
An Analysis of Inheritance Hierarchy Evolution

Murray I Wood
 Dept. of Computer and
Information Sciences

 University of Strathclyde
 Glasgow, UK, G1 1XH

 murray.wood@strath.ac.uk

Lyubomir Ivanov
 Dept. of Computer and
Information Sciences

 University of Strathclyde
 Glasgow, UK, G1 1XH

lyubomir.ivanov.2015@uni.strath.ac.uk

Zenon Lamprou
 Dept. of Computer and
Information Sciences

University of Strathclyde
 Glasgow, UK, G1 1XH

 zinon.lamprou.2015@uni.strath.ac.uk

ABSTRACT

This research investigates the evolution of object-oriented

inheritance hierarchies in open source, Java systems. The paper

contributes an understanding of how hierarchies, particularly large

complex hierarchies, evolve in ‘real world’ systems. It informs

object-oriented design practices that aim to control or avoid these

complicated design structures. The study is based on a detailed

analysis of 665 inheritance hierarchies drawn from a total of 262

versions of 10 open source systems. The research contributions

include that: i) the majority of inheritance hierarchies are ‘simple’
in structure and remain that way throughout their lifetimes ii) the

majority of hierarchies are stable in terms of size and shape

throughout their lifetimes iii) there is a minority of large, complex,

branching ‘Subtree’ hierarchies that continue to grow ever more
complicated as the systems evolve iv) a detailed analysis of some

of these larger hierarchies finds evidence of ‘good’ object-oriented

design practices being used but also highlights the significant

challenges involved in understanding and refactoring these

complex structures. There is clear evidence that some of the

complex hierarchies are emphasising reuse while others appear

focused on type inheritance.

CCS CONCEPTS

• Software and its engineering → Abstraction, modeling and
modularity

KEYWORDS

inheritance; hierarchy; evolution; empirical; open source; case
study.

ACM Reference format:
FirstName Surname, FirstName Surname and FirstName Surname. 2019.
Insert Your Title Here: Insert Subtitle Here. In Proceedings of EASE 2019

1 INTRODUCTION

The aim of this research is to analyse and understand how object-
oriented inheritance hierarchies evolve across multiple versions of
software systems. The goal is to contribute to practical design
guidance on the use of object-oriented inheritance. This research
studies how the size and shape of hierarchies evolve across multiple
versions, how long they appear to ‘live’ for, and provides a detailed
analysis of the evolution of some of the largest, most complex,
multi-branching hierarchies.

It uses a purpose-built tool that provides a high-level visual

summary of each hierarchy in a system across all its versions. The

tool supports drilling into individual hierarchies, again providing a

visual summary of each hierarchy. The Eclipse IDE is then used to

provide a detailed examination of the hierarchy code and its classes.

The tool is applied to 10 open source systems from the Qualitas

Corpus Evolution package [19]. At least 16 versions are analysed

for each of the 10 systems, 262 versions in total, with a sum of 665

inheritance hierarchies studied.

Inheritance is a core but controversial feature of most object-

oriented approaches to design and implementation. A recent survey

of practitioners found mixed views on how inheritance is used in

practice [16]. One difficulty is that inheritance is used to support

two distinct properties in mainstream languages such as Java - type

inheritance (polymorphism) and module reuse. Other difficulties

stem from depth of inheritance hierarchy [4], overriding of method

definitions, and ‘self calls’ - where method calls are being

propagated up a hierarchy and, potentially, out into the surrounding

system.

The contributions made by this paper include a confirmation of

the dominance of small, very simple hierarchies allowing design

effort to be focused on a relatively small number of complex

hierarchies. It also shows that the majority of hierarchies appear

stable in terms of size and shape. It finds that the lifespan of many

hierarchies seems quite short but this may be due to their classes

being subsumed into other hierarchies.

The most significant contribution comes from the detailed

analysis of the complex ‘Subtree’ hierarchies [17], how they evolve

and their core properties. Some of these large hierarchies clearly

exhibit the properties of type inheritance, focusing on the potential

to cleanly substitute subclasses for superclasses. Other hierarchies

are much more focused on reuse, requiring extensive use of type

checking and casting.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must

be honored. For all other uses, contact the owner/author(s).
EASE 2019 …

© 2018 Copyright held by the owner/author(s). 978-1-4503-0000-0/18/06...$15.00

https://doi.org/10.1145/1234567890

EASE 2019 Wood et al.

2 RELATED WORK

Inheritance use is complicated by its dual roles, as a reuse
mechanism and as a type substitution mechanism. The Liskov
Substitution Principle (LSP) [9] imposes an extreme constraint on
hierarchy design requiring a subclass to be a semantic substitute for
a superclass and not to break the behaviour of any system in which
the subclass is used as a substitute for the superclass (also known
as ‘is-a’ inheritance).

Liskov also identifies “convenience inheritance”, where
inheritance is used simply as a reuse mechanism, as a weak form of

usage. While Liskov argues that reuse and subtyping should be kept

separate [8], Meyer argues “If we accept classes as both modules

and types, then we should accept inheritance as both module

accumulation and subtyping” [10].

It is argued that inheritance overuse can lead to programs that

are difficult to understand and change, because of the need to

traverse up, down and across hierarchies to fully understand

runtime behaviour [2, 18]. The concept of ‘fragile base classes’ has
also been identified, where changes in a superclass may break a

subclass or its dependents [11] – though recent work disputes how

much impact fragile base classes actually have in practice [15].

Addressing the dangers of unintended inheritance interactions,

Bloch argued that developers should “design and document for

inheritance or else prohibit it” [1].

In their design patterns catalogue, Gamma et al. introduce the

principle of “favouring object composition over class inheritance”
[5], arguing that composition should be preferred as a reuse

mechanism (though many of their patterns still use inheritance).

Previous work analysing inheritance use in practice has found

significant inheritance usage, with Tempero et al. finding that

across 93 applications from the Qualitas Corpus [19, 20] “around

three-quarters of user-defined classes use some form of inheritance

in at least half the applications in our corpus”. They also found that
most classes appear in shallower hierarchies, two-thirds of

inheritance uses were for type-substitutability, and that around 20%

of uses could have been achieved using composition instead of

inheritance. Collberg et al. also found a predominance of shallow

hierarchies and a small number of large outliers [3], with a depth of

inheritance all the way up to 39.

Recently, Stevenson and Wood [17] identified a number of

‘patterns’ of inheritance usage in a study of 2440 hierarchies from
14 open source systems taken from the Qualitas Corpus. They

identified five different categories of hierarchy shape – Line,

Branch, Line-Branch, Branch-Line and Subtree. They found that

74% of hierarchies were either Line (width = 1) or Fan (depth = 1)

shape. Fifteen percent were Subtree shape – hierarchies with

multiple branch points - but, because of their size, these contained

63% of all classes defined using inheritance.

Nasseri et al. [12] studied the evolution of inheritance

hierarchies using seven open source systems taken from

SourceForge. They studied 156 versions in total. Their focus was

how evolution affected the Depth of Inheritance (DIT) metric [2].

Their main finding was that 96% of classes added during evolution

were at DIT level 1 or level 2. This had the tendency to increase the

shallow breadth of hierarchies through time. In related research

[13], Nasseri et al. found that most of the inheritance changes were

again in shallow areas of the hierarchies (level three or shallower)

and that many of the changes led to a ‘squashing’ of the hierarchies.
In a survey on design quality with industry practitioners [16],

Stevenson and Wood found a mixed response in terms of the value

of inheritance. Specific comments on inheritance usage included:

“avoid … it always ends up biting me”, “you don’t want your ears
to pop when traversing down the inheritance hierarchy”, and
“derived types must satisfy the Liskov Substitution Principle … very
difficult to achieve, so we try to use composition”.

3 STUDY DESIGN

3.1 Research Objectives

The high-level goal of this research is to improve the guidance
relating to object-oriented inheritance hierarchy design. This is
done by analysing how inheritance hierarchies develop, particularly
complex, multi-branching hierarchies and then trying to understand
their design qualities. This is achieved by studying the evolution of
665 hierarchies across a total of 262 versions from 10 open source
Java systems.

The research questions are:

1) How do object-oriented inheritance hierarchies evolve in terms

of their size and shape across many versions of a software system?

2) How do complex, multi-branch, ‘Subtree’ hierarchies evolve
across many versions of a software system?

3) What are the design qualities of complex, multi-branching,

‘Subtree’ inheritance hierarchies?

3.2 Study Corpus

Ten open source Java systems were selected from the Qualitas
Corpus evolution distribution [19]. The systems in the evolution
package have a development history consisting of at least ten
versions. The systems chosen covered a range of problem domains,
development histories and sizes – see Table 1. The second column
lists the number of versions analysed for each system (at least 16).
The third column of Table 1 lists the total number of hierarchies
found across all versions of each system. The fourth column is the
number of classes in the final version of the system. The fifth
column indicates the system problem domain.

Table 1: Summary of Analysed Systems

Projects
No. of

Versions
No. of

Hierarchies
No. of
Classes

Domain

Ant 23 58 1290 Build Tool

Antlr 22 72 385 Parser Generator

ArgoUML 16 117 2560 UML Diagramming

FreeCol 32 27 1310 Colonisation Game

FreeMind 16 27 50198 Mind Mapping

JGraph 39 23 187 Graph Drawing

JMeter 24 36 1143 Web App Testing

JStock 31 17 867 Stock Management

JUNG 23 59 858 Data Modelling

Lucene 36 229 3729 Search Engine

Total 262 665 62527

An Analysis of Inheritance Hierarchy Evolution EASE’19, April, 2019, Copenhagen, Denmark

The number of systems, number of versions and the range of

domains analysed are comparable to related work [12, 13, 17]. The

range of system sizes is in keeping with system sizes found by

Radjenović et al. in a review of code-survey research - where less

than 200 classes was categorised as a small system, 200-1000

classes medium sized, and 1000 or greater as large [14].

3.3 Study Instrumentation

Analysis was performed using a purpose-built tool based on the

Eclipse JDT Core. The tool provides a high-level, graphical

summary of hierarchy evolution and supports drilling down into the

details of individual hierarchies. While this tool is novel, the core

components are very reliable as they are sourced from the Eclipse

Project. The tool identifies the following properties of all the

inheritance hierarchies in a system and then tracks the changes in

hierarchy properties across multiple versions of the system:

 Size - the number of classes in a particular hierarchy.

 Depth and breadth of hierarchies.

 Age of a hierarchy – how many versions a hierarchy is present in.

 Shape – the ‘shape’ of hierarchy as defined by Stevenson and

Wood [17] – ‘Fan’, ‘Line, ‘Subtree’, ‘Line-Branch or ‘Branch-

Line’.
 Changed / Stable – a hierarchy is ‘stable’ if there are no changes

in shape or size between successive versions, otherwise it is

categorized as ‘changed’.
Analysis is based on the collection of all versions in the

evolution corpus for a system – the tool is given the root directory

that contains all versions. The tool has two phases, extraction of all

inheritance data and then visualisation of the data. This means that

systems can easily be visualised without the need for time-

consuming re-analysis (phase one).

Figure 1: Top-Level GUI Summarising Hierarchy Evolution

The visualisation shows a wide range of hierarchy properties in

its top-level graphical interface – see Figure 1. There is a separate

row for each hierarchy in the system – the root classes are in the

leftmost column. Each column shows a version of the system – the

version numbers are in the top-most rows. Each cell summarises

the changes in properties of a hierarchy relatively to the previous

version. A dash (‘-‘) means the hierarchy wasn’t previously

present. A cross (‘X’) means that the hierarchy was previously
present but is no longer present. Circles represent hierarchies. The

size of a circle is an indication of its relative size. A green circle

indicates the first appearance of the hierarchy, grey denotes that the

hierarchy is no longer present, black represents no major change. A

yellow circle indicates a change in hierarchy ‘shape’ – if you hover

the mouse it shows the old and new shapes. Orange indicates a

hierarchy was previously independent but has now been integrated

into another hierarchy. Purple indicates a hierarchy was previously

within another hierarchy but is now independent. Other properties

highlighted in this top-level view include the number of classes

added and changed in any step. There is also a variety of controls

to change nodes sizes and to filter the view.

The evolution of two hierarchies Token (top row) and Event

(bottom row) can be seen in Figure 2. Event does not have a single

change between its addition and removal 12 versions later.

Therefore, Event is stable between any two versions. Token,

however, has changed twice - between the 2nd and the 3rd versions

it has acquired an extra class (there is a green ‘1’ in the bottom left
of the 4th cell); between the 6th and the 7th versions it has also

acquired an extra class, which has also caused a shape change.

Figure 2: Evolution of Two Hierarchies

The tool supports ‘drilling down’ into any hierarchy. Selecting

a node will show a visualisation of that hierarchy – see Figure 3.

This view enables detailed investigation of hierarchies, it shows the

number of nodes, shape, depth and largest breadth. Edge colour-

coding indicates added and deleted edges, as well as inheritance

and interface implementation. Node colour-coding indicates root of

inheritance (yellow), a root in the previous version (green), a node

was previously in another hierarchy (orange), interfaces (red) and

concrete classes (black). The visualisation of interfaces can be

switched on and off – see later discussion.

To analyse the details of specific hierarchies the Eclipse IDE

was used. Specific versions were opened and Eclipse commands

such as ‘Open Type Hierarchy’ and ‘Java Search – Type –

References’ were used to understand the hierarchy properties.

Figure 3: Visual Representation of Individual Hierarchy

EASE 2019 Wood et al.

4 RESULTS

4.1 Change in Size

The first analysis is the change of hierarchy sizes as the systems

evolved. Table 2 summarises these results.

Table 2: Change in Size During Evolution

Projects Fixed Stable Unstable

Ant 34 (59%) 22 (38%) 2 (3%)

Antlr 56 (78%) 14 (19%) 2 (3%)

ArgoUML 74 (63%) 33 (28%) 10 (9%)

FreeCol 17 (63%) 10 (37%) 0 (0%)

FreeMind 16 (59%) 10 (37%) 1 (4%)

JGraph 15 (65%) 8 (35%) 0 (0%)

JMeter 22 (61%) 14 (39%) 0 (0%)

JStock 13 (76%) 4 (24%) 0 (0%)

JUNG 45 (76%) 9 (15%) 5 (8%)

Lucene 153 (67%) 61 (27%) 15 (7%)

Total: 445 185 35

Average 67% 28% 5%

‘Fixed’ means that there was no change in the hierarchy size
(number of nodes) throughout its lifespan. The definition of

‘Stable’ is that the hierarchy changed size in 10% or less of system

versions. ‘Unstable’ indicates a hierarchy changes size in more than

10% of versions. These results clearly show that the large majority

of hierarchies had no or very little change in size throughout their

history. Typically, only 5% of hierarchies change their size in more

than 10% of versions. Around 67% of hierarchies do not change

their size at all – they are fixed size. Only the three largest systems

(Lucene, ArgoUML and JUNG), had more than two hierarchies

that regularly changed size during their lifespan.

4.2 Hierarchy Age

The next analysis was of hierarchy ‘age’ – what percentage of a

system lifetime was a hierarchy present for – see Table 3.

‘Newborn’ means that the hierarchy was present in less than 20%
of the system versions, ‘Young’ means that the hierarchy was
present between 20% and 50% of the system versions, ‘Old’ means
present between 50% and 80%, and ‘Persistent’ means greater than
80% of versions. This is a similar approach to Gîrba et al. who used

10%/50%/90% as hierarchy age boundaries [6].

These results suggest that the majority of hierarchies in these

systems have quite a short lifespan – though there is considerable

variation within individual systems. Considering the size analysis

in the section above, although hierarchies appear relatively stable,

that stability is often across a shorter lifespan than the whole system

lifespan.

In seven of the systems ‘Newborn’ hierarchies dominate at
around 40%. The two main exceptions are JMeter and JStock.

Possible explanations for this are that both of these are relatively

small projects. Also, both of these systems seem relatively stable in

general, with little refactoring. JStock has by far the largest number

of ‘persistent’ hierarchies at 76%.

Table 3: Hierarchy Age Profiles

Projects Newborn Young Old Persistent

Ant 14 (24%) 12 (21%) 19 (33%) 13 (22%)

Antlr 28 (39%) 29 (40%) 15 (21%) 0 (0%)

ArgoUML 43 (37%) 14 (12%) 23 (20%) 37 (32%)

FreeCol 9 (33%) 9 (33%) 5 (19%) 4 (15%)

FreeMind 19 (70%) 1 (4%) 2 (7%) 5 (19%)

JGraph 12 (52%) 6 (26%) 1 (4%) 4 (17%)

JMeter 4 (11%) 14 (39%) 6 (17%) 12 (33%)

JStock 0 (0%) 3 (18%) 1 (6%) 13 (76%)

JUNG 19 (32%) 17 (29%) 13 (22%) 10 (17%)

Lucene 119 (52%) 44 (19%) 47 (21%) 19 (8%)

Total 267 149 132 117

Average 40% 22% 20% 18%

Figure 4 shows an interesting age analyses from JUNG with

some persistent, growing hierarchies but a lot of apparent change

with hierarchies seeming to disappear and new ones appearing.

Figure 4: JUNG – A Range of Different Age Categories

Throughout this work there was always a question of how to

deal with Java interfaces. For most of the analyses it seemed clear

that interfaces should not be included – in size and shape analyses.

However, there was some concern that the true, stable root of a

hierarchy could be an interface – following ‘Program to an
Interface not an Implementation’ [5] – and hierarchies might appear

to come and go but, actually, the interface remained stable. It is also

possible that hierarchies might merge under a single interface.

To investigate this, analysis was performed that explored

whether there was a difference if interfaces were treated as

hierarchy roots. The analysis determined which classes/interfaces

were used by the rest of the system to access the hierarchy. If the

hierarchy was accessed most via an interface then that was

considered the hierarchy ‘root’. Across most of the analysed
systems this made very little difference – the profiles were almost

identical to Table 3. As expected, the total number of hierarchies

identified occasionally varied slightly (by a few only).

JUNG was one system where there was a difference – the

number of ‘newborn’ hierarchies increased from 43 to 47. Also,

without interfaces, Antlr is the only project with no ‘Persistent’
hierarchies (no hierarchy appears present in more than half the

versions). With interfaces, there is a hierarchy with the root

TokenStream that is present in all analysed versions.

An Analysis of Inheritance Hierarchy Evolution EASE’19, April, 2019, Copenhagen, Denmark

4.3 Hierarchy ‘Shape’
Much of the prior work has found that most inheritance hierarchies

are small and simple [3, 17, 20]. In a one-off, snapshot of open

source systems, Stevenson and Wood [17] found that hierarchies

were dominated by ‘Line’ and ‘Fan’ shapes. There were only a

small number of more complex ‘Subtree’ hierarchies, around 15%.

This analysis focused on where these hierarchies come from – are

they in the design from the start, or do they evolve? Are there any

insights from evolution that could be used to avoid such complex

hierarchies during system development?

The first analysis repeated the work of Stevenson and Wood and

categorised the hierarchies across all versions according to their

shape. The same definitions of shape were used:

 Line: Maximum breadth of the hierarchy = 1.

 Branch: Maximum depth of hierarchy = 1 (root is 0).

 Line-Branch: Root has one child which has more than one child.
All child branches are breadth = 1.

 Branch-Line: Root has more than one child. All child branches
are breadth = 1.

 Subtree: All other hierarchies. They have multiple branch points.

Table 4: Shape of Inheritance Hierarchies

Projects
Branch-

Line
Line Fan

Line-

Branch
Subtrees

Ant 4 (7%) 22 (38%) 26 (45%) 0 (0%) 6 (10%)

Antlr 3 (4%) 37 (51%) 22 (31%) 2 (3%) 8 (11%)

ArgoUML 4 (3%) 47 (40%) 44 (38%) 4 (3%) 18 (15%)

FreeCol 0 (0%) 8 (30%) 11 (41%) 1 (4%) 7 (26%)

FreeMind 1 (4%) 5 (19%) 17 (63%) 0 (0%) 4 (15%)

JGraph 3 (13%) 15 (65%) 5 (22%) 0 (0%) 0 (0%)

JMeter 2 (6%) 17 (47%) 11 (31%) 0 (0%) 6 (17%)

JStock 0 (0%) 2 (12%) 11 (65%) 3 (18%) 1 (6%)

JUNG 1 (2%) 25 (42%) 23 (39%) 0 (0%) 10 (17%)

Lucene 17 (7%) 90 (39%) 89 (39%) 3 (1%) 30 (13%)

Total: 35 268 259 13 90

Average 5% 40% 39% 2% 14%

Table 4 shows results in keeping with the previous work with

Line and Fan again dominating and Subtree making up typically

14% of all hierarchies. It should be noted that there are four systems

in common in this study with the earlier work of Stevenson and

Wood (Ant, ArgUML, Freecol and FreeMind) – though they only

looked at a single version of each of these systems. If these systems

are removed from the analysis, then there is only an average of 11%

Subtrees. The previous study investigated 2440 hierarchies and

found that 15% were Subtrees. A key point in the work of

Stevenson and Wood was that, due to their size, these 15% of

hierarchies contained 63% of all hierarchy members.

4.4 Stability of Shape

The next analysis examines the extent to which hierarchies

maintained their shape category – see Table 5. Hierarchies are

categorised as ‘Fixed’ or ‘Changed’ depending on whether they

change shape or not.

Table 5: Shape Stability

Projects Fixed Changed

Ant 43 (74%) 15 (26%)

Antlr 64 (89%) 8 (11%)

ArgoUML 102 (87%) 15 (13%)

FreeCol 25 (93%) 2 (7%)

FreeMind 23 (85%) 4 (15%)

JGraph 19 (83%) 4 (17%)

JMeter 31 (86%) 4 (14%)

JStock 17 (100%) 0 (0%)

JUNG 51 (86%) 8 (14%)

Lucene 198 (86%) 31 (14%)

Total: 573 92

Average 86% 14%

The vast majority of hierarchies (86%) do not change shape

during system evolution. Most of the changes in shape again appear

relatively simple e.g. there were 36 changes from Line to Fan, 24

changes from Fan to Branch-Line and 18 changes from Fan to Line.

Across all the changes, there were a total of 34 transitions into

Subtrees. The most likely change for a Subtree is for it to become

a different, potentially more complex Subtree (see later discussion).

One interesting hierarchy is AbstractLayout from JUNG that

implements the core JUNG Layout interface using a variety of

graph layout algorithms. This is an example of an interface sitting

at the root of a hierarchy, with an abstract class directly underneath.

Figure 5 shows the high-level summary of this hierarchy’s changes.
The yellow circles indicate shape change, the change in circle size

indicates hierarchy size change, the green and red numbers indicate

classes added (green) or removed (red).

Figure 5: AbstractLayout from JUNG Evolution Summary

The initial shape of AbstractLayout was a Fan. There are three

concrete variations of Layout subclasses. Three versions later ten

new classes are added to the hierarchy creating a Subtree shape. In

terms of design quality it is at stages such as this that the designer

should look very closely at the overall design of the hierarchy. One

subclass, SpringLayout, has changed its parent connection to

extend one of the newly added classes IterableLayout. Oddly, the

hierarchy then goes through a series of four shape changes

removing and adding these same classes before finishing as a

Subtree hierarchy.

In terms of design quality, the Layout classes are all

implementing versions of (sophisticated) graph layout e.g.

CircleLayout and SpringLayout, and do appear to implement

variations of a single abstraction. However, different subclasses

also add methods to the Layout interface e.g. FRLayout

(Fruchterman-Reingold) adds methods for the attraction and

repulsion of nodes. To access these methods types must be declared

as FRLayout or cast from Layout to FRLayout - which is what

happens in one of the JUNG sample programs.

EASE 2019 Wood et al.

5 DETAILED ANLAYSIS OF SUBTREES
In terms of inheritance design quality, Subtrees seem important

hierarchies – these are the relatively small number of complex

hierarchies that contain most classes. This section provides a

detailed analysis of some interesting Subtree hierarchies from four

systems – Ant, ArgoUML, FreeCol and JMeter. It describes how

they evolve and their key design characteristics, including how they

are accessed by the rest of the system.

5.1 Subtree Analysis – Ant

Apache Ant is a free, open source Java automated build system that

uses XML to describe the build process and its dependencies. Ant

manages a range of build tasks such as compiling, testing and

deployment, and uses a range of data types such as files and paths.

Six Subtrees were found across the history of Ant. Three of

these only survived for one version. There are two particularly

interesting hierarchies, Task and ProjectComponent. Figure 6

shows Task when it is introduced in the first version of the system

– it already has 50 classes.

Figure 6: The Task Hierarchy from Ant

During the next two versions it continues to grow, 22 classes are

added then another 18, making it a 90-class hierarchy. In the fourth

version it is subsumed into the ProjectComponent hierarchy – see

Figure 7.

Figure 7: The ProjectComponent Hierarchy from Ant

The yellow node in Figure 7 is the root ProjectComponent. The

green node above the root is the former root Task. The orange nodes

represent classes that were present in other hierarchies before this

version. ProjectComponent has not only sucked in the root of Task

but also all of its subclasses. There is also another green node

visible along with a few orange ones around it – the hierarchy

DataType. At the time that ProjectComponent was added to Ant,

its size is 135 classes. The majority of them come from Task.

Thereafter, ProjectComponent keeps growing. Only two versions

after its introduction, nearly 100 new classes are added and again it

sucks in another independent hierarchy. Right until the last version,

new additions happen more often than not, resulting in

ProjectComponent having a total of 367 classes.

ProjectComponent is an abstract class, the class comment says

“Base class for components of a project, including tasks and data

types. Provides common facilities”. It only defines a small number

of methods to do with location, logging and projects. It has over 30

immediate subclasses, including Task and DataType.

A search of Ant version 1.8.4 within the Eclipse IDE finds 131

references to the ProjectComponent type. Many of these uses are in

defining the ProjectComponent subtypes. It appears that Ant passes

around many objects as type Object and then uses type checking

(instanceof) and casting to convert to ProjectComponent and its

subtypes. In keeping with the class comment, objects are cast to

ProjectComponent for ‘logging’ in the contexts where logging
functionality is required.

Task is an abstract subclass of ProjectComponent, it has over

100 subclasses of its own and Eclipse shows 451 references to the

Task type. Many of these are also used in the definition of

subclasses. The comment describes it as the base class for all Ant

tasks. The definition adds new methods for tasks such as ‘execute’
and ‘perform’. Task appears to follow a similar design model as
ProjectComponent where Ant objects are type checked and then

cast to be used in the Task context.

Another major subclass of ProjectComponent is the abstract

class DataType. It is the “base class for those classes that can

appear inside the build file as stand alone data types”. The class
has its own methods for managing Ant data types. DataType itself

has 32 subclasses and is referenced 92 times in the source code. Its

usage follows a similar design model where general Objects are

type checked and cast within the DataType context.

Continuing down the inheritance hierarchy below DataType

uncovers more specific types such as Path for managing Ant

environment variable paths. Again, it adds many methods, has

hundreds of references and follows the same model of usage.

The hierarchy DirectoryScanner in Ant is an example of a

hierarchy that changes from a Fan shape to a Subtree shape. The

hierarchy implements the FileScanner interface for scanning any

type of directory. DirectoryScanner is an abstract implementation

of this. It changes to a Subtree shape with the addition of the

abstract subclass ArchiveScanner which has two concrete

subclasses ZipScanner and TarScanner. While the hierarchy seems

a good example of variations of a FileScanner abstraction,

subclasses do add additional methods e.g. ArchiveScanner adds

setEncoding which is then accessed via casting of the parent

DirectoryScanner type.

An Analysis of Inheritance Hierarchy Evolution EASE’19, April, 2019, Copenhagen, Denmark

5.2 Subtree Analysis – ArgoUML

ArgoUML is a widely used, Java open source CASE tool that

supports UML modelling and diagramming. The design makes use

of well-established design practices such as design patterns

(Facade, Strategy, Factory Method, Observer …), Model-View-

Controller and Programming to Interfaces. Some of the main design

elements include Diagrams, Figures, Notations (for code

generation), and GUI components [21].

ArgoUML is one of the larger systems that were analysed and

had 18 hierarchies that were of Subtree shape when they were first

introduced. Half of these hierarchies remained ‘Fixed’ in size with
no change at all or were ‘Stable’.

Critic is a key concept in ArgoUML – used to ‘critique’ the
design. The Critic hierarchy is a major ArgoUML Subtree. It first

appears as a 91-class hierarchy. In the following version a further

11 classes are added and in the final version it contains 105 classes

– see Figure 8.

Figure 8: The Final Version of Critic from ArgoUML

Although Critic is a concrete class, code comments describe it

as “abstract”, and it is used as a static Singleton (code comments
suggest instances shouldn’t be created at all). Subclasses have to

define a ‘predicate’ method associated with Critic-specific design

checks. The Critic class defines many methods for managing

general properties such as type, description and priority.

A search for the Critic type in version 0.34 of ArgoUML finds

287 type references. Critic has two direct subclasses –

CompoundCritic (bottom node in Figure 8) and CrUML, which has

around 90 direct subclasses (the central blue-tinged node in Figure

8). Although concrete, the design documentation again describes

CrUML as “abstract”, it only adds a few UML OCL properties and
methods. Analysis of these subclasses shows strong evidence that

Critic is a ‘type inheritance’ hierarchy rather than ‘reuse’ focused.
Almost all of these subclasses override just a few methods in the

Critic interface – typically the ‘predicate’ method and a method
such as ‘getCriticizedDesignMaterial’. Quite a few of the

subclasses do add a public method to the interface

‘computeOffenders’ – however it appears that this method is

always used as a local ‘private’ method within the subclass. A

check for the casting of these subclasses finds very little, typically

only in the GUI where it is required to know the specific type of a

design critic.

There is a significant use of the Java Object class in ArgoUML

(7580 type references found) and over one thousand uses of the

instanceof method. One of the key uses of instanceof is in the Critic

predicate method where the design element to be checked is passed

as an Object type and then type checked.

5.3 Subtree Analysis – FreeCol

FreeCol is a Java open source colonisation game with aim of

building a ‘powerful nation’. Key concepts in the game include

Players, Nations, Colonies, Trade, Buildings, Settlements and

Maps.

Figure 9: Subtree Evolution in FreeCol

Analysis of Subtrees in FreeCol reveals an interesting story

partly shown by the lifespan view in Figure 9. It shows the

evolution of three Subtrees – AIObject (top row), AbstractOption

(3rd bottom row), and FreeColGameObject (bottom) row. These

hierarchies are quite complex Subtrees all of which appear fairly

stable throughout their lifespan. Something interesting occurs in the

final column – the three of them turn orange – they are incorporated

into another hierarchy under the abstract class FreeColObject.

Figure 10: The Initial Version of FreeColObject

Figure 10 shows the initial the version of FreeColObject that

integrates these three hierarchies. The three green nodes represent

the three previous hierarchies – AIObject (top left), AbstractOption

(bottom right) and FreeColGameObject (bottom left). They are all

EASE 2019 Wood et al.

merged into this 108-class hierarchy, with roughly half of the

classes coming from these three hierarchies (the orange nodes). The

final version of FreeColObject contains 148 classes in total.

Analysis of the FreeCol source code version 0.10.7 shows a

typical reuse focused use of inheritance in the FreeColObject

hierarchy. It appears that FreeColObject is used to pass around

subclasses – specifically AIObjects, FreeColGameObjects and

AbstractOptions – largely to the GUI and for input/output. It only

provides very general properties – the class comment says “The

FreeCol root class. Maintains an identifier and an optional link to

the specification this object uses”. Searching for references to the
class finds 206 uses. A portion of these references uses

FreeColObject class methods and public static types. Objects are

passed around as a collection (array) of FreeColObjects. A large

number of uses involve type checks (instanceof) and casting to a

subtype, even a subtype three levels down the hierarchy such as

BuildingType.

A similar pattern is seen in its subclasses, for example

FreeColGameObject. This class is the “… superclass for all game
objects in FreeCol”. It covers a large variety of game object
subclasses such as Game, Player, Market and GoodsContainer.

Again, the methods are very general such as managing resources,

ids and XML representation. A search finds 411 uses and again the

large majority appear to involve type checking and casting. There

are some high level uses such as reading from an XML

representation. The casts are to subtypes such as Unit (three levels

down the hierarchy) and Settlement (also three levels down).

Moving down these hierarchies, many methods are added to the

subclasses. For example, a subclass of FreeColGameObject is

UnitLocation, which adds ‘locations’ to ‘units’ and implements the
Location interface. This adds numerous methods for the

manipulation of unit locations. Below that is a GoodsLocation class

for managing locations where Goods and Units can be placed, again

adding many methods. Below that is Settlement – “The superclass

of all Settlements” – adding over 50 methods. The addition of such

methods is a clear sign of a reuse-oriented hierarchy that is relying

on type checking and casting to access this lower level

functionality. There are two further levels of inheritance below

Settlement.

5.4 Subtree Analysis – JMeter

JMeter is a free, open source, Java system that supports the

performance testing of web applications [7]. Logical Controllers let

you customize the logic that JMeter uses to decide when to send

requests. Samplers tell JMeter to send requests to a server and wait

for a response.

There are two major Subtree hierarchies in JMeter that are ever

present - AbstractJMeterGuiComponent and AbstractTestElement.

They start at size 55 and 57 classes respectively and both more than

double in size during JMeter lifetime. The final shape of

AbstractTestElement is shown in Figure 11.

The class AbstractTestElement is the abstract implementation

of the key JMeter TestElement interface. TestElements are the

components that can be tested in JMeter. There are over 100 classes

that implement that interface and Eclipse finds 427 references to its

use in JMeter version 2.9. It appears that much of the design of

JMeter is written in terms of this core interface. TestElement

contains over 40 methods associated with high-level features such

as properties and names.

There are only 42 references to AbstractTestElement and many

of these are used in the type definitions of its 51 subclasses. These

are more concrete JMeter TestElements such as Controllers and

Samplers.

Figure 11: JMeter AbstractTestElement

There is again significant use of type checking and casting in

JMeter, with 279 uses of instanceof found. As well as use of the

TestElement interface JMeter also passes objects around using the

Java Object class.

There is evidence that JMeter is using the Factory Method

design pattern [5] to install objects that implement the TestElement

interface. Many of the implementations of TestElement include a

createTestElement method that returns a concrete implementation

behind the TestElement interface.

Moving down the hierarchy, key classes associated with

specific types of TestElement, such as Controllers, are added with

their own type-specific methods. The root of the controller sub-

hierarchy GenericController, “… the basis of all the controllers”,
adds six methods from the Controller interface. It has 23 subclasses

of its own. Similarly, the AbstractSampler subclass of TestElement

implements the single-method Sampler interface and has 20

subclasses of its own. This pattern of subclass hierarchy clusters

can be seen in Figure 11 outside the core circle. There are appears

to be a relatively small amount of type checking and casting of

TestElement objects within JMeter into these more concrete

subtypes. It does therefore appear, in the main, that the hierarchy is

emphasising type inheritance over reuse.

An Analysis of Inheritance Hierarchy Evolution EASE’19, April, 2019, Copenhagen, Denmark

6 ANSWERS TO RESEARCH QUESTIONS

6.1 How do Inheritance Hierarchies Evolve in

Terms of their Size and Shape?

The results suggest that there was limited change in size across the

system histories. Only 5% of hierarchies change their size in more

than 10% of versions and around 67% of hierarchies were fixed

size. This could be related to system size, it was the three larger

systems (Lucene, ArgoUML and JUNG) that contained hierarchies

that regularly changed size during their lifespan. As discussed, a

small number of larger Subtree hierarchies do change size

considerably.

Many hierarchies appear to have a relatively short lifespan –

only 18% of hierarchies seemed to be in more than 80% of versions,

with 40% appearing in less than 20% of versions. However, a

deeper analysis is required to discover what is really going on here.

Interfaces need to be considered, often they are the true root of

hierarchies. Also, when hierarchies disappear they are often being

merged into other hierarchies, perhaps under an interface.

In keeping with findings from previous work [3, 17, 20], the

large majority of hierarchies found were very simple ‘Line’ and
‘Fan’ shape, around 80%. These hierarchies are so simple, depth or

breadth one, that they shouldn’t cause major design challenges.
Again, in keeping with previous work [17], it was found that around

14% of hierarchies across all versions were the more complex,

multi-branching Subtree shape.

The vast majority of hierarchies (86%) do not change shape

during system evolution. Most of the changes in shape again appear

relatively simple, staying away from the Subtree shape. It is the

changes within the Subtree category that may be most interesting.

6.2 How do Complex, Multi-branch Subtree

Hierarchies Evolve?

Out of the 665 hierarchies, 90 were classified as Subtree when they

were first created. A further 34 Subtrees appeared during evolution

from simpler hierarchy shapes. Again, it was the larger systems that

contained more Subtrees (ArgoUML and JUNG). Previous work

[17] found more hierarchies and more Subtrees in larger systems

such as Eclipse, but still the same approximate percentage of

Subtrees overall (18% in Eclipse).

The detailed Subtree discussions in Sections 5.1 to 5.4 show that

many of the Subtrees tend to grow ever more complicated during

their lifespan e.g. the ProjectComponent hierarchy in Ant growing

from 135 classes to 360 and the TestElement hierarchy in JMeter

growing from 57 to 159 classes.

6.3 What are the Design Qualities of Subtree

Inheritance Hierarchies?

The detailed analysis of Subtree hierarchies in Sections 5.1 to 5.4

provide a range of design quality insights. Some of the Subtree

hierarchies do appear designed consistently with type inheritance

(LSP) as the aim whereas others are reuse focused hierarchies. It

does appear possible to distinguish between these two key design

motivations.

The Critic Subtree from ArgoUML is a good example of type

inheritance. Subclasses (subtypes) appear consistent with the single

Critic abstraction, they add few, if any, public methods to the root

abstraction, they are accessed via the root interface and there is very

little casting to specific subtypes. The variation in behaviour is

achieved by overriding a small number of common methods. The

FileScanner hierarchy from Ant and Layout from JUNG are other

good examples. The TestElement hierarchy from JMeter also

seems to emphasise type inheritance though subclasses do include

additional Java interface implementations.

On the other hand, other major Subtree hierarchies exhibit reuse

characteristics. Hierarchies such as Ant’s ProjectComponent and
FreeCol’s FreeColObject are very general system hierarchies that
mix abstractions amongst their subhierarchies. Subclasses have

significantly different interfaces and add many new public

methods. Type checking and casting are used to access these.

Another key finding is the sheer complexity of some of these

hierarchies, regardless of whether they are type substitution or

reuse focused. Understanding a 100-plus class hierarchy is a

daunting task. Studying the 51 subclasses of AbstractTestElement

in JMeter it is difficult to see where to start if adding a new class.

It is even harder to start to think about refactoring such a

hierarchy; they have so many internal and external dependencies.

Challenges include understanding what is inherited, what and

where it is overridden, what interfaces are being implemented, how

the different types are used in the rest of the system, when and

where they are used as a general type, and when and where they are

used as a specific type. It is easy to see why practitioners are so

wary of inheritance [16]. It is therefore vital to consider design

alternatives when first introducing these complex hierarchies.

In all the systems there were clear signs of well-established

design practices being adopted. Most of the systems were using

Java interfaces and layering the hierarchy designs from interfaces,

through abstract classes to concrete classes e.g. JUNG Layout.

There were clear signs of design pattern [5] usage, especially

Factory Methods to install concrete subtypes behind an interface.

The widespread use of the Java Object class was surprising.

Three out of the four systems studied in detail made use of Object

to pass a variety of types around the systems. In tandem with this

practice, was a widespread use of type checking and casting to

convert either the Object type to a more concrete system type or

one of the more general system-specific types to a subtype.

7 THREATS TO VALIDITY

Using open source systems as a proxy for real-world development

is a threat to the validity of this work. Given the difficulty of

analysing propriety source code, open source is often used as a

substitute for closed source software. Open-source systems may not

be subject to the same design and review practices associated with

commercial software.

There are also validity threats in the selection of the corpus used

in this study. The choice was somewhat limited by the availability

of systems with a history of evolution. Care was taken to select a

range of system sizes and problem domains. It is argued that the

EASE 2019 Wood et al.

corpus shares similarities with corpora used in comparable studies.

Overall, the systems studied here are smaller than many ‘industrial
strength’ systems. Evidence suggests that larger systems are likely

to have more hierarchies and more complex hierarchies, but

possibly having a similar ratio of ‘simple’ to ‘complex’.
The number of systems analysed and, in particular, the number

of versions analysed, compares well to previous evolution studies.

On the other hand, ten systems is quite small compared to previous

census-style research. A strength of this work is the detailed

analysis of numerous Subtree hierarchies. Extracting and analysing

the source code for each individual system was a significant effort.

The use of a purpose-built tool is also a threat. Confidence is

gained from the use of the well-regarded, widely used, Eclipse JDT

framework. It was also reassuring to find that the in-depth code

analysis produced findings that were consistent with the high-level

results produced by the tool.

8 CONCLUSIONS

This paper contributes an understanding of how inheritance

hierarchies evolve in object-oriented systems. The paper’s main

contribution is new insights into how complex, multi-branching,

‘Subtree’ hierarchies evolve and a detailed analysis of their design
qualities. The paper confirms previous findings that, in practice, a

large majority of hierarchies are simple in structure, only about

15% are more complex. It finds that a large majority of hierarchies

are stable in terms of both size and shape. On the other hand, the

average lifespan of most hierarchies appears to be relatively short,

though it seems this may be because they are merged into new

hierarchies. The work also identifies a challenge in terms of how to

define and track hierarchies through multiple versions – is the

stable root an interface, an abstract/concrete class, or is a more

inclusive definition involving the whole hierarchy required?

The work confirms that the majority of hierarchies found in

practice are simple – either depth or breadth of one. A detailed

analysis of the remaining Subtree hierarchies finds that some are

clearly designed with type inheritance as a goal whereas others

have a more general reuse focus. Type hierarchies appear to

implement a single abstraction, add little or no methods to the root

interface, and are involved in little or no type checking and casting.

Reuse focused hierarchies tend to have a very general abstraction

at the root, have multiple, often quite distinct abstractions within

the hierarchy, add new methods to their subclasses, and use type

checking and casting to access objects defined by these classes.

Regardless of fundamental design motivation, it is clear that

these large complex hierarchies are challenging to understand and

maintain. In hierarchies with hundreds of subclasses, it is hard to

determine where to add a new class that is consistent with the

original hierarchy design. It is difficult to understand classes in this

inheritance context and challenging to understand how the

hierarchy interacts with the rest of the system. It seems clear,

however, that type hierarchies make this task easier than multi-

abstraction, reuse hierarchies.

The detailed analysis also found evidence of well-regarded

design practices such as programming to interfaces, use of abstract

classes and use of design patterns. On the other hand, many of the

systems made significant use of the Java Object type, along with

type checking and casting to convert to context-specific types.

It would be valuable for future work to look more closely at

Subtree hierarchies and perform a detailed comparison against their

design alternatives. What are the relative strengths of separate

smaller hierarchies or alternatives based on interfaces and object

composition – preferring object composition over class inheritance

[5]? Is it possible to demonstrate superior design alternatives? To

what extent are design choices system or context dependent?

Finally, it is clear that developers should think carefully when

introducing complex Subtree hierarchies into their designs – they

are going to be difficult to remove or redesign thereafter.

ACKNOWLEDGEMENTS

The authors are grateful for funding from an EPSRC Vacation

Bursary and the Research Interns @ Strathclyde Programme.

REFERENCES
[1] J. Bloch. 2008. Effective Java. Pearson Education India.

[2] S. R. Chidamber and C. F. Kemerer. 1994. A Metrics Suite for Object Oriented

Design. IEEE Transactions on software engineering. 20(6): p. 476-493.
[3] C. Collberg, G. Myles, and M. Stepp. 2007. An Empirical Study of Java

Bytecode Programs. Software: Practice and Experience. 37(6): p. 581-641.

[4] J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood. 1996. Evaluating

Inheritance Depth on the Maintainability of Object-Oriented Software.
Empirical Software Engineering. 1(2): p. 109-132.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. 1994. Design Patterns:

Elements of Reusable Object-Oriented Software. Pearson Education.
[6] T. Gîrba, M. Lanza, and S. Ducasse. 2005. Characterizing the Evolution of

Class Hierarchies. in Ninth European Conference on Software Maintenance

and Reengineering (CSMR). IEEE.
[7] E. H. Halili. 2008. Apache Jmeter: A Practical Beginner's Guide to Automated

Testing and Performance Measurement for Your Websites.
[8] B. Liskov. 1988. Keynote Address-Data Abstraction and Hierarchy. ACM

Sigplan Notices. 23(5): p. 17-34.
[9] B. H. Liskov and J. M. Wing. 1994. A Behavioral Notion of Subtyping. ACM

Transactions on Programming Languages and Systems (TOPLAS). 16(6).
[10] B. Meyer. 1996. The Many Faces of Inheritance: A Taxonomy of Taxonomy.

Computer. 29(5): p. 105-108.
[11] L. Mikhajlov and E. Sekerinski. 1998. A Study of the Fragile Base Class

Problem. ECOOP’98—Object-Oriented Programming: p. 355-382.
[12] E. Nasseri, S. Counsell, and M. Shepperd. 2008. An Empirical Study of

Evolution of Inheritance in Java Oss. in 19th Australian Conference on

Software Engineering (ASWEC). IEEE.

[13] E. Nasseri, S. Counsell, and M. Shepperd. 2010. Class Movement and Re-

Location: An Empirical Study of Java Inheritance Evolution. Journal of
Systems and Software. 83(2): p. 303-315.

[14] D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič. 2013. Software Fault

Prediction Metrics: A Systematic Literature Review. Information and Software
Technology. 55(8): p. 1397-1418.

[15] A. Sabané, Y.-G. Guéhéneuc, V. Arnaoudova, and G. Antoniol. 2016. Fragile

Base-Class Problem, Problem? Empirical Software Engineering. 22(5).

[16] J. Stevenson and M. I. Wood. 2018. Recognising Object-Oriented Software

Design Quality: A Practitioner-Based Questionnaire Survey. Software Quality
Journal. 26(2): p. 321-365.

[17] J. Stevenson and M. I. Wood. 2018. Inheritance Usage Patterns in Open-

Source Systems. in 40th International Conference on Software Engineering.
Gothenburg, Sweden.

[18] D. H. Taenzer, M. Ganti, and S. Podar. 1989. Problems in Object-Oriented

Software Reuse. in ECOOP.

[19] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton, and
J. Noble. 2010. The Qualitas Corpus: A Curated Collection of Java Code for

Empirical Studies. in 17th Asia Pacific Software Engineering Conference.
[20] E. Tempero, J. Noble, and H. Melton. 2008. How Do Java Programs Use

Inheritance? An Empirical Study of Inheritance in Java Software, in Ecoop

2008–Object-Oriented Programming, Springer. p. 667-691.
[21] L. Tolke and M. Klink. Cookbook for Developers of Argouml: An Introduction

to Developing Argouml, Revision 1.19.

