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AN ANALYSIS OF LAMINAR FREE-CONVECTION FLOW AND HEAT TRANSFER

ABOUT A FLAT PLATE PARALLEL TO

OF THE GENERATING BODY

By SIMON @rBACH

SUMMARY

The jree-conuedion jlow and hed tianajer(g9n.eraiedby a

bodyforce) about ajkt pki% pard?el to the direction of the body

jorce are jordy analyzed and the type of @w h found to be
dependent on #w Gnwhof numbw alone. For lurge @z&f

numbers (which are of interest in aemnuti), the jfow b of

the boundary-luyer type and the problemix reduced in ajormal
manner, which b anulogow to Prandtl’s jorced-- bound.ary-

luyer theory, to i!lw timuikzneow solution of two or+~~
di$ereniiul equa.tti 8ubjeeito the proper boundary condtiaons.

velocity and temperature di&i.buiti jor Prand.tlnumbers
oj 0.01, 0.72, 0.7%?, 1, $’, 10, 100, and 1000 are computed, and

it is shown thai veloci.tia and Nussei?tmu.ibers oj the order of
mugniihuieoj those encountered in forced-convectti $ows may

be obtained in jre++eonveetion@we. The theoretical and

experimentalvelocity and temperatwxedMriln&m are in good
agreement.

A$ow and a heai-tranajerparameter,jrom which the impor-

tant physical guuntiti.a such as shear stre+18and hea$tranajw

rate can be cmnpukxi,are o%ioed m junctiom oj Pra& num-

ber akin. Comparison oj theorei%xdlyeompded vulueaoj the

heabtran-sjerparanwterw&$ values obi%ind jrom an approxi-
mate calculation and experimentsyiefded good agreem-en$over a

lizrge range oj Prandti number. Agreenwni btdwetm the

i%eoretiad vai?ua and i%me obtiimzi +om a jreguenily ued
8emiemp&kal hea&tran&r bw was good only in ratri.eted

Prandti numbmrangm (depending on an arbitrarycandmvt).
.

INTRODUCTION

Two important types of fluid flow problems involving heqt
transfer are those of forced and those of free convection.
By forced<onvection flow is meant flows maintained mechan-
ically as, for example, by a pressure drop or ah agitator.
Free-convection flow, on the other hand, results horn the
action of body foices on the fluid, that is, forces which are
proportional to the mass or the density of the fluid. The
flow isgenwdly produced in the following manner: Consider,
for example, a fixed object (such as a plate) in a quiescent
fluid subject to a body force. When the plate is at the same
temperature as the surrounding fluid, the body forces acting
on the fluid are in equilibrium with the hydrostatic pressure
and no flow ensues in the steady state. -If a temperature
gradient normal to the body force is imposed by heating
(or cooling) the plate, there will exist a defect (or excess) of

THE DIRECTION
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body force because of the decreased (or increased) densi@-,

with the fluid closer to the plate having the greater defect
(or excess) than that away from the plate. This unbalance
of the forces oauses the fluid to be accelerated with the

particlea nearer the plate mo~ more rapidly than those
farther from the plate. Free-convection flow has usually
been considered to be generated in a gravitational field where
the previously mentioned defect or excess of body force was
the Archemedian (buoyancy) foice. However, since cen-

trifugal for&a are also proportional to the fluid densi~, free-
convection flows can also be set up by the action of such
forcw (See ref. 1 for a more explicit d.kcussion of the

development of. free-convectiomflows by centrifugal forces.)
Free-convection flows produced by centrifugal forces are

now of practical importance in aeronautics because many
aircraft propulsion systems contain components (such as gas
turbines and helicopter ram jets) whioh rotate at high
speeds and in which heat is being transferred. The method
of free-convection cooling of gas-turbine rotor blades where
the centrifugal forces create a fiee+ohvection flow of the
caolant in the blade passagas is an example of a practical
application of the free-convection phenomenon in aero-
nautics. Also, free-convection flow due to centrifugal force
is superimposed on the flow through helicopter ram jets and
on the flow-of cooling air in hollow rotor blades of air-cooled
tuibines. and, under proper conditions, can appreciably
influence the resultant flow and heat transfer.

“As a simplitkation of the many free+xweotion problems
which are now of some consequence in aeronautics, consid-
eration is here given to the speoial case of free-convection
flow about a flat plate parallel to the direction of the gener-

ating body foroe. The experimental and theoretical consid-
erations of Schmidt and Beclammn (ref. 2) concerning the
free-convection flow of air subject to the gravitational force
about a vertical flat plate constitute the most complete
treatment of this subject up to the present time. Eckert
(ref. 1) as well as others has further verified and extended
the experimental results of Schmidt and Becknwm, and
Schuh (ref. 3) has extended the n.pmerical calculations by
computing the velocity and temperature distributions for
several Prandtl numbers Mhrent from that for air. How-
ever, all the theoretical work in these referencea is based on
the incompressible equations in which the density (or tem-
perature) variation is introduced in the buoyancy term alone.
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Ostraeb,1952.
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Various terms are omitted from the equations at the start
on the basis of either intuitive ~guments or no arguments
at all. Although a theoretical development made in such a
manner led to good final results, the sigdcaace of all the
important factors associated with the fkee-convection flow
phenomenon is not obtained from such an analysis.

The problem of free-convection flow as produced by a body
force about a flat plate in the direction of the body force was
studied at the NACA Lewis laboratory during 1951 and is
treated in a formal and more general manner herein. The
method used is somewhat similar to that used in reference 4
wherein consideration was given to the free-convection flow
at,high Grashof numbers in a horizontal cylinder which had a
variable surface-temperature distribution. The application
of this method to the present problem leads to a development
tvhich is ~nalogous to Prandtl’s treatment of high Reynolds
number forced-convection flo~s. #lthoiqgh the final equa-

tions obtained by this method are the same as those of
S&midt and Beckmanu, this more general approach not only
clearly demonstrates the signiikance of all the important
parametem and assumptions and hence leads to a better
understanding of this type of flow but also iqdicates the
quantitative limitations of the theory. In addition, the
numerical solutions of references 2 and 3 are herein ertended
tw cover a more completi range of parameters. The new
calculations fi-eld information on the free-convection flow for
Prandtl numbem corresponding to those of liquid metals,
gases, liquids, and very viscous fluids. .,

ANALYSIS

STATEMENT OF PROBLEM AND BASIC EQUATIONS

The steady-state equations expressing the conservation of
mass, momentum, and energg for a compressible,- viscous,
rmd heat-conducting fluid subject to a body force together
with an equation of state govern the flow and associated
temper@w;
in Cartesian

distribution ab;~t the plate. These equations
tensor notation are (see ref. 5), respectively,

&(Puj)=o (1)

-+(%+%)1-~+(’%)-%
== Pf f+ &&

p ‘j bxj

(2)
ap a ~ aTX.= Uj q+axl

Pcn Uj ax,
–( )

—+axj

%%(%+%)-:(%)1 ‘3)
P= PV’,TI (4)

(A complete list of the symbols used herein is given in
appendix A.) For the t“wo-dimensionalcase, equations (1)
to (4) represent a system of five equations in the five depend-
ent variables CL,Zh, P, P, and T. For ktor use, equ~tion (4)
can be written

dp=p(K dP–@ dT) (4a)

where K and ~ are the coefficients of isothermal compressi-
bility and volumetric expansion, respectively (seeref. 6). In
addition to a general state equation, such as is given in

equations (4) or (4a), it will be convenient at times in the
discumion to refer to some specific state equation. To this
end, the-equation of state for an ideal gas

.P=PRT (4b)

will be used.
Particular consideration is here given to the two-dimon-

sional free-convection flow about a semi-tite vertical flat
pla@ The X,-axis of the coordinate system is taken along
the, plate and the X2-axis, normal to it. No distinction is
made as to the spec$c type of body force acting, for example,
gravitational or centrifugal, but the force is wsumed to bo
acting in the vertical direction only (that is, parallel to the
plate). Centrifugal and Coriolis forces which are connected
with flows on curved paths and with rotating systems
generally vary with position and velocity. However, in
order not to make the analysis unduly complicated, the body
force is taken to be constant.

In order to define the problem clearly, a choice must still
be made of the position of the origin of the coordinate sys-
tem. Before making a definite decision on this point, noto
that for constant plate temperatures there m-e four pcmnu-
tations of the body-force direction (either upward or clown-
ward) and the plate thermal condition (either heated or ,

cooled) which will lead to free-convection flows. Once tho
position of the edge of the plate, which is CLlsoto be tho
origin of the coordinate system, is decided, there me two
combinations of the body-force direction and plate theuuml
condition that will yield flows which proceed away from the
edge. It is this type of flow that is amanable to the typo of
analysis to be made here. This point will be more fully dis~

cussed subsequently. If the edge of the plate (recall thnt a
semi-infiniteplate has but one edge) is taken at the bottom of
the plate (that. is, the plate extends to + ~ in the Xl-direc-
tion), the two combinations leading to flows in the proper
direction (upward in this case) are, respectively, the body
force acting dowpward with a heated plate and the body
force acting upward with a cooled plate. The equations
developed for one of the caaesreduce directly to those for the
other. The remaining two permutations, namely, the body
force acting downward with a cooled plate and the body force
acting upward with a heated plate, would yield flows which
proceed downward or toward the edge of the plate if this
edge were taken at the bottom of the plate. This type of
now would violate a physiwl condition of the problem which
3tates that the flow starts at the plate edge. The latter
combinations hence will not be considered further.

Because the two acceptable configurations can be reduced
wentially to one, for the development to be given here, tho
X@ of the coordinate system will be taken at the bottom
>f a heated plate, with the body force acting downward.
l?he assumption is now made that the viscosi~ and thermal-
:onductivi@ coeflicienta are functions of the temperature”
done and obey the following laws:
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(5)

The choice of the body-force direction together with equa-
tions (5) alters equations (2) and (3) so that they become

(6)

Note that the only nonzero component of the body force is
the Xl-component.

BOUNDARY CONDITIONS

The boundary conditions associated with the given prob-
lem are that:

(a) The fluid must adhere to the plate (the no4ip condi-
tion of viscous flows) and the plate must be a streamline,
or mathematically,

U,(x,,O)=U,(x,,o)=o (8)

(b) The temperature of the fluid at the plate must be equ~
to the plate temperature, that is,

T(X1,O)=TO (9)

(c) The velocity U, at large distances from the plate must
be undisturbed, or

u,(x,,~)=o (lo)

(d) The temperature at large distancea from the plate
must be equal to the undisturbed fluid temperature, or

T(XI,= )= T. (11)

SIMPLIFICATION OF EQUATIONS

Let a small quantity e now be defied as

c=/?(TO-Tm) (12)

which is a measure of the magnitude of temperature variation
in the flow field. The coefficient of volumetric expansion B
is generally of the order of magnitude between 10-Z and 10-
(see table 15 of ref. 7, for emunple) and for gases, p=l/T.
(Thus, for gases, if P is taken to be constant, C=(To– Tm)/T.;
that is, c is the relative temperature difference.) The

coefficient /? will be assumecl constant. Because in the
steady state flow ensues only when there is a tempwature

,variation in the fluid, the freeanvection velocity should
then depend directly on C,and the variations in pressure and

density (from the static, 6=0, case) due. to the temperature
differences should also depend on ~. Thus

(13)

P= P*+PmW (14)

P= Pa+P. ~Q (15)

z’=T=(l+d) (16)

where —fx denotes the Xl-component of the body force per
unit maw, ut, u, p, and o denote dimensionless functions
(which, in general, can be functions of c), 1is some character-
istic length (for example, the disiance from the edge of the
plate to the po”tit of interest), P, and p, are the pressure and

the densi~, respectively, for the static case (Z7i= O or
c= O), and Pm and pmdenote constant values of the pressure
and the density (that is, the value5 if no force field were
present) defined by the state equation (in the case of a gas,

in particular, P- =p~RT~): Becaum there is no character-
istic velocity associated with the type of flow under con- -
sideration, the velocity is dimensionalized by the factor
given in parentheses on the right side of equation (13).

In order to determine the static quantities, it will at first
be convenient to consider the particular case of a gas. The
problem is then considered with the temperature uniform
throughout the flow field at the value T- (therefore there.
will be no flow and U~= O). For this situation, equations
(4b) and (6) become

P,= P,RT. (17)
and

(1s)

(It should be noted that eq. (18) expresses the physical fact
previously stated that the body force and hydrostatic
pressure are in equilibrium for the static cnse.) Substitution
of equation (17) into equation (18) leads to

‘~=p++7&x)

and equation (19) together with equation
equation deb.ing P. and p- yields

(19)

(17) and the

P.=Pm em
( -Ikix’)=’’-e+%)’) ’20)

If the exponential in equation (20) is expressed in terms of
its series expansion, that equation becomes

P*=P.
(
1—*X,+. ..

m )
(21)

321a9D-G~
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A computation of the second term in the parentheses of
equation (21) for the case of air under normal conditions
with jx=g and the fact that Xl is of the order of magnitude
1 show that p.gl/P~ - 10-’l/foot. l’or the type of problem
under consideration, 1will shays be of unit order of magni-
tude so that even if the body force ~x represents a cen-
trifugal force many times that of gravi~, the inequalib

PJxX/~.<1 DY sflbe ~~ed. Thus, ~ the,ybsequent
development it will be assumed that p,~p.. This aas~p-

tion, which was justified by the computation for the case of
a gas, is expected to be reasonable for other fluids as well.
The physical interpretation of this assumption is that under
static conditions (e= O), the density (or pressure) is not
ailected by the force field.

In order that all quantities in the following equations be
dimensionless, it is further necessaxy to d&ne z,=XJ?,

where the xi are now dimensionlessspace coordinates. Sub-
stituting these new coordinates along with equations (13) to

. (16) into equations (l), (6), (7), and (4a) and noting equations

(18) and that P,SP. yield, on neglection of tti of higher
order in c compared with those of order e,

(22)

(25)

dP=KP.dis-fiT.dO (26,

&here P./pmfJ=N& and the G~hof

PrandtJnumber Pr are defied as

number- G and the

Physically speaking, the Grashof number represents the
ratio of the body forces to the viscous forces. The fiee-
convection flows of interest here are those associated with
large Grashof numbers. The factors K and p m equation
(26) may well be taken to be constants (see ref. 6).

The boundary conditions (eqs. (8) to (11)) in terms of the
new dimensionl- variables are

UI(zl,o)=%!(ZI,O) =0 (27)

(28)

ul(zl,~)=o (20)

e(zl,~)=o (30)

Thus, to a tit approximation, equations (22) to (26) to-
gether with the boundary conditions replace the origimd
equations and boundary conditions. (Note that for gases,
6Tm=l.)

The prime assumption made in this analysis is that tho

higher-order terms in e are negligible, which implies that c
is small, and consequently, that the temperature difbrenco
or P is moderately small. It is a consequence of this assump-
tion alone that the basic equations were simp~d to equa-
tions (22) to (26). wherein the viscosity terrd m the energy
equation is neglected and the only coupling of the momentum
and energy equations occurs by means of the body-force
term in equation (23). As a result of this assumption, the
variations of the viscosity and he+t-conductivity coefficients
with temperature are also negligible. Without any discus-
sion, the authors of reference 2 start directly from simplified
equations of the same form wherein the pressure terms in the
energy equation were also neglected. In reference 3 some
intuitive arguments are given to justify the simplified
equations.

It is now convenient to revert to the more familiar notation
where z=z1, v=q, u=u1, and v=ug. Equation (22) implies
the existence-of a strem” function # such that

where subscripts denote dii7erentiation.

(31) to equations (23) I% (25) yields,

(31)

Applying equation
respectively,

.

& (W- P)= Ah- Ah+Nu. (32)

–~ (W)= –Wsz+$zh+,w (33)

The boundary conditions (eqs. (27) to (30)) become

*.(%O)=*Z(%O=O (36)

e(z,o)=+-
.

(36)

i%(%~)=o(z,~)=o (37)

Equatiom- (32) to (34) and equation (26) form the system
of equations for the four u.nlmown functions #, 0, q, and u
of the problem. The system is nonlinear, and therefore
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further simplifimtion of the equations would be desirable.
Just as in the case of forced-convection flows where the

Reynolds number determines the type of flow or, in mathe-
matical terms, the type of solution, the Grashof number is

the prime factor for free-convection flows. For the case of
small Grashof number, it can be seen horn equations (32)
to (34) that a perturbation in the small parameter @ will

yield a system of linear equations. For Grashof numbers
of unit order of magnitude, no further important simplifica-
tion can be made and the solutions would have to be obtained
numerically. For the other limiting case, that of large

Grashof numbers (which is the case under consideration
herein), it would, at first thought, appear that some simpli-

fication could be obtained by performing a perturbation in
the sma~ parameter 1/(3. However, this would then

imply that the term containing the highest-order derivatives
(the left term in equations (32) to (34)) could, among others,

be neglected. (This argument would also imply that the
body-force term q in equation (32), which is essentially.
cpusing the flow, could also be neglected.) The omission

of the highest.ader derivatives from consideration, however,
would lead to solutions which would not satisfy all the
boundary conditions. Problems of this type are referred

to as singular perturbation problems. For further dis-
‘ cussions of singular perturbation problems, see references

8 and 9.
Equations in which a small parameter multiplies the

highest-order terms are said to be of the boundary-layer
type, because in order for solutions which satisfy all the
boundary conditions to be obtained, the highest-order terms
must be considered near the bouhdary. This fact implies
the existence of a thin region, called the boundary layer,

ivherein the functions vary rapidly tim the value at the
boundary to that in the flow outside this layer. The con-

clusion to be drawn from the preceding discussion is that
for large Grashof numbers the flow is of the boundary-
layer type. Schmidt and Beckmann (ref. 2) also made

the boundary-layer assumptions in their theoretical develop-
ment, and these assumptions were justified on the basis of
their experimental observations. The Grashof numbers for
their experiments were of the order of 8X106.

In view of the fact, previously discussed, that @gh&-
order derivatives of each dependent variable as well as of
those terms of physical importance (as, for exam le, the

Fbody-force term) must be retained in the boundary ayer, it
is convenient to make both sides of each of the equatiods
of the same order in Gr. In this way, as will be shown, the

equations will be further simp%ed. It is thus convenient
to make the following transformations in the system of
equations (32) to (34) and (26) and then b retain only the
dominant parts (that is, those multiplied by & to the
highest power) of each-individual term.

Let V= f3r’y, +=GW$, u=WZ, P=?, and 8= e. Then

(38)

(39)

d~=KP=&’dZ–~T.d~ (41)

It now can be seen that by proper choice of r, s, and t n

transformation of the type given providw a means for
making the important terms in the differential equations of

the same order in t%. Thus if r=%, s=—%, and t=—1,
equations (38) to (41) become

(42)

(44)

dG+@Tmd~=O (45)

More generally, if N is very much different from unit order

of magnitude, a value of tcan always be chosen (depending

on iV) such that equations (42) to (45) are obtained. @’or

any negative t less than —1, the last term of eq. (42)
will also disappear.) -

There are now several important points to be discussed

concerning the transformation just made and the rwdting
simplified equations. First, it should be noted that the
transformation is merely a formal expression of the bound-

ary-Iayer wmunptions first made by Prandtl and heme the
solutions will be asymptotic for large G%. Second, the
second equation of motion here also reduces to state that
the prwure across thq boundary layer is constant. Third,
the pressure terms in the energy and state equations are
here found to be negligible. This fact veriiies a priori
assumptions made by othem from the physics of the problem.
Finally, note that integration of the general state equation

(independent of pressure) aa now given by equation (45)
leads to

,
g+ flTmii=O (46)

where the constant of integration has been taken as zero
without any loss of generality. For the particular case of
a gas, /3=1/T. so that equation (46) becomes

~+~=o

The boundary conditions (eqs. (35) to (37)
written

~(z,o)=~=(z,o)=o

i(z,o)=&-
m

z(z,0)=7(% m)=o

now can be

(47)

(48)

(49)

If now it is assumed that ~s=O in equation (42) since con-

sideration is here being given to a flat plate, and if ~ is
eliminated from equation (42) by use of equation (46),
there results the system of equations
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Z;=PT (~i=—~=~) (51)

Thus the problem has been reduced to the solution of the
two simultaneous partial difhrential equations (eqs. (50) and

(51)) subject to the boundary conditions (eqs. (47) to (49)).
Final simplification of the equations is made by applica-

tion of the so-called similarity transformation of boundary-
layer theory. Thus, let

v (52)
“=s

and

J=(4z)*F(q) (53)

(54)

Then equations (50) and (51) are reduced to the following
ordinary differential equations:

F’1’+3FF’’–2+H= OH=O (55)

H“+2PrFH’=o (56]

where the primes denote differentiations with respect to ~.
The reciprocal one-fourth power similarity as given in equa-
tion (52) is characteristic of free-convection flows just as the
reciprocal square-root type is characteristic of the for&d-
convection flows. The boundwy conditions become

.F’(0)=F(o) =0 (57)

H(0)= 1 (58)

J“(m)=H(m)=() (59)

The use of a transformation like equation (52) essentiuy
specifies an additional boundary condition, namely, that the

conditions to be satisfied at g= ~ (or q= m) should also be
satisfied at x=O. It is for this reason that the flows pre-
viously discussed which would flow toward the edge (do-ivn-
ward) are not amenable to this type of analysis, for such flows
would violate this additional ~ndition, which essentially
states that the boundary-layer development starts at the

edge of the plate.

SOLUTION OF THE BOUNDARY-VALUE PROBLEM

The solutions of the simplified equations (55) and (56), “
satisfying the boundary conditions as given by equations

(67) to (69), were obtained by use of an IBM Card-Pro-
grammed Electronic Calculator. A detailed account of the
procedure followed in the determination of the unlmown
functions is presented in appendix B by Dr. Lynn U. Albem.
The functions F and H together wi~ their derivatives are
given in table I for I?randtlnumbers of 0.01,0.72,0.733, 1,2,
10, 100, and 1000. Even though the I?iandtl number for air
is taken as 0.72 in this report, the solutions for Pr= 0.733
were &o computed and are presented as a check with the

Schmidt-Beckmann calculations wherein the value of Prandtl
number of 0.733 was used. The particular values of the
Prandtl nwbem given were chosen to correspond to them
for liquid metals, gases, liquids (such as water and oil), and
very viscous liquids (such as glycerin or oils at very low

temperature).

RESULTS

VELOCITY AND TEMPERATURE DISTRIBUTIONS

By means of the various transformations made in the
analysis it can easily be veri.tiedthat

Ux

u v
=~=F’(q)

2>1b(To—TJjxX 2 ~
(60)

and

(61)

Fhere

Equations (60) to (62) relate the phy$ical quantities to the
dimensionless functions F and H which me now known,
The dimensionless velocity and temperature distributions as
given by equations (60) and (61) are presented in figures 1
and 2, respectively, as functions of q for the various values
of Prandtl number. The computations made here agree
with those for Pr= 0.733 as given in reference 2 up to the
third significant figure. For Pr= 10, 100, and 1000, the
present results agree in general with those of reference 3,
Since only curves are presentid in reference 3, the precision.
of the agrmment cannot be stated.

The maximum valuea of the dimensionless velocity dis-
tributions occur at larger valuea of the argument q as the
Prandtl number decreases and the velocities decrease with
increasing Pr. It shouId aIso be noted that the dynamic

and thermal boundary-layer thicknesses can be eatimatecl,
from the abscissas of figures 1 and 2, respectively, and tld
for Pr>>l the velocity bounda~ layer is much thicker than
the thermal boundag- layer.

The occurrence of j= (or Qrx as given by eq. (60)), which
may be very large for flows generated by centrifugal foroes,
in the denominator of the ordinate impIies that velocities of
appreciable magnitude can be associated with suoh free-
convection flows. In particular, if .jX= 10e feet per second
squared, which is a reasonable conservative figure for pres-

ent-day rotating systems, ~=0.2 (which is within the limits
cf the theory presented herein), and arbitrarily X=O.25
foot, then the maximum velocity attained at a Prandtl
number of 0.72 is approximately 125 feet per second. This
value of the maximum velocity could, of course, be doubled
or even tripled under the proper conditions, One limitation
to a calculation of this sort, as can be seen by comparison of
the denominators of the left and middle terms of equation
(60), should be kept in mind; namely, the limiting Grashof
number for lami.mmflows. In lieu of a complete stability
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analysis on this type of flow, this limiting value is taken to be
10°, as indicmtedin reference 10. Consideration of this lim-
itation then .impliw (see eq. (60)) that for large laminar
velocities either v. m,ystbe large or X must be small.

COMPARISON WITH EXYERIMENT9

Careful experiments of free-convection flows (as generated

by grwitatigmal forces) about vertical flat plates were made
by Schmidt and Beckmwm (ref. 2) in which velocity measure-
ments at various points along the plate were made by means

of rLqumtz-illament anemometer and the temperate meas-

urements were obtained by means of manganese-constantan
thermocouples. Eckert (ref. 1) performed similar experi-
ments in which the mensursments were made by means of a
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Zehnder-Mach interferometer. The results of both sets of

experiments are in good a~eement, but since the data pre-
sented in reference 2 by Schmidt and Becknwm appear in
more detail, these data will be used for comparison with the

theory. ,
The experiments of reference 2 were performed on two

d.iilerent (in that the edges were smoothed either symmetri-
cally or not) 12- by 25-centimeter plates and on one 50-by
50-centimeter plate. It should here be pointed out that the
results for the two smaller plates were ahnost identical and

that the flow was entirely laminar except near the outer
edge of the boundary layer where the slight turbulence of
the room air disturbed the measurements somewhat. m
eilect was also observed by Eckert.) Large periodic osciUa-
tiom of the flow near the downstream edge of the larger plate
were observed in addition to the sight turbulence near the
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outer edge of the boundary layer. Hence the data from the
larger plate should not be expeobd to yield completely satis-
factory agreement with the laminar theory as presented
here.

Site the phyaioal quantities can be expressed in terms of
a single variable as in equations (60) and (61), it is to be ex-

pected that the data taken at the various points along the
plates should all lie on a single line if the data are correlated
according to equations (60) and (61). Thus for the smaller
plates where (To-T_ )=95.22° R and Tm=518.68° R, equa-
tions (60) to (62) become

u
=F’(q)

4.862-@
(63)

‘;:~268=H(T) (64)
.

q=88.26+ (65)

The velociiiy and temperature distributions tie so plotted in
figures 3 and. 4, respectively, as are the curves computed
theoretically for .Pr=O.72. It can be seen that the agreement
is in general very good for .m@l values of q and somewhat
less satisfactory though stiIIrather good for the ]@er values
of q. The-scatter in the range of the larger values of q is
believed to be caused by the previously discussed room
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turbulence. It should ako be noted that the points farthest
away from the theoretical are those measured near tho
leading edge. These points should not, of course, be oxQocted
to agree too well with the theory since the boundary-layer
assumptions made in the theoretical development imply that
the distance along the plate is large as compared with the
boundary-layer thiclmess. Hence, this assumption is invdkl
near the leading edge. Schmidt and Becknmnn obtained
closer agreement between the theory and the mTerimen@ for
the temperature data and poorer agreement for the velocity
data by basing the kinematic viscosity coefficient in oqudion
(62) on the plate temperature rather than on”the undisturbed
stream temperature as was done here.

For the larger plate, (TO– T.) =83.7° R and T. =627,14°
R, so that equations (60) to (62) become

u
=F’(q)

4.622@

‘–8~;.14=H(q)

q=83.93~
#

(66)

(67)

(68)

The velocity and temperature distributions for this expwi-
ment are plotted in figures 6 and 6, respectively, and again
the theoretical cties for Pr=O.72 are included. In figure 6 it
can be seen that for large q the agreement is rather poor,
particularly for the data for both small and large values of X,
The poor agreement for snd values of X is again due to tho
theory limitation near the edge of the plate rmd for largo
values of X, to the fact that the flow was becoming turbuhmt
there.



FRJ3E-CONV3WI’ION FLOW AND EEAT

FLOW AND HEAT-TRANSFER PARAMETERS

In addition to the velocity and temperature distributions,
it is often desirable to compute other physically important

quantities (such M shear stress, drag, heat-tramfer rat>, and
heat-trrmsfercoefficient) associated with the free-convection
flow. To this end, two parameters, a flow parameter and a
heat-transfer parameter, me derived in appendixes C and D,
respectively.

The flow parameter

i-
=F’’(o)

(4(3r=~$(vmw/X)

is presented aa a function of Prandtl number in figure 7.

Thus, the various flow quantities for a given set of ectnditions
can easily be computed by application of figure 7.

The local heat-transfer parameter

Nu
= –H’(o)

(Qrx/4)+

as determined here is given as a function of Prandti number
in figure 8. A calculation of the local Nusselt number horn

this equation for Pr=O.72 and Qr== 10g yields a value of
63.6, which indicates that large heat-tramafercoefficients ean
also be obtained with free-convection flows.
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On the basis of a simplified theory (that iej by use of
integrated momentum and energy equations and assumed
veloci~ and temperature distributions), Eekert (see p. 162
of ref. 7) obtained the approximate relation

Nu ~ 0.718(P#

(wx/4)i (0.962+P#
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The curve representing this equation is also presented in
figure S, and it closely approximates (to within about 10
percent) the curve determined by the more exact Considerx
tions of this report over the entire Prandtl number range. A
semiempirical equation as given in reference 11 relating the
average (over the length X) NuAelt number to the Prandtl
and Grashof numbers which has been used in the heat-
transfer calculations up to the present is

Num=o.54s [(B-)(%]*

The constant 0.54S pertains spec.ilically to air; for oil it
should be 0.555 (see ref. 12) and for mercury, approtiately
0.33 (see ref. 13). In order to obtain local values fim the
a,verageones given by the last equation, it is merely necemry
to multiply the average values by 0.75. (The determination
of this reduction factor of 0.75 is discumed in appendix D.)
Thus in terms “of the local quantities the semiempirical
relation becomes

NU=O.411 [(Pr)t7rx]*
or

Nu
=0.5s1(R-)*

(Qrx/4)+

The curve given by this equation is also presentid in figure
S and the agreement with the theoretical curve is very good
for PrandtJnumbers near unity, not so good for large Prandtl
numbem, and very poor for the small Prandtl numbers. Of
course, changes of the constants in the semiempiricalrelation
as previously discussed for the large or small Prandtl number
cases (oil and mercury, respectively, for example) would
cause the semiempirical curve to apprtmimatethe theoretical
curve more closely. The values of the heatAransfer param-

eter obtained experimentally for mercury (Pr=O.03), air
(Pr=O.72), water (Pr=7), and oil (Pr=75.5, 115:190,224,
275, 31S, 368, and 442) are here reduced by the factor 0.75
from the average value reported. The value for mercury
is an average taken of four readings from a curve, since this
experiment was the only one not reported in tabular form.
From iigure S it can be seen that all of the experimental
values except those for the oil experiments are in very good
agreement with the theoretically computed values.. The

data from the oil experiments, though not so good, show
reasonable agreement (mtium error of approximately 20

percent) with the theoretical curve rmd good agreement, as
is to be expected, with the semiempirical curve. The differ-
ence between the theoretical values and the oil experiment
results can possibly be due to the fact that the viscosity
changes in oil are large even for small temperature differences
or due to the end effects in the measurements.

CON~USIONS

An analyaia was made of the free-convection flow about ~
flat plate oriented in a direction parallel to that of the
generating body force under the prime assumption that the
relative temperature difleronce is small. It was found that
the Gras&of number was the principal factor detwmining
the type of flow and that for large Grashof numbers the flow
was of the boundary-layer type. The theoretical develop-
ment was then continued to consider only the caaeaof largo
Grashof number because these are of most importance in
amonautics.

Velocity and temperature prdles for Prandtl numbers of
0.01, 0.72, 0.733, 1, 2, 10, 100, and 1000 were computed on
the basis of a constant body force and plate temperature
and agreement with experiments where the fluid wbs air ,
(Prandtl number of 0.72) -was good. It vm.salso demon-
strated that velocities and Nusselt numbers of the ordor of
magnitude of those obtained in forced-convection could bo
obtained in free-convection flows.

A flow parameter and a heat-transfer parameter which are
functions of the Prandtl number alone were derived. Calcu-
lations of the important physical quantities such as shear
stress, heat-transfer rate, and the like can be compukd from

these parameters. Values of the heat-transfer parameter
obtained from an approximate theoretical development and
from experiments compared with valuea computed from the
present development showed good agreement, over a wido
range of Prandtl number (0.01 to 1000). It is shown that
the commonly used semiempirical relation’ for the heat-
transfer coefficient will yield good results only in restricted
Prandtl number ranges.

Lmvrs FLIGRT PROPULSION LABORATORY

NATIONAL ADVISORY COZJMITPEE FOR AERONAUTICS

CLEVELAND, OHIO, October3, 1961

APPENDIX A

SYMBOLS

The following notation is used in this report:’

Atj(n), Bj(a), coefficients in numerical difbrentiation -and
@), Di(fll integration formulas

Cp specific heat at constant pressure

F dimensionless velocity function

ff components of body form per unit mass,
i=l, 2, 3

.fx negative of X-component of body ~force per
unit mass

G%

G%.

g

H

h
K

G~of number EMz~#2

Grashof number bas~~ on X
gravitational force per unit mass (or accelera-

tion due to gri@y)
dimensioilew temperature function
heat-transfer coeflicie~t
isothermal compressibility coefficient,

_p a(l/pI

[1ap =
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k

1

m, n

N

Nu

Nuao

P

Pr

R

r, s, t

T

Ui

uf

u

v

x’

xi

x
y

.?/

thermal-conductivity coeiiicient

characteristic length

arbitrary esponents

a number, defied following equation (26)

Nusselt number, hX/k

average Nusselt number

pressure

Prandtl number

gaa constrmt

arbitrary esponents

absolute temperature

velocity components, i= 1, 2, 3

dimensiordeiwvelocity components, ;=1, 2, 3

dimensionless velocity component in zdirec-
tion

dime.nsionlw velocity component in y-direb
tion

Cm%e.siancoordinates, ~= 1, 2, 3

dimensionlessCarte9ian coordinates, i= 1,2,3

dimensionless Cartesian coordinate

Cartesian coordinate

dimensionless Cartesian coordinate

B

‘r

A
E

v’
e

K

P
v

P

u

7-

;

Subscripts:

~Jj
8
0
w

coefl?icientof volumetric expansion,

ratio of specific heats

Laplacian operator ‘
relative temperature difference, f?(Z’O—T.)

similarity variable

dimensionlem temperature function

step size used in nwmerical calculations
absohh viscosity
kinematic viscosity
d~ity

dimemiordws pressure function
shear stress
dimensionkas density function
stream function

Carte.siaq tensor and summation subscripts

denotes evaluation at static conditions (c=O)

denotes evaluation at plate surface

denotes evaluation at undisturbed conditions

Subscript notation is used to denote partial differentiation.
Superscripts:

Primes denote ordinary differentiation.
Bars (as; or ~ denote transformed dimensionless quantities.

APPENDIX B

NUMERICALSOLUTIONOF SIMPUl?IEDBOUNDARY-VALURPROBLEM

By LYNN U. Armms

The method is presented herein by which solutions to the
boundary-value problem

were obtained
1, 2, 10,100,

~“’+3FF’’-22+H=0=0 (B1)

H“+3PTFH’=0 (B2)

F(0) =F’(0) =0 H(0) =1

F’(=)=H(0)=’o

for the cases of Pr equal to 0.01, 0.72, 0.733,
and 1000. This discussion will enable the

results to be clearly evaluated and will perhaps serve aa a
guide in the numerical solution of similar problems.

Each of the cases of the problem has a solution for a
particular set of values for F“ (0) and H’(0), hereinafter
called eigenvalues. The basic approach to the problem was
to estimate the eigenvalues and to integrate out from zero,
obtaining functions which satisfied equations @l) and (B2)
at each step. The integration was continued until the func-
tions F’ and H behaved in a fashion inconsistent with the
boundary values at iniinity; for example, when they became

negative or diverged to in6nity.

eigenvalues were then made on

preceding runs and the process

nntil a solution was obtained.

Improved estimates of the
the basis of the results of
was repeated successively

Modhications required to overcome specific obstacles will
be discussed after sufficient details of the basic procedure
have been given. Then an evaluation of the accuracy of the

numerical results will be made.
The integration proce9s consists of two parts, a starting

phase and an extension phase. The starting phase begins
with an eMrnate of the eigenvalues F“(0) and H’(0) and a
decision on the step size Kto be used. It continues with an
iterative process of alternately computing F’” and H“ at
the tit four points and integrating them by five-point
formulas. This process and that in the extension phases
are so. arranged that the differential equations are satisfied
at each integral multiple of the step size.

The extension phase used preceding data to integrate step
by step beyond the fourth point. Diagrams of both phases
will be given after a few preliminary explanations.

All integration formulas used are based on the same idea.
If a function, for example, F“’”, is known at five points, there is

a unique fourthdegree polynomial which agrees with it at
these five points. Moreover, if the successive antideriva-
tives (iitegrals) F“, l“, and F of F’t’ are known at one
point, there are unique fifth-, sixth-, and seven&degree
polynomials which he successive, antiderivatives of this
fourthdegree polynomial ahd which agree with F“, F’, and
F, respectively, at the one point. It is then a simple algbbra
problem to deduce from the values of F’” at five points and
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F, F’, and F“ at a single point the values of any of these
four polynomials at any point. These results will approxi-
mate the functions F, F’, F“, and F’” ta a degree dependent
on step size, the relative positions of the points in question,
and the magnitude of the iifth derivative of F’” in the

neighborhood of these points.
The preceding algebra problem can be presolved in all

situations that arise in the starting and extension phases of
the present problem and specific integration formulas may
be deduced. These formulas are discussed in the next
paragraph.

Let F’” be denoted at five successive points by Fe’”,
F1’”, F~’”, F~’”, and F.’”. In the starting phase, these
points are O, K, 2K, 3K, and 4K,and FO,FO’, and FO” are also

known. Then the five sets of for.umk required in the start-
ing phase are.

Ei=Ho+iKHo’+& & A.ijmE;’ ;=1, 2, 3, 4 (I36)

Fi=Fo+W+~ Fo”+& ~ A,jmFi” “

i=l,,2, 3, 4 (B7)

where the superscripts on the A; ‘a) and Di @l refer to the
order of integration.

The constants A,j@) and Di@I)may be read from the fol-
10~ tables:

For A~j(lJand Di(l):

.

COMMFFPEE FOR AERONAUTK%

For Ati@) and Di@?

Au($)

1
W?)

,J ~ ~ .2 ~ 4

1 1017 1070 -618 263 -47 mm
-m

: lE 3% -480
–19

M -81 lE
4 744 n?o 93 334 -40 316

It is now possible to diagram the steps of the starting phase
of the integration. If each bar above a function denotes an
improved &imate of it, and the first estimates of F1’”, Fat”,

F3’”, and F4’” are W equal to Fe’”, and similarly for the
H“, then the starting phase diagmms are

(1) (Fo,Fe’, FO”, Fe’”, F,’”, F,’”, Fa’”, F4’’’)+F,, F1’, 1’1”

(This diagram means that the values in parentheses are
used with appropriate integration formulas from @3) to
(B7) to obtain F, F’, and F“ at q=z.)

(2) (Ho, H{, Ho”, H,”, H,”, H,”, H[’)dH,, HI’

(3) (F,; F,’, F,”, H,, H,’) -~,’”, ~1”
(The preceding diagram means that the values in parentheses
are substituted in the differential equations @l) and (B2)
to obtain F’” and H“ at q=K.)

(4) (F,, F{, F;’, F,:, ~,’”, F,’”, Fs’”, F4’’’)=3F,, F,’, l?’ ‘

(5) (HO,H;, Ho”, HI”, H,”, Hi’, H,’ ’]*H,, H,’

(6) (F~,F~’, Fs”, H,, H,’)~F,’”, E,”
(7) (Fo,Fe’, FJ’, Fe’”, ~1’”, ~,’”, F,’”, F4’’’+F~j~j Fat,F3°

(8) (HO,Ho’, Ho”, g,”, B,”, H,”, H4’’)+7,, H3’

(9) (Fa, Fs’, Fs”, H,, H2’)+7Y”, Z“
(10) (FO,F,’, F,’’, FO’’’,”,’”, l?,’”, F3’’’,F)+F4,1F4,,’4’, P;’

(11) (Ho, Ho’, Ho”, ~,”, E,”, E,”, H4’’)~H4, H4’
(12) (F,, F,’, F,”, H,, F4’)+,’”, ~,”

It may be noted here that all four values of F’” and H“
have been improved, and further improvement will require
iteration of steps 1 to 12. The start of the second iteration
isdi amamrned ss follows:

(13;
(14)

(15)

(16)

. .

,. . . .

. . .

Successive sets of 12 steps are performed until the vrdues of
F, ‘“ and Et~” no longer changa.

On the IIXM Card-Programmed Electronic Calculator, a
deck of punched cwds 2 inches thick su.fiicedto perform steps
1 to 12. Three runs of this starter deck at 3 minutes per
run accomplished complete convergence in most cases. At
the end of the starting process there have been computed and
stored F&Fd’, F4/’,.Hh,and H4f, and &ml estimates of F1’’,’,
FS’”, FS’”, Fd’”, H,”, H,”, HS”, and H4”.
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The extension phase has now been reached. It used a
different set of integration formulas based on the same gen-
eral idea as equations (B3) to (B7). If FO’”, F1’”, .F~’”,
Fs’”, and F,’” now designate F“r at any five succwsive

points, and the subscript 5 denotes the next point,

(B8)

(B1O)

(611)

F5= ~4+ KF4’+; F;’+& ,$ B,WF’” (3312)

where the .Bj@Jand C@) are given in the following table:

l?+)

c(=)
j o 1 2 3 4

a

1 ml –la74 W6 –2U4 1931 Tm
-s92 1446 -16%3 1427

! M –2116 4478 -Ke4 M74 4?%

I 1 1 1 1 1 1 (

The &xtensionphaae may then be diagrarmned simply as
follows:

(1) (F,, Fi, F:’, F{”, F,’”, Pi”, F:”, FJ’’)~F,, FL, F,”

(2) (Hi, Hi, Hi’, H~, H:;, H:;, H4’’j~H,, H; “
(3) (F~,F(, F(’) H,, H:)+F:”, H:’
The values of the functions at the next point are computed

in similar manner, where the latest sets of five values of
F’” and H“ are used. This process advances step by step
toward intiity.

The extended deck of punched cards ma about 3 inches
thick and took a little over 3 minutes per run. For Pr=O.72,
a step size of 0,1 was used, the starting phase took 10 minutes,
and the extension phase, about 30 minutes. When it is
realized that about 11,000 operations were performed in the
40 minutes per run, it may be seen that solution of the
present problem would have been prohibitively difficult on
desk-type crilculatom. Simplificationsin method would have
mcrificed accuracy or required smaller step size.

In two-point boundary-value problems where one point is
intlnity, some problems of judgment are irivolved as to where
infinity is, and as to when a satisfactory approximation to a
solution has been obtained. h most wcs this question was
settled for the present problem by calling a run satisfactory
when it fell between two runs for which F’ and H did not
differ at important points in the fourth decimal place, and

TRANSFER ABOUT
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H flattened out at zero, correct to four

Certain difEcuMes were met in the attempt to use the
basic procedure previously discussed. These necessitated
certain modifications.

For Pr=2, 10, 100, and 1000, H -would settle down to
zero at an early stage; but while F’ was still coming down,

H“ would begin to oscillate and tlmse oscillations increased

and fed back into all other functions. This trouble was
avoided by the following modifications: It is a consequence
of equation (B2) that .

( IF@
H’ (q)=H’(O) exp –3PT

=H’ (q– K) exp

(-3p’c=F@4 ’13)

The extension phase waa modified to require the additional

integration formuhw

5

H,=H,+ ~ AiH:

(B14)

(B16)

where Al= –19, A~=106, A3=-264, A4=646, and 4=251.
These formulas were used along with equations (B8) to

(B1O) accord.irg to the following diagram:

(1) (F4, Fi, F~’, F:”, F,’”, F,’”, FJ”, FJ’’)~F5, FJ, F~’

(2) (FI, F?, F,, FA, F,, H4’)+H’ by means of (1314) and
(B13)

(3) (HI’, H9’, H;, H;, H:, H&H~ by means of @15)

(4) (Fs, Fs’, F{’, H,)+F:”
The value F. ‘“ is discarded and F’” at the last five points

is used to repeat the whole process again and again ad
infinitum. As long as F stays positive, H’ is guaranteed to
approach zero and H will flatten out to some value and not
oscillate.

For Pr=O.01, 0.72, 0.733, Wd 1, the F’” began to oscillate
at an advanced point and these oscillations grew and fed into
the other functions. For all cases but .F%=O.01, the oscilla-
,tions appeared very late, near the end of the run, and a
suitable halving of step size when oscillation was detected
in the fourth differences of F’” was .mfEcient to avoid the
difficulty. But for the 0.01 case, oscillations of F’” appeared
early in the run, namely, soon after the peak in F. Th~e
oscillations were found to be step-size connected, so that
reduction of the step to 0.02 avoided them. Even then
oscillations in Frtl would begin to appear every 25 steps or

so, and these were smoothed out regularly by repeated runs
of a deck similar to the starter deck. Each run under these
conditions took about 16 hours, making this the most diffi-
cult case to solve.

.-
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APPENDIX c

DERIVATIONOF FLOW PARAMETER

I
Substitution of this expression into equation (Cl) yields the

By definition the shear stress is given by flow parameter

.(Cl)

To exprqs @?7/bY), in terms of the known @ction F(7),
use can be made of equations (60) and (62). Then

T
=F’’(o)

(4Qrx~*(vmp0/AV)

Note that from the general derivation, the flow pmamoter
contains the viscosity evaluated at two different points.
Recall, however, that the analysis has shown that to a iirst
approximation the variation of viscosity with temperature
&n be neglected. Thus the viscosity cun be taken m
constant in the entire flow field.

APPENDIX D

DERIVATION OF HEAT-TRANSFER PARAMETER

The local Nusselt number is defined as

~u=hX_ –x a
(+k .(TO–T.)a~,

(D1)

To espress @T/i3Y)0 in terms of the known function H(q),

use is made of equations (61) and (62). Thus

The heat-transfer parameter aa given by equation (D2)

is, as was previously stated, a local parameter. It is often
desired to compute the average (over ,the length X) valuo

. of this parameter. To this end, the Nusselt number (as
given in equation @l)) must be defined in terms of an
average heat-transfer coefficient and the quantity thus ob-
tained must then be integrated over the length X and
divided by X. This p~ocedure yields the result

Substitution of this expression into equation (III) yields
the heat-transfer parameter .

Nu=: (Nu)m

NIL
=–H’ (0) (D2) It iS from this last equation that the

(@=/4)4 previously discussed was obtained.
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TABLE I.—FUNCTIONS F XND H AND DERIVATIVES FOR VARIOUS PRANDTL NUMBERS

(a) Przndtl nnmlxr, 0.01

F F“ H F

L 9319
1.m
LW
L W40
L8769
1.ms7
2 OU4
2mm
Low
21037
z 14U
217$0
2 a43
2 ml
22853
232m
~g

2617u
2s787
26s2.4
21ma
z 7624
28037
28m3
2W4
&mm
a 1411
&m
&m
3.371b

:ij

Z6E3
3.6022
X7M6
3.7514
x mu
;~

$%

4.0M4
4.0591
4.aw3
4.Km
4.1226
4.13m
4.1343

F

o.4m7
.4024
.4012
.=
.m
.3939
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. ml
.s$2!2
.3774
.3n6
.36M
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.3494
:g

:%%
.3m5
; ~;

.m

.mn

.X%3

.2423
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.X23

. 1s34

. 18M

.1724

. lm
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. 13W!

.I!m7

.lxn

.1114

. Iml

.M52
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.mm

.M42

.0513
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.Olm
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1-’

-a MM
—. m14
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—.mm
—.m
—. 0.w9
—. mm
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—. mm
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—.C&4
~.
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;.

—, 0i42
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—.mm
—.mm
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—. 0319
—.mm
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—. 0254
—. 0241
—. 02m
—. 0216
—.am
—. 0192
—. Olm
~ m)

—.0133
—.0126
—.0114
—.0m7
—. CO!u
—.6m3
—.mm
—.0046
–. 0m7

H

a6741
%J

.M54

.&m

.6697

.m

.6497

.6427

.m67
:=

.6149

.Msl

.m13

.M78

.5746

.M16

.mm

.S3m

.5236

.6113

.4m3

.4n4

.4643

.44XI

.4205

.=

.Wm

.3m7

.3423

.3246

.3WQ

. !2916

.27E3

. Mlo

.24m

.2232

.Lm2

.mls

.1847

. lm-i

. lm

. 13M

. llwl

.mm

.mm
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.0452

H’
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—.07m
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—.mm
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—. Omil
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—. m
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—.0667
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—.Ms3
—.mm
—.mm
—.w
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—. ms3
—.w
—. W7
—.m27
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—. 64s9
:. 04~

~.

—.m
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—.0w3
—.M92
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—. 0m6
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—. m57
—.OmJ
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—. 0175
—.0161
—.0137
—.Olx
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O.oml
.W6
. in’4
. Zm
.3164
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.41s3
.4M6
.4919
.Sl%
.5379
.6527
.bml
.M97
.5731
.6739
;=

.M50

.5693

:%
.m
.6W
.Ez53
.6178
.6164
.W?3
.4W
.4m2
.4810
.4736
.4e@
.46m
.4mo
.4496
.4462

:$H
.4?s2

:!%
.4264

:%%
. 41@a
.4X36
.4106
.4074
.4m4
.4049

amm
.M69
. ml
.m42
.M30
. 61m
.4349

;%

.1734

.Iz59

.Ilm9

.64s9

.01s3
—.0m9
—.02m
—.mm
—. 04%3
—. m
—. 0641
—. w
—.on4
—.m
—.0742
—.0746
—.0745
—.0741
—. 0733
—. 0728
: o~~

—. Oiol
–. mm
—.W.3
—.W8
—.mi4
—.Cw6
—.m84
—.Oem
—.065s
—.0651
—.0646
—. m42
—.0638
—.Wa3
—.0620
—.0635
—.mm
—.m19
—.ml?

l.uoci)
.6919
.S3m
.9756
.9375
.W4
. Q513
.9432
.9351
.mm
.91m
.91m
.mia
.8947
.Wa
.87%3
.87M
.362d
.s$46
.8466

%%
.8228
.31EJI
.mn
.7M3
.7916
.7837
.7760

:X#

.74E3

;%

.7227

.7189

.7162

.7116

.7078

.7041

.m

.6m7

.6930

.6$33

. m-57

. M21

.6784

.6770

.67&.5

-o. m12
—.as12
—. Cw4
—.mu
—.mu
—.mll
—.am
—.MI1
—.mlo
—.m
—.am
—. Ilwr3
–. mm
—.mm
—.Cw4
—.mQ3
—.Cwl
—.C@lo
—.m
—.Oms
—.m
—. 0793
—.mm
–. 0m7
—.07a4
-.0782
—.m
—.0776
—. 0773
—.0770
—. 07m
—.07m
—. 07w
—.Om3
—.07E3
—.0761
—. 0749
—.0747
—. 0745
—.0743
—.07u
—.0m9
—.Oma
–. m
—.0m4
—.0732
—.0720
~~

—.07”25
—. 0724

4.16
4.18
4.m
4.24
4.s
4.82
4.36
440
4.50
4.WJ
4.70
4.m
4.W
&w
h 10
h20
&40

2%
&w
am
6.40

$%’
7.00
7.40
7.m
&20
am
9.00
9.40

1:%1
la WI
lL 00
lL 40
1L80

Ez
1%m
l&m
14.m
14.E?l
16.40
It w
17.00
la 60
19.60
20.00
ZLoo
220iI

U&I

.0184

.mm

.Ms4

. mm

.1426

. 1M8

.2342

.2%48

.M76

.3922

%J

.6162

.6765

.73%3

.7964
:=

i $7
LOW
L 1182
L 17W
L 2217
L 2724
L3223
L 3716
l.m
L4677
1.6148
L mll
L6JW
1.m
1.6517

?E
L nm
1.73M
1.ml
1.7826
1.m
L 8249
1.8469
1.8W35
1.m
1.mm
1.9167
1.w

(b) Pmndtl nnrnber,0.72 (c) Prandtlnnmk, 0.733

F IF F F, H F H IT

-o. m
–. mm
–. Km
–. mm
–. 5o12
–. 4953
–. 4s70
–. 47B
–. 4m2
–. 4478
–. 43(I3
–. 4110
–. 3m2
–.28s4
–. 3458
–. mm
–. m
–. m
–. 2549
–. m36
–. 2130
–. 1837
–. 1754
–. lw
–. 1427
–. l!al
–. 1148
–. mm
–. 0916
–. CC316
–. 0725
–. w
–. 06n
–. mm
–. 0448
–. mm
–. 0272
–. Call
–. 0164
–. 0127
–. mm
–. m
–. Ms3
–. m46
-.0335
–. m
–. m21
–. CW6
–. m
–.CU16
–. mm
-. m
–. ml

am
.M25
. m-s
.1697
. 1W5
.22M
.2451
. ml
.2m5
.2741
.2746
.2n3
.!W3
.m
.24M
.2348
.2W4
.26M
.1664
.1819,
.1695
.lsw
.1429
.K@O
.1196
.1693
.Oma

:%%
.0729
.Cm7
.mm
.Omo
.6475
.04m
.Ms9
.02m
.m13
; j:g

.ola5

.CKK2

.M65

.mm

.m40

.m

.M2A

.COa

.al14

.CK60

.Cm7

.m

.aw

0.6741
.6767
.4849
.3fw
.3194
.2465
. 1M4

. :%

–: E
–. 0473
–. 0737
–. w
–. 1106
–. m
–. m
–. 1342
–. 1353
–. mm
–. 1324
–. Km
–. w
–. llm
–. Imi
–. IM5
–. 0m5
–. mw
–. am
–. 0750
–. mm
–. 0635
–. mm
–. 0s24
–. 0474
–. CrB3
–. 0312
–. Ozm
–. mm
–. 0169
–. 0K?5
–. m
–. m77
–. mm
–. m47
–. m
–. mm
–. m
–.um
-. mm
-. Cm4
-. m
-. ml

1.mm
.0422
.8%34
.8478
.7076
.7477
.W
.m
.M33

:%
.4n8
.4317
.3m!3
.WB1
.3246
.2X35
.%7
.ml
.m
.1913
. lno
.1623
.1359
.l!im
.1073
.6Q52
.M43
.0746
.WdQ
.Cw3
.md4
.0464

:E
.0273
.O.ul
.0163
.Olm
.Ma7
.M74
.m67
.M44
.m33
.Cw5
.0319
.mm
.mu
.fxw
.m
.ml
.m
.OxQ

o
.1
.2
.3
.4
.6
.6
.7
.8

1::
L1
L2
L3
L4,
1.5
1.6
L 7
1.8

k:
21
22
Z3
24
26
Z6
Z7
28
29
&o
31
%2
3.3
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
6.0
5.2
6.4
6.8
6.2
6.8
7.3

0.m
.Im2
Al&

.Wo

.0651

.mm

.1141

.1407

.ml

.1957

.2231

.ml

.2784

.3)17

.3W

.34BI

.3707

.3M0

.41m

.4277

.4440

.46m

.4na

%
.5674
.mm
.6W
.Sna
.6401
.5464
.56m
.65n
. E816
.5m2
.6iw
.mol
.533s
.5%3
.mu
.5CW
.5922
.5033
.5941
.6051
.5667
;%

am
.W7
.1169
. lm2
.1952
.2246
.24M
. n312
.2769
.2764
.2769
.2ZB
.W17
.25$3
.24M
.23M
.Zna
.2m4
. rw
.1M2
. lm7
. 1M5
.1440
.1319
.lm’!
. lm7
.mw
.6W2
.Cr31s
;~

.0694

.0633

.0477

.0427

.M3!3

.Cf439

.0212

.0163

.Olm

.0101

.0378

.m

.(046

.0334

.m19

. Ixllo

.WQ3

.m

o.mm
.6786
.48M
.4M7
.3210
.2470
.1817
. sf24
.07m
.0246

-.0143
-. 04m
–. 0734
–. 6%5
–. llM
–. 1224
-. 1s32
–. 1M7
–. 1383
–. 1366
–. 1331
–. 12m
–. 122a
–. 1178
–. 1113
-. 16i4
–. mm
–. 0m3
–. m
-. om7
–. 0703
–.W3
–. 0m6
–. ml
–. 0481
–. m
–. a317
–. 0266
-. m14
–. 0162
–. o128
–. 0162
–. mm
–. mm
-. w
-. m.M
–. M18
–. m
–. m

LWOO
.9.X5
.8s91
.84%
.7’m9
. 74M
.m
.65%
.6050
.Jw6
.5163
.4749
.4%9
.M7’2
.3615
.3MI
.2970
.ml
.2i16
. 21m
.1W5
.1741
.1666
.lw
. lm
.Km
.mm
.aw
.0767
.mm
.6801
.ml
.0469
.6414
.0305
.0234
.02m
.olm
.o13a
.Olca
.0378
.Oml
.M46
.m35
.m27
.W16
.mm
.m
.ml

.0.M46
-. M46
-. m
-. we
-.497’9
-.4921
-.4840
-.4735
-. 4m7
-. 4W
-.4234
-. 4m6
-. mm
-.2576
-.34.53
-.32.27
-. m
-.2773
–. 2556
-.2344
-.2141
–. 1’W
-. 17M
–. 16m
–. 1441
–. lzm
–. 1153
–. mll
–.6WJI
–. C@so
–. 0739
–.ms7
–. w
–. CL518
–. 0459
–. 0369
-.0231
–. oa19
–. olm
–. Om
–. 0102
–. W30
–.msl
–. m49
–. m37
–. m
–. mu
–. m
–. m

o
.1
.2
.3
.4
.5
.6
.7
.8

1::
L1
L2
1.3
L4
L5
L6

?;
1.9
Zo
21
::

24
!L6
26
27
Z8
29
3.0
&1
%2
3.3
3.4
3.6
3.8
Lo
4.2
4.4
4.6
4.8
&o
6.2
6.4
&6
h8
&o
6.4
&8
7.2

::

am
.M32
.0122
.02-&l
.043s
.W9
.M84
.1137
.1402
.1674
. 18!9

“:%
.2762
.Lw3
.W44
.3473

:%%
.4079
.4254
.4416
.4m5
.4m2
.4s27
.4941
.M46
.5139
.5224
.ml
.m

;g

.W

.5723

.6764

.&w

.6s37

.5M0

.s37’0

.m

.6m6

.6914

.M21

.5827

.6%2

.6%?s

.5043

.6046

.5819

.5951
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TABLE I.—F~TCTIONS F AND H AND DERIVATIVES FOR VARIOUS PRANDTL NUMBEIW-Coritixmed

,V

o
.1
.2
.3
.4

::
.7
.8

i:
L1
L2

?:
L5
L6
L7
L8

?:
21

i:
24
25
26
27
28

::
3.1
X2

H
3.6
3.8
40
4.2
44
4.6
L8
5.0
5.2
h5
&o
0.25

F

o.m
.a@l
.als
.0246
.0413
.Cmo
.W9
.11334
.K@3
.1558
. IW9
.X&s

:Hl
.2761
.ms
:3177
.82.s7
.3543

:=

:E
.4240
.4346

:%

:%!
.4736
.4791

:E
.4924
.4Q.59
.5016
.ml
.Bw3
.5122
.6143
.5U.9
.5169
. .m7
.51S3
.Slm
.5194
.ma!

F

Cm&
.0071
.0147
.0241
.0346
.0459
.0.573
.Ow
.0w6
.00?a
.1012
.1111
.m
.12w
.X376
.1453
.1625
.Im3
.16$5
.1714
. lm
.Is?o
.1869
. rm

: S1
.alm
.aloo
.mfo
.2119
.2240
.2170
.m
.2215
.Zm
.2%36
.=14
.2339
.am
.23m

:%
.2430
;=

. 2~74

.2484

.24s3

.2491

(d) Prmdtl number, 1

F

am
.0593
.Km
. lm
.1=
.X89

:%
:%

:%
.mm
.Z3N
.2189
.m
.1’WI

:%
. 157b
. 14XI
. lm
. 121a
.1104
.10)1
.@m4
.aw
.0733
.W.57
.C@s

:%
.Cwlii
.a968
.C@3
.02s4
.0197
.Olsl
. Ollel
.0B7
.Cu69
.CW9
.W35
.Cm5
.m14

:%

F’

a 6421

:%’
.3394
.2J16
.221B
. lm
. Ia@
.Wd6

-: 1%
-.0557
–. mm
–. 0975
-.1110
–. Km3
–. V&.0
-.1287
-. 12$N
-. m
-. Im3
-.118s
-.1127
-. Km
-. Cw7
-. m
-. C@39
-. ml
-.0725
-. 0s62
-. m
-. @546
-. 6Q3
-.0444
-. mw
-. 03al
-.0255
-. CQo2
-.0163
-.0124
-. m
-. W75
-. Ca57
-. w
-. mm
-. al14
-. mlo

@Randtl nunhr, 10

F

O.moo
.a3n

:E
.11X13
.1091
.1137
. I.lm
.1137
. llm
.1606
-1016
.O’m3
.0w3
.C&53
.07s9
.0748
.Ww

:!%
.0.567
.0523
.6491
.046s

:%
.Cw3
.0343
.0319
.0!a7
.0170

:H!

:%
.0178
.0153
.Olm
.0114
.Oow
.0085
.Cm3
.Ocm
.0047
-W36
.0026
.0014

:E
.m

(Ml&

.2423

. lm

.1134

.W53

–: %!!
–. 0221
-.0267
–. 0462
~0#

–. 0553
–. w
–. 0527
–. a505
–. 04&J
-. 04E3
–. 0427
–. Owo
–. 0375
–. 0351
–. 0323
–. am%
–. m
–. 0267
–. 0249
–. 0232
–. 6X6
-. 02)1
–. o187
–. 0174
-. Olm
–. 0L51
–. o131
-.0113
-. Oow
-. cm%
-. m
-. W63
-. w
-. a147
-. Cu35
-. CKm
-.0019
-. mu
-. @m.5
-. m
-. ml

H

LCOM
.W
.s%7
.m
.nw
.n89

:%
.EaM
.5109
.45s3
.41’32
.m
.WI
.W8
.!mu
.2370
.2101
. lWI
. 1W4
.1422

:%!
.aall
. cr317
.07ca
. cm3
.Cts20
.0457

:=
.0291
.03m
.0215
.0135
.Orz$

%%

, :E

:M
.0314
.Cmo
.m
.m
.COxl

H’

–o.son
–.E&M
–.Mm
–.m
–.5372
~.
–.5211
–.m
–.4823
–.m
–.m
–.m
–.3772
–.3484
–.3187
–.2915
–. 2648
–. 2232
–. 2134
–. 1937
–. 1605
-. Km
–. 1331
–. 1164
–. ma)
–. Wn
–. 0777
–. 6376
–. 0587
–. w
–. 0441
–. am
–. mm
–. 0z3
–. 0210
–. 0153
–. o115
–. aLs4
–. m
–. w
–. W34
–. am
–. mls
–. ml
–. m
–. am

H

L’(W3
.m
.mm
.0s34
.W48
.4437

:%%
.2164
.1519
. low
.07m

:E
.OzB
.0146
.00s2

:%%
.0021
.0012
.alo7
.0c04
.0m3
.Wol
.ml

:%
.COoo

:E

:=

.O#o

.m

.Woo
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TABLE I.—FUNCTIONS F AND H AND DERIVATIVES FOR VARIOUS PRANDTL NUiUBERS-Canaluded
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.0135
. m87
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.on36
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.a06
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. lmz
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.am
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.3649
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.W
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.W
.mm
.m
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.m
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.mm
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.m
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.m
.m
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.m
.m
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