
An Analysis of Geometric Modeling in Database Systems

ALFONS KEMPER and MECHTILD WALLRATH

Universitat Karlsruhe, Institut fiir Znformatik ZZ, D-7500 Karlsruhe, West Germany

The data-modeling and computational requirements for integrated computer

aided manufacturing (CAM) databases are analyzed, and the most common

representation schemes for modeling solid geometric objects in a computer are

described. The primitive instancing model, the boundary representation, and the

constructive solid geometry model are presented from the viewpoint of database

representation. Depending on the representation scheme, one can apply

geometric transformations to the stored geometric objects. The standard

transformations, scaling, translation, and rotation, are outlined with respect to

the data structure aspects. Some of the more recent developments in the area of

engineering databases with regard to supporting these representation schemes

are then explored, and a classification scheme for technical database

management systems is presented that distinguishes the systems according to

their level of object orientation: structural or behavioral object orientation. First,

several systems that are extensions to the relational model are surveyed, then

the functional data model DAPLEX, the nonnormalized relational model NF’,

and the database system R2D2 that provides abstract data types in the NF’
model are described.

Categories and Subject Descriptors: D.3.3 [Programming Languages]:

Language Constructs-abstract data types; H.2.1 [Database Management]:

Logical Design-data models; Languages-data description languages (DDL);

data manipulation languages (DML); query languages; J.6 [Computer

Applications]: Computer-Aided Engineering-computer-aided manufacturing;

1.1.3.5 [Computer Graphics]: Computational Geometry and Object

Modeling-hierarchy and geometric transformation

General Terms: Design, Languages

Additional Key Words and Phrases: Engineering database systems, geometric

modeling, object-oriented database systems

INTRODUCTION

Motivation

The last few years have shown a rapid increase in the use of robots in mechanical
assembly, and we predict an even larger trend toward computer-aided manufac-
turing (CAM) in the future, at least in the industrialized nations. As pointed out
by Requicha [19801, the major breakthrough in fully automated assembly has yet
to come. It is argued that software is the real bottleneck in robotics, very much
as with other computerized systems. The technology of robots is much more
advanced than the methods for programming them.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1987 ACM 0360-0300/87/0300-0047 $1.50

ACM Computing Surveys, Vol. 19, No. 1, March 1987

48 l A. Kemper and M. Wallrath

CONTENTS

INTRODUCTION

Motivation

FOCUS

1. REPRESENTATION SCHEMES

1.1 Primitive Instancing

1.2 Constructive Solid Geometry

1.3 Boundary Representation

2. GEOMETRIC TRANSFORMATIONS

2.1 Translation

2.2 Homogeneous Coordinates

2.3 Scaling

2.4 Rotation

2.5 Simulation of Assembly Operations

as Geometric Transformations

3. SURVEY OF PROPOSALS FOR

ENGINEERING DATABASES

3.1 The (Pure) Relational Database Systems

3.2 Object Orientation: A Classification Scheme

for Engineering Databases

3.3 QUEL as a Datatype

3.4 ADT-INGRES

3.5 GEM

3.6 The Complex Object Data Model:

An Extension to System R

3.7 The Functional Data Model

3.8 The NFa Data Model

3.9 R2D2: Relational Robotics Database System

with Extensible Data Types

4. CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

BIBLIOGRAPHY

The traditional approach to robot programming consists of manually leading
the robot through all the assembly operations. This method could be called
“programming by example.” Every robot operation that is required for the
assembly process is executed once and stored for repetitive execution during the
actual assembly operation. The main disadvantage of this approach is that it ties
a robot to the assembly environment during the development phase of the
application.

A second approach, consisting of programming the robotic application off line
[Wesley 19801, is at a much higher programming level than the traditional
programming-by-example method. It is still in its infancy and is an active
research issue. This approach frees the robot, as well as the workspace of
the robot, from the development phase of the assembly process. The robot is
programmed in an assembly-oriented language, where a sample instruction
might be

mount cog wheel x on shaft y

This high-level assembly program has to be translated into a robot motion
program that specifies exactly where to grasp the cog wheel x and where the
shaft y is located in the workspace. Furthermore, a path has to be selected to get
to the position of the object x and back to object y without colliding with any
other fixtures in the workspace.

Because all these computations are performed off line, that is, the robot as
well as the workspace is simulated, we need a precise model of the robot and its
surrounding workspace in order to simulate the assembly operation. Figure 1 is
a schematic rendering of an off-line integrated robotics programming system
according to Wesley [19801 and Blume et al. [19831.

The central part of such an integrated robotics programming system forms a
comprehensive database that stores the so-called world model by describing the
physical and geometric properties of real objects. The physical data describe such
aspects as the material of which an object is composed and are entered via a
geometric design processor that allows the engineer to specify and manipulate
real-world objects interactively.

ACM Computing Surveys, Vol. 19, No. 1, March 1987

An Analysis of Geometric Modeling in Database Systems An Analysis of Geometric Modeling in Database Systems l l 49 49

Figure 1. Integrated robotics data-
base system.

Figure 1 shows the two other main modules that interface to the world model
database:

(1) the robot emulator system;
(2) the compiler.

The robot emulator system is used to simulate existing robot motion programs
for validation purposes. This is especially important if the robots are used in
highly sensitive application areas, such as nuclear power plants, where any
undetected program error could lead to very dangerous situations.

The second module, the compiler, gets an assembly-directed program as input.
From the world model database the compiler deduces how to translate the
assembly-oriented commands into robot motions. Of course, the world model is
not a static database; rather, it is dynamic, that is, it is manipulated according
to robot operations. The real-world assembly process is simulated by manipulat-
ing the database accordingly.

Even though the world model database forms the central part of the integrated
robotics simulation system, it has traditionally received the least attention. All
known commercially available CAD/CAM systems for robotics are based on a
customized file system rather than a comprehensive database management sys-
tem. Their main disadvantage is that there is no generally accepted format to
which other modules can interface. To manipulate the data obtained by one
CAD/CAM module by some other module generally requires tedious conversion
of the data.

Why have database management systems not been employed? The answer to
this question is manyfold. (1) Today’s commercially available DBMSs, which are
designed for highly structured commercial database applications, do not ade-
quately support technical problem domains [Lockemann et al. 19851. (2) It is not
clear that we can achieve the same efficiency that is possible with a special-
purpose file structure with currently available general-purpose DBMSs. (3) The
CAD/CAM systems are usually designed and implemented by engineers who are
not necessarily database experts. Database experts have traditionally ignored

ACM Computing Surveys, Vol. 19, No. 1, March 1987

50 ’ A. Kemper and it!. Wallrath

technical problem domains. Only recently has there been a shift of research
activities within the database community toward engineering applications.

Focus

We first want to analyze the requirements imposed on database management
systems by computer-aided manufacturing applications. We begin by describing
the more important representation schemes for solid geometric objects as they
occur in the robotics world. This investigation is carried out primarily from a
database point of view rather than by presenting a rigorous mathematical
definition of the representation schemes. Section 2 describes the geometric
transformations that can be applied to solid objects stored in the world model
database. Section 3 presents a classification scheme for technical database
systems and reviews some of the more recent proposals for engineering databases
with respect to their suitability for integrated robotics databases. The first
systems that we survey are extensions to the relational model. Then we investi-
gate the functional data model DAPLEX as one representative of the object-
oriented approach. The NF2 model is a nonnormalized relational model that
allows nested relations. R2D2 (Relational Robotics Database System with Exten-
sible Data Types) is a database system that is based on the NF2 model and allows
the database user to define application-specific data types and operations. The
systems are described by defining a sample schema of some geometric represen-
tation model. Section 4 summarizes the main results of our investigation.

1. REPRESENTATION SCHEMES

Robots manipulate solid geometric objects. Thus the basis for any automated
assembly operation by robots is a way of storing information about geometric
objects in a computer. There are several quite different representation methods
for solid objects. Some of them are investigated in this section. We do not attempt
to give a formal or complete definition of all existing representation schemes for
three-dimensional solid objects. Rather, we restrict ourselves to outlining the
most important schemes. Only those aspects of importance to the design of
database support of the particular representation are described. A more theoret-
ical overview is provided by Requicha [19801.

There are three representation schemes for which database support is feasible
[Maier 19851:

(1) primitive instancing;
(2) constructive solid geometry (CSG);
(3) boundary representation (BR) .

Our presentation is based primarily on the example geometric object of Figure 2,
a bracket with four holes that frequently occurs in assembly operations. Even
though this example object is a fairly simple one, it should suffice to demonstrate
the main characteristics of the three representation schemes.

1.1 Primitive Instancing

In this approach every geometric object is defined as a special instance of a
generic primitive object. In relational database terminology this means that one
would create a relation for every generic object type. The attributes of the relation
would correspond to the parameters that describe the geometric object. Each
geometric object would then be stored as a tuple of the relation corresponding to
the generic object class.

ACM Computing Surveys, Vol. 19, No. 1, March 1987

An Analysis of Geometric Modeling in Database Systems l 51

Figure2. Bracket with four
holes.

An example of a generic object class might be brackets with holes, as shown in
Figure 2.

Now let us consider a generic record type that would describe the object class
bracket with a variable number of holes. The record type would be defined as
follows:

generic type BRACKET (#holes:integer)
length: real
width: real
height: real
material: {iron, copper, . . .]
. . .

HOLES : array [1 . . #holes] of
record

diameter: real
location: array [l . .3] of real

end record
end generic type BRACKET

A particular object of type BRACKET with four holes is instantiated as follows:

create BRACKET(4)

The reader will note that this is a very simple representation for a number of
well-known and highly structured assembly objects, such as brackets, nuts, cog
wheels, and shafts. As is pointed out in the literature [Voelcker and Requicha
19771, however, the majority of mechanical objects are produced only in relatively
small quantities, on the order of 500, say. This means that the number of
instances of a particular object class is fairly small, whereas there is usually a
large number of different generic object classes. The primitive instancing ap-
proach is not useful in such applications since it requires the specification of a
generic record type for each different object class. In database terms this means
that we would have to create an abundance of different relations, each consisting
of only a small number of tuples. For this reason this approach is not always
usable in a general-purpose CAM system.

1.2 Constructive Solid Geometry

Together with the boundary representation, the CSG scheme is the most widely
used representation in existing CAD/CAM systems. It is possible to transform a
CSG representation to a BR representation automatically. Many existing systems

ACM Computing Surveys, Vol. 19, No. 1, March 1987

52 l A. Kemper and M. Wallrath

Geometric

Ll Input

System

User

Geometric Models

programs

Figure 3. Typical architecture of a geometric modeling system.

[Requicha 19801 are organized as shown in Figure 3. The input to the geometric
modeling system is usually via the CSG representation, which is much easier for
the user, that is, the engineer, to handle than is the boundary representation.
Internally, the CSG representation is automatically transformed into the bound-
ary representation.

The CSG scheme is a volumetric representation of geometric objects, in which
an object is described as a composition of a few primitive objects. The composition
is achieved via motional or combinatorial operators. Example operators are the
(regularized) union, intersection, and difference of two solid objects. Motional
operators are, for example, “rotate” and “scale”. The description of a geometric
object in CSG format is a tree defined by the following context-free grammar:

<mechanical part> ::= <object>

Cobj ect> ::= <primitive> I

<object> <motion op> <motion argument>1

<object> <set operator> <object>

<primitive> ::= cube I cylinder I cone I . . .

<motion op> ::= rotate I ecale I . . .

<set operator> ::= union I intersection I difference I . . .

In Figure 4 we show a CSG tree for our example object “bracket with 4 holes.”
In the CSG tree each nonterminal node represents an operation, either a rigid
motion or a combinatorial (set) operator. Terminal nodes either represent a
motion argument or a primitive object. Each primitive object is described by its
parameters, such as length, width, and height, as well as its relative position.

In our example we have only two primitive objects: cuboid and cylinder. A
cuboid is defined by its length, width, and height. A cylinder is defined by its
radius and length.

We notice that, in contrast to the primitive instancing scheme, the CSG
representation requires only a few primitive objects. Therefore the CSG tree of
complex objects can become very deep, which might lead to inefficient data
retrieval if there is no suitable data access support.

ACM Computing Surveys, Vol. 19, No. 1, March 1987

An Analysis of Geometric Modeling in Database Systems l 53

. ..lO . ..ll

cuboid
cylinder

Figure 4. CSG tree of the bracket.

1.3 Boundary Representation

In this representation scheme a solid object is segmented into its nonoverlapping
faces. Each face in turn is modeled by its bounding edges and vertices. Again we
present the representation of our bracket in Figure 5.

From a database point of view we note that this representation scheme consists
of different abstraction levels, that is, faces, edges, and vertices. In contrast to
the CSG scheme, the depth of the tree is constant, that is, 3. A more complex
solid object just leads to more nodes in the tree without increasing the depth.

The lowest level of the tree stores the metric information, that is, three-tuples
(Xi, yip Zi) for vertex Ui, for i in 11, . . . , m). The second level of the tree stores the
edges as combinations of vertices. Edge ei is represented by the tuple (Uil, Viz),
where i in (1, . . . , n). On the topmost level of the tree each node describes a
variable number of edges which represent the boundaries of one face of the rigid
object.

2. GEOMETRIC TRANSFORMATIONS

The two most important representation models for rigid solids are the construc-
tive solid geometry model (CSG) and the boundary representation (BR). To
display the edges of a three-dimensional solid on a computer display, the boundary
representation is much easier to handle. Many commercially available

ACM Computing Surveys, Vol. 19, No. 1, March 1987

54 l A. Kemper and M. Wallrath

r, . . . FACES

% e, e, . . . EDGES

“I “1 “8 “4 “I “8 “7 “8 “1 VI0 . . . VERTICES

Figure 5. Boundary representation of the bracket.

three-dimensional modelers employ the CSG method for inputting an object, but
can automatically transform the representation to BR format, as was shown in
Figure 3.

In this section we give the reader a brief introduction to the area of computer
geometry. Unfortunately this presentation does not allow us to give a detailed
treatment of this problem domain. We refer the reader who wants more details
to the book by Foley and van Dam [1983]. In this section we merely outline the
computational requirements imposed on the geometric modeling system by
geometric transformations.

A graphical display of a geometric object, in this case a cuboid, is shown in
Figure 6. Except for references to faces and edges, the only data that are stored
in the boundary representation are vertices in the three-dimensional space, that
is, vectors of the form (x, y, z). To uniquely describe the cuboid, one has to store
the eight vertices ul, . . . , us. The corresponding boundary representation of this
cuboid is depicted in Figure 7.

In order to be able to view an object from different perspectives (angles) and
to zoom in and out on the particular object, one can apply three geometric

ACM Computing Surveys, Vol. 19, No. 1, March 1987

An Analysis of Geometric Modeling in Database Systems l 55

Figure6. Projection of a cuboid on a
display.

v, -e,- v2 X

*:

@

.-
..

.a
..

. .

FACES

eM e, es e, -.......... EDGES

VI V2 Vs V4 VI Vll V1 v8 VERTICES

Figure 7. Boundary representation of the cuboid.

transformations to the object stored in BR representation:

l translation;
l rotation;
0 scaling.

We briefly explain each of these transformations in turn.

2.1 Translation

Translation corresponds to moving the graphical object within the three-
dimensional coordinate system relative to the origin without altering the object’s
orientation. This is achieved by rotations, which are explained later. A translation

ACM Computing Surveys, Vol. 19, No. 1, March 1987

56 . A. Kemper and M, Wallrath

is defined by the translation vector T = (OX, Q, D,). A single vertex is translated
by adding the translation vector to the vector representing the vertex in the
three-dimensional system:

ui = (Xi9 Yi, zi),

T = (D,, Dy, DA

T(ui) I= Ui + T = (xi + D,, yi + Dy, Zi + D,).

To translate a geometric object represented in boundary representation re-
quires translating all vertices of the object that are stored in the BR schema.
Thus, for the example of the cuboid, one would have to carry out the following
computation:

fi; all ui in {uI, . . . , us] do
ui := vi+ T;

2.2 Homogeneous Coordinates

The other two transformation operations, that is, scaling and rotation, can be
defined naturally as multiplications of the vertex (vector) with a corresponding
transformation matrix, as we show below. In order to be able to combine different
transformations of the same object, for example, rotation and translation, we
would like to also represent translation as a matrix multiplication. Then we
would be able to combine different transformation matrices by multiplying them.

In order to represent the translation also as a matrix multiplication, the
concept of homogeneous coordinates has to be employed, as is done in many
graphics packages [Foley and van Dam 19831. This concept requires a vertex to
be stored as a four-element, rather than a three-element, vector. Then vertex Ui
is represented as

vi = [Xi, Yi9 zi, 11.

Now the translation matrix T looks as follows:

1 1 0 0 0 0 0 0

T= T= [[0 0 100 100

0 0 0 1 0 0 1 0 1 1 * *

D, D, Dy D, 1 Dy D, 1

The translation of the vertex Ui is then defined as

10 00

T(ui) = [xi, yiy Zi, 11 *
0 100 [1 o o 1 o = [xi + Dx, yi + Dy, Zi + Dz, 11.

D, Dy Dz 1

Translation of the cuboid would then result in the following program fragment:

f& all ui in (u,, . . . , us] do
Ui:= ui * T;

2.3 Scaling

An important concept in viewing geometric objects on a computer display is
varying the size in form of scaling (or stretching). Vertices (as endpoints of
vectors) can be scaled by S, along the x-axis, S, along the y-axis, and S, along

ACM Computing Surveys, Vol. 19, No. 1, March 1987

An Analysis of Geometric Modeling in Database Systems l 57

Y4
. j c+(1,3)

.------- ~------: s+,q

I
I
I

Figure 8. Scaling of a two-dimensional object.

I
I
I

I

I
I
I
I
I -

X

the z-axis, according to the scaling matrix S as follows:

s, 0 0 0

S(Ui) = [Xi, yiy Zi, l] *
0 s, 0 0

‘[I

o o s o = [Sx * Xi, Sy * .Yi, S* * zi9 l]-

0 0 d 1

Scaling of a two-dimensional object is shown in Figure 8. Scaling of a geometric
object is carried out by scaling each surrounding edge of the object representation
in BR format, which is equivalent to scaling each vertex of the BR representation.
Thus the following program would scale the cuboid of Figure 2:

foralluiin(~l,...,us)do
Ui := Ui * S;

where

ui = [Xi, Yit zit ll,

s= [

s, 0 0 0

0 s, 0 0
0 0 s, 0 ’
0 0 0 1 I

and the centered asterisk (*) corresponds to matrix multiplication.

2.4 Rotation

Rotations are used to change the orientation of geometric objects in the three-
dimensional space. This way one can provide a view of the objects from all
different angles. Graphically, rotation of a cuboid is shown in Figure 9.

In three dimensions we have to distinguish three kinds of rotations:

l rotation about the z-axis;
l rotation about the x-axis;
l rotation about the y-axis.

Here we show only briefly the definition of rotation about the z-axis. The
interested reader is referred for more detail to Foley and van Dam [19831.

ACM Computing Surveys, Vol. 19, No. 1, March 1987

58 l A. Kemper and M. Wallrath

Figure 9. Rotation of the cuboid. fjpJq+

A rotation about the z-axis is defined by the rotation angle a. Corresponding
to this angle the rotation matrix R,(a) is constructed as

The rotation of vertex Ui is then given as

r cos a sin 9 0 0’

[Xi, Yi9 zip 11 *

i

-sin @ cos @ 0 0
o o 1 o

0 0 0 1.

= [Xi * COS @ - yi * sin a’, Xi * sin 9 + yi * COS *, Zi, 11.

Rotation of a geometric object stored in boundary representation is carried out
analogously to scaling and translation; that is, each vertex has to be rotated. The
program fragment is shown below:

for all ui in (IJ~, . . . , ugJ do
Ui := Ui * R,(G);

2.5 Simulation of Assembly Operations as Geometric Transformations

As described in Figure 1, the world model database forms the central part of a
robot programming system. One major task in such a system is to simulate off-
line robotics operations, for example, assembly operations of the form

mount cog wheel x on shaft y

The standard geometric transformations described above are the operations
used to model such an operation. We assume that object x (the cog wheel) exists
at some location in the world of this robot application, that is, it exists in the
world model database. The same holds true for object y, the shaft onto which x
has to be mounted. Simulating this assembly operation means, in terms of the
world model database, changing the location of object 3~. In our particular case
this is achieved (not regarding the problem of collision handling) by the following
(standard) geometric operations:

1. Translate by Ti (pick up object x).
2. Rotate about the z-axis by R,(a).
3. Rotate about the x-axis by R,(8) (rotate x).
4. Rotate about the y-axis by R,(r).
5. Translate again by T2 (mount object x on y).

ACM Computing Surveys, Vol. 19, No. 1, March 1987

An Analysis of Geometric Modeling in Database Systems

The following program fragment would achieve this transformation:

for all Vi in {VI, ~2, ~3, . . .) do
begin
~i:=vi* T1;
vi := vi * R,(a);
v, := vi * R,(8);
LJ~ := vi * Ry(I’);
v; := v, * T,;
end

l 59

This results.in altogether 5 * j matrix multiplications, where j is the number of
vertices used to describe object X. For example, if 8 vertices are used to model
the object, the above method would result in 40 multiplications. A much more
efficient way combines the transformation matrices T1, R,(a), R,(0), R,(r) into
one matrix M:

M := Tl * U-L(*) * (R,W * (R,(r) * Tz)))
for all vi in {II,, ~2, ~3, . . .) do

vi := vi * M;

This method results in 5 + j matrix multiplications; that is, for an object with
8 vertices, one needs 13 multiplications.

3. SURVEY OF PROPOSALS FOR ENGINEERING DATABASES

In this section we first sketch the relational database model for those readers
who are not familiar with databases. Then we introduce the notion of object
orientation in database systems, which is applied to characterize the engineering
database systems investigated in the remainder of this section.

3.1 The (Pure) Relational Database Systems

In the introduction to this paper we cited a few reasons why database management
systems have not been extensively used in technical applications. The main
reason is that the data-modeling capabilities of the traditional database systems
are insufficient for engineering applications. For example, in the relational
database model [Codd 19701 technical objects usually have to be decomposed
onto different relations. Let us illustrate this on a relational BR schema that is

ACM Computing Surveys, Vol. 19, No. 1, March 1987

60 l A. Kemper and M. Wallrath

We notice that this representation is broken up into four different relations,
where the relat,ionship of the tuples of the various relations is achieved via user-
generated attribute va1ues.l This makes the model difficult to use by the database
user, that is, the engineer, in order to retrieve and manipulate the data because
it requires an intrinsic knowledge of the underlying schema definition. In order
to retrieve all the bounding vertices of the mechanical part “cuboid,” one could
formulate the following SQL [IBM 19811 or QUEL [Stonebraker et al. 19761
queries:

Zelec: Mech-Part.1D.X.Y.Z

iIon Mech~Part,FACES,EDCES,VERTICES

Fhern Mech-Part.FACES = FACES.ID

~4 FAcEs.EDGES = EDGES.ID

ad EDGES. VERTICES = VERTICES. ID

@ Mech-Part.ID = ‘cuboidm

range 02 m &Z Mech-Part

range of f fe FACES

range Q$ e &g EDGES

rggg og v ie VERTICES

Ie&I&n (m.ID,v.X,v.Y,v.Z)

F&Ie m.FACES = f.ID

ggQ f.EDGES = e.ID

and e.VERTICES = v.ID

and m.ID = .cuboid.

These queries involve joining the four relations Mech-Part, FACES, EDGES,
and VERTICES. Adequately supporting such frequent join operations seems to
be the major issue in extending the (pure) relational model for engineering use
[Lorie 1982; Lorie and Plouffe 19831.

3.2 Object Orientation: A Classification Scheme for Engineering Databases

In summary one could state that the problems with traditional database manage-
ment systems stem from the fact that they do not allow the modeling of
engineering objects in a natural way-or at least they do not support the retrieval
and manipulation of such objects in a way that is familiar to engineers. In
particular, they do not handle technical objects as a whole database entity; rather,
they require a schema design that is imposed by the underlying data model but
does not necessarily constitute a natural mapping of technical objects on database
structures.

Object-oriented database systems have been proposed by many authors as a
new concept for supporting technical applications. In the database area in
particular, two kinds of object orientation should be distinguished [Dittrich
19861: the structural and the behuvioral\object orientation.

The structural approach has originated from database technology and is
essentially motivated on technical grounds. The central notion here is that of a
“complex object” [Lorie and Plouffe 19831 or of a “molecule” [Batory and Kim
19851, reflecting the fact that objects in the engineering world are composed of
parts that may among themselves undergo a variety of other relationships.
Typical approaches are based on hierarchical extensions to the relational model,
such as XSQL [Haskin and Lorie 19821 or the NF2 data model [Schek and Pistor
1982; Lum et al. 1985; Dadam et al. 19861, and extensions to the entity-
relationship model [Zaniola 1983; Glinz et al. 1985; Dittrich et al. 19861.

1 The attributes named ID do not constitute keys of the relation. For example, in the relation FACES
the attribute ID is just used to uniquely identify an object that represents a face of the mechanical
part.

ACM Computing Surveys, Vol. 19, No. 1, March 1987

An Analysis of Geometric Modeling in Database Systems l 61

Structurally object-oriented data models provide facilities for mapping complex
objects onto database structures and for retrieving these objects as entities, but
they usually lack constructs to define manipulations of these objects in a manner
that is familiar to engineering users.

The behavioral approach has a more application-oriented flavor. The identifi-
cation of an object is largely determined by what a user perceives to be an entity
that, at least at times, can be manipulated as a whole. In such an abstract view,
data manipulation is object-type specific by necessity. Take as examples a
geometric object that is to be rotated in space or attached to another such object,
or an image that is to be searched for the occurrence of a particular pictorial
pattern or overlaid with another image. The behavioral approach to databases
has its origins in programming languages, particularly the notion of abstract data
type. Lately, considerable work in this area has been reported in the database
literature [Maier et al. 1985; Atwood 1985; Zdonik and Wegner 1986; Zaniola
et al. 19861.

One approach for a behaviorally object-oriented CAD system is reported in
Eastman [1981,1986]. GLIDE is a Pascal extension that incorporates permanent
data and provides language constructs for geometric modeling, graphical input
and display functions, and a user-oriented command language. Thus GLIDE
allows the user to manipulate permanent data objects by application-specific
operators. The concept of data abstraction is even more central in the successor
system FORM:ULAE: [Eastman 1986; Eastman and Kulay 19851, which is an
extension of GLIDE to the extent that it allows the embedding of external
abstract data types. In particular, the system supports the development of
abstraction hierarchies by stepwise refinement of abstract data types. Restricting
the manipulation of abstract data objects to those operations that are predefined
for the abstract data type provides a powerful tool for integrity management
since it avoids any inconsistent manipulations.

Whereas Eastman’s work concentrates on the programming language aspects
of CAD systems, we analyze several recent proposals for object-oriented database
systems with respect to geometric modeling, all of which evolved out of the
relational database model [Codd 19701 and were intended for the so-called
nontraditional applications, that is, applications that do not belong to the
traditional business domain. We apply our classification scheme to each proposed
system and discuss what level of object orientation the particular model provides.

3.3 QUEL as a Datatype

“QUEL as a Datatype” was proposed by Stonebraker et al. [1983b], as an
extension to the database management system INGRES [Stonebraker et al.
19761. It allows attributes of relations to be of type QUEL; that is, the attribute
consists of a QUEL query that retrieves tuples from one or more different
relations. The purpose of this extension is to provide a very general referencing
mechanism. The database designer could define new objects, such as vectors,
cubes, and arrays, in separate relations and access them from the parent relation
via an attribute of type QUEL.

3.3.1 Constructive Solid Geometry

We define a CSG schema in “QUEL as a Datatype” as shown in Figure 10 [Lee
and FU 19831. Mechanical-part is the root relation and contains information
about the assembly part as a whole. In our case the assembly part is the bracket.
The mechanical part is then divided into its constituent objects according to the

ACM Computing Surveys, Vol. 19, No. 1, March 1987

62 l A. Kemper and M. Wallrath

mechanical~part(id,name,compoeition:QUEL)

object(id,parent:Q~,belonging_to,kind,deecription:QUEZ)

moved~object(id,object:UEL,org:&JEL,op)

compoeed~object(id,left:CNEL,right:QUEL,op~code)

pri.mitive~object(id,type,reference:QUEL)

cylindrr(id,radiue,length,loc:QUEL)

cuboid(id,ridth,height,lrngth,loc:QUEL)

motion~arg(id,old:QUEL,nsr:QUEL)

1ocationfid.x.y.z)

Figure 10. CSG scheme in “QUEL as a Datatype.”

CSG tree of Figure 4. An object is further described in one of the relations
moved-object, primitive-object, and composed-object, respectively. Primitive
objects are distinguished between cylinders and cuboids, the only primitive CSG
elements that we consider at this point.

The process of inserting data into this schema turns out to be quite tedious,
since each attribute of type QUEL requires an explicitly inserted query. Only a
small fraction of the insertion commands for our example geometry object
“bracket” is shown in the program of Figure 11.

Figure 12 shows a few data-filled relations that store the example object in
CSG representation. For simplicity we show the respective query for each
attribute of type QUEL. In an actual implementation the column would probably
store the query in a preprocessed form, or even in the form of pointers to the
result tuples of the query.

3.3.2 Extended Query Language

To give the reader an idea of the extended query capabilities of “QUEL as a
Datatype,” let us consider the following very simple query.

Example

Find the locations of all primitive objects that are constituents of the object #5,
that is, the bracket.

range of o is object
retrieve o.description.reference.loc.all
where o.belonging-to = 5 and o.kind = po

The subclause “o.description” in the retrieve command references a tuple of the
relation primitive-object. If the same query is stated with “where o.id = 1,” this
same subclause would reference a tuple of the relation composed-object. Then
the clause “o.description.reference” would make no sense, since reference is not
an attribute in composed-object. We note that this causes problems with type
checking since the validity of the query can only be determined at execution
time. This means that the user needs to know stored attribute values in order to
state a valid query. The clause “o.description.reference.loc” finally results in a
tuple of the relation location that is returned as a result by this query.

We see that the “.” operator can be nested in this extended query language.
The ability to reference tuples of different relations via an attribute of type

ACM Computing Surveys, Vol. 19, No. 1, March 1987

An Analysis of Geometric Modeling in Database Systems l 63

@pnp@- $2 mechanical-part(
id=S,name=vbracketv.
compoeition=vrange of o is object

retrieve o.all
where o.belonging-to=S.)

append- to object(
id=l,belonging_to=6,
kind=‘co’,
parent=‘range of o ie object

retrieve 0.011
where o.id=lv

deecription=vrange of c ie compoeed-object
retrieve c.all
where id=lv)

@pp~pd- to object(
id=S,belonging~to=S,
parent=‘range of o ie object

retrieve o.all
where o.id=l’

kind=vpov,
deecriptiowvrange of p ie primitive-object

retrieve p.all
where p. id=6’)

append- $0 cylinderc
id=6 ,
radiutt=l.S,
length=l,
location=‘range of 1 ie location

retrieve l.all
where 1. id=Sv)

eppnbd- $2 location (id=6. r=2, J”3, e=S)

Figure 11. Insertion into the relations of the CSG scheme.

QUEL results in significantly easier queries. This same query would have involved
three explicit joins in the traditional relational model. The scope of this presen-
tation does not allow us to give a more detailed description of the query language,
and the interested reader is referred to Stonebraker et al. [1983b].

3.3.3 Boundary Representation

The boundary representation of a mechanical object could be stored in the
following “QUEL as a Datatype” schema:

mechanical~part(id,name,faces:QUEL)

facee(id,parent:QUEL,edges:QUEL)

edges (id,vertices : QUEL)

vertices (id, lot : QUEL)

locations (id, x, J, z>

The insertion of data into this schema is shown in Figure 13.

ACM Computing Surveys, Vol. 19, No. 1, March 1987

64 l A. Kemper and M. Wallrath

Y-

2

a

4

5

6

7

‘range of o is object
retrieve o.all
where o.id=l’

‘range . . .
retrieve 0.d
where o.id=l’

‘range .,.
retrieve o.rll
where o.id=l’

‘nngc . . .
retrieve o.rll
when o.id=t’

mechanic&part

. . .

. . .
bncket

cog wheel
. . .

coMEos1l3eK_
. . .
. . .
‘range of o is object
retrieve 0.d
where o.belongingJo=6’
. . .
. . .

object

composed-object

‘range of c is composed-object
retrieve c.all
where c.id=l’

‘range . . .
retlieve call
where c.id=t’

l nnge . . .
retrieve call
where c.id=2’

co

‘range of p is primitive-object
retrieve p.all
where p.rd=S’

. . .

. . .

primitive-object

przi-tg~~~

location

ID RADIUS

.

t

5 1.5

.

‘x Y z

...

I-t-Ii
2.0 3.0 5.0
...
... ... * . .

Figure 12. Some data-filled relations.

ACM Computing Surveys, Vol. 19, No. 1, March 1987

An Analysis of Geometric Modeling in Database Systems

append to mechanical-part(
id=l,

l 65

n8me=.bracket’,
facea=‘range of f is facet3

retrieve f.all
where f.parrnt=l’)

append to fame (
id=f 1,
parsnt=l,
edgee=.ranga of e ie edgee

retrieve e.all Insertion of BR data into the
where e.id in ~e,,r,,r,.e,)~)

Figure 13.
schema.

append to edgee(
id=@!,
vertice6=Vange of v ie vertices

retrieve v.all
where v. id in <vi,vz)>

append to verticee(
id-, ,
loc=.range of 1 ie location6

retrieve l.all
where 1. id=v,‘)

An example query is

Example Query. Find the bounding vertex locations of face fi.

range of f is faces
retrieve f.edges.vertices.loc.all
where f.id = fi

3.3.4 Discussion

“QUEL as a Datatype” is a very interesting proposal toward engineering data-
bases. In summary one can say that although this approach introduces a very
general reference type in the relational data model, there are still some problems
with respect to integrated CAM databases. One very obvious problem is the
extremely tedious insertion process, which is even more problematic in a dynamic
problem area like robotics, where new objects have to be created on a very
frequent basis. It seems that the additional insertion complexity is the penalty
for the increased expressive power of the query language with the implicit join
operation.

The second shortcoming can be seen in Figure 12, which shows the relations
of the CSG representation of the bracket. Even though “QUEL as a Datatype”
supports referencing between tuples of different relations, it is still the user’s
responsibility to uniquely identify the objects with some key identifier attributes.
This might create consistency problems, especially if more than one engineer
works on the database. It would be more suitable if the system were to support
the generation of identifiers that could then be assured to be unique within the
database.

The CSG data representation is a recursively defined tree. “QUEL as a
Datatype” does not support recursion, which might lead to very complicated data
manipulation algorithms. The boundary representation generates a constant
depth tree, for which “QUEL as a Datatype” seems to work fairly well. Using
attributes of type QUEL we can generate references to the lower level abstraction,

ACM Computing Surveys, Vol. 19, No. 1, March 1987

66 l A. Kemper and M. Wallrath

for example, faces to edges, fairly easily. But again we note that the data insertion
process is extremely tedious. One would have to devise a way to simplify this if
“QUEL as a Datatype” were to be used in practice.

Another problem seems to be that the representation is split up into very small
partitions, down to vertex locations. This might lead to inherently inefficient
data manipulation processes, unless we can manage to cluster data appropriately.
This is also true for the CSG representation where you might have to traverse
very deeply into the tree to retrieve some subobject.

In summary “QUEL as a Datatype” supports structural object orientation via
a very general referencing mechanism, but the system does not provide any
facilities for behaviorial object orientation; that is, the model does not allow the
definition of application-specific operations.

3.4 ADT-INGRES

ADT-INGRES was proposed by Stonebraker et al. [1983a] and implemented as
an experimental prototype on top of the existing DBMS INGRES [Stonebraker
et al. 19761 by Fogg [1982]. ADT-INGRES provides a facility that allows the
user to define his or her own data types. The representation of the new data type
has to be specified in C [Ritchie 19781.

Let us now consider an example. We want to define a relation to store cuboids.
For this purpose we specify an ADT for the attributes vertex, which consists of
three decimal numbers, the X, y, and z coordinates:

cuboids (id,

material : char (101,

description : char (20) ,

Vl:ADT:vertex-type,

VP:ADT:vertex-type,

. . .

V8:ADT:vertex-type)

An example query using the ADT attribute vertex-type would look as follows:

rang2 2l c ig cuboide

retrl2~2 (c.material,c.description,c.Vl)

@tern c.id=S

Depending on the implementation of the ADT, the output of this query could
then look as follows:

1 material 1 description 1 VI

ACM Computing Surveys, Vol. 19, No. 1, March 1987

An Analysis of Geometric Modeling in Database Systems

And a possible append command could look as follows:

l 67

~ppgnd $9 cuboidec

id=6 ,

matBrial=.copper’,

deBcription=%aBBive’,

Vl=(l.O,3.6,2.0>,

VP=(. . . 1,

. . .

V8=(. . . 1)

The user has to supply the implementation of such an abstract domain. For
our example this would be

&ftdgg ADT(

typename=Uvertex-type~,

bytesin=9,

bytesout=9,

Inputfunc and outputfunc are C subroutines that convert the data type to internal
and external representation, respectively. Outputfunc, for example, would extract
the X, Y, and Z coordinates from the internal representation and output them
in the format shown above. For the implementation of these routines the user
needs the knowledge of C.

An obvious disadvantage of ADT-INGRES is that each abstract data type has
to be mapped onto one attribute. In our case this means that the three coordinates
are mapped onto an attribute of type string. This is a very unnatural mapping.
It would be much more convenient (and natural) to map the coordinates onto
three attributes of type float.

Schematically the ADT mapping for our data type vertex-type is

%
to-internal-vertex

to-external-vertex
(1.0 %% 3.5 %% 2.0)

2.0 l

1

In addition to such a data type, the ADT-INGRES user can define his or her
own operators on these domains. As an example let us present the framework of
the operator R,, which takes as an argument a vertex and an angle. It returns a
vertex that is rotated about the y axis by the given angle. Here we assume that
the data type, which is just a numerical type, has been defined previously. The

ACM Computing Surveys, Vol. 19, No. 1, March 1987

68 l A. Kemper and M, Wallrath

implementation would look as follows:

QfiIJg adtop (

opname=‘R,” ,

funcname=mrotate-about_y’,

filename=U/usr/ingree/.../rotate_y’.

result=vertex,

argl=ADT:vertex-type.

argl=ADT:angle-type,

prec like *+“)

Once again the file rotate-y must contain a C program implementing this
operator.

Similarly one can define the other possible geometric transformations, scaling,
translation, and rotation, about the other two axes.

Let us now implement a QUEL program that rotates our previously inserted
copper cuboid.

range of c 1s cuboide

replhce c(V1=R,(c.V1,PHI),V2=R,(c.V2,PHI), .., , VB=R,(c.VB,PHI))

yhbgg c.id=5

Discussion. ADT-INGRES provides a novel way of specifying new data types
and corresponding operators in a database management system. The advantage
of this approach lies in the fact that the operators can be arbitrarily complex.
For example, we showed the framework for all the geometric transformations on
three-dimensional objects, that is, scaling, translation, and rotation.

However, the additional flexibility of the system also has its penalty. The new
data types have to be specified in the programming language C. Thus the ADT-
INGRES user has to be familiar with two quite different systems: (1) the database
language QUEL, and (2) the programmming language C.

Another shortcoming of this approach is inherent in the database management
system INGRES: it only allows fields of up to 250 bytes.’ Therefore we can only
specify those objects as ADTs whose internal representation fits into 250 bytes.
ADT-INGRES does not allow mapping an ADT onto different tuples (or rela-
tions); it requires mapping each ADT completely onto one attribute. Thus the
internal representation of engineering objects does not reflect the external
structure of the object (as the user perceives it). This usually results in a fairly
tedious transformation process from external to internal representation, and vice
versa. For example, the ADT vertex-type had to be mapped into a character
string rather than onto three attributes of type float, which would have been a
much more natural mapping.

ADT-INGRES does not provide any additional support for handling hierar-
chical data structures that occur frequently in engineering applications. Whereas

’ This is imposed by the UNIX file structure since each tuple has to fit entirely on one page. (UNIX
is a trademark of AT&T Bell Laboratories.)

ACM Computing Surveys, Vol. 19, No. 1, March 1987

An Analysis of Geometric Modeling in Database Systems l 69

“QUEL as a Datatype” allows referencing tuples of the same or different relation
by formulating an appropriate query as an attribute, the ADT-INGRES approach
does not.

ADT-INGRES provides some facilities for behavioral object orientation by
allowing the database user to define application-specific ADT operations. How-
ever, these operations are quite tedious to implement because internally the
model is not structurally object oriented.

3.5 GEM

GEM was developed at Bell Laboratories by Carlo Zaniola [1983]. It is a general-
purpose query and update language for the entity-relationship data model. GEM
was designed as an extension to the database language QUEL.

The language GEM is very similar to Stonebraker’s approach in “QUEL as a
Datatype,” with the following differences:

l GEM supports set type attributes, that is, sets of atomic types as attributes.
l GEM supports a sophisticated notion of null values.

Thus one could have the following schema in GEM:

item(name, price, (colors))

Each tuple of the relation consists of a value for name, price, and a set of colors.
An example would look as follows:

I ITEM
I

INM I PRICE COLORS

Chevy

Ford

Pontiac

7ooo

6500

white

black

red

black

black

yellow

Except for the representation schemes of the CSG and BR models, the set-valued
attributes would not yield any advantage, since GEM only allows sets of noncom-
posite types, that is, sets of integers, reals, characters, etc., and does not allow
sets of tuples (or records) as would be needed to simplify the schema for the CSG
or BR representation. For example, using a set of edge-id’s, we could have
combined the faces and the edges relations of the BR representation as follows:

faces(id, (edge-id])

Thus we could have saved the additional relation edges.
In summary we conclude that for robotics databases GEM is of the same

expressive power as “QUEL as a Datatype.” A major improvement, especially for
modeling hierarchical data structures, would have been achieved by supporting
sets of composite types as in the NF’ model proposed by Schek and Pistor [19821
and Schek and Scholl [1983].

ACM Computing Surveys, Vol. 19, No. 1, March 1987

70 l A. Kemper and M. Wallrath

3.6 The Complex Object Data Model: An Extension to System R

System R [Astrahan et al. 19761 is a relational database management system
developed at IBM in San Jose. Currently there are efforts under way to enhance
the data model to support technical applications. Aside from a suitable transac-
tion mechanism [Lorie 1982; Lorie and Plouffe 19831, the new type long field
and the notion of complex object were introduced. Long fields, which are useful
for storing unstructured data such as text, are only of minor interest for integrated
robotics databases. The CSG, as well as the BR representations, constitute highly
structured data schemes. Of course, one could store these data in long fields and
then retrieve them using appropriately defined operators on the long fields. This
would resemble the domain ADT approach of ADT-INGRES.

For modeling geometric data the concept of a complex object could be quite
helpful. A complex object is a hierarchical cluster of tuples of different relations,
that is, it corresponds to a 1 :N relationship. The hierarchical relationship
between tuples is expressed by attributes of type “component-of.” General
N : M relationships are expressed by attributes of type “reference.” The main
difference between the two reference types is that the data model provides built-
in support to access all tuples belonging to a component-of relationship by
physically clustering the data and maintaining pointers to the component tuples.
The association of tuples is achieved via so-called surrogate attributes [Codd
19791.

3.6.1 Constructive Solid Geometry

The schema description of the CSG approach as a complex object is shown in
Figure 14. The entity MP (mechanical part) forms the root of the complex object
and is split up into objects that are either composed, moved, or primitive objects.
Primitive objects are either cylinders or cuboids. We note already at this point
that the notion of a complex object cannot really capture the semantics of the
entity “composed object,” which is composed of entities of type “object,” that is,
members of the parent entity. This type of reference cannot be modeled in the
complex object approach. This shortcoming is explained further in the description
of the boundary representation.

In Figure 15 we show part of the definition of the CSG database schema. We
restrict our presentation to the attributes of type identifier, component-of, and
reference. The other attributes of the relations are identical to those of Figure
10. An attribute of type identifier, for example, MP-ID, is automatically assigned
an internally generated unique value, which might consist of two parts: the
processor id, and the time the tuple was generated. This would ensure a worldwide
unique identifier value. An attribute of type component-of references exactly one
tuple of the parent relation via its (the parent tuple’s) identifier value. Thus the
component-of concept is used to model 1:N relationships among tuples of
different relations. This is shown in the example relations of Figure 16.

In addition to the component-of references, we can also have attributes of type
reference to model general N : M relationships. These attributes can reference
tuples of a different relation, not necessarily the parent relation. Tuples associ-
ated with an attribute of type reference do not form a cluster, and therefore the
access of these associated tuples is not particularly supported in the system.
Attributes of type reference are used to define the relation CO (composed-object),
where each tuple is composed of a left and right child of type OBJ (object).

ACM Computing Surveys, Vol. 19, No. 1, March 1987

An Analysis of Geometric Modeling in Database Systems l 71

V V

cylinder II cuboid
I

Figure 14. CSG representation as a complex object.

create table MP(
W-ID identifier,
NM
. . . 1

create table OBJ(
OBJ-ID identifier,
OBJ-COW component_ofQdP),
. . . I

create table MO(
MO-ID identifier,
MO-COW component-of (OBJ) ,
. . . >

create table CO(
CO-ID identifier,
CO-COMP component-of (OBJ) ,
LEFI reference (oBJ) ,
RIGHT reference (OBJ) ,

Figure 15. CSG schema in System R.

. . . 1
create table PO(

PO-ID identifier,
PO-COMP component-of (OBJ) ,
. . . 1

create table CY(
CY-ID identifier,
CY-COMP component-of (PO),
. . . 1

create table CU(. . .)

ACM Computing Surveys, Vol. 19, No. 1, March 1987

72 l A. Kemper and M. Wallrath

Figure 16. Some example tables.

3.6.2 Boundary Representation

The problem with the component-of concept is that each tuple has exactly one
parent tuple in the parent relation and therefore supports only 1: N relationships.
This is a severe shortcoming with respect to modeling the boundary representa-
tion of geometric objects. A possible BR schema is shown in Figure 17.

We note that each edge belongs to two faces, and a vertex always belongs to
at least two edges. Using the above schema one would have to include a lot of
redundant information, since, for example, a vertex has to be stored for each
edge for which it is an endpoint. It might even make data manipulation algorithms
very complex. Consider the query:

find all faces that have vertex ui in common

Because of the data redundancy this query involves an exhaustive search for all
vertices Vj = (xi, yj, zj) such that Xj = xi, yj = yi, and zj = zi, where (xi, yi, zi) are
the coordinates of vertex vi.

3.6.3 Versions in System R

Modeling a geometric or even more complex technical object (e.g., a car) usually
requires the development of several different versions of this object or its
subobjects during the stages of the design process, and therefore in an engineering
database system mechanisms for managing versions of objects must be available.
Dittrich and Lorie [1985] provide a model to establish and manipulate versions
in System R.

The authors propose a design object not to be uniquely identified by its design
object identifier but by a pair (DO identifier, version number). One version of an
object can be labeled CURRENT at each point of time, that is, this version is
identified by the pair (DO identifier, CURRENT). Furthermore, a version can
be declared FROZEN. A frozen design object cannot be updated or deleted until
it is “thawed” again. Thus this mechanism is useful to protect an object that has
reached a consistent design state from illegal updates. The last frozen object can
also explicitly be identified by (DO identifier, LAST FROZEN). In order to
define and manipulate design objects and versions in System R, several operators
have been added to SQL.

ACM Computing Surveys, Vol. 19, No. 1, March 1987

An Analysis of Geometric Modeling in Database Systems 9 73

create table MP(
KPPD identifier,

. . . ,
. . . 1

create table FACES(
F-ID identifier,
F-CVMP component-of Q6P).
. . .,

create table EDGES(
E-ID identifier,
E-CPhP component-of @‘ACES),
. . .

Figure 17. BR schema in System R extension.

create table VEXTICES(
V-ID identifier,
V-CYMP component-of (EDGES),
. . .

Figure 18. Hierarchical relationship of a design object.

As shown above, the extensions to System R allow a hierarchical design of
objects using references. Let us demonstrate the interaction of references and
versions on the example object with identifier R8.01 of table CO of Figure 16.
This object consists of one instance of the composed object R8.02 and one
instance of R8.03, as shown in Figure 18.

Assume R8.02 has two different versions and one user of R8.01 would like to
have a view onto the object using version 1 of subobject R8.02; another user,
however, would like to use version 2 of the same subobject. In order to solve this
problem, D&rich and Lorie [1985] propose that the references be generic, that
is, that references to a design object be independent. of its versions. The instan-
tiations of the references are defined by so-called environments, which contain
direct entries that explicitly specify pairs of (DO identifier, version number) for
objects to be actual within the environment and several further entries, referenc-
ing specifications of direct entries within other environments. Furthermore, a
default version can be specified. The environment a user wants to work with
must be activated explicitly.

The problem, shown above, can now be solved by defining different environ-
ments for the design object R8.01, as shown in Figure 19.

When environment El is activated, the run-time view of object R8.01 is that
of an object consisting of version 1 of composed object R8.02 and the current
version of object R8.03; in the case of E2, version 2 of R8.02 is chosen by the
system. If El is activated with default option for R8.01, the current versions of
R8.02 and R8.03 are chosen. For further details see Dittrich and Lorie [1985].

3.6.4 Discussion

Lorie [1982] and Lorie and Plouffe [1983] solved one of the shortcomings of
“QUEL as a Datatype” by devising a strategy to use system-generated identifiers
to reference tuples of different relations. This is a very helpful mechanism that

ACM Computing Surveys, Vol. 19, No. 1, March 1987

74 l A. Kemper and M. Wallruth

El E2

default:

direcl
entries

(CI
(R&02,1)

cl (F=ow) cl (R&02,2)

W.@w)

Figure 19. Design environments for different versions of a
design object.

builds up abstraction hierarchies without back references. In summary, one can
say that they have enriched the relational model to capture the semantics of the
hierarchical model as well. This supports the structurally object-oriented mod-
eling of hierarchical engineering objects. In addition to the referencing mecha-
nism the System R extension also includes enhancements of the query language
that support retrieval operations on the hierarchical data structures. This allows
retrieval of complex objects as entities even though their representation may be
segmented over different relations.

However, it is still doubtful that the type concept developed by Lorie and
Plouffe is sufficient for technical applications. The only new data type (aside
from identifier, reference, and component-of types, which could all be called
referencing attribute types) is the long field, which is a sequential storage
structure for data very much like a file system in traditional programming
languages. In order to achieve some level of behavioral object orientation, a
language has to be integrated to define powerful operations on this data type.
This approach would be very similar to ADT-INGRES.

3.7 The Functional Data Model

A quite different approach to providing a conceptually natural database interface
language is the data language DAPLEX [Shipman 19811, which is based on
the functional data model. Although this data model has not been developed
for nonstandard applications, it provides several useful mechanisms for those
applications.

The basic constructs of DAPLEX are the entity and the function. Entities are
intended to model real-world objects, whereas functions define their properties.
In many cases properties of one object can be derived from those of another and
can be modeled in DAPLEX by the notion of derived functions. Furthermore,
DAPLEX provides for the construction of very sophisticated user views of a
database, which are also specified in terms of derived functions.

3.7.1 Boundary Representation

In DAPLEX a schema for storing mechanical parts in boundary representation
might be specified as follows:

ACM Computing Surveys, Vol. 19, No. 1, March 1987

An Analysis of Geometric Modeling in Database Systems

DECLARE mechanical-part (> =>> ENTITY

DECLARE m-id (mechanical-part) => STRING

DECURE name (mechanical-part) => STRING

DECLARE face (mechanical-part) =>B facee

l 75

DECL.ARE faces (>

DECLARE f-idtfacee)

DECLARE edge (f acee)

=>> ENTITY

=> STRING

=>> edgee

DECLME edges ()

DECLARE e-id (edgee)

DECLARE vertex(edgeB)

=>> ENTITY

=> STRING

=>> verticee

DECL.ARE verticee ()

DECURE v-id (verticee)

DECLARE lot (vertices)

=>> ENTITY

=> STRING

=> locatione

DECURE locatione (>

DECLARE l-id (locations)

DECLARE X(locationB)

DECLARE Y (locations)

DECLARE Z (locatione)

=>> ENTITY

=> STRING

=> REhL

=> REAL

=> REAL

The first statement declares an entity, which is always expressed as a function
without any argument. => denotes a single-valued and =>> a multivalued func-
tion. For example, the fourth statement defines faces to return a whole entity of
type faces. Although all functions in this example have only one argument,
multiple-argument functions may be defined too.

DAPLEX also allows the representation of generalization hierarchies. In the
example above, location can be interpreted as a general case of vertices, since the
set of vertices may be a special subset of the set of locations. In order to express
this hierarchical relationship, the declaration of vertices can be changed as
follows:

DECLARE vertices (>

DECLARE v-id (verticee)

=>> locations

=> STRING

Vertices is now a subtype of locations, and locations is called a supertype of
vertices. The set of “vertices” entities is now a subset of “locations” entities. This
implies that any “vertices” entity also inherits the functions X, Y, and Z.

ACM Computing Surveys, Vol. 19, No. 1, March 1987

76 . A. Kemper and M. Wallrath

Schematically this can be represented as follows:

LOCATIONS

So far, we have only discussed constructs of DAPLEX concerning data defi-
nition. We shall return to this point after the following discussion of some
constructs of the data manipulation language.

The representation of a mechanical part, for example, a cuboid, can be inserted
in the following way:

FOR A NEW mechanical-part

BEGIN

LET m-id (mechanical-part) = n mlU

LET name (mechanical-part) = .cuboid”

LET face (mechanical-part) = faces

SUCH THAT f-id(faces) IN {fl,f2,f3,f4,f5,f6)

END

FOR A NEW faces

BEGIN

LET f-id(faces) = ‘fl”

LET edge(faces) = edges

SUCH THAT e-id(edges) IN (el,e2,e3,e4)

EN0

FOR A NEW edges

BEGIN

LET e-id(edges) = “el’

LET vertex(edges) = vertices

SUCH THAT v-id (vertices) IN <vl,v23

END

ACM Computing Surveys, Vol. 19, No. 1, March 1987

An Analysis of Geometric Modeling in Database Systems l 77

FOR A m vertices

BEGIN

LET v-id(vertices) = Mvlm

LET loc(vertice8) = TBE location8

SUCH THAT l-id(location8) = n vlu

END

The concept of functions in DAPLEX is quite well integrated in the query
language as shown in the following examples.

Query 1. Find the bounding vertex locations of face f 1.

FOR faces SUCH THAT f-id(face8) = “fl”

PRINT (X (vertex (edge (faces) 1 >

Y (vertexcedge (f ace81 > 1

Z (vertex (edge (faced >) >

Query 2. Find the names of all mechanical parts that have at least one face
with fewer than four edges.

FOR EACH mechanical-part

SUCH THAT

FOR SOME face (mechanical-part) COUNT (edge (faced > < 4

PRINT name (mechanical-part)

We now want to return to the data definition language. One construct that has
not yet been discussed is the derived function. By means of derived functions,
new properties of objects based on the values of other properties may be defined.
In the specification of a mechanical part described above, the attribute parent
that was introduced in the database schema of “QUEL as a Datatype” (see
Figure 13) has been dropped from the mechanical-part schema. This was possible
because DAPLEX supports function inversion. In order to find out the mechan-
ical part to which a particular face belongs, one may define a derived function by

DEFINE obj ect (f aced =>> INVERSE OF face (mechanical-part) .

Further useful applications of derived functions are the definition of often used
queries as derived functions, the definition of user views, constraints and triggers,
as well as the application of system-provided functions like INVERSE OF or
UNION OF.

37.2 Constructive Solid Geometry

In order to model a mechanical part we used the boundary representation.
Another possibility would have been to choose the CSG representation, a schema

ACM Computing Surveys, Vol. 19, No. 1, March 1987

78 l A. Kemper and M. Wallrath

for which is given below [Stehle 19861:

DECLARE object(> =>> ENTITY

DECLARE id(object) => STRING

DECLARE type(object) => STRING

DECLARE mech-part (> =>> object

DECLARE id (mechanical-part) => STRING

DECLARE comb-o() =>> object

DECURE l-obj (comb-o) => object

DECLARE r-obj (comb-o) => object

DECLARE c-op (comb-o) => STRING

DECLME mot-o(> =>B object

DECLARE arg(mot-o) => object

DECLARE m-op(mot-o) => object

DECLARE x(mot-o) => FLOAT

DECLARE y(mot-o) => FLOAT

DECLARE z(mot-o) => FLOAT

DECLARE prim-o() =>> object

DECLARE id (prim-o) =>> STRING

DECLARE cubee(> =>> prim-o

DEMURE height (cubes) => FLOAT

DECLARE cylindersc) =>> prim-0

In this schema, design object is a supertype for entity types mech-part,
comb-o (combinatorial object), mot-o (motion object), and prim-o (primitive
object). An interesting query is: What are the primitive objects a geometric object
is composed of? In order to compute those objects directly, recursion is required.
DAPLEX, unlike most other query languages, supports one recursive operation,
the transitive closure. It can be defined in terms of derived functions. This means
that we are able to retrieve all subobjects that compose a geometric object
directly.

The DAPLEX query for computing the transitive closure is given as

DEFINE obj (object) =>> (l-obj (object AS comb-o),

r-obj (object AS comb-o),

argcobject AS mot-o))

DEFINE all-obj (object) =>> TRANSITIVE OF obj(object)

FOR TRE mech-part SUCH THAT id(mech-part) = I...'

FOR EACH X IN all-obj(mech-part) AS prim-o

PRINT id(X)

ACM Computing Surveys, Vol. 19, No. 1, March 1987

An Analysis of Geometric Modeling in Database Systems l 79

In this query first the derived function obj is defined, which retrieves the
immediate subparts of motion and combination objects. By application of the
operator AS to the argument object of the derived functions l-obj, r-obj, and arg,
the set of objects considered is restricted to the subsets comb-o and mot-o,
respectively. Then the transitive operator is applied to this derived function,
returning the complete hierarchy as all-obj. Subsequently only those objects that
constitute primitive objects are selected in the query.

The discussion of derived functions shows that they provide a powerful con-
struct for the data definition language. For data manipulation, however, there
remain some difficulties with this construct. The main problem is to update
derived data.

3.7.3 Discussion

The functional data model and the language DAPLEX as proposed by Shipman
seem to be a very interesting candidate for the development of nonstandard
database systems. The main advantages are

l DAPLEX supports the representation of hierarchical relationships. There-
fore DAPLEX constitutes a structurally object-oriented data model by providing
the facility of nested functions to retrieve objects that are composed of several
different entity types.

l Derived functions allow users to represent arbitrary relationships directly by
defining them in terms of existing relationships; they allow application semantics
to be encoded into the data description, and they allow the user to express
conceptual abstractions.

l Programming in terms of functions is very similar to programming with a
programming language instead of a database language. This may increase the
acceptance of potential system users.

The limitations of the functional data model with respect to engineering
database applications are

l DAPLEX does not allow the user to define computationally complex func-
tions. In DAPLEX functions are merely used to define relationships. In order to
define manipulations of complex objects, DAPLEX would have to be extended
to provide user-defined operations on the entities, as is proposed in EDAPLEX
[Stehle 19861.

l Inserting geometric data into a DAPLEX schema is extremely expensive
because many functions have to be defined in order to provide constructs that
allow simple handling of the database.

In comparison with other approaches to nonstandard database systems, as, for
example, “QUEL as a Datatype,” DAPLEX provides advantages as well as
disadvantages. One advantage is the small number of entities that have to be
defined, because several relationships can be expressed as multiple argument
functions or derived functions. However, this requires a very large number of
functions to be specified. DAPLEX allows queries, user views, and system-
provided operations to be specified in terms of derived functions. The DEFINE
statement for derived functions, though, is a declarative statement that means,
in contrast to “QUEL as a Datatype,” that these functions are to be defined
within the schema specification. An analog to an attribute of type QUEL would
therefore not be stored in a user’s relation but as metadata in a system relation.
This enables the system (unlike “QUEL as a Datatype”) to do type checking at

ACM Computing Surveys, Vol. 19, No. 1, March 1987

80 . A. Kemper and M. Wallrath

data definition time; that is, the validity of a query does not depend on stored
attribute values. An advantage of DAPLEX over other extended database lan-
guages like “QUEL as a Datatype” is some support of recursion.

3.8 The NF* Data Model

The NF’ (non-first-normal form) model, as introduced by Schek and Pistor
[1982], is based on the nonnormalized relational model. AIM-P [Dadam et al.
19861 is an implementation of the NF2 model that is being developed at the IBM
Scientific Center, Heidelberg. It supports composite attribute types, which can
be either tuple valued, that is, one tuple (record), or relation valued, that is, a set
of tuples. A composite attribute could also be a list of (possibly composite)
elements. All these structures can be arbitrarily nested.

3.8.1 Data Definition Language

We now demonstrate a nested schema definition for the boundary representation
of a mechanical part. The definition is shown in a syntax according to Pistor and
Traunmuller [19861.

create Mechanical-Part (
[ID: integer,

NAME: string(20).
FACES:i

C lD&rFg(4),

I: I$H&ng{4),

C ID: &ring(4),
LOCATION:

IX:
Y:
z: . . . 1

1 3
13

3 3
1 3

end

Mechanical-Part is a relation with the single-valued attributes ID and NAME
and the relation-valued attribute FACES. The relation FACES has the single-
valued attribute ID and the relation-valued attribute EDGES, which again is
split up into ID and the relation VERTICES. The relation VERTICES consists
of an attribute ID and an attribute of type tuple, LOCATION, which consists of
the three coordinates X, Y, and Z.

3.8.2 Data Manipulation Language

The data manipulation language (DML) of AIM-P is similar to SQL [IBM
19811, but now the DML has to support the nested structure of relations. To
insert data into such a nested structure requires the use of an extended insert
command. For the first inserted BR tuple of our example bracket of Figure 4 this

ACM Computing Surveys, Vol. 19, No. 1, March 1987

An Analysis of Geometric Modeling in Database Systems l 81

would look as follows:

i&me
{ [ID: 6,

NAME: ‘bracket’,
FACES: C

[ID: 'fl',
EDGES: <

[ID: 'el',
VEFiTICES:~

[ID: 'vi',
LOCATION:

[x: 1.
Y: 0,
z: 2 3

13
1 3

I 3
1 3

Ant9 Mechanical-Part

Now we have to insert one more vertex v2 for the edge el. This is achieved by
the following command:

insert
([ID: '~2'.

LOCATION:
[x: 0,

Y: 1,
z: 0 1

1 3
iIll(1 v
frog v 5~ e.VlZRTICES,

e Qj f .JZDGES,
f Q! mp.FACES,
mp ~IJ Mechanical-Part

#tbre e.ID = 'el'

We see that the “.” operator is analogously overloaded as in “QUEL as a
Datatype.” In particular, it can be nested arbitrarily deep in order to reference
subrelations into which data have to be inserted (or from which data are retrieved
or updated).

The relation Mechanical-Part is shown schematically in Figure 20.

3.8.3 Query Language

Pistor and Anderson [1986] and Pistor and Traunmiiller [1986] propose the
extended SQL [IBM 19811 query language HDBL (Heidelberg Database Lan-
guage) for AIM-P. The query language still uses the basic SQL select . . . from
. . . where . . . construct, but, in order to facilitate queries over nested relations,
the select. . . from. . . where. . . construct can be nested in AIM-P. An example
query over the relation Mechanical-Part of Figure 20 is shown below.

ACM Computing Surveys, Vol. 19, No. 1, March 1987

82 l A. Kemper and M. Wallrath

r

Figure 20. The NF* relation mechan-
ical-part.

MechanicaLPart

ID

. . .
5

. .
-

T NAME T

. . .
bracket

. . .

-FACES
-

ID

.
f1

12

. . .

. . .
-

-

ID

-
.
el

e2

e3

e4

e5

e6
. . .
. . .
. . .

-

EDGES

-

ID

.
Vi

v2
v3
Vl

v3
v4
v2
v4
v5
V6

. .

. . .

. . .

. . .
-

T
VERTICES

LOCATION

i
. . .

t
1

:
1
0
1
. . .
. . .
. . .
. . .
. . .
. . .
-

. . .
0

:
0
2
0

t
..,
. . .
. . .
. . .
. . .
. . .

Example Query. Find the vertices of edge el of the face fi that belongs to the
bracket #5 in the relation Mechanical-Part.

g&g& [m.NAME,

(eelect C f .ID,

(eelect C e.ID.

(eelect < C v. ID,

(e$j&c$ c 1.X.l.Y.l.Z 1

flmg 1 &I v.LOCATION)

13

from v in e.VERTICES)

1

frog 8 &rJ f.EDGES

yrhgrg e.ID='el~)

1

frog f ~IJ m.FACES

@lg~e f.ID='f,')

1

from m in Mechanical-Part

@gmg m.ID=5

ACM Computing Surveys, Vol. 19, No. 1, March 1987

An Analysis of Geometric Modeling in Database Systems l 83

The result of this query would then look as follows:

[bracket,

c f,.

C y.’

{ [v~‘C1.0,21 1

c V2, [0.1,01 1

1

1

I

1

This same query in a pure relational model and a relational scheme analogous to
that described in Section 3.1 would have required about the same number of joins
that the NF’ query has as a degree of nesting.

3.8.4 Versions in AIM-P

In AIM-P different versions of a design object can be implemented by the concept
of “time versions,” a concept that allows the database user to specify objects on
which updates are not performed by replacing the old values and generating a
new representation of the affected object. This leads to a sequence of time
versions; that is, the designer can retrieve the information about an object’s state
as it was at a specific point in time or within a time interval. The query

select m

frog m in Mechanical.-Part

agag 1986 June 13th 16: 13: 01

ymtxg m.ID = 6

for example, would retrieve the object as it was at the specified date.

3.8.5 Discussion

The NF2 data model implicitly incorporates references to tuples of different
relations. Thus it is really a hybrid of the relational and the hierarchical data
model. Again, we note that there is a problem with data redundancy; for example,
the same vertex Ui could be an endpoint of many different edges but has to be
stored for each such edge.

If we do not consider the data redundancy problem, then in the case of a purely
hierarchical data structure, such as the BR representation, the NF2 schema is
extremely concise, because we can nest relations arbitrarily deep. Even though
abstraction hierarchies are an important issue in engineering applications, we
note that the NF2 model does not necessarily lead to a more concise representa-
tion in all CAM applications. For example, the CSG representation would still
require most of the relations shown in Figure 6.

The example query that we implemented showed that the extended SQL query
language of the NF2 model is nontrivial because of its nested nature. But, as
pointed out by Pistor and Traunmiiller [19861, complex NF2 queries would be at

ACM Computing Surveys, Vol. 19, No. 1, March 1987

84 l A. Kemper and M. Wallrath

least as complex in the pure relational model. For our example query this is quite
obvious since the query would involve a join over four different relations.

In summary, the NF’ model provides structural object orientation for hierar-
chically composed objects. Unlike the System R extension this is achieved by
physically (and logically) clustering such complex objects via subrelations. HDBL
does not provide for the definition of application-specific operations.

3.9 R*D*: Relational Robotics Database System with Extensible Data Types

R2D2 (Relational Robotics Database System with Extensible Data Types) is a
project currently under way at the University of Karlsruhe. It is an extension to
the DBMS AIM-P [Dadam et al. 19861, which is an implementation of the NF’
data model done at the IBM Scientific Center, Heidelberg. In R2D2 the user can
define his or her own data types, which can then be used like any built-in type
[Kemper 1987; Kemper et al. 19871. The internal representation of these user-
defined data types corresponds to normalized relations in the NF2 model. In
addition to new data types the R2D2 user can also define operations for these
new types.

3.9.1 User-Defined Data Types

Language concepts for defining abstract data types have been integrated in
programming languages for a long time. Abstract data types are used for objects
that are frequently used and whose internal representation should be hidden
from the user. Here we want to demonstrate the abstract data type facility of
R2D2 from a user’s perspective. We show how the data types and operations that
are essential in computer geometry can be integrated into the NF2 model, thereby
making the data model easier to use for storing geometric data.

In Sections 1 and 2 of this paper we have seen that there are only a few data
types and operations in a geometric modeling system into which all geometric
objects and transformations can be decomposed. These data types are vectors of
length 3 or 4,4 x 4 matrices, and primitive solids, for example, cuboids, cylinders,
and pyramids.

The NF2 data model has, like most other models, only a limited set of built-in
basic data types, such as character, numeric, and Boolean. Of these basic data
types one can create structured objects, such as lists, tuples, and relations. The
NF2 model, unlike the pure relational model, allows nesting of structured objects;
for example, a list could have elements that are lists to support hierarchical
structures.

In R2D2 we allow the user to define his or her own data types. These data types
can then be used like any built-in data type; that is attributes can be of a type
that has been previously defined by the user as an ADT. User-defined data types
can be much more complex than the basic NF’ types. In R2D2 a user-defined
data type can be any “structured” NF2 object. The following syntax is used to
define new data types:

create NT <identifier>

<list-type>1

<tuple-type> I

<relation-type>

~QI <identifier>.

ACM Computing Surveys, Vol. 19, No. 1, March 1987

An Analysis of Geometric Modeling in Database Systems l 85

Since we allow an abstract data type to be any NF2 object, it is, in particular,
possible to define abstract data types that are nested NF2 objects, for example, a
relation as an attribute of another relation.

Let us now demonstrate how we can support in R2D2 some of the data types
that are needed in geometric applications as described above. For this purpose
we first define the ADT’s vector and matrix:

ggi33g &.JT vector ig

<4 FIX real>

9x11 vector.

exactly length 4

<4 FIX vector> ## exactly 4x4 (a list of a list)

SILL matrix.

In the definition of these data types we use the built-in NF2 data structure list,
which is denoted by the pair of brackets “()“. The NF2 model allows the user to
access elements of a list by their position in the list; for example, vector[i]
returns the ith component of the list vector. Another built-in function on lists is
INDL, which returns the index range of a list. In our example INDL(V) returns
1 4. . . .

These user-defined data types can now be used like any other built-in data
types of the database management system. Actually this is already shown in the
definition of the ADT matrix, which consists of a list of vectors, where each
vector is an ADT consisting of a list of four numeric values. Thus the nesting of
the data type matrix is actually hidden from the user who might not be aware of
the internal implementation of a matrix.

In addition to these basic types that are needed to implement geometric
applications, one also needs to use more complex objects. For example, in the
CSG representation the designer can combine primitive predefined objects, such
as cylinders, cuboids, and pyramids, to form more complex objects. We could
view these primitive objects as application-specific data types.

As an example let us now model the primitive object cuboid as an abstract data
type in R2D2. In the definition of this new ADT we will make use of the previously
defined ADT’s vector and matrix:

< 8 FIX [ID:string(M),

L0C:vector

1

>

exactly 8 vertices

TRANSFORM:matrix

1

emJ cuboid.

ACM Computing Surveys, Vol. 19, No. 1, March 1987

86 . A. Kemper and M. Wallrath

In this example we defined an abstract data type cuboid, which stores all the
bounding vertices of a cuboid, as well as a transformation matrix. This transfor-
mation matrix can then be applied to all vertices of the cuboid. It could, for
example, specify rotations and translations of the cuboid in the three-dimensional
coordinate system.

This ADT cuboid can then be used to define the relation CUBOIDS that stores
all the cuboids used in some applications as follows:

ggctqg CUBOIDS

([IDENTIFIER:string,

MATERIAL: string,

GEOMETRY:cuboid

11

ens!

The degree of nesting in the relation CUBOIDS is now far greater than the
user might be aware of. For the user, who is not the implementer of the ADTs,
the relation just appears as defined above, that is, with the three attributes
IDENTIFIER, MATERIAL, and GEOMETRY. The user is not aware of the
internal representation of GEOMETRY.

In order to use the attribute GEOMETRY at all, we have to provide appropriate
operations; otherwise the DBMS user would still have to “dig into” the internal
representation of the ADT cuboid in order to retrieve, for example, the coordi-
nates of vertex ul. How operations on user-defined data types are defined in R2D2
is shown in the next section.

3.9.2 Definition of New Operations

In addition to new data types, we also have to be able to define new operations
on these data types. In computer geometry the common operations on the data
types “vector” and “matrix” are vector addition, vector multiplication, multipli-
cation of a vector with a matrix, and multiplication of two matrices.

In R2D2 these operations are defined in an extended HDBL language. Instead
of presenting the formal syntax of this language, let us demonstrate it from a
user’s point of view by implementing the example operations on the ADT’s vector
and matrix:

oper&i~n +v (V,W:vector) r&gmfi vector

rntern
eele& VCil+W[il
from i in INDL(V)

nnd +v

SUM (g3elgct VCil*WCil
fmm i in INDL(V))

snd *v

y# vector addition

#H vector multiplication

ACM Computing Surveys, Vol. 19, No. 1, March 1987

An Analysis of Geometric Modeling in Database Systems l 87

The implementation of the following operations is similar to the implementation
of those shown above:

- -

opnration *w (V:vector.bi:matrix) rntume vector

return ## multiplication of a
vector with a matrix

gpma&lgn row (k:real,M:matrix) r!&gzg vector
return

oppration *n (M,N:matrix) r&urn@ matrix

r&urn

retune the kth row
of the matrix

transpoeee the row6 of
a matrix into columns

matrix multiplication

After having defined the necessary numeric operations on vertices and matri-
ces, we can now define the geometric operations “rotate,” “scale,” and “translate.”
Since this presentation does not allow us to give a detailed implementation of all
these operations, we restrict our discussion to the geometrical transformations
rotate-z and c-rotate-z, which define the rotation of a vertex and of a cuboid
about the z-axis. Let us first define the (trivial) operation “transform,” which
takes as arguments a vector and a transformation matrix and multiplies the two:

~~Rra$hiR transform (V:vector,M:matrix) rR&rRg vector
gggnrn v *m M

g~tj tranef arm

The operation R, takes as an argument a numeric value representing an angle
and returns a matrix that corresponds to the rotation matrix about the z-axis for
this particular angle:

~per&h~R R, (PHI:real) I&RQR matrix
rnturn

< < >
< > ## returne a transformation matrix
< > #M according to section 3.4
< > >

and R,

gppygti~g rotate-z (V:vector,PHI:numeric) ~eQ!rn@ vector
EP4Yrn

tranef orm(V, R, (PHI)) ;
eRi rotate-z

ACM Computing Surveys, Vol. 19, NO. 1, March 1987

88 l A. Kemper and M. Wallrath

9p~Iatio1~ c-rotate-z (C:cuboid,PHI:numeric) rg$gma cuboid
return

IYERTICES: (eglect ## rotate them all
<[ID: V.ID,

LOC: rotate-z(V.LOC,PHI)
I>

from V in C .VEHTICXS) ,

TRANSFORM : C . TRANSFORM ## just leave it the ~arne
1

~III c-rotate-z

We now implement one last operation on the ADT cuboid in order to demon-
strate a query that involves the operation c-rotate-z. The operation V takes as
an argument a numeric value i from 1 through 8 and a cuboid and returns the
coordinates of ui. The skeleton implementation is as follows:

9p@ra$i9~ V (i:integer,C:cuboid) r9tu~g vector

. . . . ## impl. is straightforward

Let us now implement a somewhat contrived query that, nevertheless, demon-
strates the integration of ADTs in the query language. Assume we want to
retrieve those cuboids from the relation CUBOIDS whose vertex u1 has the
coordinates (xi, yl, zl) when rotated about the z-axis by an angle of 90 degrees.
This is achieved by the following query:

gg&x$ c.IDENTIFlXH

from c in CUBOIDS

~&erg V(l,c~rotate~z(c.GEO~Y,90~~=~x,,y,,z,,l~

In this query we see that the database user applies previously defined operations,
such as V and rotate-z, on the attribute GEOMETRY, thereby avoiding having
to deal with the internal structure of this attribute and merely applying functions
that are quite common in his or her area of expertise.

3.9.3 Discussion

R2D2 constitutes a symbiotic approach to object-oriented database systems by
providing concepts for structural, as well as behavioral, object orientation. This
is achieved by integrating the concept of abstract data types into the data
definition and data manipulation language of a structurally object-oriented
DBMS. Thus the database user can define data types that correspond to appli-
cation-specific objects. The structural features are inherited by choosing a par-
ticular object-oriented data model, the NF2 model, which allows nested relations
whereby hierarchical relationships among subobjects can be modeled. The inter-
nal representation of an ADT corresponds in R2D2 to a (possibly) nested NF2
relation. Thus it is guaranteed that the objects defined at the user level are also
internally treated as clustered objects.

The behavioral object orientation in R2D2 is achieved by defining operations
on these abstract data types. The behavioral aspect was demonstrated on some
specific operations for geometric modeling. In R2D2 it is possible, as was shown
in the vector and matrix example, to implement ADTs by stepwise refinement,
that is, by making use of previously defined data types and operations.

ACM Computing Surveys, Vol. 19, No. 1, March 1987

An Analysis of Geometric Modeling in Database Systems

4. Conclusions

In the first part of this paper we investigated the requirements imposed on
database management systems by computer-aided manufacturing applications.
We began by introducing the most important computer representation models
for rigid solid objects in the form of a tutorial in order to present the aspects that
are relevant for database designers. Special emphasis was put on the description
of the data structures of these representation models rather than on a thorough
theoretical framework. It was concluded that the CSG representation with the
recursively defined tree structure, as well as the BR model consisting of an
abstraction hierarchy, are promising candidates for storing solid objects in a
CAM database. The third representation scheme that we investigated, the prim-
itive instancing model, was found to create substantial problems for database
support because it would require an abundance of different record types.

In the second part of this presentation we analyzed some of the more recent
proposals for engineering databases. We only considered systems that evolved
out of the relational database model. Our analysis was mostly restricted to
schema support for CAM applications, and only a minor investigation of the data
manipulation language was carried out. It was shown that the traditional data
models do not adequately support technical applications because they lack object
orientation. Most of the surveyed database proposals recently developed support
structural object orientation. These systems are

l “QUEL as a Datatype” and GEM, which support modeling of structurally
complex entities via a very general reference type;

l DAPLEX, which achieves this by allowing nested functions to retrieve complex
objects;

l the System R extension and the NF2 model, which provide constructs for
modeling hierarchical relationships.

ADT-INGRES constitutes the first database system to provide some level of
behavioral object orientation by allowing the definition of abstract data types
with corresponding operations. R2D2 takes this idea one step further by integrat-
ing the abstract data type concept in a structurally object-oriented data model,
the NF2 model. Thereby the ADT implementer can map external objects on
structured internal database entities.

Another very important concept is recursion, especially for manipulating CSG
data. However, general recursive language features were not included in any of
the proposals (with the exception of transitive closure in DAPLEX).

ACKNOWLEDGMENTS

This paper is a revised and extended version of “CAM Databases: Requirements and Survey” by

A. Kemper, which appeared in the Proceedings of the 19th Hawaii International Conference on Systems

Sciences (Honolulu, Jan., 1986). Western Periodicals, North Hollywood, Calif., pp. 453-463.

The work described in this paper was done within the R2D2 project. R2D2 is a cooperative project

between the IBM Scientific Center, Heidelberg and the University of Karlsruhe, Fakultat fur

Informatik.

It is a pleasure to acknowledge the helpful suggestions by Thomas A. Bagli and Peter C. Lockemann
on an earlier version of this paper. We are indebted to the referees for many helpful comments.

REFERENCES

ASTRAHAN, M. M., BLASGEN, M. W., CHAMBERLIN,
D. D., ESWARAN, K. P., GRAY, J. N., GRIFFITHS,
P. P., KING, W. F., LORIE, R. A., MCJONES,

P. R., MEHL, J. W., PUTZOLU, G. R., TRAIGER,
I. L., WADE, B. W., AND WATSON, V. 1976.
System R: Relational approach to database man-
agement, ACM Trans. Database Syst. 1,2 (June),
97-137.

ACM Computing Surveys, Vol. 19, No. 1, March 1987

90 l A. Kemper and M. Wallrath

ATWOOD, T. M. 1985. An object-oriented DBMS for
design support applications. In Proceedings of the
IEEE Cornpint. IEEE, New York, pp. 299-307.

BATORY, E., AND KIM, W. 1985. Modeling concepts
for VLSI CAD objects. ACM Trans. Database
Syst. 10, 322-346.

BLUME, C., MOLLER, E., AND PODS, R. 1983.
RODABAS-Eine Roboter Datenbasis fur die
implizite Programmierung. In Hohere Program-
miersprcwhen fur Zndustrieroboter, H. Wolters,
Ed. Kernforschungszentrum Karlsruhe.

CODD, E. F. 1970. A relational model for large shared
data banks. Commun. ACM 1.9, 6 (June), 377-
387.

CODD, E. F. 1979. Extending the relational database
model to capture more meaning. ACM Trans.
Database Syst. 4, 4 (Dec.), 397-434.

DADAM, P., K&PERT, K., ANDERSON, F., BLANKEN,
H., ERBE, R., G~~NAUER, J., LUM, V., PISTOR, P.,
AND WALCH, G. 1986. A DBMS prototype to
support extended NF*-relations: An integrated
view on flat tables and hierarchies. In Proceedings
of the ACM SIGMOD Conference. ACM, New
York, pp. 376-387.

DI~TRICH, K. R. 1986. Object-oriented database sys-
tems: The notion and the issues. In Proceedings
of the Znternationul Workshop on Object-Oriented
Database Systems (Pacific Grove, Calif., Sept.).
IEEE Computer Society Press, pp. 2-6.

DIITRICH, K. R., AND LORIE, R. A. 1985. Version
support for engineering database systems. Re-
search Rep., IBM Research Laboratory, San Jose,
Calif.

DI~RICH, K. R., GOITHARD, W., AND LOCKEMANN,
P. C. 1986. Complex entities for engineering
applications. In Proceedings of the 5th Entity-
Relationship Conference (Dijon, France). North-
Holland, Amsterdam.

EASTMAN, C. M. 1981. Database facilities for engi-
neering design. Proc. IEEE 69, 10 (Oct.),
1249-1263.

EASTMAN, C. M. 1986. The use of object-oriented
databases to model engineering systems. In Pro-
ceedings of the International Workhop on Object-
Oriented Database Systems (Pacific Grove, Calif.,
Sept.). IEEE Computer Society Press, pp. 215-
216.

EASTMAN, C. M., AND KULAY, A. 1985. Specification
of FORM:ULAE: A distributed eneineerine data
management system. In Proceedings 07 the
ASCHE Conference (Dallas, Tex.).

FOGG, D. 1982. Implementation of domain abstrac-
tion in the relational database system INGRES.
Master’s thesis, Electrical Engineering and Com-
puter Science Dept., Univ. of California, Berke-
ley.

FOLEY, J. D., AND VAN DAM, A. 1983. Fundamentals
of Interactive Computer Graphics. Addison-
Wesley, Reading, Mass.

GLINZ, M., HUSER, H., AND LUDEWIG, J. 1985.
SEED-A database system for software engi-

neering environments. In Znformatik-Fcwhber-
ichte, 94. Springer-Verlag, Berlin, pp. 121-126.

GUTTMAN, A., AND STONEBRAKER, M. 1982. Using
a relational database management system for
computer aided design data. IEEE Database Ens.
5, 2 (June). -

HASKIN, R. L., AND LORIE, R. A. 1982. On extending
the functions of a relational database system. In
Proceedings of the International Conference on
the Management of Data (Orlando, Fla., June
2-4). ACM, New York, pp. 207-212.

IBM 1981. SQL/Data system, concepts and facili-
ties. Rept. GH 24-5013, IBM Corp., Jan.

KEMPER, A. 1986. CAM databases: Requirements
and survey. In Proceedings of the 19th Hawaii
International Conference on System Sciences
(Honolulu, Jan.). Western Periodicals. North
Hollywood, Calif., pp. 363-378.

KEMPER, A. 1987. Abstract datstypes in geometrical
databases. In Proceedings of the 20th Hawaii Zn-
ternutional Conference on System Sciences (Kona,
Jan.), pp. 453-463.

KEMPER, A., WALLRATH, M., AND LOCKEMANN,
P. C. 1987. An object-oriented system for engi-
neering applications. In Proceedings of Internu-
tional Conference on the Management of Data
(San Francisco, Calif., May 27-29). ACM, New
York.

LEE, Y. C., AND FU, K. S. 1983. A CSG based DBMS
for CAD/CAM and its supporting query language.
In Proceedings of ACM SZGMOD Conference on
Engineering Design Applications (San Jose, Calif.,
May), ACM, New York.

LOCKEMANN, P. C., ADAMS, M., BEVER, M., DIT-
TRICH, K. R., FERKINGHAFF, B., GOTTHARD, W.,
KOTZ, A., LIEDTKE, R. P., LUKE, B., AND MOLLE,
J. 1985. Anforderungen technischer Anwen-
dungen an Datenbanksysteme. In Znformatih-
Fuchberichte, 94. Springer-Verlag, Berlin, pp. l-
26.

LORIE, R. 1982. Issues in databases for design appli-
cations. In File Structures and Databases for
CAD, J. Encarnacao and F. L. Krause, Eds.
North-Holland, Amsterdam.

LORIE, R., AND PLOUFFE, W. 1983. Complex objects
and their use in design transactions. In Proceed-
ings of ACM SIGMOD Conference on Engineering
Design Applications (San Jose, Calif.. Mav).
pp. 115-i%.

_..

LUM, V., DADAM, P., ERBE, R., G~NAUER, J., PISTOR,
P., WALCH, G., WEMER, H., AND WOODFILL, J.
1985. Design of an integrated DBMS to support
advanced applications. In Proceedings of the
International Conference on Foundations of
Data Organization (Kyoto, Japan, May 22-24),
pp. 21-31.

MAIER, D., OTIS, A., AND PURDY, A. 1985. Object-
oriented database development at Servio Logic.
IEEE Database Eng. 8,4 (1985), 58-65.

MEIER, A. 1985. Applying relational database tech-
niques to solid modelling. In Informatik-Fachber-
ichte, 94. Springer-Verlag, Berlin, pp. 50-67.

ACM Computing Surveys, Vol. 19, No. 1, March 1987

An Analysis of Geometl pie Modeling in Database Systems

PISTOR, P., AND ANDERSEN, F. 1986. Designing a
generalized NF’ data model with an SQL-type
language interface. In Proceedings of t/z 12th
International Conference on Very Large Databases
(Kyoto, Japan). VLDB Endowment, Saratoga,
Calif., pp. 218-285.

Computer Science, vol. 89, J. Encarnacao, Ed.
Springer-Verlag, Berlin.

ZANIOLA, C. 1983. The database language GEM. In
Proceedings of the International Conference on
Management of Data (San Jose, Calif., May
23-26). ACM, New York, pp. 207-218.

PISTOR, P., AND TRAUNM~LLER, R. 1986. A data
base language for sets, lists, and tables. Znf. Syst.
11,4,323-336.

REQUICHA, A. A. G. 1980. Representations for rigid
solids: Theory, methods, and systems. ACM
Comput. Suru. 12, 4 (Dec.), 437-463.

RITCHIE, D. 1978. The C Programming Language.
1978. Prentice-Hall, Englewood Cliffs, N.J.

SCHEK, H.-J., AND PISTOR, P. 1982. Data structures
for an integrated data base management and re-
trieval system. In Proceedings of the 8th Znter-
national Conference on Very Large Databases
(Mexico City). VLDB Endowment, Saratoga,
Calif.

ZANIOLA, C., AIT-KACI, H., BEECH, D., CAMMARATA,
S., KERSCHBERG, L., AND MAIER, D. 1986.
Object-oriented database systems and knowledge
systems. In Proceedings of the 1st International
Workshop an Expert Database Systems, L.
Kerschberg, Ed. Benjamin Cummings, Menlo
Park, Calif., pp. 49-64.

ZDONIK, S. B., AND WEGNER, P. 1986. Language
and methodology for object-oriented database en-
vironments. In Proceedings of the 19th Hawaii
Conference on System Sciences (Honolulu, Jan.).
Western Periodicals, North Hollywood, Calif.,
pp. 378-388.

SCHEK, H.-J., AND SCHOLL, M. 1983. Die NF2-Re-
lationenalgebra xur einheitlichen Manipulation
externer, konzeptueller und interner Datenstruk-
turen. In Znformatik Fachberichte 72. Springer-
Verlag, Berlin, pp. 113-133.

BIBLIOGRAPHY

BAUMGART, B. G. 1975. A polyhedron representa-
tion for computer vision. In AFZPS Conference
Proceedings, vol. 44. AFIPS Press, Reston, Va.,
pp. 589-596.

SHIPMAN, D. 1981. The functional data model and
the data language DAPLEX. ACM Trans. Data-
base Syst. 6, 1 (Mar.), 140-173.

STEHLE, H. 1986. EDAPLEX: An extension of the
functional data model DAPLEX for computer-
geometry applications (in German). Master’s
thesis, Univ. Karlsruhe, Karlsruhe, Germany.

STONEBRAKER, M., AND ROWE, L. 1986. The design
of POSTGRES. In Proceedings of the Znterna-
tional Conference on Management of Data (Wash-
ington, D.C., May 28-30). ACM, New York,
pp. 430-355.

EASTMAN, C. M. 1980. System facilities for CAD
databases. In Proceedings of the 17th ACM/IEEE
Design Automation Conference (Minneapolis,
Minn., June 1980), pp. 50-56.

JAESCHKE, G., AND SCHEK, H.-J. 1982. Remarks on
the algebra of non-first-normal form relations.
In Proceedings of the ACM SZGACT-SZGMOD
Symposium on Principles of Database Systems
(Los Angeles, Calif., Mar. 29-31). ACM, New
York, pp. 124-138.

STONEBRAKER, M., WONG, E., KREPS, P., AND HELD,
G. 1976. The design and implementation of
INGRESACM Trans. Database Syst. 1,3 (Sept.),
189-222.

KIM, W., LORIE, R., MCNABB, D., AND PLOUFFE, W.
1984. A transaction mechanism for engineering
design databases. In Proceedings of the 10th Zn-
ternational Conference on Very Large Databases
(Singapore, Aug.). Very Large Database Endow-
ment, Saratoga, Calif., pp. 355-362.

STONEBRAKER, M., RUBENSTEIN, B., AND GUTTMAN,
A. 1983a. Application of abstract data tvnes and

LUKE, B., AND BEVER, M. 1985. Ein prozedur-
orientiertes Datenmodell fur CAD/CAM
Anwendungen und seine Realisierung mittels
konventioneller Datenbanksoftware und Ada.
In Znformatik-Fachberichte, 94. Springer-Verlag,
Berlin, pp. 127-146.

abstract indices to CAD databases. In Proceed-
ings of ACM SZGMOD Conference on Engineering
Design Applications (San Jose, Calif., May).
ACM, New York.

STONEBRAKER, M., ANDERSON, E., HANSON, E., AND
RUBENSTEIN, B. 1983b. QUEL as a datatype.
Memo. UCB/ERL M83/73, Univ. of California,
Berkeley, Dec.

VOELCKER, H. B., AND REQUICHA, A. A. G. 1977.
Geometric modelling of mechanical parts and
processes. Computer 10, 12 (Dec.).

WESLEY, M. A. 1980. Construction and use of
geometric models. Springer Lecture Notes in

91

MCLEOD, D., NARAYANASWAMY, K., AND BAPA RAO,
K. V. 1983. An approach to information man-
agement for CAD/VLSI applications. In Proceed-
ings of ACM SZGMOD Conference on Engineering
Design Applications (San Jose, Calif., May).
ACM, New York, pp. 39-50.

MEIER, A. 1986. Methoden der Graphischen und
Geometrischen Datenuerarbeitung. Teubner,
Stuttgart, 1986.

Received June 1986; final revision accepted May 1987.

ACM Computing Surveys, Vol. 19, No. 1, March 1987

