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Abstract

It has been reported that increasingly microRNAs are associated with diseases. However, the patterns among the microRNA-
disease associations remain largely unclear. In this study, in order to dissect the patterns of microRNA-disease associations, we
performed a comprehensive analysis to the human microRNA-disease association data, which is manually collected from
publications. We built a human microRNA associated disease network. Interestingly, microRNAs tend to show similar or different
dysfunctional evidences for the similar or different disease clusters, respectively. A negative correlation between the tissue-
specificity of a microRNA and the number of diseases it associated was uncovered. Furthermore, we observed an association
between microRNA conservation and disease. Finally, we uncovered that microRNAs associated with the same disease tend to
emerge as predefined microRNA groups. These findings can not only provide help in understanding the associations between
microRNAs and human diseases but also suggest a new way to identify novel disease-associated microRNAs.
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Introduction

MicroRNAs (miRNAs) are a class of small non-coding RNAs

(,22 nt) which normally function as negative regulators of target

mRNA expression at the posttranscriptional level. They bind to

the 39UTR of target mRNAs through base pairing, resulting in

target mRNAs cleavage or translation inhibition[1,2,3]. It has also

recently been demonstrated that miRNAs may function as positive

regulators in some cases[4,5]. It is estimated that 1–4% genes in

the human genome are miRNAs and a single miRNA can regulate

as many as 200 mRNAs[6]. There is increasing evidence

suggesting that miRNAs play critical roles in many key biological

processes, such as cell growth, tissue differentiation, cell prolifer-

ation, embryonic development, and apoptosis[6]. We previously

found that miRNA also play important roles in cellular signaling

network[7], cross-species gene expression variation[8], and co-

regulation with transcription factors[9]. As such, mutation of

miRNAs, dysfunction of miRNA biogenesis and dysregulation of

miRNAs and their targets may result in various diseases.

Currently, there have been reported ,70 diseases are associated

with miRNAs (see our database http://cmbi.bjmu.edu.cn/hmdd.).

Many studies have produced a large number of miRNA-disease

associations and shown that the mechanisms of miRNAs involved

in diseases are very complex. In such a complex case, a

comprehensive analysis of these data will do great help in

understanding the associations between miRNAs and diseases.

Furthermore, a large-scale analysis and integration of these

miRNA-disease associations will offer a platform to dissect the

patterns of the miRNA and disease associations, even though

current known miRNA-disease associations are far from com-

pleteness. In this study, we reported our literature-based

generation of miRNA-disease associations and the analysis of

these data based on bioinformatics.

Results

The human miRNA disease database
We retrieved miRNA-disease associations from ,100 papers

and built a human miRNA-associated disease database (HMDD),

which contains miRNA names, disease names, dysfunction

evidences, and PubMed ID. HMDD is publicly accessible at

website: http://cmbi.bjmu.edu.cn/hmdd. This database was built

on November 2007 and the data at that time was used in the

following analysis. The last update was made on July 2008. The

miRNA-disease association data between November 2007 and

July 2008 was used to validate the main results in this study.

Dysfunctional evidences in the clusters of the miRNA-
associated disease network

A bipartite graph can be used as a network model to connect two

disjoint sets of nodes [10,11]. As shown in Supplementary Figure S1,

a bipartite graph contains two sets of nodes. And nodes in the same

set are not connected and edges only exist between nodes from

different sets. Here, we constructed a bipartite graph consisting of two

disjoint sets of nodes based on the associations between a list of

miRNAs and a list of human diseases obtained from HMDD. One set

contains human miRNA-associated diseases (69 diseases) and the

other set contains disease-associated miRNAs (238 miRNAs). Based
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on the human miRNA-disease bipartite graph, we constructed the

miRNA-associated disease network (MDN) by giving two diseases an

edge if they share at least one common associated miRNA. The

MDN network shows cluster structures (Supplementary Figure S2), in

which similar diseases are clustered together. All cancers are

connected together (Supplementary Figure S2), suggesting that

various cancers may share similar associations at the miRNA level,

in which some strong onco-miRNAs or miRNA suppressors may play

key roles. For example, miR-21 is overexpressed in various cancers

from almost all studies, showing a feature of strong onco-miRNAs,

whereas miR-125a shows down-regulation in various cancers,

suggesting that it is a miRNA suppressor. Similarly, all cardiovascular

diseases are also connected together, which may result from some

cardiovascular disease related miRNAs, such as miR-1 and miR-133,

which play roles in almost all cardiovascular diseases in the MDN.

The cancer cluster is clearly separated from the cardiovascular

disease cluster (Supplementary Figure S2). These two clusters are

connected with each other through only several hub diseases, such as

heart failure, cardiac hypertrophy, and skeletal muscle hypertrophy.

One exception is neointimal hyperplasia, a cardiovascular disease,

which is predominantly connected to the cancer cluster and has only

two connections to other cardiovascular diseases. Thus, it may share

more common miRNA associations with cancers than with

cardiovascular diseases.

Diseases in the same cluster are highly interconnected; for

example, each node connects to an average of 26 other cancers in

the cancer cluster and 9 other cardiovascular diseases in the

cardiovascular disease cluster, whereas cancers connect to only 5

cardiovascular diseases on average. Disease-associated miRNAs show

various dysfunctions, such as mutation, up-regulation, deleted, and

down-regulation. However, it remains unclear whether diseases

sharing the same miRNAs have the same miRNA dysfunctions.

Because most of the reported miRNA dysfunctions are either up-

regulation or down-regulation, we curated most of the dysfunctions in

the human miRNA disease database into these two groups. We

assigned terms such as ‘‘deleted’’ and ‘‘low expressed’’ into the down-

regulation group and terms such as ‘‘overexpressed’’, ‘‘highly

expressed’’, and ‘‘over expression’’ into the up-regulation group.

We next investigated the dysfunctional patterns within the same

cluster as well as between different clusters. We calculated the

number of the same dysfunctions (both up-regulation or both down-

regulation) and the number of different dysfunctions (one shows up-

regulation and the other shows down-regulation) for miRNAs that

link diseases within the cancer cluster, or the cardiovascular disease

cluster (intra-cluster), and between cancer and cardiovascular disease

clusters (inter-cluster). Most of the shared miRNAs show the same

dysfunctions in diseases in the same clusters, for example, 82% (578/

706) of the disease pairs in the cancer cluster show the same

dysfunctions and 77% (68/88) of the disease pairs in the

cardiovascular disease cluster show the same dysfunctions (Table 1).

However, only 54% (92/170) of the paired diseases between the

cancer cluster and the cardiovascular disease cluster shows the same

dysfunctions (Table 1). Diseases in different clusters thus show a larger

fraction of different miRNA dysfunctions (P = 5.97610213, Fisher’s

Exact Test). For example, miR-195 is up regulated in all reported

cardiovascular diseases and down regulated in all reported cancers.

This result suggested that although different classes of diseases

associated with common miRNA, the underlying association

mechanisms might be different.

miRNA tissue specificity and miRNA related diseases
It has been reported that tissue-specific miRNAs are often

implicated in diseases related to specific tissues[12,13,14].

However, it remains largely unknown whether there is a

correlation between the tissue specificity of a miRNA and the

number of diseases associated with it. In order to dissect this

question, we first obtained the miRNA expression profiles of 345

miRNAs across 40 normal tissues from a recently published

paper[15]. We then used the tissue specificity index t to measure

the tissue specificity of a miRNA[16]. The t value ranges from 0 to

1. A higher t value indicates higher tissue specificity of that

miRNA. We next classified the human disease related miRNAs

into several groups according to the number of diseases in which a

miRNA is implicated. We then calculated the average tissue

specificity index value for each group of miRNAs. Finally, we

observed a negative correlation between the tissue specificity index

and the number of diseases in which a miRNA is implicated

(Figure 1, R = 20.83, P = 0.058, Spearman’s correlation). Most of

the miRNAs associated with a large number of diseases (. = 4)

show low tissue specificity index values (Figure 1). However, there

are a few outliers; miR-372, miR-373, and miR-206 that are

associated with 5, 4, and 4 diseases, whereas they show high tissue

specificity index values of 0.86, 0.82, and 0.78, respectively. miR-

372 and miR-373 are specifically expressed in placenta, while

miR-206 is specifically expressed in skeletal muscle. We also noted

that some miRNAs associated with only one disease show low

tissue specificity, which may mainly result from the incompleteness

of the miRNA-disease associations, that is, currently only one

disease was reported to associate with that miRNA. As the

research going on, more diseases would be reported to associate

with these low tissue specific miRNAs. This result revealed a

potential correlation between miRNA tissue specificity and

disease, which may be of value in predicting specific disease-

related miRNAs by combining the miRNA tissue specificity

values. Thus, if a disease occurs specifically in a given tissue, the

miRNAs specifically expressed in that tissue will have a great

potential to be related to that disease. However, most of the tissue

specific miRNAs have not been reported related to diseases. Using

this method, we detected miRNAs that show high tissue specificity

(using t. = 0.80 as a cutoff, Supplementary Text S1), which are

potentially associated with that tissue-specific diseases. The

dissection of these relationships will be valuable for studying the

functions of these miRNAs and their mechanisms in diseases and

can be used to discovering novel disease-associated miRNAs.

miRNA conservation and miRNA related diseases
It has been reported that there exists a significant association

between a gene’s (protein’s) connectivity and its conservation in

yeast Saccharomyces cerevisiae [17] and human [18]. It is

expected that if a gene is evolutionarily conserved it would have

more connections to other genes and be more lethal when

Table 1. The miRNA dysfunction pattern of diseases in the
same clusters and between clusters.

Diseases
pairs In cluster1 In cluster2 Intra-cluster Between-clusters

Num1 578 68 646 92

Num2 128 20 148 78

P value P = 5.97610213

Cluster 1 is the cancer cluster.
Cluster 2 is the cardiovascular disease cluster.
Num1 is the number of the same dysfunction evidences.
Num2 is the number of different dysfunction evidences.
P value was calculated using Fisher’s Exact Test.
doi:10.1371/journal.pone.0003420.t001

MicroRNAs and Human Disease
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dysfunctions. Therefore, its dysfunction would result in diseases

with a higher probability. However, it remains largely unknown

whether this association exists for human miRNAs and diseases.

To investigate this issue, we classified all the human disease-

associated miRNAs into two groups: miRNAs that are conserved

in other species (group 1) and miRNAs that are human specific

(group 2). We assigned one human miRNA into the conserved

miRNAs if its family members can be found in other species

according to the family annotations of miRBase[19]. Otherwise,

we assigned it into the human-specific group. We counted the

number of miRNAs that are associated with at least one disease or

zero disease for these two groups. Our results show that miRNAs

in group 1 tend to be associated with diseases with a higher

probability significantly (P = 3.9610233, Fisher’s Exact Test,

Table 2).

Single nucleotide polymorphisms (SNPs) are the most common

genetic variants in the human genome[20] and SNP density can

be used as a metric of the conservation of DNA sequences. We

calculated the number of SNPs for miRNAs associated with at

least one disease and no diseases. For all 236 miRNAs associated

with disease in our dataset, we identified 20 SNPs in 20 miRNAs

precursor sequences. The SNP occurring probability is 0.0847

(20/236). The SNP occurring probability of miRNAs that are not

associated with diseases is 0.2727 (81/297). Significantly, miRNAs

associated with diseases show lower SNP occurring probability

than miRNAs that are not associated with diseases (P = 1.361028,

Fisher’s exact test, Figure 2). Similar result was found when

searching SNPs in mature miRNA sequences (SNP occurring

probability 0.0381 vs. 0.0707, P = 0.07). We also tested the

significance by randomly picking up the same number of miRNAs

as the number of miRNAs associated with diseases from the whole

miRNAs and calculated SNP occurring probability in this group of

miRNAs, which was then compared with the real SNP occurring

probability. We repeat this process 5000 times and got the P value

(P,2.061024, Figure 3). These findings suggested that miRNA

conservation is associated with human disease susceptibility, which

will help in the understanding of miRNAs’ roles in diseases.

miRNA sets and miRNA diseases
The dysfunction of genes in a gene set, such as a signaling

pathway or a biological process often result in the same disease.

However, it is unclear whether miRNAs implicated in the same

disease tend to emerge as miRNA sets. In this study, we defined two

types of miRNA sets: miRNA families that contain groups of

homologous miRNAs (miRNA duplicates) and miRNA clusters that

contain groups of neighboring miRNAs on the human genome.

It has been reported that duplicates of protein coding genes are

functionally interchangeable[21], suggesting that they may be

involved in similar biological processes with similar roles,

therefore, may be implicated in the same disease. However, it is

of keen interests but remain unclear whether a family of miRNAs

tend to play roles in the same disease. In this study, we revealed

that miRNAs in 57% of the diseases have at least one family

member in that disease associated miRNAs, which is significantly

higher than the random (P = 2.061024, Randomization Test). For

example, 50% (3/6) of the miRNAs in miR-8 family was related to

the thyroid cancer. This finding suggested that the miRNA family

members might have similar functions and play roles in similar

biological processes, and therefore whose dysfunction would lead

to similar phenotype.

Bartel and his colleagues reported that neighboring miRNAs

show significant coexpression by a microarray profiling analy-

Figure 1. The association of miRNA tissue specificity and the
number (Nd) of diseases it implicated in. Each blue circle
represents a miRNA whose x,y coordinates are its Nd and its tissue
specificity index value. MiRNAs are grouped into different groups
according to the Nd, and then the average tissue specificity index value
of each group was calculated, shown as pink triangle. The pink triangles
are connected with green lines.
doi:10.1371/journal.pone.0003420.g001

Figure 2. SNP occurring probability of miRNAs implicated in at
least one disease (disease miRNA), and miRNAs that are not
reported to be implicated in disease (no-disease miRNAs).
doi:10.1371/journal.pone.0003420.g002

Table 2. The number of miRNAs implicated in one or more
than one human diseases for two groups.

Group1 Group2

Num1 191 128

Num2 213 1

P value 3.9610233

Groups1 contains 404 human miRNAs conserved in other species.
Group2 contains 129 human specific miRNAs.
Num1 is the number of miRNAs that are not reported related to disease.
Num2 is the number of miRNAs implicated in at least one disease.
P value was calculated using Fisher’s Exact Test.
doi:10.1371/journal.pone.0003420.t002

MicroRNAs and Human Disease
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sis[22]. Their finding provided us clues that neighboring miRNAs

may be associated with the same disease. To investigate this issue,

we identified miRNA clusters that contain neighboring miRNAs

and then analyzed the relationship of miRNA clusters and

diseases. We found that miRNAs in 46% of the diseases have at

least one neighboring member, which is significantly higher than

the random (P = 2.061024, Randomization Test). For example, all

the 6 miRNAs implicated in hematopoietic malignancies are

located in the miR-17 cluster. This result indicated that

neighboring miRNAs might be regulated by common regulators

at similar conditions and function together, and then whose

dysfunctions would result in the same disease.

According to the miRNA family and miRNA cluster analysis

above, if most members in a miRNA set are associated with one

disease, the other members will have a great probability to be

associated with that disease too. Therefore, this finding can be

used to guide us to predict novel diseases-associated miRNAs.

Validation in new dataset
All the above analysis was performed on the miRNA-disease

association data before November 2007. In order to test the

validation of the main results, here we take the miRNA-disease

association data between November 2007 and June 2008 to validate

the main patterns we found. We first investigated the dysfunctions of

miRNAs in similar diseases and different diseases. As a result, 69%

(18/26) of the disease pairs in the same class (cancer or other

diseases) show similar miRNAs dysfunctions, which is higher than

that (33%, 5/15) of the disease pairs between difference disease

classes (P = 0.03, Fisher’s Exact Test). For example, 5 of the 6 papers

revealed a down-regulation of let-7 in cancers, which is consistent

with previous report. While all papers reported an up-regulation of

let-7 in Alzheimer’s disease (see our HMDD database). In the new

dataset, miR-195 was reported to be down regulated in human B cell

lymphomas[23], which is also consistent with the previous results.

We next tested the tissue specificity and disease issue. In our analysis,

miR-9 has the highest expression in brain and has a high tissue

specificity index (0.63), which is predicted to be associated with brain

related diseases. Later research revealed that miR-9 is associated

with Alzheimer’s disease[24], which supported our prediction. MiR-

126 has the highest expression in cardiovascular tissues in our

analysis and was reported has high heart specificity[25], and

therefore was predicted to be associated with cardiovascular disease

and validated by later research[26], in which Harris et al. found

miR-126 is associated with vascular inflammation. The SNP

occurring probability of miRNAs that are associated with diseases

in the new data is 0.0532 (5/94), which is even less than the SNP

occurring probability of miRNAs that are associated with diseases in

the original data (0.0847). For the miRNA set, we found that

miRNAs in 59% (13/22, similar with the original percentage 57%)

of the diseases have at least one family member in that disease-

associated miRNAs and miRNAs in 45% (10/22, similar with the

original percentage 46%) of the diseases have at least one cluster

member in that disease-associated miRNAs. These results in the new

data suggest the patterns we found are valid and robust.

Discussion

In a conclusion, we integrated the published human miRNA

disease associations and performed a comprehensive analysis to these

association data. We uncovered some important patterns between

miRNAs and human diseases. These findings will provide help in not

only the understanding of human disease and miRNAs but also the

identification of novel disease biomarkers at the miRNA level.

Although the study of miRNAs and diseases is an ongoing

process and the miRNA-disease association data are far from

completeness, our analysis have uncovered statistically significant

patterns of miRNA-disease associations. On the other hand, we

also noted that some information could not be provided by our

analysis. For example, several brain related diseases such as

schizophrenia, Parkinson’s disease, and neurodegeneration, are

not connected to each other in this study. This probably resulted

from the incompleteness of the current data. As more compre-

hensive data becomes available, it will do great help to similar

analysis in the future. Another limitation of the current data is that

some diseases are not at the same level. For example, B cell

lymphoma and mantle cell lymphoma are both belong to

lymphoma. Although limitations exist in the current data, the

patterns uncovered here is important for understanding the

association of miRNAs and various diseases.

Materials and Methods

Network analysis
The network is visualized by Pajek (http://vlado.fmf.uni-lj.si/

pub/networks/pajek/).

miRNA expression profile data
We obtained the normalized gene expression profile of 345

miRNAs in 40 normal tissues that included specimens derived

from brain, muscle, circulatory, respiratory, lymphoid, gastroin-

testinal, urinary, reproductive, and endocrine systems[15]. The

tissue specificity of a miRNA’s expression was calculated based on

the tissue specificity index t proposed by Yanai et al[16]. The t of

miRNA i is defined as

tH~

PnH

j~1 1{
log2SH i,jð Þ

log2SH i,maxð Þ

h i� �

nH{1

where nH is the number of human tissues (here nH = 40) and

SH(i,max) is the highest expression value of miRNA i across the nH

tissues.

Figure 3. The distribution of the number of SNP occurring
miRNAs. The blue triangle indicates the distribution of the number of
randomly SNP occurred miRNAs in the miRNAs implicated in at least
one disease. The red arrow indicates the real number of SNP occurred
miRNAs in the miRNAs implicated in at least one disease.
doi:10.1371/journal.pone.0003420.g003

MicroRNAs and Human Disease
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miRNA SNPs
The human miRNAs are classified into conserved miRNAs and

human-specific miRNAs by miRNA family annotations[19]. If a

miRNA has other family members in other species, it will be

treated as conserved miRNAs; otherwise, it will be treated as

human-specific miRNAs. We downloaded human SNP data from

dbSNP by using the University of California, Santa Cruz (UCSC)

genome browser[27].

miRNA sets
In this study, we used two types of miRNA sets: families of

miRNAs and neighboring miRNAs. We first downloaded all the

human miRNAs from miRBase[19]. We next extracted 75 human

miRNA families from miRBase (Supplementary Text S2). As Bartel

et al. reported, 50 kb is an abrupt transition of coexpression

between pairs of miRNAs. MiRNAs separated by ,50 kb showed

high coexpression and miRNAs occurring at a distance of more

than 50 kb showed low coexpression[22]. Using this cutoff, we

identified 65 miRNA clusters (Supplementary Text S3).

Statistical computing
All statistical computations were performed in the statistical

platform ‘‘R’’. Randomization test is performed by randomly

linking the miRNA-disease associations 5000 times and then

calculated the probability of the real case occurs.

Supporting Information

Figure S1 The bipartite graph model. (A) shows a bipartite

graph, which contains two sets of disjoint nodes, here each green

node represents one disease and each blue node represents one

miRNA and the edges between green nodes and blue nodes

represent the associations between miRNAs and diseases. A

miRNA-associated disease network (MDN) is constructed if any

two diseases share one common associated miRNAs, as shown in

(B).

Found at: doi:10.1371/journal.pone.0003420.s001 (6.79 MB TIF)

Figure S2 The human miRNA disease network (MDN). Red

nodes, green nodes and pink nodes represent cardiovascular

diseases, cancers, and other diseases, respectively.

Found at: doi:10.1371/journal.pone.0003420.s002 (2.89 MB TIF)

Text S1 miRNAs with high tissue specificity index values

Found at: doi:10.1371/journal.pone.0003420.s003 (0.00 MB

TXT)

Text S2 miRNA families

Found at: doi:10.1371/journal.pone.0003420.s004 (0.00 MB

TXT)

Text S3 miRNA clusters

Found at: doi:10.1371/journal.pone.0003420.s005 (0.00 MB

TXT)
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