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AN ANALYSIS OF HDG METHODS FOR CONVECTION-DOMINATED

DIFFUSION PROBLEMS

Guosheng Fu1, Weifeng Qiu2 and Wujun Zhang3

Abstract. We present the first a priori error analysis of the h-version of the hybridizable discontinuous
Galkerin (HDG) methods applied to convection-dominated diffusion problems. We show that, when
using polynomials of degree no greater than k, the L2-error of the scalar variable converges with order
k + 1/2 on general conforming quasi-uniform simplicial meshes, just as for conventional DG methods.
We also show that the method achieves the optimal L2-convergence order of k + 1 on special meshes.
Moreover, we discuss a new way of implementing the HDG methods for which the spectral condition
number of the global matrix is independent of the diffusion coefficient. Numerical experiments are
presented which verify our theoretical results.
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1. Introduction

In this paper, we present the first a priori error analysis of the h-version of the HDG methods for the following
convection-dominated diffusion model problem:

−ǫ∆u + β · ∇u = f in Ω, (1.1a)

u = g on ∂Ω, (1.1b)

where Ω ∈ R
d (d = 2, 3) is a polyhedral domain, ǫ ≪ |β|L∞(Ω), f ∈ L2(Ω) and g ∈ H1/2(∂Ω). As in [1], we

assume that the velocity field β ∈ W 1,∞(Ω) has neither closed curves nor stationary points, i.e.,

β ∈ W 1,∞(Ω) has no closed curves, β(x) �= 0 ∀x ∈ Ω. (1.2)

This implies that there exists a smooth function ψ so that

β · ∇ψ(x) ≥ b0 ∀x ∈ Ω, (1.3)
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for some constant b0 > 0, see [24] or ([1], Appendix A) for a proof. We also assume that

−∇·β(x) ≥ 0 ∀x ∈ Ω, (1.4)

which means that the “effective” reaction is non-negative since

β · ∇u = ∇· (βu) − (∇·β)u.

Let us remark that assumption (1.2) ensures the well-posedness of the continuous problem in the pure hyperbolic
limit (ǫ = 0), see Chapter 3 of [27], for details. It is also well-known [25,27] that solutions to the problem (1.1)
may develop layers, whose approximation is the major difficulty of designing high-order, robust numerical
schemes. We refer to [38, 39] for a comprehensive information on different numerical techniques for (1.1).

In the last decade, the discontinuous Galerkin methods [11, 23] have been extensively considered for
convection-diffusion equations. For example, see the local discontinuous Galerkin (LDG) methods [8, 12, 13,
22, 30], the method of Baumann and Oden [2], the interior-penalty discontinuous Galerkin (IP-DG) meth-
ods [1,40], the multiscale discontinuous Galerkin method [6,31], the mixed-hybrid-discontinuous Galerkin (MH-
DG) method [26], and the HDG methods [16, 36, 37]. On the other hand, for steady-state problems, the main
disadvantage of conventional DG methods, compared to other methods, is that they require a higher number of
globally-coupled degrees of freedom for the same mesh. In order to address this issue, the HDG methods were
introduced in [19] in the framework of second-order uniformly elliptic problems. The methods are such that the
globally-coupled degrees of freedom are only those of the numerical traces on the mesh skeleton. A similar idea
was used in [26] to obtain the MH-DG method. Hence, the use of the hybridization technique eliminates the
main disadvantage of DG methods to a significant extent.

In [14, 20], it was shown that, for the purely diffusive model problem, the numerical approximation of HDG
methods achieves the same order of convergence as that of mixed methods. More precisely, when using polyno-
mials of degree no greater than k, the L2-error for both the scalar and flux approximation converges optimally
with order k + 1, and a postprocessed scalar approximation converges with order k + 2 for k ≥ 1. Recently
in [9,10], similar results have been proven for the convection-diffusion equation when the diffusion coefficient is
comparable to the convection coefficient, with variable-degree approximations and nonconforming meshes.

In this work, we focus on the analysis of the convection-dominated case, that is, when ǫ ≪ |β|L∞(Ω). We
show that for the HDG methods using polynomial degree k ≥ 1 with a suitably chosen stabilization function,
we have, for general meshes, that

‖uh − u‖L2(Ω) ≤ Chk
(
ǫh−1/2 + ǫ1/2 + h1/2

)
|u|Hk+1(Ω), (1.5)

and, for meshes (almost) aligned with the direction of β, that

‖uh − u‖L2(Ω) ≤ Chk
(
ǫh−1/2 + ǫ1/2 + h

)
|u|Hk+1(Ω), (1.6)

where C is a constant independent of ǫ and h. Note that if ǫ ≤ O(h2), we obtain optimal convergence for
‖uh − u‖L2(Ω) in (1.6), which can be considered as an extension of a similar result for the pure hyperbolic
case [15, 17]. We also show that, with a suitably chosen stabilization function, the condition number of the
global matrix for the scaled numerial traces is O(h−2), independent of ǫ.

To prove these estimates, we cannot use the approach used in [9, 10] because the constants in the error
estimates in [9, 10] may blow up as ǫ approaches 0. For example, the constant Υmax

K in Theorem 2.1 of [9], is
of order O(ǫ−1). In order to obtain an estimate that is robust with respect to ǫ, we need to modify the energy
argument used in [9, 10] by using test functions similar to that used in [1, 32]. In [32], a weighted test function
was used to obtain the L2-stability of the original DG method [35] for the pure hyperbolic equation. In [1], the
idea was extended to convection-diffusion-reaction equations using the IP-DG method. We also need to use a
new projection to obtain error estimates with less restrictive regularity assumptions.
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Next, we would like to compare our results with those obtained for the IP-DG method in [1]. Our convergence
result for ‖uh − u‖L2(Ω) on general meshes is the same as that in [1], while the optimal convergence on special
meshes is new. Also, our method has less globally-coupled degrees of freedom, and our choice of the stabilization
function is determined clearly in the numerical formulation; there is no need to choose it empirically as in the
IP-DG method.

Now, let us compare our results with those for the MH-DG method [26]. The MH-DG method uses a combi-
nation of upwind techniques used in DG methods for hyperbolic problems with conservative discretizations of
mixed methods for elliptic problems. To the best of our knowledge, [26] is the first paper which utilizes hybrid
formulations for the mixed and DG methods to make them compatible. We show that our method is quite
similar to the MH-DG method. Actually, in Appendix A, we show that, using the same approximation spaces as
those of the MH-DG method, the HDG method becomes exactly the same as the MH-DG method by suitably
choosing the stabilization function. The new features of our analysis with respect to that of [26] are that we can
deal with variable velocity field β and that we have an estimate of ‖uh −u‖L2(Ω), which is not obtained in [26].
Moreover, we prove that the condition number for the global linear system can be rendered to be independent
of ǫ and of order O(h−2).

A well-known stabilization technique for convection-dominated diffusion problems in the finite element
method literature is residual-based stabilization, see the SUPG [5] and residual-free bubbles [3, 4] methods.
The main disadvantages of residual-based stabilization are that they are not locally conservative and that the
performance of the methods relies heavily on a proper choice of the stabilization parameter, which might be
hard to determine or expensive to compute. We refer readers to [29] for a detailed comparison of the hp-version
of the DG methods with the SUPG methods in the pure hyperbolic case, and to [26] for a detailed comparision
of the MH-DG method with the SUPG methods for the convection-diffusion case.

The rest of the paper is organized as follows. In Section 2, we introduce the HDG method and state and
discuss the main theoretical results. In Section 3, we give a characterization of the HDG method, and show
that, after scaling, the condition number of the global matrix is independent of ǫ. In Section 4, we present the
convergence analysis of the HDG method. Finally, in Section 5, we display numerical experiments which verify
our theoretical results.

2. The HDG method and main results

In this section, we present the HDG method and state and discuss our main theoretical results.

2.1. The mesh

Let Th be a conforming, quasi-uniform simplicial triangulation of Ω. Given an element (triangle/tetrahedron)
K ∈ Th, which we assume to be an open set, ∂K denotes the set of its edges in the two dimensional case and of
its faces in the three dimensional case. Elements of ∂K will be generally referred to as faces, regardless of the
spatial dimension, and denoted by F . The set of all (interior) faces of the triangulation will be denoted Eh (Eo

h).
We distinguish functions defined on the faces of the triangulation (the skeleton) by saying that they are defined
on Eh from functions defined on the boundaries of the elements (and therefore having the ability to display two
different values on interior faces) by saying that they are defined on ∂Th. Hence the spaces L2(Eh) and L2(∂Th)

have different meanings. For each element K ∈ Th, we set hK := |K| 1d , and for each of face F , hF := |F | 1
d−1 ,

where | · | denotes the Lebesgue measure in d or d − 1 dimensions. We define h = maxK∈Th
hK .

Moreover, we also consider special meshes that satisfy the following assumption: there exists a constant C so
that

max(sup
x∈F

β(x) · n, 0) ≤ ChK , ∀F ∈ ∂K \ F+
K , ∀K ∈ Th, (2.1)
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where F+
K is the face of K such that supx∈F+

K
β(x) · n = maxF∈∂K supx∈F β(x) · n. These meshes have been

introduced in [15] (see also [17]) for the analysis of the original DG method. In Appendix C, we sketch how to
generate a triangulation satisfying assumption (2.1).

2.2. The HDG method

In order to define the HDG method, we first rewrite our model problem (1.1) as the following first-order
system by introducing q = −ǫ∇u as a new unknown:

ǫ−1q + ∇u = 0 in Ω, (2.2a)

∇ · q + β · ∇u = f in Ω, (2.2b)

u = g on ∂Ω. (2.2c)

Let us also define the following finite element spaces:

Vh = {r ∈ L2(Ω; Rd) : r|K ∈ Pk(K; Rd) ∀K ∈ Th}, (2.3a)

Wh = {w ∈ L2(Ω) : w|K ∈ Pk(K) ∀K ∈ Th}, (2.3b)

Mh = {μ ∈ L2(Eh) : μ|F ∈ Pk(F ) ∀F ∈ Eh}, (2.3c)

Mh(g) = {μ ∈ Mh : 〈μ, ξ〉∂Ω = 〈g, ξ〉∂Ω ∀ξ ∈ Mh}, (2.3d)

where Pk(D) is the space of polynomials of total degree not larger than k ≥ 0 defined on D, and

〈ξ, η〉∂Ω =
∑

F∈∂Ω

∫

F

ξ η ds.

The HDG method seeks an approximation (qh, uh, ûh) ∈ Vh × Wh × Mh by requiring that

(
ǫ−1qh, r

)
Th

− (uh,∇ · r)
Th

+ 〈ûh, r · n〉∂Th
= 0, (2.4a)

− (qh + βuh,∇w)
Th

− (∇ · βuh, w)Th
+
〈(

q̂h + β̂uh

)
· n, w

〉
∂Th

= (f, w)Th
, (2.4b)

〈ûh, μ〉∂Ω = 〈g, μ〉∂Ω, (2.4c)
〈(

q̂h + β̂uh

)
· n, μ

〉
∂Th\∂Ω

= 0, (2.4d)

for all (r, w, μ) ∈ Vh × Wh × Mh, where the numerical trace (q̂h + β̂uh) · n is given by

(
q̂h + β̂uh

)
· n = qh · n + β · n ûh + τ(uh − ûh) on ∂Th, (2.4e)

and the stabilization function τ is piecewise, nonnegative constant defined on ∂Th. Here we write (η, ζ)
Th

:=∑
K∈Th

∫
K

η ζ dx, and 〈η, ζ〉∂Th
:=
∑

K∈Th

∫
∂K

η ζ ds. In Section 3, we show that the linear system (2.4) can be
efficiently implemented so that the only global unknowns are related to the numerical trace ûh.

The HDG method (2.4) has a unique solution provided that the stabilization function τ in (2.4e) satisfies the
following assumption:

inf
x∈F

(
τ − 1

2
β(x) · n

)
≥ 0, ∀F ∈ ∂K, ∀K ∈ Th, (2.5)

where in each element, the strict inequality holds at least on one face; see Theorem 3.1 of [36], for a proof.
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2.3. Assumptions on the stabilization function

Next, we present our assumptions on the stabilization function τ verifying the inequality (2.5). We then
construct two examples satisfying them.

To do that, we need to introduce some notation. Let F ⋆
K be the face of K on which τ attains its maximum,

and F s
K be the face of K on which infx∈F

(
τ − 1

2β(x) · n
)

attains its maximum, that is,

τ(F ⋆
K) := max

F∈∂K
τ(F ) ∀K ∈ Th, (2.6a)

inf
x∈F s

K

(
τ − 1

2
β(x) · n

)
:= max

F∈∂K
inf
x∈F

(
τ − 1

2
β(x) · n

)
∀K ∈ Th, (2.6b)

and set

τw
K := max

F∈∂K\F ⋆
K

τ(F ), τw := max
K∈Th

τw
K ,

τv

K := inf
x∈F s

K

(
τ − 1

2
β(x) · n

)
, τv := min

K∈Th

τv

K .

We assume that there exists universal positive constants C0, C1, C2 so that

τw
K ≤ C0 ∀K ∈ Th, (2.8a)

τv

K ≥ C1 min

(
ǫ

hK
, 1

)
∀K ∈ Th, (2.8b)

inf
x∈F

(
τ − 1

2
β(x) · n

)
≥ C2 max

x∈F
|β(x) · n| ∀F ∈ ∂K, ∀K ∈ Th. (2.8c)

In order to get an improved estimate, we need to replace (2.8a) by the following, more restrictive assumption
on τw

K : assume there exists a positive constant C so that

τw
K ≤ ChK ∀K ∈ Th. (2.9)

We remark this assumption might not be compatible with (2.8c) on general meshes, but it can hold for the
meshes that satisfy assumption (2.1).

Now, let us show that it is quite easy to construct τ satisfying assumptions (2.8) by displaying two of them.
The first example of the stabilization function is

τ1(F ) = max(sup
x∈F

β(x) · n, 0), ∀F ∈ ∂K, ∀K ∈ Th. (2.10)

Assumptions (2.8a) and (2.8c) are always satisfied, and assumption (2.8b) holds provided

max
F∈∂K

inf
x∈F

(−β(x) · n) ≥ C ∀K ∈ Th,

for some positive constant C; this is true, for example, for piecewise-constant β. Moreover, assumption (2.9) is
also satisfied if the mesh satisfies (2.1).

The second example is

τ2(F ) = max(sup
x∈F

β(x) · n, 0) + min

(
ρ0

ǫ

hK
, 1

)
, ∀F ∈ ∂K, ∀K ∈ Th, (2.11)

where ρ0 > 0 is a constant typically chosen to be less than or equal to 1. Assumptions (2.8) are always satisfied
in this case. Moreover, assumption (2.9) is satisfied provided the mesh satisfies (2.1) and we take ǫ ≤ O(h2).

Let us conclude the discussion on τ by remarking that if we replace max(sup
x∈F β(x) · n, 0) with

supx∈F |β(x) · n| in the definition of τ in (2.10) and (2.11), assumptions (2.8) will be satisfied, while (2.9)
is no longer true for the special meshes.
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2.4. The main theoretical results

From now on, we use C to denote a generic constant, which may be dependent on the polynomial degree k,
and/or the velocity field β. The value C at different occurrences may differ.

We proceed to state our main theoretical results. We will show convergence estimates in the following norm

|||(r, w, μ)|||e :=

(
‖ǫ−1/2r‖2

Th
+ ‖w‖2

Th
+

∥∥∥∥|τ − 1

2
β · n|1/2(w − μ)

∥∥∥∥
2

∂Th

)1/2

,

where ‖ · ‖D is the standard L2-norm in the domain D.

Theorem 2.1. Let (q, u) be the solution to the boundary-value problem (2.2), and let (qh, uh, ûh) be the solution

to the HDG method (2.4) where the stabilization function τ satisfies assumptions (2.8). Then, there exists h0,

independent of ǫ, such that when h < h0, we have

|||(q − qh, u − uh, u − ûh)|||e ≤ Cǫ1/2hsv+1/2
(
ǫ1/2 + h1/2

)
|u|Hsv+2(Th;Rd) + Chsw+1/2|u|Hsw+1(Th),

for all sv ∈ [0, k] and sw ∈ [0, k].

Theorem 2.2. Let (q, u) be the solution to the boundary-value problem (2.2), and let (qh, uh, ûh) be the solution

to the HDG method (2.4) where the stabilization function τ satisfies assumptions (2.8) and (2.9). Then, there

exists h0, independent of ǫ, such that when h < h0, we have

‖u − uh‖Th
≤ Cǫ1/2hsv+1/2

(
ǫ1/2 + h1/2

)
|u|Hsv+2(Th;Rd) + Chsw+1|u|Hsw+1(Th),

for all sv ∈ [0, k] and sw ∈ [0, k].

Remark 2.3. If τ satisfies assumptions (2.8), k ≥ 1, u ∈ Hk+1(Ω) and ǫ ≤ O(h), we get

‖u − uh‖Th
≤ Chk+1/2|u|Hk+1(Th)

by choosing sv = k − 1, sw = k in Theorem 2.1. If ǫ = 0, our method collapses to the original DG method [35].
Since the best L2-error of the DG method for pure convection problems on general meshes is ‖u − uh‖Th

≤
Chk+1/2|u|Hk+1 , see [34]; it is reasonable to expect ‖u − uh‖Th

to be of order hk+1/2 when ǫ ≪ 1.

Remark 2.4. If τ satisfies assumptions (2.8) and (2.9), k ≥ 1, u ∈ Hk+1(Ω) and ǫ ≤ O(h2), we have

‖u − uh‖Th
≤ Chk+1|u|Hk+1(Th),

by choosing sv = k − 1, sw = k in Theorem 2.2. Note that we can construct τ satisfing (2.8) and (2.9) provided
that the mesh satisfies (2.1). Hence, our result can be considered as a generalization of the results in [15,17] in
which the authors obtained optimal L2-convergence of the original DG method for convection-reaction equations
on special meshes.

Remark 2.5. It is shown in Appendix A that we can recover the MH-DG method [26] from our formulation by
suitably choosing the stabilizaiton function τ and the approximation spaces Vh, Wh, Mh. Hence, our results can
be directly applied to the MH-DG method. In particular, we gain the L2-control of uh and obtained optimal
order of convergence for ‖u − uh‖Th

for special meshes.

3. A characterization of the HDG method

Here, we show how to eliminate, in an elementwise manner, the unknowns qh and uh from the equations (2.4)
and rewrite the original system solely in terms of the unknown ûh, see also [16,36]. In this way, we do not have
to deal with the large linear system generated by (2.4), but with the inversion of a sparser matrix of remarkably
smaller size.
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3.1. The local problems

We begin by showing how to express the unknowns qh and uh in terms of the unknown ûh.
Given λ ∈ L2(Eh) and f ∈ L2(Th), consider the solution to the set of local problems in each K ∈ Th: find

(qh, uh) ∈ V (K) × W (K),

where V (K) := Pk(K; Rd) and W (K) := Pk(K), such that
(
ǫ−1qh, r

)
K
− (uh,∇ · r)K = −〈λ, r · n〉∂K , (3.1a)

(∇ · qh, w)K − (uh,∇ · (βw))K + 〈τuh, w〉∂K = 〈(τ − β · n)λ, w〉∂K + (f, w)K , (3.1b)

for all (r, w) ∈ V (K) × W (K).
We denote by (qf

h , uf
h) the solution of the above local problem when we take λ = 0. Similarly, we denote

(qλ
h , uλ

h) the solution when f = 0. We can thus write that

(qh, uh) =
(
qλ

h , uλ
h

)
+
(
q

f
h , uf

h

)
.

3.2. The global problem

If we now take λ := ûh, we see that (qh, uh) is expressed in terms of ûh (and f). We can thus eliminate those
two unknowns from the equations and solve for ûh only. The global problem that determines ûh is not difficult
to find.

We have that ûh ∈ Mh(g) must satisfy

ah(ûh, μ) = bh(μ) ∀μ ∈ Mh(0),

where

ah(λ, μ) := −〈qλ
h · n, μ〉∂Th

− 〈τ
(
uλ

h − λ
)
, μ〉∂Th

,

bh(μ) := 〈qf
h · n, μ〉∂Th

+ 〈τuf
h, μ〉∂Th

.

Indeed, note that the definition of Mh(g) incorporates the boundary condition (2.4c), and that the last
equation is nothing but a rewriting of the transmission condition (2.4d) by observing that

〈β · nλ, μ〉∂Th
= 0, ∀λ ∈ Mh(g), ∀μ ∈ Mh(0).

3.3. A characterization of the approximate solution

The above results suggest the following charaterization of the approximate solution of the HDG method. We
leave the proof to the interesed readers as an exercise, see also [16, 36].

Theorem 3.1. The approximate solution of the HDG method satisfies

(qh, uh) = (qûh

h , uûh

h ) +
(
q

f
h , uf

h

)
.

Moreover, ûh ∈ Mh(g) is the solution of

ah (ûh, μ) =bh(μ) ∀μ ∈ Mh(0). (3.2)

Also, we have that

ah (λ, μ) = (ǫ−1 qλ
h , qµ

h)Th
−
(
uλ

h,∇ · (βuµ
h)
)
Th

+ 〈β · nλ, uµ
h〉∂Th

+ 〈τ
(
uλ

h − λ
)
, uµ

h − μ〉∂Th
,

bh(μ) = (f, uµ
h)

Th
+ 〈β · nuf

h, μ〉∂Th
+
(
uf

h, β · ∇uµ
h

)
Th

−
(
∇uf

h, βuµ
h

)
Th

.
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3.4. The conditioning of the HDG method

We note that both examples of stabilization function τ in (2.10) and (2.11) on a face F can be very small if
β · n|F and ǫ are very small. In this case, the condition number of the global matrix generated by ah in (3.2)
might blow up as ǫ goes to zero.

In order to make the condition number independent of ǫ, we need a new assumption on τ , namely,

inf
x∈F

(
τ − 1

2
β(x) · n

)
≥ C2 min

(
ǫ

hF
, 1

)
∀F ∈ ∂K, ∀K ∈ Th. (3.3)

If we introduce

λ̃ =Λǫλ, μ̃ = Λǫμ, ∀λ ∈ Mh(g), μ ∈ Mh(0), (3.4)

where Λǫ|F =

(
sup
x∈F

|β · n(x)| + min

(
ǫ

hF
, 1

))1/2

, ∀F ∈ Eh,

the preferred form for implementation for the HDG method is to find λ̃ ∈ Mh(Λǫg) satisfying

ãh

(
λ̃, μ̃
)

= bh

(
Λ−1

ǫ μ̃
)

for all μ̃ ∈ Mh(0). Here,

ãh

(
λ̃, μ̃
)

= ah

(
Λ−1

ǫ λ̃, Λ−1
ǫ μ̃
)

. (3.5)

We have the following theorem concerning the condition number of the scaled global matrix in (3.5).

Theorem 3.2. Let the stabilization function τ satisfy assumptions (2.8) and (3.3), and let ǫ ≤ O(h). Let κ
be the spectral condition number of the global matrix generated by ãh in (3.5). Then there is h0 > 0, which is

independent of ǫ and h, such that when h < h0,

κ ≤ Ch−2.

We present a detailed proof of Theorem 3.2 in Appendix B.

Remark 3.3. Obviously, assumption (3.3) is satisfied by the second stabilization function (2.11) but not by the
first one (2.10) on meshes that aligned with the direction of β. Theorem 3.2 shows that the condition number
of the global matrix of the HDG method for convection-dominated diffusion problems is the same as that of
HDG methods for elliptic problems in [18].

4. Convergence analysis

In this section, we prove Theorems 2.1 and 2.2. We begin by introducing the following bilinear form:

B((q, u, λ), (r, w, μ)) = (ǫ−1q, r)Th
− (u,∇ · r)Th

+ 〈λ, r · n〉∂Th

− (q + βu,∇w)Th
+ 〈(q + βλ) · n + τ(u − λ), w〉∂Th

− ((∇ · β)u, w)Th
− 〈(q + βλ) · n + τ(u − λ), μ〉∂Th

, (4.1)

for all (q, u, λ) and (r, w, μ) ∈ H1(Th; Rd) × H1(Th) × L2(Eh). It’s easy to see that the HDG method (2.4) can
be recasted in the following compact form: Find (qh, uh, ûh) ∈ Vh × Wh × Mh(g) so that

B((qh, uh, ûh), (r, w, μ)) = (f, w)Th
, (4.2)

for all (r, w, μ) ∈ Vh × Wh × Mh(0).
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4.1. Stability property for the HDG method

It is well known that we have the following result regarding the stability of the convection-dominated diffusion
problem,

ǫ‖∇u‖2
L2(Ω) + ‖u‖2

L2(Ω) ≤ C‖f‖2
L2(Ω), (4.3)

provided that β satisfies assumption (1.3) and g = 0 on ∂Ω, see [1]. On the other hand, by taking (r, w, μ) =
(qh, uh, ûh) in (4.2), the standard energy argument only gives the following estimate:

(ǫ−1qh, qh)Th
+

〈(
τ − 1

2
β · n

)
(uh − ûh) , uh − ûh

〉
− 1

2
((∇ · β)uh, uh)

Th
= (f, uh)Th

.

Hence, we do not have control of the L2-norm of uh by the standard energy argument when the velocity field
β is divergence-free. The main idea of our stability analysis is to achieve the control of the L2-norm of uh by
mimicking the proof of the stability property (4.3) at the discrete level. We shall proceed in the following three
steps.
Step 1. In view of assumption (1.2), we define a function

ϕ := e−ψ + χ, (4.4)

where χ is a positive constant to be determined later. Mimicking the proof of stability results carried out for
the continuous problem, we obtain the following lemma.

Lemma 4.1. Let ϕ be given in (4.4) where χ ≥ 1 + 2b−1
0 ‖e−ψ‖L∞(Ω) · ‖∇ψ‖2

L∞(Ω). Also, let τ satisfy assump-

tion (2.5). Then for all (qh, uh, λh) ∈ Vh × Wh × Mh(0), the following inequality holds

B((qh, uh, λh), (qϕ, uϕ, λϕ)) ≥ C|||(qh, uh, λh)|||2e,

where qϕ = ϕqh, uϕ = ϕuh and λϕ = ϕλh.

Proof. With (qϕ, uϕ, λϕ) given above, we have that

B((qh, uh, λh), (qϕ, uϕ, λϕ)) =
(
ǫ−1qh, ϕqh

)
Th

+ T1 + T2 + T3,

where

T1 = − (uh,∇ · (ϕqh))Th
+ 〈λh, ϕqh · n〉∂Th

− (qh,∇(ϕuh))Th
+ 〈qh · n, ϕ(uh − λh)〉∂Th

T2 = − (βuh,∇(ϕuh))Th
− ((∇ · β)uh, ϕuh)Th

+ 〈β · nλh, ϕuh〉∂Th

T3 = 〈τ(uh − λh), ϕ(uh − λh)〉∂Th
.

By integration by parts, we obtain

T1 = − (uh,∇ · (ϕqh))Th
+ 〈λh, ϕqh · n〉∂Th

− (qh,∇(ϕuh))Th
+ 〈qh · n, ϕ(uh − λh)〉∂Th

= − (uh,∇ϕ · qh)Th
− (ϕuh,∇qh)Th

− (qh,∇(ϕuh))Th
+ 〈qh · n, ϕuh〉∂Th

= − (uh,∇ϕ · qh)Th

= (uh, e−ψ∇ψ · qh)Th

T2 = − (βuh,∇(ϕuh))Th
− ((∇ · β)uh, ϕuh)Th

+ 〈β · nλh, ϕuh〉∂Th

= − (β · ∇ϕ, u2
h)Th

−
(

βϕ,∇u2
h

2

)

Th

− ((∇ · β)ϕ, u2
h)Th

+ 〈β · nλh, ϕuh〉∂Th

= − 1

2

(
β · ∇ϕ, u2

h

)
Th

− 1

2
〈β · nuh, ϕuh〉∂Th

− 1

2

(
(∇ · β)ϕ, u2

h

)
Th

+ 〈β · nλh, ϕuh〉∂Th

=
1

2
(β · ∇ψ, e−ψu2

h)Th
− 1

2

(
(∇ · β)ϕ, u2

h

)
Th

− 1

2
〈β · n(uh − λh), ϕ(uh − λh)〉∂Th

,
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where in the last step, we used 〈β · nλh, ϕλh〉∂Th
= 0 due to the fact that λh is single valued on the interior

faces and λh = 0 on ∂Ω.
Combining T1, T2 and T3, we have that

B((qh, uh, λh), (qϕ, uϕ, λϕ)) = (ǫ−1qh, ϕqh)Th
+ (uh, e−ψ∇ψ · qh)Th

+
1

2

(
[β · ∇ψ]uh, e−ψuh

)
Th

− 1

2
((∇ · β)uh, ϕuh)Th

+

〈(
τ − 1

2
β · n)ϕ(uh − λh

)
, uh − λh

〉

∂Th

.

Invoking assumptions (1.3) and (1.4), and ϕ ≥ χ, we obtain

B ((qh, uh, λh) , (qϕ, uϕ, λϕ)) ≥ (ǫ−1qh, ϕqh)Th
+ (uh, e−ψ∇ψ · qh)Th

+
1

2
b0(uh, e−ψuh)Th

+

〈(
τ − 1

2
β · n

)
ϕ (uh − λh) , uh − λh

〉

∂Th

≥χ
(
ǫ−1qh, qh

)
Th

+ (uh, e−ψ∇ψ · qh)Th
+

1

2
b0(uh, e−ψuh)Th

+ χ

〈(
τ − 1

2
β · n

)
(uh − λh) , uh − λh

〉

∂Th

.

Using the Cauchy–Schwartz inequality, we have

(uh, e−ψ∇ψ · qh)Th
≤ 1

2

[
δ−1‖∇ψ‖2

L∞(Ω)(e
−ψqh, qh)Th

+ δ(e−ψuh, uh)2Th

]

for any δ > 0. Taking χ ≥ 1 + 2b−1
0 ‖e−ψ‖L∞(Ω) · ‖∇ψ‖2

L∞(Ω) and δ = b0/2, we get

B((qh, uh, λh), (qϕ, uϕ, λϕ)) ≥ ǫ−1 χ

2
(qh, qh)Th

+
b0

4
(e−ψuh, uh)Th

+ χ‖|τ − 1

2
β · n|1/2(uh − λh)‖2

∂Th
.

To complete the proof, we simply absorb χ, e−ψ and b0 into the generic constant C. �

Step 2. We note that the test function (qϕ, uϕ, λϕ) = (ϕqh, ϕuh, ϕλh) in Lemma 4.1 is not in the discrete space
Vh ×Wh ×Mh(0). To establish a discrete stability property, we shall consider taking the discrete test functions
as a projection of (qϕ, uϕ, λϕ) onto the spaces Vh ×Wh ×Mh, denoted by Πhqϕ, Πhuϕ, PMλϕ. Here PM is the
L2-projection onto Mh. And Πh and Πh are the projections from H1(Th; Rd) and H1(Th) onto Vh and Wh

respectively satisfying

(Πhq, v)K = (q, v)K ∀ v ∈ Pk−1(K), (4.5a)

〈Πhq · n, μ〉F = 〈q · n, μ〉F ∀ μ ∈ Pk(F ), ∀ F ∈ ∂K\F s
K , (4.5b)

(Πhu, w)K = (u, w)K ∀ w ∈ Pk−1(K), (4.5c)

〈Πhu, μ〉F ⋆
K

= 〈u, μ〉F ⋆
K

, ∀ μ ∈ Pk(F ⋆
K). (4.5d)

where F s
K and F ⋆

K are defined in (2.6). We have the following optimal approximation property for Πh and Πh,
whose proof was available in ([15], Prop. 2.1).

Lemma 4.2. Assume that q ∈ Hs+1(K; Rd) for s ∈ [0, k] on an element K ∈ Th. Then

‖Πhq − q‖K ≤ C hs+1|q|Hs+1(K;Rd).
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Assume that u ∈ Hs+1(K) for s ∈ [0, k] on an element K ∈ Th. Then

‖Πhu − u‖K ≤ C hs+1|u|Hs+1(K).

We also need to estimate the difference between q, u and λ and their corresponding projections. Such an
estimate is established in the following lemma. We refer the readers to Lemma 4.2 in [1] for a detailed proof.

Lemma 4.3. Let K ∈ Th and η ∈ C1(K̄)∩W k+1,∞(K). Then, for any (v, v) ∈ Pk(K; Rd)×Pk(K) and χ ∈ R,

‖Πh((η + χ)v) − (η + χ)v‖K ≤ ChK‖η‖W k+1,∞(K)‖v‖K ,

‖Πh((η + χ)v) − (η + χ)v‖F ≤ Ch
1/2
K ‖η‖W k+1,∞(K)‖v‖K , ∀F ∈ ∂K,

‖Πh((η + χ)v) − (η + χ)v‖K ≤ ChK‖η‖W k+1,∞(K)‖v‖K ,

‖Πh((η + χ)v) − (η + χ)v‖F ≤ Ch
1/2
K ‖η‖W k+1,∞(K)‖v‖K , ∀F ∈ ∂K.

Now, we go back to the stability estimate in Lemma 4.1, and divide the left hand side of the inequality into
two terms, namely,

B((qh, uh, λh), (qϕ, uϕ, λϕ)) = B((qh, uh, λh), (Πhqϕ, Πhuϕ, PMλϕ))

+ B((qh, uh, λh), ((Id − Πh)qϕ, (Id − Πh)uϕ, (Id − PM )λϕ)).

Step 3. We define the union of faces to simplify the presentation:

∂T
⋆
h := ∪K∈Th

∪F∈∂K\F ⋆
K

F,

∂T
s
h := ∪K∈Th

F s
K ,

where F ⋆
K and F s

K are defined in (2.6). Now, we are ready to derive the discrete stability result for the HDG
method.

Lemma 4.4. Let τ satisfies assumptions (2.8), then there exists h0, independent of ǫ, so that for any h < h0,

we have the following stability estimate: for all (qh, uh, λh) ∈ Vh × Wh × Mh(0),

sup
0�=(rh,wh,µh)∈Vh×Wh×Mh(0)

B ((qh, uh, λh) , (rh, wh, μh))

‖|(rh, wh, μh)|‖e
≥ C‖| (qh, uh, λh) |‖e.

Proof. For any (r, w, μ) ∈ H1(Th; Rd) × H1(Th) × L2(Eh) with μ = 0 on ∂Ω, define

δr := r − Πhr, δw := w − Πhw, δμ := μ − PMμ.

Using integration by parts and the definition of the projections, we get

B((qh, uh, λh), (δr, δw, δμ)) = (ǫ−1qh, δr)Th
− (uh,∇ · δr)Th

+ 〈λh, δr · n〉∂Th

− (qh + βuh,∇δw)Th
+ 〈(qh + βλh) · n + τ(uh − λh), δw〉∂Th

− ((∇ · β)uh, δw)Th
− 〈(qh + βλh) · n + τ(uh − λh), δμ〉∂Th

=(ǫ−1qh, δr)Th
+ (∇uh, δr)Th

+ 〈λh − uh, δr · n〉∂Th

+ (∇ · qh, δw)Th
+ (β · ∇uh, δw)Th

+ 〈(τ − β · n)(uh − λh), δw〉∂Th

− 〈(qh + βλh) · n + τ(uh − λh), δμ〉∂Th

=(ǫ−1qh, δr)Th
+ 〈λh − uh, δr · n〉∂Ts

h
+ ((β − P0,hβ) · ∇uh, δw)Th

+ 〈(τ − β · n)(uh − λh), δw〉∂T⋆
h
− 〈β · n(uh − λh), δw〉∂Th\∂T⋆

h
,

where P0,h is the vectorial piecewise-constant projection.
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Now, we take (r, w, μ) = (qϕ, uϕ, λϕ) as in Lemma 4.1. By Cauchy–Schwartz inequality and the approximation
results in Lemma 4.3, we have

(ǫ−1qh, δqϕ)Th
≤ ‖ǫ−1/2qh‖Th

‖ǫ−1/2δqϕ‖Th

≤ Ch‖ǫ−1/2qh‖2
Th

,

〈λh − uh, δqϕ · n〉∂Ts
h
≤
∥∥∥∥∥

∣∣∣∣τ − 1

2
β · n

∣∣∣∣
1/2

(λh − uh)

∥∥∥∥∥
∂Ts

h

∥∥∥∥∥

∣∣∣∣τ − 1

2
β · n

∣∣∣∣
−1/2

δqϕ

∥∥∥∥∥
∂Ts

h

≤ C
( ǫ

τv

)1/2
∥∥∥∥∥

∣∣∣∣τ − 1

2
β · n

∣∣∣∣
1/2

(λh − uh)

∥∥∥∥∥
∂Ts

h

‖ǫ−1/2δqϕ‖∂Ts
h

≤ C

(
ǫh

τv

)1/2
∥∥∥∥∥

∣∣∣∣τ − 1

2
β · n

∣∣∣∣
1/2

(λh − uh)

∥∥∥∥∥
∂Ts

h

‖ǫ−1/2qh‖Th

≤ C(h2 + ǫh)1/2

∥∥∥∥∥

∣∣∣∣τ − 1

2
β · n

∣∣∣∣
1/2

(λh − uh)

∥∥∥∥∥
∂Ts

h

‖ǫ−1/2qh‖Th
by (2.8b),

((β − P0,hβ) · ∇uh, δuϕ)Th
≤ Ch‖∇uh‖Th

‖δuϕ‖Th

≤ Ch‖uh‖2
Th

〈(τ − β · n)(uh − λh), δuϕ〉∂T⋆
h
≤
∥∥∥|τ − β · n|1/2

(λh − uh)
∥∥∥

∂T⋆
h

∥∥∥|τ − β · n|1/2
δuϕ

∥∥∥
∂T⋆

h

≤ C

∥∥∥∥∥

∣∣∣∣τ − 1

2
β · n

∣∣∣∣
1/2

(λh − uh)

∥∥∥∥∥
∂T⋆

h

∥∥∥|τ − β · n|1/2δuϕ

∥∥∥
∂T⋆

h

by (2.8c)

≤ C(h(τw + 1))1/2

∥∥∥∥∥

∣∣∣∣τ − 1

2
β · n

∣∣∣∣
1/2

(λh − uh)

∥∥∥∥∥
∂T⋆

h

‖uh‖Th

≤ Ch1/2

∥∥∥∥∥

∣∣∣∣τ − 1

2
β · n

∣∣∣∣
1/2

(λh − uh)

∥∥∥∥∥
∂Th

‖uh‖Th
by (2.8a)

〈β · n(uh − λh), δuϕ〉∂Th\∂T⋆
h
≤
∥∥∥|β · n|1/2

(λh − uh)
∥∥∥

∂Th\∂T⋆
h

‖δuϕ‖∂Th\∂T⋆
h

≤ C

∥∥∥∥∥

∣∣∣∣τ − 1

2
β · n

∣∣∣∣
1/2

(λh − uh)

∥∥∥∥∥
∂Th\∂T⋆

h

‖δuϕ‖∂Th\∂T⋆
h

by (2.8c)

≤ Ch1/2

∥∥∥∥∥

∣∣∣∣τ − 1

2
β · n

∣∣∣∣
1/2

(λh − uh)

∥∥∥∥∥
∂Th

‖uh‖Th
.

Summing the above inequalities all together, we get

B((qh, uh, λh), (δqϕ, δuϕ, δλϕ)) ≤ Ch1/2|||(qh, uh, λh)|||2e .

Hence, choosing h sufficiently small, we can ensure that

B((qh, uh, λh), (δqϕ, δuϕ, δλϕ)) ≤ 1

2
B((qh, uh, λh), (qϕ, uϕ, λϕ)).
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Consequently, we obtain

B((qh, uh, λh), (Πhqϕ, Phuϕ, PMλϕ)) ≥ C|||(qh, uh, λh)|||2e .

On the other hand, it is easy to obtain the following estimates

|||(Πhqϕ, Phuϕ, PMλϕ)|||e ≤ C|||(qh, uh, λh)|||e.

We conclude the proof by combining these two estimates. �

4.2. The error equation

Here, we obtain the equation satisfied by the errors. Note that by Galerkin-orthogonality, we have

B((q − qh, u − uh, u − ûh), (r, w, μ)) = 0 ∀(r, w, μ) ∈ Vh × Wh × Mh(0), (4.6)

where (q, u) is the exact solution of equations (2.2).

We define the following quantities that will be used in the analysis:

εq

h := qh − Πhq, δq = q − Πhq,

εu

h := uh − Πhu, δu := u − Πhu,

ε û

h := ûh − PMu, δ̂u = u − PMu.

Recall that Πh and Πh are the projections defined in (4.5), and PM is the L2-projection from L2(Eh) onto
Mh.

Now, we are ready to present our error equation.

Lemma 4.5. The error equation takes the following form.

B((εq

h, εu

h, ε û

h ), (r, w, μ)) =
(
ǫ−1δq, r

)
Th

+ 〈δq · n, w − μ〉∂Ts
h
− (β δu,∇w)

Th

− ((∇ · β) δu, w)
Th

+ 〈β · nδ̂u, w〉∂Th
+ 〈τδu, w − μ〉∂T⋆

h
, (4.7)

for all (r, w, μ) ∈ Vh × Wh × Mh(0).

Proof. We use the Galerkin-orthogonality (4.6) and the definition of the projections to prove the result. For all
(r, w, μ) ∈ Vh × Wh × Mh(0), we have

B((εq

h, εu

h, ε û

h ), (r, w, μ)) = B((δq, δu, δ̂u), (r, w, μ))

= (ǫ−1δq, r)Th
− (δu,∇ · r)Th

+ 〈δ̂u, r · n〉∂Th

− (δq + βδu,∇w)Th
+ 〈(δq + βδ̂u) · n + τ(δu − δ̂u), w − μ〉∂Th

− ((∇ · β)δuh, w)Th

= (ǫ−1δq, r)Th
+ 〈δq · n, w − μ〉∂Ts

h
− (β δu,∇w)Th

− ((∇ · β)δu, w)Th
+ 〈β · nδ̂u, w − μ〉∂Th

+ 〈τδu, w − μ〉∂T⋆
h

= (ǫ−1δq, r)Th
+ 〈δq · n, w − μ〉∂Ts

h
− (β δu,∇w)Th

− ((∇ · β)δu, w)Th
+ 〈β · nδ̂u, w〉∂Th

+ 〈τδu, w − μ〉∂T⋆
h
,

where in the last step we used the fact that 〈β · nδ̂u, μ〉∂Th
= 0 for all μ ∈ Mh(0). �
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4.3. The error analysis

Now, we are ready to prove our main results, Theorems 2.1 and 2.2. In order to prove Theorem 2.1 and
Theorem 2.2. We only need to bound the right hand side of the error equation (4.7) to get the error estimates.
For all (r, w, μ) ∈ Vh × Wh × Mh(0), we have

(ǫ−1δq, r)Th
≤ ‖ǫ−1/2δq‖Th

‖ǫ−1/2r‖Th
,

〈δq · n, w − μ〉∂Ts
h
≤
∥∥∥∥∥

∣∣∣∣τ − 1

2
β · n

∣∣∣∣
−1/2

δq

∥∥∥∥∥
∂Ts

h

∥∥∥∥∥

∣∣∣∣τ − 1

2
β · n

∣∣∣∣
1/2

(w − μ)

∥∥∥∥∥
∂Ts

h

≤ C
( ǫ

τv

)1/2

‖ǫ−1/2δq‖∂Ts
h

∥∥∥∥∥

∣∣∣∣τ − 1

2
β · n

∣∣∣∣
1/2

(w − μ)

∥∥∥∥∥
∂Ts

h

,

(β δu,∇w)Th
= ((β − P0,hβ) δu,∇w)

Th

≤ Ch‖δu‖Th
‖∇w‖Th

≤ C‖δu‖Th
‖w‖Th

,

((∇ · β)δu, w)Th
≤ C‖δu‖Th

‖w‖Th
,

〈β · nδ̂u, w〉∂Th
= 〈(β − P0,hβ) · nδ̂u, w〉∂Th

≤Ch‖δ̂u‖∂Th
‖w‖∂Th

≤Ch1/2‖δ̂u‖∂Th
‖w‖Th

〈τδu, w − μ〉∂T⋆
h
≤‖τ1/2δu‖∂T⋆

h
‖τ1/2(w − μ)‖∂T⋆

h

≤C‖τ1/2δu‖∂T⋆
h

∥∥∥∥∥

∣∣∣∣τ − 1

2
β · n

∣∣∣∣
1/2

(w − μ)

∥∥∥∥∥
∂T⋆

h

by (2.8c)

≤C(τw)1/2‖δu‖∂T⋆
h

∥∥∥∥∥

∣∣∣∣τ − 1

2
β · n

∣∣∣∣
1/2

(w − μ)

∥∥∥∥∥
∂T⋆

h

.

Adding up these estimates all together, we obtain

B((εq

h, εu

h, ε û

h ), (r, w, μ)) ≤ C(‖ǫ−1/2δq‖Th
+
( ǫ

τv

)1/2

‖ǫ−1/2δq‖∂Ts
h

+ ‖δu‖Th

+ h1/2‖δ̂u‖∂Th
+ (τw)1/2‖δu‖∂T⋆

h
)|||(r, w, μ)|||e.

Note that ε û

h ∈ Mh(0) because ε û

h |∂Ω = 0. Using Lemma 4.4, we immediately get

|||(εq

h, εu

h, ε û

h )|||e ≤ C
(
‖ǫ−1/2δq‖Th

+
( ǫ

τv

)1/2

‖ǫ−1/2δq‖∂Ts
h

+ ‖δu‖Th

+ h1/2‖δ̂u‖∂Th
+ (τw)1/2‖δu‖∂T⋆

h

)
,
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The approximation properties of the projections gives the following estimates,

‖ǫ−1/2δq‖Th
≤ Cǫ−1/2hs+1|q|Hs+1(Th;Rd)

( ǫ

τv

)1/2

‖ǫ−1/2δq‖∂Ts
h
≤ C

(
h

τv

)1/2

hs|q|Hs+1(Th;Rd)

‖δu‖Th
≤ Chs+1|u|Hs+1(Th)

h1/2‖δ̂u‖∂Th
≤ Chs+1|u|Hs+1(Th)

(τw)1/2‖δu‖∂T⋆
h
≤ C(τw)1/2hs+1/2|u|Hs+1(Th),

for all s ∈ [0, k]. Now, using assumption (2.8) on τ , we obtain the following estimates,

|||(εq

h, εu

h, ε û

h )|||e ≤ C(ǫ−1/2hsv+1 + hsv+1/2)|q|Hsv+1(Th;Rd) + Chsw+1/2|u|Hsw+1(Th),

for all sv ∈ [0, k] and sw ∈ [0, k]. Using the fact that |q|Hk(Th;Rd) = ǫ|u|Hk+1(Th), we get

|||(εq

h, εu

h, ε û

h )|||
e
≤ C

(
ǫ1/2hsv+1 + ǫhsv+1/2

)
|u|Hsv+2(Th;Rd) + Chsw+1/2|u|Hsw+1(Th), (4.8)

for all sv ∈ [0, k] and sw ∈ [0, k]. Moreover, by approximation properties of the projection, we can easily get

∣∣∣
∣∣∣
∣∣∣(δq, δu, δ̂u)

∣∣∣
∣∣∣
∣∣∣
e
≤ Cǫ1/2hsv+1|u|Hsv+2(Th;Rd) + Chsw+1/2|u|Hsw+1(Th), (4.9)

for all sv ∈ [0, k] and sw ∈ [0, k]. Combining (4.8), (4.9) and using the triangle inequality, we obtain

|||(q − qh, u − uh, u − ûh)|||e ≤ C(ǫ1/2hsv+1 + ǫhsv+1/2)|u|Hsv+2(Th;Rd) + Chsw+1/2|u|Hsw+1(Th),

and

‖u − uh‖Th
≤ |||(εq

h, εu

h, ε û

h )|||
e
+ ‖δu‖Th

≤C
(
ǫ1/2hsv+1 + ǫhsv+1/2

)
|u|Hsv+2(Th;Rd) + Chsw+1/2|u|Hsw+1(Th).

This completes the proof of Theorem 2.1.

For the proof of Theorem 2.2, everything is exactly the same, except that

(τw)1/2‖δu‖∂T⋆
h
≤ Chs+1|u|Hs+1(Th),

because assumption (2.9) ensures τw ≤ O(h). Hence we get

|||(εq

h, εu

h, ε û

h )|||e ≤ C(ǫ1/2hsv+1 + ǫhsv+1/2)|u|Hsv+2(Th;Rd) + Chsw+1|u|Hsw+1(Th)

‖u − uh‖Th
≤ |||(εq

h, εu

h, ε û

h )|||e + ‖δu‖Th

≤ C(ǫ1/2hsv+1 + ǫhsv+1/2)|u|Hsv+2(Th;Rd) + Chsw+1|u|Hsw+1(Th).

This completes the proof of Theorem 2.2.
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5. Numerical results

In this section, we present numerical studies using simple model problems in 2D to verify our theoretical
results and display the performance of the HDG methods when the exact solution exibit layers. Our test
problems are similar to those studied in [1]. We fix the domain to be the unit square in all the experiments,
and run simulations of the HDG methods (2.4) with the following three choices of approximation spaces and
stabilization functions:

1. The approximation spaces are

Vh = {r ∈ L2(Ω; Rd) : r|K ∈ Pk(K; Rd) ∀K ∈ Th},
Wh = {w ∈ L2(Ω) : w|K ∈ Pk(K) ∀K ∈ Th},
Mh = {μ ∈ L2(Eh) : μ|F ∈ Pk(F ) ∀F ∈ Eh},

while the stabilization function is given by

τ(F ) = max

(
sup
x∈F

β(x) · n, 0

)
, ∀F ∈ ∂K, ∀K ∈ Th.

We denote this choice as Pk-HDG1.
2. The approximation spaces are the same as in the previous case, while the stabilization function is given by

τ(F ) = max

(
sup
x∈F

β(x) · n, 0

)
+ min

(
0.1

ǫ

hF
, 1

)
, ∀F ∈ ∂K, ∀K ∈ Th.

We denote this choice as Pk-HDG2.
3. The approximation spaces are given as follows:

Vh = {r ∈ L2(Ω; Rd) : r|K ∈ Pk(K; Rd) + xPk(K) ∀K ∈ Th},
Wh = {w ∈ L2(Ω) : w|K ∈ Pk(K) ∀K ∈ Th},
Mh = {μ ∈ L2(Eh) : μ|F ∈ Pk(F ) ∀F ∈ Eh},

while the sabilization function is the same as Pk-HDG1. We denote this method as Pk-HDG3.

We remark that the method Pk-HDG3 is exactly the MH-DG method considered in [26] when β is piecewise-
constant, which is proven in Appendix A.

5.1. A smooth solution test

We take the velocity field β = [1, 2]T , and the diffusion coefficient ǫ as 1, 10−3, 10−9. The source term f
is chosen so that the exact solution is u(x, y) = sin(2π x) sin(2π y). We obtain the computational meshes by
uniform refinement of a mesh that consists of a structured 5×5×2 triangular elements, where the slanted edges
are pointing in the northeast direction.

Let us remark that when ǫ = 1 and k ≥ 1, we can follow [9] to use superconvergence results to locally
postprocess the solution to get a new approximation of the scalar variable u⋆

h, which converges faster than uh.
Here the definition of u⋆

h ∈ Pk+1(K) for each element K ∈ Th is as follows:

(∇u⋆
h,∇w)K = − (ǫ−1 qh,∇w)K for all w ∈ Pk+1(K),

(u⋆
h, 1)K = (uh, 1)K .

Tables 1 and 2 show the L2-convergence results for uh and u⋆
h for the three HDG methods when ǫ = 1. For all

the methods, we observe convergence order of k + 1 for uh and convergence order of k + 2 for u⋆
h (when k ≥ 1).

Also note that the errors for the postprocessing u⋆
h for the three methods are very close to each other.
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Table 1. History of convergence for ‖u − uh‖L2(Th) when ǫ = 1.

Degree Mesh ǫ = 1

k h−1 error order error order error order

HDG1 HDG2 HDG3

5 1.74e-0 −− 7.60e-1 −− 2.06e-1 −−

10 9.41e-1 0.88 3.33e-1 1.20 1.06e-1 0.97

0 20 4.83e-1 0.96 1.72e-1 0.95 5.29e-2 1.00

40 2.44e-1 0.99 8.71e-2 0.98 2.64e-2 1.00

5 3.75e-1 −− 1.72e-1 −− 4.88e-2 −−

10 1.01e-1 1.89 3.88e-2 2.15 1.26e-2 1.95

1 20 2.59e-2 1.97 9.96e-3 1.96 3.18e-3 1.99

40 6.52e-3 1.99 2.51e-3 1.99 7.96e-4 2.00

5 6.19e-2 −− 2.88e-2 −− 8.60e-3 −−

10 8.26e-3 2.90 3.20e-3 3.16 1.12e-3 2.95

2 20 1.05e-3 2.97 4.09e-4 2.97 1.41e-4 2.99

40 1.33e-4 2.99 5.16e-5 2.99 1.77e-5 3.00

5 8.35e-3 −− 3.90e-3 −− 1.21e-3 −−

10 5.53e-4 3.92 2.16e-4 4.18 7.81e-5 3.95

3 20 3.52e-5 3.98 1.37e-5 3.97 4.92e-6 3.99

40 2.21e-6 3.99 8.64e-7 3.99 3.08e-7 4.00

Table 2. History of convergence for ‖u − u⋆
h‖L2(Th) when ǫ = 1.

Degree Mesh ǫ = 1

k h−1 error order error order error order

HDG1 HDG2 HDG3

5 2.25e-2 −− 1.70e-2 −− 1.39e-2 −−

10 3.08e-3 2.87 2.14e-3 2.99 1.70e-3 3.04

1 20 3.94e-4 2.96 2.65e-4 3.02 2.08e-4 3.03

40 4.96e-5 2.99 3.28e-5 3.01 2.56e-5 3.02

5 2.49e-3 −− 2.13e-3 −− 1.92e-3 −−

10 1.59e-4 3.97 1.35e-4 3.98 1.23e-4 3.97

2 20 9.95e-6 4.00 8.45e-6 4.00 7.71e-6 3.99

40 6.22e-7 4.00 5.28e-7 4.00 4.82e-7 4.00

5 2.78e-4 −− 2.43e-4 −− 2.20e-4 −−

10 8.87e-6 4.97 7.68e-6 4.98 6.94e-6 4.99

3 20 2.78e-7 4.99 2.40e-7 5.00 2.17e-7 5.00

40 8.70e-9 5.00 7.50e-9 5.00 6.77e-9 5.00

When ǫ ≪ 1, there is no superconvergence result for the HDG methods. Hence we only show ‖u − uh‖Th

in Table 3 when ǫ = 10−3 and ǫ = 10−9. Again, optimal converge rates are recovered; better than the one
predicted by the theoretical result in Theorem 2.1 which predict the loss of half order of accuracy. Moreover,
our numerical results in Table 3 show that the performance of these three HDG methods are equally good.
Hence, we prefer to use Pk-HDG1 and Pk-HDG2 rather than Pk-HDG3 because Pk-HDG3 has more degrees
of freedom for the local problems.
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Table 3. History of convergence for ‖u − uh‖L2(Th) when ǫ = 10−3 and ǫ = 10−9.

Degree Mesh ǫ = 10−3 ǫ = 10−9

k h−1 error order error order error order error order error order error order

HDG1 HDG2 HDG3 HDG1 HDG2 HDG3

5 3.16e-1 −− 3.16e-1 −− 3.14e-1 −− 3.18e-1 −− 3.18e-1 −− 3.18e-1 −−

10 1.71e-1 0.88 1.71e-1 0.88 1.69e-1 0.89 1.74e-1 0.87 1.74e-1 0.87 1.74e-1 0.87

0 20 8.78e-2 0.96 8.78e-2 0.96 8.60e-2 0.98 9.06e-2 0.94 9.06e-2 0.94 9.06e-2 0.94

40 4.37e-2 1.00 4.38e-2 1.00 4.22e-2 1.03 4.63e-2 0.97 4.63e-2 0.97 4.63e-2 0.97

5 7.84e-2 −− 7.84e-2 −− 7.75e-2 −− 7.96e-2 −− 7.96e-2 −− 7.96e-2 −−

10 2.00e-2 1.97 2.00e-2 1.97 1.95e-2 1.99 2.04e-2 1.85 2.04e-2 1.85 2.04e-2 1.85

1 20 4.95e-3 2.01 4.95e-3 2.01 4.73e-3 2.05 5.13e-3 1.96 5.13e-3 1.96 5.13e-3 1.96

40 1.21e-3 2.03 1.21e-3 2.03 1.11e-3 2.09 1.28e-3 1.99 1.28e-3 1.99 1.28e-3 1.99

5 1.32e-2 −− 1.32e-2 −− 1.31e-2 −− 1.35e-2 −− 1.35e-2 −− 1.35e-2 −−

10 1.72e-3 2.95 1.72e-3 2.95 1.68e-3 2.96 1.77e-3 2.93 1.77e-3 2.93 1.77e-3 2.93

2 20 2.14e-4 3.00 2.14e-4 3.00 2.05e-4 3.03 2.24e-4 2.98 2.24e-4 2.98 2.24e-4 2.98

40 2.63e-5 3.02 2.63e-5 3.02 2.45e-5 3.07 2.80e-5 3.00 2.80e-5 3.00 2.80e-5 3.00

5 1.83e-3 −− 1.83e-3 −− 1.80e-3 −− 1.87e-3 −− 1.87e-3 −− 1.87e-3 −−

10 1.17e-4 3.97 1.17e-4 3.97 1.13e-4 3.99 1.20e-4 3.95 1.20e-4 3.95 1.20e-4 3.95

3 20 7.23e-6 4.01 7.23e-6 4.01 6.82e-6 4.05 7.56e-6 3.99 7.56e-6 3.99 7.56e-6 3.99

40 4.43e-7 4.03 4.43e-7 4.03 4.01e-7 4.09 4.73e-7 4.00 4.73e-7 4.00 4.73e-7 4.00

5.2. A rotating flow test

We take ǫ = 10−6, β = [y−1/2, 1/2−x]T , and f = 0. The solution u is prescribed along the slip 1/2× [0, 1/2],
as follows:

u(1/2, y) = sin2(2π y) y ∈ [0, 1/2].

See [31] for a detailed description of this test.

In Figure 1, we plot uh obtained from the three HDG methods for various polynomial degrees in a structured
triangular grid of 128 elements. To better compare the results, we plot in Figure 2 extracted data of uh along
the horizontal center line y = 1/2. We also plot in Figure 3 a comparison of P0-HDG1 in 8192 elements and
P3-HDG1 in 128 elements. From Figure 1, we find that all the HDG methods produce similar results. Moreover,
it is clear that higher order methods lead to better approximation results and are computationally cheaper than
lower order methods for qualitively similar numerical results.

5.3. An interior layer test

We take β = [1/2,
√

3/2]T , f = 0, and the Dirichlet boundary condition as follows:

u =

⎧
⎨
⎩

1 on {y = 0, 0 ≤ x ≤ 1},
1 on {x = 0, 0 ≤ y ≤ 1/5},
0 elsewhere.

It is clear that for ǫ small, the exact solution produces an interior layer along β direction starting from
(0, 1/5), and boundary layers on the right and top right boundary.

In Figures 4 and 5, we plot the computational results in a structured triangular grid of 128 elements for
ǫ = 10−3 and ǫ = 10−9 respectively. In order to better see the performance of the HDG method in capturing
interior layers, in Figures 6, we plot the contour of uh using Pk-HDG1 with 0 ≤ k ≤ 3 for ǫ = 10−3 in
three consecutive meshes with the coarsest one consists of 200 elements. Again, all the HDG methods produce
quite similar results. Note that, as expected, the piecewise-constant approximations are free of oscillations but
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Figure 1. 3D plot of uh for rotating flow test with ǫ = 10−6 in 128 elements. Left-right:
HDG1, HDG2, HDG3. Top-bottom: P0–P3.

extensively smear out the interior layer, while, on the other hand, higher order approximations capture the
interior layer within a few elements but produce oscillations within the layer.

5.4. A boundary layer test

Finally, we take β = [1, 1]T , and choose the source term f so that the exact solution

u(x, y) = sin
π x

2
+ sin

π y

2

(
1 − sin

π x

2

)
+

e−1/ǫ − e−(1−x)(1−y)/ǫ

1 − e−1/ǫ
·
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Figure 2. uh along y = 1/2 for Pk-HDG3 with 128 elements.

Table 4. History of convergence of HDG1 for ‖u − uh‖L2(Ω̃) when ǫ = 10−2 and ǫ = 10−6.

Degree Mesh ǫ = 10−2 ǫ = 10−6

k h−1 error order error order

10 3.61e-2 −− 3.32e-2 −−

20 1.81e-2 0.99 1.67e-2 1.00

0 40 9.06e-3 1.00 8.34e-3 1.00

80 4.52e-3 1.00 4.17e-3 1.00

10 4.22e-3 −− 1.20e-3 −−

20 8.54e-4 2.30 3.00e-4 2.00

1 40 2.13e-4 2.00 7.51e-5 2.00

80 5.30e-5 2.01 1.88e-5 2.00

10 1.48e-3 −− 1.90e-5 −−

20 6.66e-5 4.47 2.37e-6 3.00

2 40 8.19e-6 3.02 2.96e-7 3.00

80 1.03e-6 3.00 3.70e-8 3.00

10 4.10e-4 −− 3.17e-7 −−

20 5.35e-6 6.26 1.99e-8 3.99

3 40 3.56e-7 3.91 1.25e-9 4.00

80 2.27e-8 3.97 7.79e-11 4.00

The solution develops boundary layers along the top and right boundaries for small ǫ (see Fig. 7 for ǫ = 10−2

and Fig. 8 for ǫ = 10−6). We take an exact solution which is a slight modification of that considered in [1] so
that, away from the boundary layers, our exact solution behaves not like a quadratic polynomial as in [1]. This
modification is useful for us to clearly see the orders of convergence for k = 2, 3.

In Figures 7 and 8, we plot the exact solution and computational results for ǫ = 10−2 and ǫ = 10−6 in a
structured 200 elements. We find that all the HDG methods produce similar results. The boundary layers are
not resolved since the mesh is too coarse.

In Table 4, we show the convergence of uh in L2-norm for ǫ = 10−2, 10−6 in the reduced domain Ω̃ =
[0, 0.9] × [0, 0.9] ⊂ Ω to exclude the unresolved boundary layers. Just as in the smooth case, the three HDG
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Figure 3. A comparison of P0-HDG and P3-HDG. Left: P0-HDG1 with 8192 elements; right
P3-HDG1 with 128 elements. Top: 3D plot; bottom: 2D contour.

methods produce very similar convergence results. Hence we only show the computed results for Pk-HDG1 in
Table 4. We observe optimal L2-convergence rates for uh.

5.5. The condition number

Now, we present the condition number of the matrix generated by the original bilinear form ah in (3.2) and
the scaled bilinear form ãh in (3.5). We use the same setup as that of the smooth test with two choices of β.
The first choice of β is β = [1, 2]T . For this choice, assumption (3.3) is satisfied by both example of τ in (2.10)
and (2.11). Since the condition numbers of all three HDG methods are very similar in our tests, we only present
that for Pk-HDG1 in Table 5. Notice that O(h−2) is observed for ǫ = 1, 10−3, 10−9 for different polynomial
degrees, and that the condition number of the scaled system is similar to that of unscaled system. The second
choice of β is β = [1, 1]T . For this choice, assumption (3.3) is satisfied by the second choice of τ in (2.11), but
not for the choice (2.10) since the mesh is aligned with β. However, one can easily modify τ in Pk-HDG1 and
Pk-HDG3 on the aligned faces so that (3.3) holds. We only present the condition numbers for Pk-HDG2 in
Table 6. The dependence of the condition number on ǫ seems to be of order O(ǫ−1) for the original system,
and we observe a huge improvement of the condition number after scaling for ǫ = 10−9. Also, we find that the
condition number for the scaled system is of order O(h−2) for ǫ = 1, and of order O(h−1) for ǫ = 10−3, 10−9,
which is not predicted by our theory.
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Figure 4. 3D plot of uh for the interior layer test with ǫ = 10−3 in 128 elements. Left-right:
HDG1, HDG2, HDG3. Top-bottom: P0–P3.
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Figure 5. 3D plot of uh for the interior layer test with ǫ = 10−9 in 128 elements. Left-right:
HDG1, HDG2, HDG3. Top-bottom: P0–P3.
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Figure 6. Contour plot of uh using HDG1 for the interior layer test with ǫ = 10−3. Left
to right: three consecutive meshes with the left one consists of a uniform triangulation of
200 elements. Top-bottom: P0–P3.
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Figure 7. 3D plot of the exact solution and uh for the boundary layer test with ǫ = 10−2 in
128 elements. Top center: the exact solution. Left-right: HDG1, HDG2, HDG3. Top-bottom:
P0–P3.
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Figure 8. 3D plot of the exact solution and uh for the boundary layer test with ǫ = 10−6 in
128 elements. Top center: the exact solution. Left-right: HDG1, HDG2, HDG3. Top-bottom:
P0–P3.
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Table 5. Condition numbers for HDG1 when β = [1, 2]T .

ǫ Mesh Condition numbers for ah(·, ·) Condition numbers for ãh(·, ·)

h−1 k= 0 k=1 k =2 k= 3 k= 0 k =1 k =2 k= 3

5 1.11e+2 1.42e+2 2.82e+2 3.31e+2 2.49e+2 2.65e+2 5.30e+2 6.29e+2

10 3.37e+2 5.28e+2 1.06e+3 1.24e+2 6.29e+2 9.83e+2 1.98e+3 2.34e+2

1e-0 20 1.37e+3 2.09e+3 4.17e+3 4.89e+2 2.55e+3 3.89e+3 7.78e+3 9.21e+2

40 5.50e+3 8.32e+3 1.66e+4 1.95e+2 1.03e+4 1.55e+4 3.10e+4 3.67e+2

5 4.86e+1 1.60e+2 3.64e+2 5.00e+2 3.71e+1 1.12e+2 2.44e+2 3.40e+2

10 1.74e+2 5.23e+2 8.79e+2 1.27e+3 1.36e+2 3.75e+2 6.51e+2 8.48e+2

1e-3 20 6.48e+2 1.82e+3 2.35e+3 4.06e+3 5.06e+2 1.25e+3 1.17e+3 2.50e+3

40 2.48e+3 6.94e+3 8.76e+3 1.49e+4 1.94e+3 4.44e+3 5.98e+3 8.96e+3

5 4.90e+1 1.69e+2 4.21e+2 5.76e+2 3.73e+1 9.57e+1 2.97e+2 3.80e+2

10 1.74e+2 5.38e+2 1.17e+3 1.52e+3 1.36e+2 4.04e+2 9.11e+2 1.05e+3

1e-9 20 6.49e+2 1.94e+3 3.76e+3 4.73e+3 5.05e+2 1.46e+3 2.94e+3 3.40e+3

40 2.50e+3 7.06e+3 1.34e+4 1.65e+4 1.93e+3 5.37e+3 9.45e+3 1.25e+4

Table 6. Condition numbers for HDG2 when β = [1, 1]T .

ǫ Mesh Condition numbers for ah(·, ·) Condition numbers for ãh(·, ·)

h−1 k= 0 k=1 k =2 k= 3 k= 0 k =1 k =2 k= 3

5 9.99e+1 1.41e+2 2.82e+2 3.31e+2 1.16e+2 1.96e+2 3.92e+2 4.64e+2

10 3.40e+2 5.34e+2 1.07e+3 1.25e+2 4.35e+2 6.82e+2 1.37e+3 1.61e+2

1e-0 20 1.38e+3 2.12e+3 4.23e+3 4.96e+2 1.77e+3 2.71e+3 5.41e+3 6.38e+2

40 5.57e+3 8.44e+3 1.68e+4 1.98e+2 7.12e+3 1.08e+4 2.15e+4 2.54e+2

5 2.01e+2 6.63e+2 9.06e+2 1.55e+3 2.48e+2 1.81e+3 7.02e+3 9.83e+3

10 4.00e+2 1.41e+3 1.62e+3 3.27e+3 5.63e+2 2.34e+3 7.45e+3 1.16e+4

1e-3 20 1.25e+3 4.42e+3 4.98e+3 9.57e+3 1.20e+3 3.99e+3 9.01e+3 1.66e+4

40 4.69e+3 1.63e+4 1.86e+4 3.12e+4 2.60e+3 7.29e+3 1.32e+4 2.49e+4

5 1.43e+8 4.02e+8 6.04e+8 7.34e+8 2.38e+2 2.07e+3 1.23e+4 2.49e+4

10 1.31e+8 3.84e+8 5.68e+8 7.03e+8 5.35e+2 4.66e+3 2.77e+4 5.60e+4

1e-9 20 1.25e+8 3.75e+8 5.51e+8 6.87e+8 1.13e+3 9.84e+3 5.85e+4 1.12e+5

40 1.22e+8 3.70e+8 5.42e+8 6.79e+8 2.32e+3 2.02e+4 1.20e+5 2.30e+5

Appendix A. The relation between the HDG method and the MH-DG method
in [26]

In this section, we establish the relation between the HDG method (2.4) and the MH-DG considered in [26].
We first present the MH-DG method for equations (1.1) under the condition that g = 0 and β ∈ H(div;Ω) is
constant in each element. Then, we show that this method coincides with the HDG method (2.4) when using
the same approximation spaces and choosing the stability function τ to be (2.10).

The MH-DG method seeks an approximation (qh, uh, λh) ∈ Ṽh × Wh × Mh(0) so that

Bh ((qh, uh, λh) , (r, w, μ)) = (f, w)Th
, (A.1)
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for all (r, w, μ) ∈ Ṽh × Wh × Mh(0), where Wh and Mh(0) is defined in (2.3) and Ṽh is the so called
Raviart–Thomas space, slightly larger than Vh, defined as follows

Ṽh =
{
r ∈ L2

(
Ω; Rd

)
: r|K ∈ Pk

(
K; Rd

)
+ xPk(K) ∀K ∈ Th

}
,

and

Bh ((q, u, λ), (r, w, μ)) = (ǫ−1q, r)Th
− (u,∇ · r)Th

+ 〈λ, r · n〉∂Th

− (q + βu,∇w)Th
+ 〈q · n + β · n{λ/u}, w − μ〉∂Th

,

where

{λ/u} :=

{
λ, if β · n < 0,
u, if β · n ≥ 0.

Comparing the bilinear form for the HDG method (4.1) with approximation spaces Ṽh × Wh × Mh(0) and
the stability function τ in (2.10) and that for the MH-DG method in (A.1), we notice that the only difference

lies in the definition of the numerical flux (q̂h + β̂uh) · n and qh · n + β · n{λ/u}. However, by the following
simple calculation, we observe that the two numerical flux are actually the same:

(q̂h + β̂uh) · n = qh · n + β · nλh + τ(uh − λh)

= qh · n + β · nλh + max(β · n, 0)(uh − λh)

=

{
qh · n + β · nλh, if β · n < 0
qh · n + β · nuh, if β · n ≥ 0

= qh · n + β · n{λh/uh}.
Hence, these two methods coincide.

Appendix B. Conditioning of the HDG methods

In this section, we give a proof of Theorem 3.2. Again, the key idea is to recover an estimate of the L2-norm
of uh, see the estimate (B.5) below. By similar argument in the proof of Lemma 4.4, we have the following local
energy estimate:

Lemma B.1. If ǫ ≤ O(h), then there is h0 > 0, which is independent of ǫ and h, such that for any λ ∈ Mh(0)
and K ∈ Th,

ǫ−1/2‖qλ
h‖K + ‖uλ

h‖K +

∥∥∥∥∥

∣∣∣∣τ − 1

2
β · n

∣∣∣∣
1/2

uλ
h

∥∥∥∥∥
∂K

≤ C

∥∥∥∥∥

∣∣∣∣τ − 1

2
β · n

∣∣∣∣
1/2

λ

∥∥∥∥∥
∂K

, (B.1)

if h < h0.

For all (σ, v, λ), (r, w, μ) ∈ H1(Th; Rd) × H1(Th) × L2(Eh), we define

bh((σ, v, λ), (r, w, μ)) = (ǫ−1σ, r)Th
+ 〈τ(v − λ), w − μ〉∂Th

− (βv,∇w)Th
+ 〈(β · n)λ, w − μ〉∂Th

− ((∇ · β) v, w)
Th

,

The next result is similar to Lemma 4.4.

Lemma B.2. If ǫ ≤ O(h), then there is h0 > 0, which is independent of ǫ and h, such that for any λ ∈ Mh(0),

ǫ−1‖qλ
h‖2

Th
+ ‖uλ

h‖2
Th

+

∥∥∥∥∥

∣∣∣∣τ − 1

2
β · n

∣∣∣∣
1/2

(uλ
h − λ)

∥∥∥∥∥

2

∂Th

≤Cbh((qλ
h , uλ

h, λ), (q
(P0,M ϕ)λ
h , u

(P0,M ϕ)λ
h , (P0,Mϕ)λ)),

if h < h0. Here, the weight function ϕ = e−ψ + χ is introduced in (4.4). P0,M is the L2-orthogonal projection

onto P0(Eh).
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Remark B.3. Notice that in general, the space {(qm
h , um

h , m) : m ∈ Mh(0)} is a non-trivial subspace of Vh ×
Wh×Mh(0). Then, given m ∈ Mh, (Πh(ϕqm

h ), Ph(ϕum
h ), PM (ϕm)) is not necessarily contained in {(qm

h , um
h , m) :

m ∈ Mh}. So, the proof of Lemma B.2 can not be derived from the stability of HDG methods in Lemma 4.4.

Proof. We accomplish the proof in the following steps.

(I) By the same argument in the proof of Lemma 4.1, if h is small enough (independent of ǫ), then

ǫ−1χ‖qλ
h‖2

Th
+ ‖uλ

h‖2
Th

+ χ

∥∥∥∥∥

∣∣∣∣τ − 1

2
β · n

∣∣∣∣
1/2

(uλ
h − λ)

∥∥∥∥∥

2

∂Th

≤ Cbh((qλ
h , uλ

h, λ), (ϕqλ
h , ϕuλ

h, ϕλ)).

(II) By similar argument in the proof of Lemma 4.4, if we choose χ big enough and h small enough (both are
independent of ǫ), then

ǫ−1χ‖qλ
h‖2

Th
+ ‖uλ

h‖2
Th

+ χ

∥∥∥∥∥

∣∣∣∣τ − 1

2
β · n

∣∣∣∣
1/2

(Uλ − λ)

∥∥∥∥∥

2

∂Th

≤ Cbh((qλ
h , uλ

h, λ), ((P0,hϕ)qλ
h , Ph(ϕuλ

h), (P0,Mϕ)λ)).

Here, we define P0,hϕ to be the average of ϕ on every element K ∈ Th.

(III) Now, we want to bound bh((qλ
h , uλ

h, λ), ((P0,hϕ)qλ
h , (P0,hϕ)uλ

h, (P0,Mϕ)λ)) from below. Notice that

bh((qλ
h , uλ

h, λ), ((P0,hϕ)qλ
h , (P0,hϕ)uλ

h, (P0,Mϕ)λ)) = bh((qλ
h , uλ

h, λ), ((P0,hϕ)qλ
h , Ph(ϕuλ

h), (P0,Mϕ)λ))

+ (β · ∇uλ
h, Ph(ϕuµ

h) − (P0,hϕ)uµ
h)Th

+ 〈(τ − β · n)(uλ
h − λ), Ph(ϕuµ

h) − (P0,hϕ)uµ
h〉∂Th

.

By (3.1b), we have

bh((qλ
h , uλ

h, λ), ((P0,hϕ)qλ
h , (P0,hϕ)uλ

h, (P0,Mϕ)λ)) = bh((qλ
h , uλ

h, λ), ((P0,hϕ)qλ
h , Ph(ϕuλ

h), (P0,Mϕ)λ))

− (∇ · qλ
h , Ph(ϕuµ

h) − (P0,hϕ)uµ
h)Th

. (B.2)

By inverse inequality to ∇ · qλ
h and assumption ǫ ≤ O(h), we have

‖∇ · qλ
h‖Th

≤ Cǫ−1/2h−1/2‖qλ
h‖Th

.

In addition, we have

‖Ph(ϕuµ
h) − (P0,hϕ)uµ

h‖Th
≤ Ch‖uµ

h‖Th
.

So, if h is small enough (independent of ǫ, χ), we have

χǫ−1‖qλ
h‖2

Th
+ ‖uλ

h‖2
Th

+ χ‖|τ − 1

2
β · n|1/2(uλ

h − λ)‖2
∂Th

≤Cbh((qλ
h , uλ

h, λ), ((P0,hϕ)qλ
h , (P0,hϕ)uλ

h, (P0,Mϕ)λ)). (B.3)

(IV) Now, we want to bound bh((qλ
h , uλ

h, λ), ((P0,hϕ)qλ
h , u

(P0,M ϕ)λ
h , (P0,Mϕ)λ)) from below. Similar to (B.2), we

have

bh((qλ
h , uλ

h, λ), ((P0,hϕ)qλ
h , u

(P0,M ϕ)λ
h , (P0,Mϕ)λ)) = bh((qλ

h , uλ
h, λ), ((P0,hϕ)qλ

h , (P0,hϕ)uλ
h, (P0,Mϕ)λ))

− (∇ · qλ
h , (P0,hϕ)uλ

h − u
(P0,M ϕ)λ
h )Th

. (B.4)
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Since λ → uλ
h is linear and (B.1), then for any K ∈ Th,

‖(P0,hϕ)uλ
h − u

(P0,M ϕ)λ
h ‖K = ‖u(P0,hϕ)λ

h − u
(P0,M ϕ)λ
h ‖K

≤C‖|τ − 1

2
β · n|1/2((P0,hϕ)λ − (P0,Mϕ)λ)‖∂K

≤Ch‖|τ − 1

2
β · n|1/2λ‖∂K

≤Ch1/2

(
‖uλ

h‖2
K + ΣF∈E(K)‖|τ − 1

2
β · n|1/2(uλ

h − λ)‖2
F

)1/2

.

Recall that by an inverse inequality to ∇ · qλ
h and assumption ǫ ≤ O(h),

‖∇ · qλ
h‖Th

≤ Cǫ−1/2h−1/2‖qλ
h‖Th

.

So, if χ is big enough (independent of ǫ, h), we have

ǫ−1‖qλ
h‖2

Th
+ ‖uλ

h‖2
Th

+

∥∥∥∥∥

∣∣∣∣τ − 1

2
β · n

∣∣∣∣
1/2

(uλ
h − λ)

∥∥∥∥∥

2

∂Th

≤Cbh((qλ
h , uλ

h, λ), ((P0,hϕ)qλ
h , u

(P0,M ϕ)λ
h , (P0,Mϕ)λ)).

(V) By (B.1), (B.3), (3.3) and the fact that λ → qλ
h is linear, we have

ǫ−1‖qλ
h‖2

Th
+ ‖uλ

h‖2
Th

+

∥∥∥∥∥

∣∣∣∣τ − 1

2
β · n

∣∣∣∣
1/2

(uλ
h − λ)

∥∥∥∥∥

2

∂Th

≤Cbh((qλ
h , uλ

h, λ), (q
(P0,M ϕ)λ
h , u

(P0,M ϕ)λ
h , (P0,Mϕ)λ))

if h is small enough (independent of ǫ).
So, we can conclude the proof is complete. �

Now, we are ready to prove Theorem 3.2. By the definition of ãh in (3.5),

ãh(λ̃, μ̃) = ah

(
Λ−1

ǫ λ̃, Λ−1
ǫ μ̃
)

= bh((q
Λ−1

ǫ λ̃
h , u

Λ−1
ǫ λ̃

h , Λ−1
ǫ λ̃),

(
q

Λ−1
ǫ µ̃

h , u
Λ−1

ǫ µ̃
h , Λ−1

ǫ μ̃)
)

,

for all λ̃, μ̃ ∈ Mh(0).

We recall that Λǫ|F = (supx∈F |β · n(x)| + min(
ǫ

hF
, 1))1/2, ∀F ∈ Eh in (3.4). By assumption (3.3) and

Lemma B.2, we have that for any λ̃ ∈ Mh(0),

ãh(λ̃, (P0,Mϕ)λ̃) ≥C

⎛
⎝‖uΛ−1

ǫ λ̃
h ‖2

Th
+

∥∥∥∥∥

∣∣∣∣τ − 1

2
β · n

∣∣∣∣
1/2

(u
Λ−1

ǫ λ̃
h − Λ−1

ǫ λ̃)

∥∥∥∥∥

2

∂Th

⎞
⎠

≥Ch

∥∥∥∥∥

∣∣∣∣τ − 1

2
β · n

∣∣∣∣
1/2

Λ−1
ǫ λ̃

∥∥∥∥∥

2

∂Th

(by trace inequality and triangle inequality) (B.5)

≥C
∥∥∥λ̃
∥∥∥2h ≥ C

∥∥∥λ̃
∥∥∥

h
·
∥∥∥ (P0,Mϕ)λ̃

∥∥∥
h

,

where
‖λ̃‖h = h1/2‖λ̃‖Eh

, ∀λ̃ ∈ L2(Eh).

According to (B.1) and the definition of Λǫ in (3.4), we have

ãh(λ̃, μ̃) ≤ Ch−2‖λ̃‖h · ‖μ̃‖h, ∀λ̃, μ̃ ∈ Mh(0). (B.6)

Using (B.5) and (B.6), we can conclude the proof of Theorem 3.2.
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Appendix C. Generating special meshes

As in [17], we do not intend to provide a detailed description how to generate meshes satisfying assump-
tion (2.1). We just give the main idea to generate the triangulation in the following, which is similar to the idea
in [17].

(i) Given a positive value h, we triangulate the outflow boundary Γ+ = {x ∈ ∂Ω : β · n(x) > 0} in segments
of size no bigger than h.

(ii) For each node x0 on Γ+, we apply the forward Euler time-marching method to the problem

d

dt
x(t) = −β(x(t)) t > 0, x(0) = x0,

to obtain the set of nodes {xi}N(x0)
i=1 such that the distance between xi and xi−1 is of order h and xN(x0)

is the point on ∂Ω \ Γ+.

(iii) We add the vertices of ∂Ω \ Γ+ to the set of nodes. Then we generate a triangulation.
(iv) We numerically check assumption (2.1) and modify the simplexes which violate the assumption by using

an algorithm similar to that in [33].
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