pruned) CART trees is used.

(using p = 0.075). This seems reasonable, since reduce error directly attempts to optimize the

error of the subensembles in the training set. By contrast, in the test set, ordered and optimal

subensembles obtain similar results.

The differences between the optimal subensembles of a given size and the corresponding

ordered ensembles can be quantified using a coincidence matrix O, whose element Oij takes

the value 1 if the classifier selected by the ordering heuristic in the jth position is included in

the optimal subensemble of size i and 0 otherwise. If the ordered subensembles were optimal

for all sizes, the matrix O would be a lower triangular matrix (i.e., all ones on and under the

diagonal and zeros above the diagonal). Fig. 3 displays the the average occurrence matrix, Ō, for

bagging ensembles composed of 25 classifiers. Averages are over the 100 different executions

of bagging on the Waveform problem. An inverse gray-scale is used to indicate the value of

the matrix elements: A black (white) cell in the position (i, j) corresponds to Ōij = 1(0).

Gray cells correspond to 0 < Ōij < 1. The matrices are predominantly lower diagonal. There is

some dispersion, mainly around the principal diagonal. This confirms the hypothesis that optimal

subensembles of sizes u and u−1 share most of their elements and that the heuristic ordering rules

can be used identify near-optimal solutions of the subensemble selection problem. Experiments

February 25, 2008 DRAFT

17

1

3

5

7

9

11

13

15

17

19

21

23

25

1 13 25

Fig. 3. Coincidence matrix, (O), for the optimal and ordered subensembles. Results are for bagging ensembles of 25 members,

and are averaged over 100 executions of bagging on the Waveform problem.

the Waveform problem without averaging over different executions of bagging confirm these

conclusions in larger ensembles (31 individual classifiers).

B. Influence of training conditions.

This series of experiments is designed to determine how the effectiveness of the ordering

strategies depends on the amount of data available for training and whether, instead of the

original training data, an independent selection set should be used to order the classifiers in the

ensemble. For every training dataset two kinds of bagging ensembles are generated: Classifiers

in ensembles of the first type are built and ordered using the same training set (all of the training

data). The second kind of ensembles are generated by building classifiers with 2/3 of the training

data and using the remaining 1/3 for ordering. We consider ensembles of 100 classifiers for the

Magic04 and for the Waveform problems from the UCI repository [45], trained on datasets

of different sizes: 500, 1000, 2000, 5000 and 10000. The generalization error of the different

subensembles is estimated on independent test sets. For the synthetic problem Waveform a set of

fixed size (5000) is used for testing. The test set for Magic04 includes all the examples not used

in training. The results reported in Tables I and II correspond to averages over 100 realizations

February 25, 2008 DRAFT

18

(random stratified partitions into train and test set for Magic04; independent simulations for

Waveform). The second column in these tables shows the results for the complete bagging

ensembles. The third column displays the error rates for complete bagging ensembles that are

built using only two thirds of the training data available. These rates correspond to the test errors

of complete bagging ensembles that set apart one third of the original training data for ordering.

The remaining columns correspond to pruned ensembles with 21% of the classifiers from the

original ensemble, obtained by ordering with the reduce-error and margin distance (MDSQ)

heuristics. The fourth and sixth columns (labeled all) display the results of ensembles that use

the same data for training the classifiers and for ordering them. Columns 5 and 7, labeled 1/3
withheld, correspond to ensembles where one third of the original training data are set apart for

ordering.

These results show that, as one should expect, the performance of bagging ensembles improves

with larger training sets. More interestingly, pruned ensembles outperform bagging in the cases

investigated, even when large training sets are used. However, the improvements in error rate

become smaller as more data is available for training. This is due to the fact that the bagging

error itself becomes smaller and the margin for improvement diminishes. A second conclusion

from these experiments is that using all available data for training the individual classifiers and

for ordering seems to be preferable to withholding some data for ordering. In the problems

investigated, the benefits of using an independent selection set in the ordering phase (namely,

that it provides unbiased estimates of the generalization error curves) do not compensate the loss

in accuracy arising from the fact that fewer examples are used to train each individual classifier.

TABLE I

DEPENDENCE OF GENERALIZATION ERROR ON THE TRAINING CONDITIONS FOR Magic04.

Training Bagging Redure-error (21%) MDSQ (21%)

set size all 2/3 all 1/3 withheld all 1/3 withheld

500 19.1 ± 1.4 19.8 ± 1.7 17.3 ± 0.9 18.0 ± 1.1 17.1 ± 0.9 17.7 ± 0.9

1000 17.6 ± 0.9 18.4 ± 1.3 16.2 ± 0.6 16.7 ± 0.7 16.0 ± 0.5 16.6 ± 0.7

2000 16.5 ± 0.6 17.1 ± 0.8 15.4 ± 0.4 15.8 ± 0.5 15.3 ± 0.4 15.7 ± 0.5

5000 15.5 ± 0.4 16.0 ± 0.5 14.6 ± 0.3 15.0 ± 0.4 14.6 ± 0.3 15.0 ± 0.4

10000 14.6 ± 0.3 15.0 ± 0.4 14.0 ± 0.3 14.4 ± 0.3 14.0 ± 0.3 14.4 ± 0.3

February 25, 2008 DRAFT

19

TABLE II

DEPENDENCE OF GENERALIZATION ERROR ON THE TRAINING CONDITIONS FOR Waveform.

Training Bagging Redure-error (21%) MDSQ (21%)

set size all 2/3 all 1/3 withheld all 1/3 withheld

500 21.8 ± 2.2 22.6 ± 2.4 19.8 ± 1.1 20.3 ± 1.3 19.3 ± 0.9 19.9 ± 1.2

1000 20.7 ± 1.7 21.3 ± 1.9 19.0 ± 0.9 19.4 ± 1.1 18.7 ± 0.9 19.2 ± 1.0

2000 19.6 ± 1.0 20.3 ± 1.2 18.5 ± 0.7 18.8 ± 0.8 18.2 ± 0.6 18.6 ± 0.8

5000 18.8 ± 0.8 19.2 ± 0.8 18.0 ± 0.7 18.1 ± 0.6 17.8 ± 0.7 18.0 ± 0.7

10000 18.1 ± 0.7 18.5 ± 0.7 17.5 ± 0.6 17.8 ± 0.6 17.4 ± 0.7 17.7 ± 0.6

TABLE III

AVERAGE ERROR AND AVERAGE NUMBER OF CLASSIFIERS FOR THE MINIMA IN THE TEST ERROR CURVES FOR Waveform.

Initial pool size 11 25 51 75 101 151 201 251 501 751 1000

Error 23.3 21.7 20.8 20.4 20.2 20.0 19.9 19.7 19.6 19.5 19.5

of classifiers 9 17 25 29 37 49 61 65 131 189 261

Percentage (%) 81.8% 68.0% 49.0% 38.7% 36.6% 32.5% 30.3% 25.9% 26.1% 25.2% 26.1%

C. Influence of the Size of the Initial Pool of Classifiers

In this series of experiments, we investigate how ordered aggregation is affected by the size

of the initial pool of classifiers. An initial bagging ensemble of 1000 standard (pruned) CART

trees is built for the Waveform problem. The classifiers are then ordered considering only the

first 11, 25, 51, 75, 101, 151, 201, 251, 501, 751 and 1000 trees of the original ensemble. These

steps are repeated for 100 different samples of training (300 instances) and testing data (5000

instances). Fig. 4 shows the average error curves in the training set (left plot) and in the test

set (right plot) using reduce-error ordering. Table III displays the value of the error and the

numbers of classifiers for the minima in the test error curves. The numbers in the fourth row

are the percentages of classifiers from the initial pool that are included in subensembles that

correspond to the minima in the test error curves for ordered bagging.

The training error curves (left plots in Fig. 4) show an initial steep decrease of the training

error as a function of the number of classifiers in the ensemble. As the size of the ensemble

increases, the curves diverge: The error curves of subensembles ordered from a smaller initial

February 25, 2008 DRAFT

20

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 100 200 300 400 500 600 700 800 900 1000

er
ro

r
train - reduce-error

number of classifiers

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0 100 200 300 400 500 600 700 800 900 1000

er
ro

r

test - reduce-error

number of classifiers

Fig. 4. Training and test errors for Waveform for bagging and ordered bagging using the first: 11, 25, 51, 75, 101, 151, 201,

251, 501, 751 and 1000 trees.

pool of classifiers start increasing before those of larger initial pools. The training error curves

are nested and do not intersect. For a given ensemble size, the errors of ordered subensembles

generated from larger initial pools are generally lower than those from smaller initial pools.

This seems reasonable: The quantity used to guide the ordering procedure is estimated on the

training dataset. Furthermore, the initial pools are nested; that is, all classifiers in an initial pool

of a given size are also included in larger pools. For instance, the classifiers in the initial pool

composed of 251 elements are also present in the pools of sizes 501, 751 and 1000.

The test error curves display a behavior similar to the training error curves, except that they

intersect at several points. In any case, these curves also tend to be nested. Their minima are

generally lower for curves that correspond to larger initial bagging ensembles. However, the

improvements in the minimum test error become smaller as the number of classifiers in the

initial pool is increased. The number of classifiers needed to achieve the minimum in test error

increases with the size of the initial pool. This increase is slower than the increase in the

size of the initial selection pool. Qualitatively similar curves are obtained in most of the other

classification tasks and for the different ordering heuristics. Deviations from this behavior appear

in the test-error curves for Australian, Horse-colic (only with boosting-based ordering) and Votes.

These anomalies are small and do not affect the effectiveness of the pruning procedures analyzed

except in Votes.

In summary, increasing the size of the initial pool of classifiers generally improves the

February 25, 2008 DRAFT

21

generalization performance of ordered bagging ensembles. Beyond a certain size, the benefits

in error reduction are small. These improvements in performance are achieved at the expense

of selecting larger subensembles. Nonetheless, if the objective is to improve the classification

performance, larger initial ensembles should be generated. If the goal is improving performance

and reducing ensemble size, bagging ensembles of intermediate size should be used. In the

problems investigated, using bagging ensembles of 100 elements as the initial pool of classifiers

provides a good balance between complexity and accuracy.

D. Dependence on the complexity of the base classifiers.

Extensive experiments have been carried out to analyze the efficiency of the ordering procedure

as a function of the complexity of the base classifiers. The architectures considered are, in order

of complexity: Decision stumps, CART trees pruned with the standard cross-validation procedure

proposed in [35] and fully developed (unpruned) CART trees.

For simple classifiers, such as decision stumps, the minima in the training and test data appear

at similar subensemble sizes [46]. Hence, the pruning rule for simple base learners is to select

the ordered subensemble whose size corresponds to the minimum error in the training set. When

more complex classifiers are used as base learners (e.g. CART trees), the minima in the training

error curves generally correspond to smaller subensembles than those in the test error curves.

For ensembles of pruned CART trees, in the problems investigated, subensembles with 20−40%

of the initial classifiers have the best overall classification accuracy. By contrast, reducing the

size of ensembles of unpruned CART trees does not improve and sometimes even deteriorates

the generalization performance of the ensemble: Since trees are grown until all instances are

correctly classified, the error rate of an individual unpruned tree on the bootstrap training data

is, by construction, 0%. For this reason, the metrics used in the selection process are unable to

distinguish among the different classifiers.

A representative subset of results from these experiments is given in Table IV. The best

generalization performance is obtained with pruned ensembles of pruned CART trees and with

complete ensembles of unpruned CART trees. However, the large complexity of the latter models

makes them impractical. For decision stumps, it is also possible to select subsets of classifiers

that outperform the complete ensemble. Except in the Heart problem, the performance of pruned

ensembles of decision stumps is clearly inferior to ensembles of CART trees, especially in

February 25, 2008 DRAFT

22

TABLE IV

DEPENDENCE ON THE COMPLEXITY OF THE BASE CLASSIFIERS.

Decision Stumps CART trees (pruned) CART trees (unpruned)
Bagging MDSQ SDP Bagging MDSQ SDP Bagging MDSQ SDP

Breast 7.0±3.7 5.2±2.9 5.4±2.8 4.8±2.8 4.0±2.6 3.8±2.4 3.7±2.3 3.9±2.5 3.8±2.2

Diabetes 27.8±4.1 26.2±4.2 26.9±4.7 24.9±3.9 24.0±4.1 24.3±4.3 24.7±4.0 25.8±4.4 25.9±4.5

Heart 24.2±10.1 16.8±7.0 17.2±6.7 19.6±7.9 17.7±6.8 17.7±6.9 19.5±7.0 21.0±7.3 20.5±8.0

Waveform 39.2±5.0 28.3±4.6 29.4±6.2 23.0±2.4 19.9±1.2 20.0±1.2 19.7±1.4 20.1±1.0 20.4±1.1

classification tasks with more than 2 classes, where decision stumps are at a clear disadvantage

with respect to decision trees. Nonetheless, pruned ensembles of decision stumps have very

low memory requirements and can be generated very quickly. Therefore, they can be an attrac-

tive alternative when there are stringent memory requirements, or if some of the accuracy in

classification can be sacrificed for speed in training and classification.

Given that the objective of this investigation is to design pruning techniques that reduce the

memory requirements and increase the speed of classification of ensembles while maintaining

or improving their generalization performance, only ensembles of pruned CART trees will be

considered further. The exception is complete ensembles of unpruned trees, which, despite their

complexity, will be used for comparisons in classification accuracy because of their good overall

generalization performance.

E. Classification performance of pruned ensembles

The performance of the different pruning heuristics is evaluated in a series of experiments on

28 datasets from the UCI repository [45]. Each experiment consists in 100 executions for each

dataset. For the synthetic datasets (Led24, Ringnorm, Twonorm and Waveform) random training

and testing samples are generated. In the remaining problems, 10× 10-fold cross-validation is

used. Each execution involves the following steps:

1) Generate the training and testing sets by either 10-fold-cv or by random sampling (see

Table V).

2) Build a bagging ensemble of 100 standard (pruned) CART trees [35].

3) Order the classifiers in the bagging ensemble using the heuristics described in Section III:

February 25, 2008 DRAFT

23

TABLE V

CHARACTERISTICS OF THE DATASETS AND TESTING METHOD

Dataset Instances Test Attrib. Classes Dataset Instances Test Attrib. Classes
Audio 226 10-fold-cv 69 24 New-thyroid 215 10-fold-cv 5 3

Australian 690 10-fold-cv 14 2 Pendigits 10992 10-fold-cv 16 10

Breast W. 699 10-fold-cv 9 2 Ringnorm 300 5000 cases 20 2

Diabetes 768 10-fold-cv 8 2 Satellite 6435 10-fold-cv 36 2

Ecoli 336 10-fold-cv 7 8 Segment 2310 10-fold-cv 19 7

German 1000 10-fold-cv 20 2 Sonar 208 10-fold-cv 60 2

Glass 214 10-fold-cv 9 6 Spam 4601 10-fold-cv 57 2

Heart 270 10-fold-cv 13 2 Tic-tac-toe 958 10-fold-cv 9 2

Horse-Colic 368 10-fold-cv 21 2 Twonorm 300 5000 cases 20 2

Ionosphere 351 10-fold-cv 34 2 Vehicle 846 10-fold-cv 18 4

Labor 57 10-fold-cv 16 2 Votes 435 10-fold-cv 16 2

Led24 200 5000 cases 24 10 Vowel 990 10-fold-cv 10 11

Liver 345 10-fold-cv 6 2 Waveform 300 5000 cases 21 3

Magic04 19020 10-fold-cv 10 2 Wine 178 10-fold-cv 13 3

Reduce-Error (RE), Kappa pruning (Kappa), Complementarity Measure (CC), Margin Dis-

tance Minimization using a moving reference point p(u) = 2
√

2u/T (MDSQ), orientation

ordering (OO) and Boosting-based pruning (BB). The training data is also used as the

selection set for ordering.

4) Select the first 21 trees of the ordered bagging ensemble for aggregation.

To compare with other pruning methods proposed in the literature, the same bagging ensembles

are pruned using a Genetic Algorithm (GA) [15], [16] and a technique based on Semi-definite

Programming (SDP) [22]. The results for Adaboost (AB) and complete bagging ensembles of

unpruned trees (BagU) are also given for reference. The GA implemented is adapted from [16].

Candidate solutions are represented by binary string chromosomes, {bi}T

t=1, whose size equals the

number of classifiers in the ensemble. The tth allele of the chromosome, bt, is a binary variable

that encodes whether the tth classifier is included (bt = 1) or not (bt = 0) in the subensemble.

The fitness function used to rank individuals (subensembles) considers two factors: The accuracy

of the subensemble, estimated in the selection set, and a bias term that favors the selection of

February 25, 2008 DRAFT

24

TABLE VI

TEST ERROR RATES (AVERAGE ± STANDARD DEVIATION) FOR ENSEMBLES OF STANDARD (PRUNED) CART TREES.

Dataset Bagging RE Kappa CC MDSQ OO BB GA SDP AB BagU
Audio 26.8±8.0 21.1±7.3 27.7±7.7 21.0±8.0 20.5±7.6 21.2±7.6 20.9±7.6 20.8±8.3 21.1±7.4 17.8±7.8 19.9±7.6
Australian 14.5±3.8 13.7±4.0 13.7±4.0 13.8±4.1 13.6±4.0 13.6±4.0 13.6±3.9 14.4±3.8 13.5±4.1 14.0±3.9 13.4±3.9
Breast 4.8±2.8 4.2±2.4 4.9±2.9 4.2±2.5 4.0±2.6 4.1±2.5 4.1±2.6 4.2±2.5 3.8±2.4 3.3±1.9 3.7±2.3
Diabetes 24.9±3.9 24.6±4.1 24.2±3.9 23.9±3.8 24.0±4.1 24.0±4.1 24.2±3.9 25.2±5.1 24.3±4.3 26.7±3.9 24.7±4.0
Ecoli 17.7±5.9 16.2±5.7 18.4±6.0 16.0±6.0 15.3±5.7 15.5±5.6 15.4±6.0 16.5±6.0 15.8±5.7 14.0±5.3 16.2±5.6
German 25.6±3.0 24.6±3.4 25.9±3.0 24.8±3.8 24.7±3.9 25.0±3.5 24.8±3.7 25.1±3.3 24.8±3.5 25.0±3.3 23.9±3.8
Glass 29.8±7.1 24.6±7.7 31.5±7.9 24.7±7.6 24.4±7.3 24.3±7.8 25.0±7.6 24.7±7.5 24.6±7.8 21.2±8.2 23.2±8.1
Heart 19.6±7.9 19.2±7.3 17.7±6.7 18.8±6.9 17.7±6.8 17.3±6.9 18.5±7.1 19.2±7.2 17.7±6.9 21.1±7.8 19.5±7.0
Horse-colic 17.7±6.2 15.7±5.6 16.7±6.0 16.3±5.7 15.7±5.5 14.8±5.8 16.3±6.4 15.8±5.8 16.6±6.0 18.8±6.1 15.4±5.4
Ionosphere 9.7±4.6 7.5±4.4 8.0±4.4 7.3±4.0 7.3±3.9 7.7±4.3 7.5±4.2 7.5±4.3 7.2±3.9 6.4±3.7 8.4±4.9
Labor 13.4±12.8 11.8±12.2 9.2±11.7 13.9±12.7 6.9±9.8 8.2±10.2 8.2±10.0 10.9±12.0 8.4±10.4 13.4±15.4 7.7±10.1
Led24 30.8±3.0 30.2±2.4 31.4±3.2 30.1±2.3 29.9±2.2 29.8±1.9 30.1±2.1 30.1±2.6 30.2±2.4 29.9±2.3 34.1±2.1
Liver 31.0±6.3 27.8±6.9 29.9±6.1 28.2±6.7 28.2±7.0 28.9±7.6 28.3±6.7 28.7±6.9 28.2±7.0 28.5±7.1 29.2±7.8
Magic04 14.0±0.7 13.5±0.7 13.8±0.7 13.5±0.7 13.5±0.7 13.5±0.7 13.6±0.7 13.7±0.7 13.5±0.7 12.0±0.7 12.1±0.7
New-thyroid 6.9±5.3 5.8±5.0 6.1±5.2 5.6±4.7 5.0±4.6 5.2±4.7 4.9±4.3 5.3±4.5 5.1±4.6 5.8±4.6 5.6±4.5
Pendigits 2.0±0.3 1.8±0.3 2.3±0.3 1.8±0.3 1.7±0.3 1.7±0.3 1.9±0.4 1.8±0.3 1.7±0.3 0.6±0.2 1.7±0.3
Ringnorm 12.6±2.7 11.5±1.8 14.6±2.2 11.4±1.6 9.8±1.5 10.0±1.5 9.8±1.4 10.7±1.7 9.7±1.5 5.9±0.6 10.2±1.8
Satellite 11.8±1.1 11.1±1.1 11.9±1.1 11.0±1.1 11.0±1.0 11.1±1.1 11.1±1.1 11.3±1.0 11.0±1.1 7.6±1.0 8.8±1.0
Segment 3.0±1.1 2.6±1.0 3.9±1.2 2.6±0.9 2.6±1.0 2.5±1.0 2.6±1.0 2.6±1.0 2.5±1.0 1.5±0.7 2.3±0.9
Sonar 25.1±9.5 20.8±9.1 24.3±9.0 21.8±9.0 19.8±9.8 21.2±8.8 20.0±10.5 21.7±9.7 19.5±9.6 13.3±8.0 20.1±8.3
Spam 7.2±1.4 6.3±1.6 6.9±1.7 6.4±1.5 6.3±1.5 6.4±1.6 6.4±1.5 6.6±1.5 6.3±1.6 4.6±1.1 5.3±1.3
Tic-tac-toe 1.5±1.3 1.6±1.4 3.3±1.9 1.6±1.3 1.4±1.2 1.4±1.1 1.5±1.2 1.5±1.3 1.2±1.1 0.8±1.1 1.3±1.1
Twonorm 9.6±3.1 10.0±1.8 12.9±2.4 10.2±1.9 8.0±1.1 7.9±1.1 8.2±1.2 8.9±2.1 8.0±1.1 4.8±2.3 6.9±1.5
Vehicle 28.5±3.5 25.6±4.1 28.6±3.9 25.7±4.0 25.2±4.2 25.2±4.4 25.4±3.8 25.9±4.1 25.3±4.2 22.7±3.6 24.6±3.6
Votes 4.4±3.0 4.7±3.1 4.8±3.2 4.7±3.2 4.8±3.2 5.3±3.4 4.7±3.2 4.4±3.0 4.8±3.2 4.6±3.0 4.4±3.1
Vowel 9.2±2.9 9.7±3.2 12.1±3.3 9.8±3.1 9.1±3.1 8.6±2.9 8.7±2.9 9.2±2.8 8.7±2.9 3.5±2.4 8.6±2.8
Waveform 23.0±2.4 20.6±1.3 22.2±1.7 20.4±1.2 19.9±1.2 20.3±1.3 20.3±1.4 20.5±1.4 20.0±1.2 18.0±0.8 19.7±1.4
Wine 4.4±5.0 4.2±5.1 6.7±6.3 4.4±5.1 3.1±4.0 4.0±4.7 3.3±4.2 3.6±4.7 3.2±4.2 4.1±4.8 3.0±4.0

large subensembles. This small bias term is introduced to avoid the selection of subensembles

that are too small, which, generally, do not have good generalization properties. Its value is

always smaller than 1/Nsel so that (i) a higher fitness is assigned to chromosomes with lower

error in the selection set, independently of the number of selected classifiers, and (ii) if two

chromosomes (subensembles) have the same accuracy on the selection set, a higher fitness is

assigned to the chromosome that encodes the larger subensemble. The configuration of the GA

is adjusted in exploratory experiments using the recommendations given in [47]. The size of

population evolved is 200. The chromosomes are initialized diagonally, so that all the different

February 25, 2008 DRAFT

25

subensembles of size 1 are included in the initial population: The alleles of the ith individual are

initialized to zero except for the ith allele, which is set to 1. A simple bit-flip operator is used for

mutation. It is applied with probability pm = 0.005. To avoid positional bias, a uniform crossover

operator is applied with probability pc = 0.65. Elitism is used: The best two individuals from

the population are included in the next generation. The population is evolved during 200 epochs.

In contrast to the other methods investigated, where the pruning rate can be adjusted to obtain

near-optimal subensembles of different sizes, GA-pruning produces a single solution.

SDP pruning is executed setting the number of classifiers in the pruned ensemble to k = 21 in

(2). This value is chosen because (i) it coincides with the size of the subensembles selected by

the ordering heuristics, and (ii) pruned ensembles using SDP with k = 21 exhibit a good overall

performance in the classification problems investigated. Exploratory experiments show that the

overall performance of the ensembles pruned using SDP is very similar for a large range values

of k in the vicinity of 21.

Table VI shows the average values of the test error for the different datasets and pruning meth-

ods. Values that are significantly better than bagging (using a paired t-test with p−value < 0.01)

are highlighted in boldface. Results where complete bagging ensembles perform significantly

better than pruned ensembles (with p-value < 0.01) are underlined. One should be cautious with

the interpretation of the confidence levels in the real-world datasets, where cross-validation is

used: Their significance may be overestimated in the statistical test, as illustrated in [48]. For

the synthetic datasets, given that the experiments are performed using independent samples, the

confidence levels are unbiased. Adaboost achieves the lowest classification error in the majority

of the classification problems investigated. Among pruned bagging ensembles, the best results

correspond to Margin distance minimization (MDSQ) and SDP, followed by orientation ordering

(OO) and boosting-based pruning (BB). The overall performance of these pruned ensembles is

comparable to the more complex complete bagging ensembles of unpruned trees (BagU). For

almost all datasets, most pruning techniques improve the generalization performance of bagging

ensembles of standard (pruned) CART trees independently of the number of examples, attributes

or classes of the datasets. An exception to this general behavior is Votes. In this problem, only

GA-pruning achieves an error comparable to bagging. However, the ensemble selected by GA

retains most (88%) of the original trees. Kappa pruning, which is based only on diversity, has

the poorest overall performance on the datasets investigated.

February 25, 2008 DRAFT

26

3 4 5 6 7 8 9 10

Kappa
Bagging
GA
RE
CC

MDSQ
AB

BagU
SDP
OO
BB

CD

Fig. 5. Comparison of the different methods using the Nemenyi test. Classifiers not significantly different (p-value=0.05) are

connected in the diagram.

The performance of the different ensembles in the different data sets is compared using the

methodology proposed by Demšar in [49]. Fig. 5 displays the average rank of each ensemble

in the problems investigated. In this diagram, methods whose average rank is not significantly

different from each order, according to the Nemenyi test (p-value< 0.05), are connected with a

horizontal line. The critical difference is shown for reference (CD=2.85 for 11 methods, 28 dataset

and p-value< 0.05). The best overall performance corresponds to MDSQ-pruning, followed by

Adaboost, bagging composed of unpruned trees and by SDP, OO and BB-pruning. The accuracy

of these pruned ensembles is uniformly good in most of the classification problems investigated

and is significantly better, in terms of average rank, than standard bagging.

F. Efficiency analysis

This section analyzes the efficiency of the different pruning techniques. Three aspects are of

interest: The computational cost of extracting the pruned subensemble from the original pool

of classifiers, the amount of memory required to store the pruned ensembles and, finally, their

classification speed. Some of the operations can be performed in parallel: the generation of

the initial pool of classifiers, and the predictions of the individual classifiers, once the pruned

subensemble has been identified. By contrast, the reordering and the selection of the classifiers

cannot be parallelized.

1) Complexity of the different pruning techniques: Table VII summarizes the space and time

complexities of the different ensemble pruning methods in terms of the size of the initial pool

February 25, 2008 DRAFT

27

TABLE VII

COMPLEXITY OF THE DIFFERENT ENSEMBLE PRUNING TECHNIQUES.

Pruning method Space complexity Time complexity
RE O(Nsel · T + |y|) O(T 2 · Nsel · |y|)

Kappa O(Nsel · T + |y|2) O(T 2 · Nsel)

CC O(Nsel · T + |y|) O(T 2 · Nsel)

MDSQ O(Nsel · T) O(T 2 · Nsel)

OO O(Nsel · T) calculate angles O(T · Nsel)

quicksort O(T · log(T))

BB O(Nsel · T + |y|) O(T 2 · Nsel)

GA O(Nsel · T) + O(P · T) calculate fitness O(E · P · T · Nsel · |y|)

evolve population O(E · P · T)

SDP O(T 2) + O(Nsel · T) + calculate G O(T 2 · Nsel · |y| + T 3)

+ Implem. dependent optimization process O(T 3)

of classifiers, T , the size of the selection set, Nsel, the number of classes of the classification

problem, |y|, and, for the genetic algorithm, the size of the population, P , and the number of

epochs, E. The memory requirements for the different algorithms are estimated assuming that

classifiers are queried only once and that the outputs are stored in a matrix of size Nsel × T .

For large selection datasets it might not be possible to store the whole matrix in memory. In

such a case this matrix would need to be stored in a secondary memory device, such as the hard

disk. This would reduce the memory requirements to O(Nsel) for most ensembles. However, the

classification process would be slowed down by the required disk access. In this study, it has

not been necessary to resort to secondary memory devices for storage.

To empirically investigate the dependence on T of the different heuristics a series of exper-

iments on the Pima Indian Diabetes problem are performed. Table VIII reports the execution

times of the different ensembles for initial bagging ensembles of 50, 100, 200, 400, 800 and 1600

CART trees. The values of the remaining parameters are |y| = 2, Ntrain = 468, Zsel = Ztrain. For

the Genetic Algorithm, a population of T chromosomes is evolved for a maximum of E = 200

epochs. The times reported are averages over 100 executions in a Pentium R© D processor at

2.8 GHz. The results displayed in this table show that the best results correspond to ordered

February 25, 2008 DRAFT

28

TABLE VIII

AVERAGE EXECUTION TIME (IN S) FOR THE ORDERING HEURISTICS FOR THE PIMA INDIAN DIABETES DATASET

.

Trees 50 100 200 400 800 1600

RE 0.04 0.09 0.26 0.73 2.43 8.56

Kappa 0.02 0.07 0.20 0.72 2.76 10.76

CC 0.03 0.06 0.15 0.38 1.19 4.15

MDSQ 0.10 0.37 1.41 5.53 21.99 87.51

OO 0.02 0.04 0.06 0.11 0.21 0.42

BB 0.03 0.06 0.13 0.39 1.36 5.03

GA 3.80 7.75 24.44 144.57 765.31 3527.92

SDP 0.18 1.22 6.68 56.01 487.05 4293.91

bagging: Orientation ordering (OO) is the fastest method, with computation times that increase

approximately linearly in T . The complexity of the remaining ordering heuristics is quadratic in

T . Both SDP and GA are much slower than the ordering heuristics.

2) Memory requirements and speed of classification: Besides improvement in classification

performance, the main benefits of ensemble pruning are lower storage requirements and higher

classification speed. Storage requirements are linear in the size of the ensemble and in the

complexity of the base classifiers. Assuming that the computational costs of retrieving examples

from a data repository and of assigning class labels at the leaf nodes are small, classification

speed mainly depends on (i) the number of classifiers in the ensemble, and (ii) the complexity

of the base classifiers. In particular, the time needed by an ensemble of decision trees to classify

an example can be estimated by multiplying the number of trees in the ensemble by the average

number of tests that need to be made at internal nodes of a tree. Assuming balanced trees with a

total number of nodes Nnodes, the average number of tests is Ntests = log2(Nnodes +1)−1. Given

this logarithmic dependence, most of the improvements in classification speed are expected to

arise from the smaller number of classifiers in the pruned ensembles. Table IX displays the

average number of nodes per tree in a bagging ensemble of standard (pruned) CART trees and

in subensembles selected using MDSQ and SDP. The numbers between parentheses are estimates

of the classification times by the different ensembles as a percentage of the time employed by a

February 25, 2008 DRAFT

29

TABLE IX

AVERAGE NUMBER OF NODES PER TREE AND CLASSIFICATION TIMES.

Complete Pruned bagging Complete Pruned bagging
Dataset bagging MDSQ SDP Dataset bagging MDSQ SDP
Audio 32.6 64.0 (25.9%) 60.2 (25.5%) New-thyroid 9.1 14.0 (26.2%) 13.9 (26.1%)

Australian 6.7 14.3 (31.6%) 14.2 (31.6%) Pendigits 381.8 468.2 (21.8%) 461.0 (21.8%)

Breast 12.1 25.1 (28.8%) 22.9 (27.8%) Ringnorm 15.2 22.0 (24.5%) 22.2 (24.6%)

Diabetes 10.7 20.9 (28.5%) 18.4 (27.0%) Satellite 82.8 131.2 (23.6%) 123.5 (21.3%)

Ecoli 11.7 20.5 (27.0%) 16.4 (24.5%) Segment 67.0 98.2 (23.3%) 95.1 (23.1%)

German 13.1 24.6 (27.4%) 21.5 (25.9%) Sonar 8.2 15.8 (29.2%) 15.7 (29.2%)

Glass 18.1 39.8 (28.0%) 37.3 (27.4%) Spam 56.5 94.5 (24.2%) 88.9 (23.8%)

Heart 10.1 19.4 (28.4%) 17.4 (27.2%) Tic-tac-toe 72.1 100.4 (22.9%) 99.7 (22.9%)

Horse-colic 4.5 6.7 (27.9%) 6.1 (26.3%) Twonorm 17.7 28.7 (25.3%) 29.3 (25.6%)

Ionosphere 10.4 18.3 (27.4%) 17.5 (26.8%) Vehicle 47.7 100.7 (25.9%) 97.5 (25.6%)

Labor 5.4 8.0 (27.2%) 8.1 (27.3%) Votes 3.9 7.3 (33.3%) 7.1 (32.7%)

Led24 20.5 29.5 (24.1%) 24.8 (22.6%) Vowel 201.7 214.6 (21.3%) 214.0 (21.3%)

Liver 14.4 34.8 (29.6%) 32.8 (29.0%) Waveform 14.2 26.8 (27.2%) 25.9 (26.9%)

Magic04 98.9 142.9 (23.0%) 130.6 (22.5%) Wine 8.4 10.1 (23.3%) 10.7 (24.0%)

complete bagging ensemble of CART trees. The speed of classification is increased by a factor

between 3 and 5. An unforeseen result is that the average sizes of the CART trees selected

by MDSQ or SDP are larger than in the initial bagging ensemble. Even though it is necessary

to store fewer classifiers (21% of the initial ensemble), the classifiers selected tend to be more

complex. The net effect is that pruned subensembles need less storage than complete bagging,

but the reduction in memory requirements is smaller than expected. The selection of larger

classification trees in the pruned ensembles has a negative, but typically small, impact in their

classification speed.

G. Robustness of classification.

To investigate the performance of pruned ensembles in noisy classification problems, a series of

experiments similar to those conducted by Dietterich in [6] are carried out. In these experiments,

classifiers are built using corrupted versions of the original data. For each experiment, the

class label of a fixed percentage of examples selected at random is switched. In the series

February 25, 2008 DRAFT

30

of experiments performed, the class labels in the training and test sets are modified with a

probability of 0.0, 0.05, 0.10 and 0.20. Results are reported for nine problems from the UCI

Repository [45] using a bagging ensemble of 100 standard (pruned) CART trees as the initial

pool of classifiers. Experimental results for Adaboost with a maximum size of 100 pruned

CART trees [9] are also reported for reference. The average error on the test sets for the

different ensembles on each problem are displayed in Table X. The values reported correspond to

averages and standard deviations over 100 realizations. The error rates that are significantly better

than bagging are highlighted in boldface. Statistically significant improvements with respect to

Adaboost are underlined. A paired t-test (p-value < 0.01) is used to determine the significance of

the differences. As known from earlier studies, Adaboost is a powerful classification method and

generally achieves lower error rates than bagging or pruned bagging. However, its performance

rapidly deteriorates in noisy problems [6]. By contrast, bagging and pruned bagging ensembles

are robust with respect to this type of noise. For noise levels in the class labels larger than ≈ 10%,

bagging and pruned bagging outperform Adaboost in most of the datasets investigated. Even for

high noise values, pruned bagging ensembles generally achieve significantly better results than

complete bagging. As in the experiments without noise, the best overall results correspond to

SDP and MDSQ pruning.

V. CONCLUSIONS

Using appropriate heuristics, it is possible to outperform bagging by selecting a subset of

complementary classifiers from the pool of base learners in the original ensemble. The selection

of an optimal subensemble from a given initial bagging ensemble is a difficult combinatorial

optimization problem. With the computational resources currently available, only approximate

solutions are accessible for ensembles of realistic size. In this work, pruning methods based on

modifying the order of aggregation of classifiers in bagging are investigated. A nested sequence

of ensembles of increasing size is constructed by incorporating at each iteration the classifier from

the initial pool of bagging classifiers that is expected to improve the generalization performance

of the ensemble the most. A pruned subensemble is obtained by stopping the ordered aggregation

process when a fraction of the classifiers from the original ensemble has been included. The

main conclusions for the datasets and the ensemble pruning techniques investigated are:

February 25, 2008 DRAFT

31

TABLE X

TEST ERRORS (AVERAGE ± STANDARD DEVIATION) ON NOISY CLASSIFICATION PROBLEMS.

Problem Bagging RE Kappa CC MDSQ OO BB GA SDP AB

no
ise

=
0

%

Breast 4.8±2.8 4.2±2.4 4.9±2.9 4.2±2.5 4.0±2.6 4.1±2.5 4.1±2.6 4.2±2.5 3.8±2.4 3.3±1.9

German 25.6±3.0 24.6±3.4 25.9±3.0 24.7±3.8 24.7±3.9 25.0±3.5 24.8±3.7 25.1±3.3 24.8±3.5 25.0±3.3

Heart 19.6±7.9 19.2±7.3 17.7±6.7 18.8±6.9 17.7±6.8 17.3±6.9 18.5±7.1 19.2±7.2 17.7±6.9 21.1±7.8

Ionosphere 9.7±4.6 7.5±4.4 8.0±4.4 7.3±4.0 7.3±3.9 7.7±4.3 7.5±4.2 7.5±4.3 7.2±3.9 6.4±3.7

Pima 24.9±3.9 24.6±4.1 24.2±3.9 23.9±3.8 24.0±4.1 24.0±4.1 24.2±3.9 25.2±5.1 24.3±4.3 26.7±3.9

Sonar 25.1±9.5 20.8±9.1 24.3±9.0 21.8±9.0 19.8±9.8 21.2±8.8 20.0±10.5 21.7±9.7 19.5±9.6 13.3±8.0

Vehicle 28.5±3.5 25.6±4.1 28.6±3.9 25.7±4.0 25.2±4.2 25.2±4.4 25.4±3.8 25.9±4.1 25.3±4.2 22.7±3.6

Waveform 23.0±2.4 20.6±1.3 22.2±1.7 20.4±1.2 19.9±1.2 20.3±1.3 20.3±1.4 20.5±1.4 20.0±1.2 18.0±0.8

Wine 4.4±5.0 4.2±5.1 6.7±6.3 4.4±5.1 3.1±4.0 4.0±4.7 3.3±4.2 3.6±4.7 3.2±4.2 4.1±4.8

no
ise

=
5%

Breast 9.3±3.9 8.3±3.6 9.0±3.8 8.2±3.7 8.1±3.6 8.5±3.8 8.4±3.7 9.0±3.6 8.4±3.7 9.8±3.6

German 27.7±3.8 27.0±4.3 28.1±3.2 27.0±4.3 27.1±4.1 27.6±3.9 26.9±4.0 27.6±4.1 26.9±4.2 29.0±3.8

Heart 23.2±8.4 22.7±7.6 21.6±6.7 22.0±7.4 22.2±7.6 22.7±7.8 22.2±7.6 23.1±8.0 22.1±7.5 25.4±8.4

Ionosphere 13.1±5.3 11.8±4.6 13.0±5.1 11.5±4.4 11.3±4.5 11.8±4.8 12.2±4.9 12.2±5.2 11.5±4.7 12.1±5.0

Pima 26.6±4.6 26.6±4.7 26.3±4.5 26.7±4.4 26.4±4.5 26.4±4.5 26.7±4.6 27.0±5.0 26.5±4.8 30.4±4.8

Sonar 28.1±10.1 24.0±11.1 26.2±10.8 24.6±10.6 23.5±10.4 24.4±10.5 24.7±10.9 25.3±10.5 24.0±10.3 19.7±9.4

Vehicle 33.0±4.2 29.9±4.4 32.2±4.3 29.6±4.4 30.1±4.3 30.0±4.2 30.3±4.3 29.8±4.0 30.2±4.7 27.0±4.1

Waveform 26.8±2.4 24.3±1.3 25.8±1.6 24.2±1.2 23.9±1.3 24.2±1.3 24.5±1.3 24.5±1.4 23.9±1.2 22.7±1.0

Wine 9.9±7.9 9.3±7.0 10.6±7.8 9.1±7.0 8.1±6.6 8.3±6.2 8.7±6.5 8.9±7.2 8.3±6.5 8.4±7.3

no
ise

=
10

%

Breast 14.0±4.0 13.6±3.9 13.8±3.7 13.4±3.8 13.4±3.8 13.7±4.0 13.5±3.7 13.9±3.8 13.3±3.7 15.8±4.3

German 31.0±4.1 30.1±3.9 31.3±3.9 29.9±4.1 29.7±4.1 30.0±4.1 30.0±4.0 30.7±4.6 30.1±4.2 32.5±5.0

Heart 28.2±9.6 28.1±9.9 26.5±8.8 27.5±9.5 27.5±9.6 27.6±9.7 27.7±9.6 28.0±9.0 27.3±9.6 31.2±9.6

Ionosphere 17.7±6.1 15.8±5.8 18.3±6.0 15.7±6.1 15.9±6.2 15.7±6.1 16.5±6.1 17.5±6.2 15.8±6.0 17.5±6.5

Pima 30.1±4.3 29.6±4.7 29.7±4.3 29.6±4.7 29.4±4.6 29.6±4.7 29.5±4.5 30.1±4.5 29.3±4.3 33.8±5.3

Sonar 30.1±10.3 28.1±9.5 29.6±8.8 27.7±9.4 25.9±9.5 25.6±9.5 27.1±8.8 28.3±8.9 26.5±9.8 25.2±9.9

Vehicle 36.5±4.8 34.0±4.7 35.6±4.3 33.4±4.8 33.5±4.5 33.7±4.6 34.0±4.6 33.6±4.9 33.8±4.6 31.5±4.3

Waveform 30.1±2.4 28.1±1.2 29.2±1.7 27.9±1.2 27.6±1.2 28.0±1.3 28.3±1.4 28.6±1.4 27.7±1.2 27.0±1.1

Wine 15.9±9.1 14.7±7.8 14.8±9.1 14.9±8.2 13.9±7.9 13.7±7.8 14.2±8.3 15.7±8.7 14.6±8.3 15.0±9.1

no
ise

=
20

%

Breast 23.7±4.6 23.2±4.7 23.3±4.2 23.3±4.4 23.0±4.4 23.3±4.5 23.2±4.3 24.5±4.8 23.0±4.3 27.8±5.5

German 36.2±4.4 36.1±4.6 36.4±4.3 35.9±5.0 36.1±4.9 36.6±4.8 36.0±4.7 38.2±5.5 35.8±4.9 39.9±4.5

Heart 33.4±9.1 32.6±9.5 32.9±8.9 33.2±10.2 33.3±10.0 33.8±9.8 33.1±10.2 34.4±9.8 33.7±10.3 38.4±9.5

Ionosphere 27.5±7.7 26.5±7.8 27.6±7.6 26.6±8.5 26.5±8.0 26.3±8.2 26.3±8.0 27.9±8.4 26.6±7.8 31.5±7.7

Pima 35.2±4.9 35.7±5.5 35.8±5.8 35.8±5.6 35.8±5.5 35.9±5.3 35.7±5.5 37.7±5.8 35.7±5.3 40.6±5.4

Sonar 36.1±10.3 36.5±11.8 38.4±10.8 35.7±10.7 36.4±10.7 36.7±11.4 36.0±10.8 36.5±10.6 35.7±11.3 36.6±11.6

Vehicle 43.0±5.1 40.6±5.1 42.0±5.3 40.5±5.3 40.2±5.3 40.8±5.3 40.9±5.1 41.6±5.6 41.0±5.0 41.2±5.4

Waveform 37.6±2.2 35.8±1.3 36.8±1.9 35.6±1.2 35.3±1.1 36.0±1.5 36.0±1.3 37.4±2.2 35.0±0.6 35.6±1.3

Wine 26.0±11.4 24.8±10.9 25.9±11.7 25.1±11.1 23.4±10.5 24.9±11.3 24.5±10.9 26.8±11.8 24.1±10.9 25.8±11.3

February
25,2008

D
RA

FT

32

• Exhaustive search confirms that the greedy ordering heuristics devised can efficiently iden-

tify near-optimal subensembles of increasing size.

• As more data is available for training, the errors of both bagging and pruned ensembles

decrease. However, the larger the training set is, the lower the margin for improvement

becomes. As a result, pruning becomes less effective in increasing classification accuracy.

• In general, it seems preferable to use all available data both for training the individual

ensemble classifiers and for ordering, instead of setting apart a selection set, which is used

only in the ordering phase.

• In general, the larger the initial pool of classifiers, the larger the pruned subensembles and

the better their performance. However, the improvements in accuracy become smaller and

eventually saturate as the initial pool of classifiers becomes larger.

• The pruning techniques seem to be less effective in ensembles of learners that are too com-

plex. The size of ensembles of fully developed (unpruned) CART trees cannot be reduced

without some deterioration in their performance. By contrast, pruned ensembles of decision

stumps and of standard (pruned) CART trees generally outperform the corresponding initial

bagging ensembles. The best overall performance is obtained with bagging ensembles of

standard (pruned) CART trees with pruning rates of 20 − 40%.

• The generalization performance of an ensemble cannot be improved by pruning techniques

based on individual properties of the ensemble members (e.g. the classification accuracy of

the individual learners). As illustrated by the poor results obtained by kappa-pruning, diver-

sity by itself is not sufficient either: It is important to take into account the complementarity

of the classifiers.

• The classification accuracy of bagging ensembles pruned with MDSQ, OO and BB is

comparable to that of subensembles selected by SDP, which is a very effective ensemble-

pruning algorithm.

• Pruning techniques based on ordered aggregation have a lower computational cost than GA

or SDP-pruning.

• The average size of the CART trees in the pruned subensembles is larger than in the original

bagging ensemble. This means that the reduction in memory requirements is smaller than

expected. Classification speed is only slightly diminished by this effect.

• In most of the datasets investigated, the performance of pruned bagging remains inferior to

February 25, 2008 DRAFT

33

Adaboost. However, pruned bagging ensembles retain the robustness of bagging in problems

with noise in the class labels, where the performance of Adaboost is rather poor.

In summary, for the datasets investigated, bagging ensembles composed of CART trees pruned

with either MDSQ, SDP, OO or BB exhibit a good overall performance in terms of accuracy

and robustness of classification. Among the pruning techniques analyzed, OO has the lowest

computational cost (linear in the size of the initial pool of classifiers, T). The ordering heuristics

BB and MDSQ provide similar or better classification performance at a larger computational

cost (quadratic in T). Ensembles pruned using SDP are also very accurate. However, they are

costly to construct (cubic in T).

REFERENCES

[1] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 12, pp. 993–1001, 1990.

[2] A. Krogh and J. Vedelsby, “Neural network ensembles, cross validation, and active learning,” in Advances in Neural

Information Processing Systems, G. Tesauro, D. Touretzky, and T. Leen, Eds., vol. 7. The MIT Press, 1995, pp. 231–238.

[3] L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in classifier ensembles and their relationship with the ensemble

accuracy,” Machine Learning, vol. 51, no. 2, pp. 181–207, May 2003.

[4] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123–140, 1996.

[5] J. R. Quinlan, “Bagging, boosting, and C4.5,” in Proc. of the 13th National Conference on Artificial Intelligence. AAAI

Press and the MIT Press, 1996, pp. 725–730.

[6] T. G. Dietterich, “An experimental comparison of three methods for constructing ensembles of decision trees: Bagging,

boosting, and randomization,” Machine Learning, vol. 40, no. 2, pp. 139–157, 2000.

[7] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

[8] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” in

Proc. of the 2nd European Conference on Computational Learning Theory, 1995, pp. 23–37.

[9] ——, “Experiments with a new boosting algorithm,” in Proc. of the 13th International Conf. on Machine Learning. Morgan

Kaufmann, 1996, pp. 148–156.

[10] E. Bauer and R. Kohavi, “An empirical comparison of voting classification algorithms: Bagging, boosting, and variants,”

Machine Learning, vol. 36, no. 1-2, pp. 105–139, 1999.

[11] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of supervised learning algorithms,” in Proc. of the 23rd

International Conference on Machine Learning. New York, NY, USA: ACM Press, 2006, pp. 161–168.

[12] G. Rätsch, T. Onoda, and K.-R. Müller, “Soft margins for AdaBoost,” Machine Learning, vol. 42, no. 3, pp. 287–320,

2001.

[13] D. D. Margineantu and T. G. Dietterich, “Pruning adaptive boosting,” in Proc. of the 14th International Conference on

Machine Learning. Morgan Kaufmann, 1997, pp. 211–218.

[14] A. L. Prodromidis and S. J. Stolfo, “Cost complexity-based pruning of ensemble classifiers,” Knowledge and Information

Systems, vol. 3, no. 4, pp. 449–469, 2001.

February 25, 2008 DRAFT

34

[15] Z.-H. Zhou, J. Wu, and W. Tang, “Ensembling neural networks: Many could be better than all,” Artificial Intelligence, vol.

137, no. 1-2, pp. 239–263, 2002.

[16] Z.-H. Zhou and W. Tang, “Selective ensemble of decision trees,” in Rough Sets, Fuzzy Sets, Data Mining, and Granular

Computing, ser. Lecture Notes in Artificial Intelligence, Q. Liu, Y. Yao, and A. Skowron, Eds., vol. 2639. Springer, 2003,

pp. 476–483.

[17] G. Martı́nez-Muñoz and A. Suárez, “Aggregation ordering in bagging,” in Proc. of the IASTED International Conference

on Artificial Intelligence and Applications. Acta Press, 2004, pp. 258– 263.

[18] R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes, “Ensemble selection from libraries of models,” in Proc. of the

21st International Conference on Machine Learning. New York, NY, USA: ACM Press, 2004, p. 18.

[19] R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer, “Ensemble diversity measures and their application to

thinning,” Information Fusion, vol. 6, no. 1, pp. 49–62, 2005.

[20] G. Martı́nez-Muñoz and A. Suárez, “Pruning in ordered bagging ensembles,” in Proc. of the 23rd International Conference

on Machine Learning, 2006, pp. 609–616.

[21] ——, “Using boosting to prune bagging ensembles,” Pattern Recognition Letters, vol. 28, no. 1, pp. 156–165, 2007.

[22] Y. Zhang, S. Burer, and W. N. Street, “Ensemble pruning via semi-definite programming,” Journal of Machine Learning

Research, vol. 7, pp. 1315–1338, 2006.

[23] D. Hernández-Lobato, J. M. Hernández-Lobato, R. Ruiz-Torrubiano, and Á. Valle, “Pruning adaptive boosting ensembles

by means of a genetic algorithm,” in Proc. of the 7th International Conference on Intelligent Data Engineering and

Automated Learning, ser. Lecture Notes in Computer Science, E. Corchado, H. Yin, V. J. Botti, and C. Fyfe, Eds., vol.

4224. Springer, 2006, pp. 322–329.

[24] C. Tamon and J. Xiang, “On the boosting pruning problem,” in Proc. of the 11th European Conference on Machine

Learning, ser. Lecture Notes in Artificial Intelligence, R. L. de Mátaras and E. Plaza, Eds., vol. 1810. Springer, 2000,

pp. 404–412.

[25] G. Tsoumakas, I. Katakis, and I. P. Vlahavas, “Effective voting of heterogeneous classifiers,” in Proc. of the 11th European

Conference on Machine Learning, ser. Lecture Notes in Artificial Intelligence, J.-F. Boulicaut, F. Esposito, F. Giannotti,

and D. Pedreschi, Eds., vol. 3201. Springer, 2004, pp. 465–476.

[26] G. Tsoumakas, L. Angelis, and I. Vlahavas, “Selective fusion of heterogeneous classifiers,” Intelligent Data Analysis,

vol. 9, pp. 511–525, 2005.

[27] I. Partalas, G. Tsoumakas, I. Katakis, and I. P. Vlahavas, “Ensemble pruning using reinforcement learning,” in Proc. of

the 4th Helenic Conference on Advances in Artificial Intelligence, ser. Lecture Notes in Computer Science, G. Antoniou,

G. Potamias, C. Spyropoulos, and D. Plexousakis, Eds., vol. 3955. Springer, 2006, pp. 301–310.

[28] J. Meynet and J.-P. Thiran, “Information theoretic combination of classifiers with application to adaboost,” in Proc. of the

7th International Workshop on Multiple Classifier Systems, ser. Lecture Notes in Computer Science, M. Haindl, J. Kittler,

and F. Roli, Eds., vol. 4472. Springer, 2007, pp. 171–179.

[29] W. Fan, F. Chu, H. Wang, and P. S. Yu, “Pruning and dynamic scheduling of cost-sensitive ensembles,” in Proc. of the

18th National Conference on Artificial Intelligence. American Association for Artificial Intelligence, 2002, pp. 146–151.

[30] T. K. Ho, J. J. Hull, and S. N. Srihari, “Decision combination in multiple classifier systems,” IEEE Transactions on Pattern

Analysis Machine Intelligence, vol. 16, no. 1, pp. 66–75, 1994.

[31] K. Woods, W. P. Kegelmeyer, and K. W. Bowyer, “Combination of multiple classifiers using local accuracy estimates,”

IEEE Transactions on Pattern Analysis Machine Intelligence, vol. 19, no. 4, pp. 405–410, 1997.

February 25, 2008 DRAFT

35

[32] A. Tsymbal and S. Puuronen, “Bagging and boosting with dynamic integration of classifiers,” in Proc. of the 4th European

Conference on Principles of Data Mining and Knowledge Discovery, ser. Lecture Notes in Computer Science, D. A.

Zighed, H. J. Komorowski, and J. M. Zytkow, Eds., vol. 1910. Springer, 2000, pp. 116–125.

[33] G. Giacinto and F. Roli, “Dynamic classifier selection based on multiple classifier behaviour,” Pattern Recognition, vol. 34,

no. 9, pp. 1879–1881, 2001.

[34] P. Domingos, “Knowledge acquisition from examples via multiple models,” in Proc. of the 14th International Conference

on Machine Learning. Morgan Kaufmann, 1997, pp. 98–106.

[35] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees. New York: Chapman

& Hall, 1984.

[36] C. Demir and E. Alpaydin, “Cost-conscious classifier ensembles,” Pattern Recognition Letters, vol. 26, no. 14, pp. 2206–

2214, 2005.

[37] A. M. Canuto, M. C. Abreu, L. de Melo Oliveira, J. C. Xavier Jr., and A. de M. Santos, “Investigating the influence of the

choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles,”

Pattern Recognition Letters, vol. 28, pp. 472–468, 2007.

[38] G. Giacinto and F. Roli, “An approach to the automatic design of multiple classifier systems,” Pattern Recognition Letters,

vol. 22, no. 1, pp. 25–33, 2001.

[39] B. Bakker and T. Heskes, “Clustering ensembles of neural network models,” Neural Networks, vol. 16, no. 2, pp. 261–269,

2003.

[40] R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer, “A comparison of decision tree ensemble creation

techniques,” IEEE Transanctions on Pattern Analysis and Machine Intelligence, vol. 29, no. 1, pp. 173–180, 2007.

[41] C. E. Brodley and T. Lane, “Creating and exploiting coverage and diversity,” in Proc. of the AAAI-96 Workshop on

Integrating Multiple Learned Models, 1996, pp. 8–14.

[42] A. Tsymbal, M. Pechenizkiy, and P. Cunningham, “Diversity in search strategies for ensemble feature selection,” Information

Fusion, vol. 6, no. 1, pp. 83–98, 2005.

[43] R. Schapire, Y. Freund, P. Bartlett, and W. Lee, “Boosting the margin: A new explanation for the effectiveness of voting

methods,” The Annals of Statistics, vol. 12, no. 5, pp. 1651–1686, 1998.

[44] L. Breiman, “Arcing the edge,” University of California, Berkeley, CA, Tech. Rep., 1997.

[45] A. Asuncion and D. Newman, “UCI machine learning repository,” 2007. [Online]. Available: http://www.ics.uci.edu/
∼mlearn/MLRepository.html

[46] G. Martı́nez-Muñoz, D. Hernández-Lobato, and A. Suárez, “Selection of decision stumps in bagging ensembles,” in Proc.

of the 17th International Conference on Artificial Neural Networks, ser. Lecture Notes in Computer Science, J. M. de Sá,

L. A. Alexandre, W. Duch, and D. P. Mandic, Eds., vol. 4668. Springer, 2007, pp. 319–328.

[47] A. E. Eiben and J. E. Smith, Introduction to evolutionary computing. Berlin: Springer-Verlag, 2003.

[48] C. Nadeau and Y. Bengio, “Inference for the generalization error,” Machine Learning, vol. 52, no. 3, pp. 239–281, 2003.

[49] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” Journal of Machine Learning Research, vol. 7,

pp. 1–30, 2006.

February 25, 2008 DRAFT

