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This paper discusses the dynamics of intraday prices of 12 cryptocurrencies during the past months’
boom and bust. The importance of this study lies in the extended coverage of the cryptoworld,
accounting for more than 90% of the total daily turnover. By using the complexity-entropy causal-
ity plane, we could discriminate three different dynamics in the data set. Whereas most of the
cryptocurrencies follow a similar pattern, there are two currencies (ETC and ETH) that exhibit a
more persistent stochastic dynamics, and two other currencies (DASH and XEM) whose behav-
ior is closer to a random walk. Consequently, similar financial assets, using blockchain technology,
are differentiated by market participants. Published by AIP Publishing. https://doi.org/10.1063/1.
5027153

In recent years, there has been a development of a new
type of financial asset called cryptocurrency. This syn-
thetic asset has an almost unique feature that it is traded
24/7 in unregulated trading platforms. The huge amount
of money traded daily in such a market and the singularity
of the asset nature deserve a deep study on prices dynam-
ics and comparison among different cryptocurrencies. We
analyze 12 of the most important ones, using a powerful
statistical tool based on Information Theory, namely, the
complexity-entropy causality plane. It allows one to dis-
criminate these cryptocurrencies into different dynamical
regimes.

I. INTRODUCTION

According to the traditional definition, a currency has
three main properties: (i) it serves as a medium of exchange,
(ii) it is used as a unit of account, and (iii) it allows one to store
value. Traditional currencies are issued by central banks, on
behalf of nation states, and their values are related to the confi-
dence in the central bank policies and in the economy in which
such currencies are based on. A few years ago, a new type
of tradable asset, called broadly cryptocurrencies, emerged.
The first and most widely known is Bitcoin (BTC). It was cre-
ated following the publication of a manuscript written by an
unknown author under the pseudonym “Nakamoto.”29 Con-
trary to standard fiat money, its creation is not linked nor
endorsed by any central bank and/or government. It is a fully

a)Electronic mail: aurelio.fernandez@urv.cat
b)Electronic mail: lucianoz@ciop.unlp.edu.ar
c)Electronic mail: oarosso@gmail.com

private creation of virtual money, whose value is not intrin-
sically based on any precious metal or any other underlying
asset. Consequently, its intrinsic value is zero.11 Cryptocur-
rencies are based on a new technology called blockchain. Its
main innovation is that transactions, instead of being validated
by a central authority or clearing house, are done by partici-
pants from several markets, who compete to validate them by
solving complex cryptologic algorithms. In turn, the winner
in this validation quest is rewarded with some amount of the
cryptocurrency he/she is validating. This decentralized and
encrypted transaction ledger makes, according to those who
are in favor of this technology, a more reliable validation than
the centralized alternative.

The ecosystem of cryptocurrencies has been growing at
an increasing pace, and now there are around 1000 active and
tradable cryptocurrencies, using blockchain or similar proto-
cols. Daily transactions are worth several millions of dollars,
and in recent times, a growing literature is devoted to the study
of different aspects of this new asset.

The aim of this paper is to study the informational
efficiency of the 12 most important cryptocurrencies, using
high-frequency data. All cryptocurrencies rely on a similar
blockchain technology, making them similar from a tech-
nical point of view. However, none of them have any real
or tangible asset in order to price them. Consequently, the
comparative analysis aims to test if these instruments have
different underlying (unobservable) dynamical structure. This
article contributes to the literature in three important aspects.
First, we expand the empirical studies analyzing this new
asset type. Second, we compare the dynamic behavior of the
12 major cryptocurrencies. Third, we describe the temporal
evolution of informational efficiency using high-frequency
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data. The rest of the paper is organized as follows: Section II
describes the recent emerging literature on Bitcoin and other
cryptocurrencies, Sections III and IV introduce the methodol-
ogy used in the paper, Section V presents the set of data and
discusses the results of our empirical analysis, and, finally,
Section VI draws the main conclusions.

II. BRIEF LITERATURE REVIEW

The study of cryptocurrencies has different branches that
spans law, computer science, and economics. The great inno-
vation in Nakamoto’s paper29 was probably not the creation of
BTC, but the development of an open-source, decentralized
online payment system. In other words, financial transac-
tions could be done, at a very reduced fee,21 bypassing the
established international banking system. Even more, due
to encryption, parties are not required to disclose their true
identity. This feature could arise concerns within the law
community about the use of BTC for illegal purposes. Com-
puter science literature focus its interest on the technical
design of the blockchain technology, security of cryptographic
protocols, vulnerabilities, energy consumption, etc. Finally,
financial and monetary economics focus mainly on either the
economic determinants of BTC price and its informational
efficiency. We will focus on this latter aspect.

According to the classical definition by Fama,15 a mar-
ket is informationally efficient if prices convey all relevant
information. In other words, and limiting the information
set to the series of prices of a given asset, we say that the
market for that asset is efficient if the current price incorpo-
rates the information of past prices. As a corollary of such
definition, the use of past prices for future prices forecasting is
futile. Samuelson36 established that the time series of prices of
any given speculative asset should behave as a random walk
(RW). The empirical literature in financial economics found
several deviations from the RW hypothesis. In fact, Bariv-
iera and co-authors have shown the presence of time varying
long-range dependence in the Thai Stock Market,5 studied the
effect of the 2008 financial crisis on the informational effi-
ciency of European sovereign bonds,10 and have also found
an asymmetric response in the stochastic characteristics of
European corporate and sovereign bonds.9 Other authors have
studied the relationship among predictability political crises
and market crashes.20

Regarding the cryptocurrency markets, most of the litera-
ture concentrates its efforts in the analysis of BTC. However,
the cryptocurrency ecosystem is populated by hundreds of
competitors to BTC. Conmarketcap12 gathers information of
around 1000 different active currencies. In this sense, our
paper gives a broader picture of this virtual market by analyz-
ing other eleven cryptocurrencies in addition to the classical
BTC.

Cheah and Fry11 found speculative bubbles in the BTC
market. Urquhart40 reported informational inefficiency in the
BTC market from 2013 until 2016. Similarly, Nadarajah and
Chu28 found that the time series behavior of BTC is not
consistent with the Efficient Market Hypothesis (EMH), and
Bariviera6 has shown a reduced long-term memory effect in
the period 2013-2016. Finally, Bariviera et al.7 found that the

long-term memory profile of BTC time series is similar at dif-
ferent time scales. It is also reported prices clustering at round
numbers (with 00 decimals).41

III. INFORMATION THEORY QUANTIFIERS

The departing point for many empirical studies in eco-
nomics is a time series. Financial markets, and more precisely
the growing cryptocurrency markets, provide abundant mate-
rial to process. Taking into account that each transaction
is recorded electronically and that there are thousands of
transactions per hour, the researcher can select data with a
different granularity. The abundance of data allows the intro-
duction of more advanced techniques, mostly derived from
econophysics, in order to shed light on economic phenomena.

Information-theory-derived quantifiers could be very
helpful to uncover information conveyed by financial time
series. The use of entropy quantifiers in the financial litera-
ture can be traced back to the 1960s, with papers by Theil
and Leenders,39 Fama,14 and Dryden.13 These papers may be
considered isolated examples on the use of this technique,
which was only recovered in recent times, by the econo-
physics literature. In this line, Martina et al.26 and Ortiz
et al.31 applied entropy and multiscale entropy analysis to
assess crude oil price efficiency. Alvarez-Ramírez et al.2 also
used entropy methods to quantify the dynamics of the infor-
mational efficiency of the US stock market over the last 70
years.

Shannon entropy is a very natural and common way to
measure the degree of disorder in a system. According to
Shannon and Weaver,37 given a discrete probability distribu-
tion P = {pi ∈ R; pi ≥ 0; i = 1, . . . , M }, with

∑M
i=1 pi = 1,

Shannon entropy is defined as follows:

S[P] = −
M∑

i=1

pi ln pi. (1)

This quantifier equals zero if the patterns are fully determinis-
tic and reaches its maximum value for a uniform distribution.

However, analyzing time series by means of Shannon
entropy alone could fall short. Feldman and Crutchfield16 and
Feldman et al.17 advocate that an entropy measure does not
quantify the degree of structure or patterns present in a process
and that a measure of statistical complexity must be intro-
duced into the analysis in order to characterize the system’s
organizational properties. Martín et al.24 and Lamberti et al.22

have introduced a statistical complexity measure, based on the
functional form developed by López-Ruiz et al.,23 defined in
the following way:

CJS[P, Pe] = HS[P]QJ [P, Pe], (2)

where HS[P] = S[P]/Smax is the normalized Shannon
entropy, P is the discrete probability distribution associ-
ated with the time series under analysis, Pe is the uniform
distribution, and QJ [P, Pe] is the so-called disequilibrium:
QJ [P, Pe] = Q0{S[(P + Pe)/2] − S[P]/2 − S[Pe]/2} with Q0

being a normalization constant. This disequilibrium is defined
in terms of the Jensen-Shannon divergence, which quanti-
fies the difference between two probability spaces. Martín et
al.25 demonstrated the existence of upper and lower bounds
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for generalized statistical complexity measures such as CJS .
Additionally, as highlighted in Soriano et al.,38 the statistical
complexity is not a trivial function of the entropy because it is
based on two probability distributions.

The planar representation of these two quantifiers, called
the complexity-entropy plane, has been introduced in the
econophysics literature for characterizing the informational
efficiency of several markets, for example, to rank effi-
ciency in stock markets;44,46 to rank efficiency in commodity
markets;45 to link informational efficiency with sovereign
bond ratings;43 to assess the impact of the establishment of
a common currency and a deep and wide financial crisis in
European sovereign bonds time series;10 and to detect Libor
manipulation.4,8

IV. BANDT-POMPE TIME SERIES SYMBOLIC
ENCODING

Many economic phenomena produce observable magni-
tudes, which are registered at evenly distributed times. These
observations, i.e., time series, are the raw materials used by
quantitative analysts to model and scrutinize complex phe-
nomena. This research area is broadly known as time series
analysis. One of its goals is to describe the nature of the gen-
erating process. We can safely assume that a straight departing
point for this task is to find the appropriate probability density
function (PDF) associated with the time series. There are sev-
eral competing methodologies for PDF estimation. Beyond
traditional histogram technique, and without attempting to be
exhaustive, we can cite binary symbolic dynamics,27 Fourier
analysis,32 wavelet transform,33 and ordinal patterns.3 The
suitability of each method depends on the very own character-
istics of the data. The methods for symbolic analysis of time
series discretize raw series and transform it into a series of
symbols. These kind of methods are very powerful because
they are rarely affected by the presence of observational
noise.18 This property is especially important in the analysis
of economic time series, where noise is a traditional feature.
Among the symbolic-based techniques for PDF estimation,
the Bandt and Pompe (BP) methodology3 has the advantage
of considering time causality in its estimation. This sym-
bolic methodology is robust to the presence of (observational)
noise and requires no a priori model assumption, except
weak stationarity. The starting point of this method is to con-
sider the ordinal structure of D-dimensional partitions of the
time series. “Partitions” are devised by comparing the order
of neighboring relative values rather than by apportioning
amplitudes according to different levels.

Let consider a time series S(t) = {xt; t = 1, . . . , N}, an
embedding dimension (pattern length) D > 1 (D ∈ N), and
an embedding delay (sampling frequency) τ (τ ∈ N), the
BP-pattern of order D generated by

s �→ (
xs−(D−1)τ , xs−(D−2)τ , . . . , xs−τ , xs

)
, (3)

is the one to be considered. To each time s, the BP method
assigns a D-dimensional vector that results from the eval-
uation of the time series at times s − (D − 1)τ , s − (D −
2)τ , . . . , s − τ , and s. Clearly, the higher the value of D,

the more the “time causality” is incorporated into the ensu-
ing vectors. By the ordinal pattern of order D related to the
time s, BP mean the permutation π = (r0, r1, . . . , rD−1) of
(0, 1, . . . , D − 1) defined by

xs−rD−1τ ≤ xs−rD−2τ ≤ · · · ≤ xs−r1τ ≤ xs−r0τ . (4)

In this way, the vector defined by Eq. (3) is converted into a
definite symbol π . So as to get a unique result, BP consider
that ri < ri−1 if xs−riτ = xs−ri−1τ . This is justified if the values
of xt have a continuous distribution so that equal values are
very unusual.

For all the D! possible orderings (permutations) πi when
embedding dimension is D, their associated relative frequen-
cies can be naturally computed according to the number of
times this particular order sequence is found in the time series,
divided by the total number of sequences,

p(πi) = �{s | s ≤ N − (D − 1)τ ; (s) has type πi}
N − (D − 1)τ

. (5)

In the last expression, the symbol � stands for “number.” Thus,
an ordinal pattern probability distribution P = {p(πi), i =
1, . . . , D!} is obtained from the time series.

The ordinal pattern PDF is invariant with respect to non-
linear monotonous transformations. Accordingly, nonlinear
drifts or scalings artificially introduced by a measurement
device will not modify the quantifiers’ estimation, a nice prop-
erty if one deals with experimental data (see, e.g., Saco et
al.35). These advantages make the BP approach more conve-
nient than conventional methods based on range partitioning.
Additional advantages of the method reside in its simplic-
ity (we need few parameters: the pattern length/embedding
dimension D and the embedding delay τ ) and the extremely
fast nature of the pertinent calculation-process.19 The BP
methodology can be applied not only to time series represen-
tative of low dimensional dynamical systems but also to any
type of time series (regular, chaotic, noisy, or reality based).3

In fact, the existence of an attractor in the D-dimensional
phase space is not assumed. The only condition for the
applicability of the BP method is a very weak stationary
assumption: for k ≤ D, the probability for xt < xt+k should
not depend on t. For review of BP’s methodology and its mul-
tidisciplinary applications, see Zanin et al.42 and references
therein.

In this work, the normalized Shannon entropy HS

and the statistical complexity measures CJS [Eq. (2)] are
estimated using the ordinal pattern probability distribution
P = {p(πi), i = 1, . . . , D!}. Defined in this way, these quanti-
fiers are usually known as permutation entropy and permuta-
tion statistical complexity. They characterize the diversity and
correlational structure, respectively, of the orderings present
in the complex time series. The complexity-entropy causality
plane (CECP) is defined as the two-dimensional (2D) diagram
obtained by plotting permutation statistical complexity (verti-
cal axis) versus permutation entropy (horizontal axis) for a
given system.34 The term causality remembers the fact that
temporal correlations between successive samples are taken
into account through the BP recipe used to estimate both
information-theory quantifiers.
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TABLE I. Data.

Cryptocurrency Acronym Reuters Instrument Code (RIC)

Bitcoin Cash BCH .MVBCH
Bitcoin BTC .MVBTC
Dash DASH .MVDASH
Ethereum Classic ETC .MVETC
Ethereum ETH .MVETH
IOTA IOT .MVIOT
LiteCoin LTC .MVLTC
NEO NEO .MVNEO
NEM XEM .MVXEM
Monero XMR .MVXMR
Ripple XRP .MVXRP
Zcash ZEC .MVZEC

V. DATA AND RESULTS

We use high-frequency price indices developed by MV
Index Solutions (MVIS®). Data were obtained from Thomson
Reuters Eikon terminal from one of the authors’ university.
Data consist of 16 031 observations of price indices, for each
of the 12 cryptocurrencies detailed in Table I. Data are equally
spaced in time, being 5 minutes the time frame between each
observation. The period under study spans from December
3, 2017, until February 14, 2018. This period is very inter-
esting since cryptocurrencies exhibited an unprecedented rise
and subsequent crash in their values. Consequently, it could be
suitable to study the co-movement of different currencies for
testing if the underlying dynamics of the different time series
were the same.

In spite of the fact that Bitcoin is, undoubtedly, the
most famous cryptocurrency, there are several hundreds
of tradable instruments using a similar blockchain tech-
nology. As can be seen from Table II, the market is
very concentrated. Our 12 selected cryptocurrencies account
for 88% of total market capitalization and 91% of 24
hours traded volume, among the 897 ones detailed in the
website https://coinmarketcap.com/coins/views/all/.30 Conse-
quently, our study covers most of the cryptocurrency market.

One feature of this market is that its dynamics is very
similar for all the assets under study. Figure 1 shows how the
permutation entropy varies across time. Sliding windows of
size N = 360 data points and step δ = 60 have been imple-
mented for the dynamical analysis. Behaviors are very similar

TABLE II. Market capitalization and 24-hour trading volume of the
selected cryptocurrencies. Percentages represent the proportion of capi-
talization or traded volume with respect to 897 cryptocurrencies. Own
elaboration based on data from https://coinmarketcap.com/coins/views/all/.

Market capitalization Daily traded volume

Acronym USD millions % of cryptos USD millions % of cryptos

BCH 22 931 5.5 678 3.3
BTC 165 007 39.4 9128 44.0
DASH 5355 1.3 151 0.7
ETC 3384 0.8 765 3.7
ETH 90 727 21.7 3143 15.2
IOT 5698 1.4 68 0.3
LTC 12 580 3.0 2731 13.2
NEO 7913 1.9 265 1.3
XEM 5049 1.2 79 0.4
XMR 4356 1.0 123 0.6
XRP 44 039 10.5 1702 8.2
ZEC 1566 0.4 104 0.5
Total 368 606 88.1 18 937 91.3

for all cryptocurrencies. This could reflect coherent dynamics
of the different time series.

We can observe in Fig. 2 that time series mostly exhibit
persistent behavior, reflected in a location in the CECP com-
patible with fractional Brownian motions (fBm) with Hurst
exponents between 0.5 and 0.7. Previous studies on BTC time
series reported an enhanced informational efficiency in the
period 2014-2016. Nevertheless, it seems that strong bull and
bear markets could lead to more coordinated movements that
reduce the informational efficiency.

In order to verify if all cryptocurrencies follow the
same stochastic process, we compute the sample mean and
standard deviation of the information-theory quantifiers for
each currency. We depict results in Fig. 3. We observe that
BTC occupies a central position among the other currencies.
Additionally, there are some other currencies more and less
efficient than BTC.

Taking into account that in our framework, informational
efficiency is maximal as HS[P] approaches 1 and CJS[P]
approaches 0, we compute the Euclidean distance of the
mean permutation entropy and permutation statistical com-
plexity of each currency to (H, C) = (1, 0), as a proxy for
an informational efficiency ranking. Results are displayed in
Table III.

FIG. 1. Permutation entropy evolution associated with the selected cryptocurrencies during the observation period. Estimations were obtained by implementing
sliding windows with the following parameters: D = 4, τ = 1, N = 360, and δ = 60.

https://coinmarketcap.com/coins/views/all/
https://coinmarketcap.com/coins/views/all/
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FIG. 2. Location of the cryptocurrencies in the CECP computed using slid-
ing windows with the following parameters: D = 4, τ = 1, N = 360, and
δ = 60. Black and red crosses are mean and standard deviation of 500 frac-
tional Brownian motion (fBm) simulations of 360 data points for the Hurst
exponents indicated in the figure. Dashed lines represent the upper and lower
bounds of the quantifiers as computed by Martín et al.25

FIG. 3. Mean and standard deviation of each cryptocurrency in the CECP
during the observation period. Quantifiers were calculated by implementing
sliding windows with the following parameters: D = 4, τ = 1, N = 360, and
δ = 60.

TABLE III. Informational efficiency ranking.

Ranking position Cryptocurrency efficiency measure d[(H,C) − (1, 0)]

7 BCH 0.1477
3 BTC 0.1409
2 DASH 0.1306
12 ETC 0.1688
11 ETH 0.1660
8 IOT 0.1480
6 LTC 0.1438
9 NEO 0.1481
1 XEM 0.1244
5 XMR 0.1431
4 XRP 0.1431
10 ZEC 0.1482

FIG. 4. Anova analysis. Difference of mean permutation entropy for each
cryptocurrency with respect to BTC. Red lines indicate currencies whose
mean permutation entropy is different from BTC (at 1% significance for ETC,
ETH, and XEM, and 5% level for IOT).

One important finding of this paper is that informational
efficiency is not related to currency size. In fact, BTC, by far
the largest cryptocurrency in terms of capitalization and daily
turnover, is not the most efficient one. Additionally, we com-
pute Spearman’s rho, a non-parametric correlation measure,
between our efficiency measure displayed in Table III and
market capitalization and daily turnover informed in Table II.
Spearman’s rho of the efficiency measure against market
capitalization is 0.1748 (p-value 0.5868), and against daily
traded volume is 0.1225 (p-value 0.7042). In both cases, the
association is not statistically significant.

We also test using ANOVA if the mean permutation
entropy and mean permutation statistical complexity are equal
for all cryptocurrencies. Results are displayed in Table IV, and
we cannot accept the null hypothesis of equal mean values
for either of the quantifiers among cryptocurrencies. Sec-
ond, we perform ANOVA analysis for each currency vis-à-vis

FIG. 5. Anova analysis. Difference of mean statistical complexity for each
cryptocurrency with respect to BTC. Red lines indicate currencies whose
mean statistical complexity is different from BTC (at 1% significance level).
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TABLE IV. Anova analysis to test the equality of means among all cryptocur-
rencies.

ANOVA on permutation entropy

Source SS df MS F Prob>F
Currencies 0.2421 11 0.0220 39.8496 3.19E-81
Error 1.7231 3120 0.0006
Total 1.9651 3131

ANOVA on statistical complexity

Source SS df MS F Prob>F
Currencies 0.2039 11 0.0185 42.3817 2.12E-86
Error 1.3647 3120 0.0004
Total 1.5686 3131

BTC. Results are displayed in Figs. 4 and 5. We observe that
there are seven cryptocurrencies (displayed in light gray in
the figures), whose mean entropic and complexity behavior is
indistinguishable form BTC (displayed in blue in the figures).
However, we reject the null hypothesis of equal mean per-
mutation entropy of BTC, with respect to ETC, ETH, IOT,
and XEM (displayed in red in Fig. 4). We also reject the
null hypothesis of equal permutation statistical complexity
of BTC, with respect to DASH, XEM, ETC, and ETH (dis-
played in red in Fig. 5). If we analyze these results together
with the graphical representation of mean values of Fig. 3,
we conclude that ETC and ETH are less efficient (more per-
sistent), while DASH and XEM are more efficient than BTC.
Actually, DASH and XEM dynamics are closer to a random
walk behavior. One of the reasons for such behavior of ETC
and ETH could be found in the fact that these cryptocurren-
cies were not created with the aim of substituting paypal-like
systems. Ethereum’s goal is using a blockchain for “smart
contracts,” i.e., to replace internet third parties in order to
validate trusted operations.1

Additionally, XEM and DASH appear as the most effi-
cient cryptocurrencies. In this case, the reason could be
found in the validation design. Both currencies introduced
different ways of validating blocks. XEM introduced a
proof-of-importance (POI) algorithm, and an Eigentrust++
reputation system in order to check operations. Unlike BTC,
DASH is comprised of three types of “levels,” with specific
roles and responsibilities on the network. In addition, from
the beginning the evolution, changes or upgrades in the cur-
rency can be proposed by anyone, establishing a decentralized
governance by blockchain. This situation could generate fairer
transactions, which leads to a more efficient market.

VI. CONCLUSIONS

We studied high-frequency data of the cryptocurrency
market during a very special period of boom and bust. Our
paper reports detailed behaviors of the 12 most important
cryptocurrencies, which cover 88% of market capitalization
and over 91% of daily turnover. We detect that the major-
ity of the currencies exhibit a similar behavior, compatible
with some kind of persistent stochastic dynamics with Hurst
exponents between 0.5 and 0.7. However, we can identify
four cryptocurrencies whose behaviors are different from the

rest. ETC and ETH exhibit more persistent behavior than the
others, reflected in smaller mean permutation entropies and
larger mean statistical complexities. On the contrary, DASH
and XEM average behaviors are closer to a random walk.
Our results uncover that, inside the cryptocurrency ecosys-
tem, distinct behaviors emerge. Even though the majority of
the market follows the behavior of the leader (BTC), some
alternative cryptocurrencies follow differentiated dynamics,
which could indicate that these assets are not as homoge-
neous as expected. The reason for such behavior could be
found in the special characteristics of these currencies. Unlike
BTC, the aim of ETC and ETH is to be a vehicle for “smart
contracts” rather than a virtual currency system. Regarding
DASH and XEM, they introduced some innovations in the
blockchain ecosystem and, consequently, investors could see
them as more reliable assets.
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