
An Analysis of Lazy and Eager Limited Preemption
Approaches under DAG-based Global Fixed Priority Scheduling

Maria A. Serrano∗†, Alessandra Melani‡, Sebastian Kehr§, Marko Bertogna¶, Eduardo Quiñones∗

∗Barcelona Supercomputing Center (BSC), Barcelona, Spain
†Universitat Politecnica de Catalunya (UPC), Barcelona, Spain

‡Scuola Superiore Sant’Anna, Pisa, Italy
§DENSO AUTOMOTIVE Deutschland GmbH

¶University of Modena and Reggio Emilia, Modena, Italy

Abstract—DAG-based scheduling models have been shown to
effectively express the parallel execution of current many-core
heterogeneous architectures. However, their applicability to real-
time settings is limited by the difficulties to find tight estimations
of the worst-case timing parameters of tasks that may arbitrarily
be preempted/migrated at any instruction. An efficient approach
to increase the system predictability is to limit task preemptions
to a set of pre-defined points. This limited preemption model
supports two different preemption approaches, eager and lazy,
which have been analyzed only for sequential task-sets.

This paper proposes a new response time analysis that com-
putes an upper bound on the lower priority blocking that each
task may incur with eager and lazy preemptions. We evaluate
our analysis with both, synthetic DAG-based task-sets and a
real case-study from the automotive domain. Results from the
analysis demonstrate that, despite the eager approach generates
a higher number of priority inversions, the blocking impact is
generally smaller than in the lazy approach, leading to a better
schedulability performance.

I. INTRODUCTION

The use of multi- and many-core embedded architectures
in real-time systems is motivated by the demand for increased
computational performance [1][2]. The introduction of these
architectures involves a twofold challenge: on one side, argu-
ments about system correctness with guaranteed processing re-
sponse times must be provided; on the other side, a convincing
timing analysis must be coupled with the adoption of parallel
programming models. The use of parallel programming models
is of paramount importance to efficiently exploit the huge
performance opportunities of many-core architectures.

This paper analyses the global fixed priority scheduling
problem of real-time task-sets composed of DAG tasks [3],
where each task is divided into multiple smaller computation
units, called sub-tasks, that are allowed to execute simulta-
neously on different cores, provided the required precedence
constraints are met. Interestingly, this scheduling model has
certain similarities with the OpenMP tasking model [4], the
de-facto standard for shared memory parallel programming
in high-performance computing (HPC), and supported by the
newest many-core embedded architectures.

A key aspect in real-time scheduling is the preemption
strategy used as it allows the operating system to allocate
tasks requiring urgent service. Traditionally, real-time systems

This work was funded by the EU projects P-SOCRATES (FP7-ICT-2013-
10) and HERCULES (H2020/ICT/2015/688860), and the Spanish Ministry of
Science and Innovation under contract TIN2015-65316-P.

relied on fully preemptive (FP) or fully non-preemptive (FNP)
scheduling strategies [5]. The former specifies that a task can
be preempted at any point during its execution if a higher
priority task arrives. The latter does not allow tasks to be
preempted, being always executed until completion. Despite
there is no blocking time from lower priority tasks in FP
systems, they may incur important overheads due to context
switch costs, cache related preemption and migration delays,
and increased resource contention costs [6][7], significantly
increasing the pessimism in the worst-case execution times.
Moreover, a FP system may produce unnecessary preemp-
tions leading to unnecessary, and possibly prohibitively high,
overheads. On the contrary, a FNP system avoids preemption
overhead at the cost of adding significant blocking delays due
to lower priority tasks, affecting system schedulability.

To reduce the run-time overhead due to preemptions while
still preserving the schedulability of the system, the limited
preemption (LP) approach has been proposed in the literature
[8][9][10]. In the LP model, tasks include non-preemptive
regions (NPRs), where preemptions from other tasks are dis-
abled. Depending on the location of the NPRs, fixed or float-
ing, different schedulability analysis have been proposed. In
this paper, we will focus on the fixed NPR model, where tasks
preemption is allowed only at predefined locations inside the
code, called preemption points, which divide tasks into fixed
NPRs or sub-tasks. If higher priority tasks arrive between two
preemption points of the running task, preemption is postponed
until the next preemption point. The benefits of this model
are multiple: (i) the number of preemptions is reduced; (ii) a
tighter analysis of the preemption-related overhead is possible;
and (iii) the preemption overhead may be significantly reduced
by an optimized placement of preemption points [11].

Within the fixed LP model, there are two approaches which
differ in the way in which the lower-priority running task to
preempt is determined. The Eager LP approach selects to
preempt the lower-priority running task that first reaches a
preemption point. The Lazy LP approach waits until the lowest
priority running task reaches a preemption point. So far, these
two approaches have been analyzed only for sequential task-
sets [12][13]. Under this setting, the eager approach causes
high-priority tasks to potentially experience multiple priority
inversions due to lower priority tasks. In the lazy approach,
instead, a task may only be blocked at the beginning of its ex-
ecution and so suffering one single priority inversion, although
for a potentially larger amount of time than in the eager case.
The two approaches are therefore incomparable, meaning that
there are sequential task-sets that can be scheduled only with

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works

eager but not with lazy, and viceversa [13].
The analysis for sequential tasks cannot be applied as-it-

is when considering DAG-based task-sets. A lazy scheduler,
for example, may cause a DAG-task to experience multiple
priority inversions due to its inherent parallel structure. As we
will explain, the variation in the number of cores occupied
by a DAG-task may allow lower priority tasks to repeatedly
block later nodes of higher priority tasks, increasing the overall
interference.

In this paper, we analyze these effects, provide a suffi-
cient schedulability analysis for both the eager and the lazy
approaches, and compare their performance in terms of number
of priority inversions, preemptions and overall schedulability.

Concretely, this paper provides the following contributions:
(1) It analyzes and formally proves the conditions under
which a DAG-task may experience priority inversion with
global fixed priority LP scheduling; (2) It provides a sufficient
response time analysis for the eager approach, highlighting and
correcting a subtle error found in a recent paper addressing the
same setting [14]; (3) It derives a novel response time analysis
for DAG-based task systems globally scheduled with a lazy
approach, reducing the number of priority inversions that may
be experienced with respect to an eager scheduler; (4) It shows
that, despite the eager approach generates a higher number of
priority inversions, the blocking impact of lower-priority tasks
is significantly lower, particularly when the number of cores
increases; (5) It shows how the lower-priority blocking impacts
the overall schedulability performance, evaluating the proposed
tests for eager and lazy approaches on both, a randomly
generated parallel workloads and a real automotive AUTOSAR
application, i.e., a diesel engine management system (EMS)
provided by DENSO.

II. RELATED WORK

In order to reconcile the massively parallel computation
capabilities of modern multi- and many-core architectures with
the timing requirements of embedded computing applications,
parallel programming models are increasingly studied by the
real-time community. Recently, new task models have been
proposed to resemble the fine-grained execution provided by
current parallel programming paradigms. Among the proposed
task models, there are the fork-join model [15], in which
each task is represented as a sequence of alternating se-
quential and parallel segments, and the synchronous parallel
model [16][17], which allows consecutive parallel segments
with an arbitrary degree of parallelism. The sporadic DAG
model [18][19] generalizes the two previous models by rep-
resenting a task as a directed acyclic graph, where each node
corresponds to a sequential piece of code, and edges represent
precedence constraints between pairs of nodes. Most recently,
the DAG model has been extended [20][21] to encompass both
conditional and parallel execution modes. However, despite the
significant amount of work on parallel task models, most of the
existing literature on the topic only considers fully preemptive
or fully non-preemptive scheduling strategies.

The potential of limited preemptive scheduling schemes
has been mostly investigated in the case of sequential task-
sets, for which they have been proven to effectively limit the
preemption-related overhead incurred by a task. The reader can
refer to [10] for an exhaustive survey on the limited preemptive
scheduling framework in a single-core scenario.

In a multi-core system, schedulability analysis have been
developed under both the lazy and eager approaches. In the
former class, an analysis based on link-based scheduling has
been proposed in [22], while a schedulability analysis targeting
global fixed priority scheduling with eager preemptions has
been proposed in [23], under the assumption that each task has
a single final non-preemptive region. This work also showed
that an appropriate choice of the length of this region can
improve schedulability. Moreover, the authors showed that
the limited preemptive approach under global fixed priority
scheduling with eager preemptions is incomparable to that with
lazy preemptions. A complete schedulability analysis in the
case of eager preemptions has been proposed in [12].

To the best of our knowledge, the only work that extends
the limited preemptive scheduling scheme to a parallel task
model is [14], which proposed a response time analysis for
the sporadic DAG task model considering limited preemptions
under the eager approach.

III. SYSTEM MODEL

In this paper, we consider a task-set composed of n
sporadic DAG tasks T = {τ1, · · · , τn} executing according
to global fixed-priority scheduling on a platform composed of
m identical cores. Each task τk releases an infinite sequence
of jobs with a minimum inter-arrival time of Tk time-units and
a constrained relative deadline Dk ≤ Tk. We assume tasks are
ordered according to their decreasing unique priority, i.e., τi
has a higher priority than τj if i < j. We denote as hp(k) and
lp(k) the subsets of tasks with higher and lower priorities than
τk, respectively.

Each task τk ∈ T is represented as a directed acyclic graph
Gk = (Vk, Ek). Vk = {vk,1, . . . , vk,qk+1

} is the set of nodes
and Ek ⊆ Vk×Vk is the set of edges representing precedence
constraints among pairs of nodes. If (vk,1, vk,2) ∈ Ek, then
vk,1 must complete before vk,2 can begin execution. A node
with no incoming arcs is referred to as a source of the
DAG. Each node vk,j ∈ Vk is characterized by its worst-case
execution time (WCET) Ck,j . Without loss of generality, we
assume that each DAG task has exactly one source node vk,1.
If this is not the case, a dummy source node with zero WCET
can be added to the DAG, with edges to all the source nodes.

Let len(Gk) be the length of the longest path in the DAG,
which also corresponds to the minimum amount of time needed
to execute the DAG-task on a sufficiently large number of
processors. Algorithms to compute this value in linear time are
presented in the literature [20]. Moreover, let vol(Gk) denote
the volume of the DAG, i.e., the sum of the WCETs of all
its constituting nodes. This value corresponds to the WCET of
the task when executing on a dedicated single-core platform.

We consider a fixed priority scheduler with limited pre-
emptions and fixed preemption points. We assume preemption
points be given by node’s boundaries, i.e., a task cannot be
preempted while executing within a node, resembling the non-
preemptive regions of an OpenMP program [24], i.e. “task
parts” in the OpenMP nomenclature. Therefore, a task τk has
qk = |Vk| − 1 potential preemption points and the nodes in
Vk represent non-preemptive regions (NPRs). Within the LP
scheduling model, we consider two different approaches: (1)
the Eager approach, where a high priority task preempts the
first lower priority executing task that encounters a preemption

(a) LP eager approach (b) LP lazy approach

Fig. 1. Scheduling of sequential tasks τ1, τ2, τ3 and τ4 on a 2-core processor.

point, i.e., that reaches the end of a node; and (2) the Lazy
approach, where a high priority task waits until the lowest
priority executing task reaches a preemption point.

Figure 1(a) shows an example of the eager approach
applied to the task-set {τ1, τ2, τ3, τ4} executing on two cores.
For simplicity, the task-set is composed of sequential tasks.
Assume that tasks τ3 and τ4 are already executing when τ1
and τ2 are released at time t1. Under the eager preemption
approach, τ1 starts executing as soon as the lower priority task
τ3 reaches a preemption point, which occurs at time instant t2.
Similarly, task τ2 starts the execution at time instant t3 when
the next lower priority task τ4 reaches a preemption point.

With a lazy approach instead, τ1 waits until τ4, the lowest
priority running task, reaches a preemption point at time t3, as
shown in Figure 1(b). Notice that another lower priority task
(τ3) reached a preemption point befire, at t2, but has not been
preempted. Hence, task τ2 is blocked by τ3 until this latter
reaches its next preemption point at time t4.

IV. SCHEDULABILITY ANALYSIS

To investigate the schedulability analysis of DAG-based
task systems with limited preemptions, we build upon the work
in [14] that extends the analysis for fully-preemptive systems
presented in [20] by incorporating the interference due to non-
preemptive regions of lower-priority tasks. A response-time
analysis of a DAG-based task-set with a limited-preemptive
global fixed priority scheduler is computed by iterating the
following equation until a fixed point is reached, starting with
Rk = len(Gk) + 1

m

(
vol(Gk)− len(Gk)

)
:

Rk ← len(Gk) +
1

m

(
vol(Gk)− len(Gk) + Ihpk + I lpk

)
(1)

To understand the above formula, we hereafter clarify
the constituting terms: (1) len(Gk) represents the length of
the critical path of task τk, i.e., the sequence of consecu-
tive nodes leading to the minimum response-time of τk. (2)
vol(Gk) − len(Gk) represents a valid upper-bound on the
self-interference (or intra-task interference) of task τk, i.e., the
interfering contribution experienced by the considered task due
to nodes not belonging to its critical path. (3) Ihpk represents
the higher-priority interference from higher priority tasks in
the system, i.e., the amount of time each higher priority task
executes while τk is pending but not executing. Similarly, I lpk
represents the lower-priority interference. The sum Ihpk + I lpk
is also known as inter-task interference. (4) The intra-task
and inter-task interfering contribution can be divided by m
by observing that the critical path of τk does not make any
progress only when all cores are occupied by intra-task and/or
inter-task interference (see Lemma IV.2 in [20]).

To apply the above analysis, it is necessary to identify
valid upper bounds on the terms Ihpk and I lpk . The following

Fig. 2. Worst-case workload of a task τi in a window on length L.

Lemma, rephrased from [20], provides an upper bound for the
higher-priority interference Ihpk , by taking the densest possible
packing of parallel jobs for each task in hp(k), given a problem
window of length Rk.

Lemma 1 (From [20]): An upper-bound on the higher-
priority interference on task τk in a window of length Rk is
given by

Ihpk ≤
∑

i∈hp(k)

Wi(Rk) (2)

where Wi(t) =
⌈
t+Ri−vol(Gi)/m

Ti

⌉
vol(Gi).

Wi(t), represented in Figure 2, is the maximum workload
of an interfering task τi in a window of length t. It happens
when (i) the volume of the higher priority task τi is evenly
divided among all m cores; (ii) the carry-in job executes as late
as possible, i.e., close to its worst-case response time which is
upper-bounded by Ri; and (iii) later instances execute as soon
as possible, i.e., when they are released with the minimum
inter-arrival time. By considering a full contribution of both
carry-in and carry-out instances, the lemma follows1.

In the following sections, we will show how to provide
valid upper bounds on the lower-priority interference I lpk for
the Eager and the Lazy approaches.

V. LOWER-PRIORITY INTERFERENCE

To compute an upper bound on the interference from lower
priority tasks, it is first necessary to identify the situations in
which a priority inversion may occur, i.e., when a task may
be blocked by lower priority instances. As noted in previous
works addressing global LP schedulability analysis [23], [12],
[14], a task may be blocked before the beginning of its
execution by lower priority tasks that already started executing
and it may also suffer additional priority inversions due to later
lower-priority instances.

To understand why a task may be blocked after it started
executing, consider a sequential task system with eager pre-
emptions. In this setting, a task τk may start executing along
with one or more lower priority instances τi>k. If a higher
priority task arrives, τk may be preempted if it is the first one
reaching a preemption point, even if it is not the lowest priority
executing task. This would cause τk to be de-scheduled, while
tasks τi>k continue executing, leading to a priority inversion
until one of the lower priority executing tasks reaches a pre-
emption point. Such a priority inversion is therefore bounded
by the length of the NPRs of lower priority tasks.

1The corresponding Lemma V.1 in [20] does not consider a full carry-
out contribution, but only the share that fits the considered problem window.
However, we found that such a tighter estimation does not improve the
analysis, since the response-time iteration will always continue until a full
carry-out instance is considered. This observation allowed us to simplify the
formula without introducing pessimism.

(a) Task-set composed of 3 DAG-tasks. (b) Scheduling of task τ1 and τ2.

Fig. 3. Example of DAG task-set.

However, for DAG-based tasks the situation is a bit more
complicated. This is due to the inherent parallelism of the
structure of each task, which may dynamically vary depending
on the graph dependencies. Indeed, it may happen that an
executing task τk may experience lower-priority blocking even
without being preempted by higher priority tasks, e.g., when
a node of τk forks two or more parallel nodes, requiring
additional cores to execute them. If cores are busy executing
lower priority instances, τk experiences blocking on the forked
nodes until lower-priority instances reach a preemption point.

Figure 3 shows an example of this scenario. We consider a
system composed of two DAGs, τ1 and τ2, executing on m = 2
cores. The structure of τ1 and τ2 is as in Figure 3(a), assuming
all nodes have unitary WCET, except v2,1 with C2,1 = 2. Task
τ1 is the highest priority task, therefore it cannot be preempted
after it started executing. Still, τ1 may be blocked by τ2 once τ1
has started its execution. This is the case, for instance, shown
in Figure 3(b), when both tasks arrive at the same time t1.
When v1,1 finishes, only one of the forked nodes v1,2 may
be scheduled at t2, while v1,3 will be blocked by the lower
priority task τ2 executing on the other core.

To identify the additional number of priority inversions
once a task τk has started its execution and due to the dynamic
variation of cores required, we introduce a new parameter swk.

Definition 1: swk is the maximum number of additional
core requests that a DAG-task τk may cause after starting its
execution.

These are all the points at which a potential priority inver-
sion may arise after τk has started executing. It is important not
to confuse the extra cores accounted by swk, with the number
of spawns, the total spawned nodes, or the maximum cores
required by a task simultaneously (maximum parallelism). To
better understand the reasoning behind this definition, consider
the example in Figure 3(a), where a DAG task-set composed
of three tasks is represented. For the first task τ1, sw1 = 1
because one extra core is required when node v1,1 spawns
nodes v1,2 and v1,3. Notice that the maximum parallelism is
2 but the number of additional cores required is just 1. For
task τ2, sw2 = 0 because it does not require extra cores after
it started executing. Finally, sw3 = 4 because τ3 requires:
(i) 1 extra core when node v3,1 spawns nodes v3,2 and v3,3
(sw3 = 1); (ii) 2 extra cores when node v3,3 spawns nodes
v3,4, v3,5 and v3,6 (sw3 = 1 + 2); and (iii) 1 extra core when
node v3,8 spawns nodes v3,9 and v3,10 (sw3 = 1 + 2 + 1 = 4).
Notice that, even though τ3 occupies three cores when nodes
v3,4, v3,5 and v3,6 are ideally executed in parallel, two cores are
released before executing v3,8. Therefore, we need to account
for an extra core when v3,8 spawns nodes v3,9 and v3,10.

A linear algorithm that computes an upper bound on swk

Algorithm 1 Additional core requests caused by a DAG task.
Input: G = (V,E); Succ(vi) ∀ vi ∈ V ; Pred(vi) ∀ vi ∈ V
Output: sw

1: procedure ADDITIONALCORES
2: sw = 0
3: N = {}
4: for each vi ∈ V do
5: cores = |Succ(vi)| − 1
6: for each vj ∈ Succ(vi) do
7: if vj ∈ N then
8: cores = cores− 1
9: else

10: if Succ(vi) ∩ Pred(vj) 6= φ then
11: cores = cores− 1
12: end if
13: N = N ∪ {vj}
14: end if
15: end for
16: sw = sw +max(0, cores)
17: end for
18: end procedure

could be easily obtained by iterating over all nodes of each
DAG, vk,j ∈ Vk, and adding the number of vk,j’s successors
minus 1. However, this algorithm would be too pessimistic as
there may be dependencies among successor nodes that prevent
them to simultaneously execute, thus, reducing the number of
extra cores required. For example, if an edge would exist from
v3,4 to v3,5 in Figure 3(a), the number of extra cores required
after the computation of v3,3 is 1 and not 2 (v3,3’successors
minus 1) because v3,4 should execute before v3,5.

Therefore, in order to compute the exact value of swk
we provide an algorithm that considers potential dependencies
among successor nodes. Concretely, Algorithm 1 takes as input
the DAG G = (V,E) and, for each node vi ∈ V , Succ(vi) and
Pred(vi) which are the sets of successors and predecessors
of vi, respectively. The algorithm iterates over all the nodes
in V . At each iteration the number of extra cores required
after vi execution, i.e. the variable cores, is initialized to its
maximum possible value: vi’s successors minus 1 (line 5). In
the second loop, the algorithm iterates over all vi’s successors,
vj ∈ Succ(vi), to check if a core has already been accounted
for the execution of vj (line 7) or if it has a dependency with
any of its sibling nodes (line 10). In both cases the number
of extra cores required decreases by one. Then, the given
successor vj is added to N (line 13) to keep track of the nodes
that have been already considered for accounting extra cores.
Finally, sw is updated with the extra cores required after vi
execution (line 16). This algorithm has quadratic complexity
in the number of nodes.

The computation of swk allow us to provide, in the follow-
ing sections, the number of priority inversions, and therefore
an upper bound on the lower-priority interference, to any DAG-
task scheduled with the eager or lazy LP approaches.

VI. EAGER PREEMPTION ANALYSIS

With the eager approach, the first lower priority task to
reach a preemption point may be preempted even if it is
not the lowest priority running task. That is, if there are
several lower priority tasks running when a high priority task is
released, the first lower priority task τk reaching a preemption

point is preempted. As a result, τk can suffer lower priority
interference not only before starting its execution, but also at
later preemption points. Moreover, with a DAG-task model,
τk may also suffer lower priority interference when it requires
one or more additional cores for executing its parallel nodes.

The next lemma provides an upper bound on the number of
higher-priority instances that may arrive within the scheduling
window of a job of a task τk.

Lemma 2: In any time interval of length t, a job of task τk
may be preempted by higher-priority tasks at most hk times:

hk(t) =
∑

i∈hp(k)

⌈
t+Ri
Ti

⌉
(1 + swi) (3)

Proof: Assume the job of τk is released at time t0 = 0.
During a time interval of length t, each higher-priority task τi
can be released at most

⌈
t+Ri

Ti

⌉
times. Following the definition

of swi in the previous section, it descends that the number of
cores requests (and so potential preemption to τk) by a single
instance of τi is at most 1 + swi: one when τi releases plus
swi after it starts executing. If we consider all the high priority
tasks in hp(k), the lemma simply follows.

To determine the number of priority inversions experienced
with the eager approach, the following lemma identifies the
conditions under which an executing task experience lower-
priority interference.

Lemma 3: Under the LP eager approach, a DAG-task τk
that already started executing may experience additional lower-
priority interference only if all the following conditions are
simultaneously satisfied:

1) τk encounters a preemption point.
2) A higher priority task arrives OR τk requires extra

cores to spawn new parallel nodes.
3) There are lower-priority tasks being executed.

Proof: Condition (1) guarantees that, following the LP
scheduling model, a task cannot be preempted within the ex-
ecution of a node. Conditions (2) follow from the observation
that a task cannot be preempted by a lower-priority instance.
Therefore, in order for τk to experience blocking from other
lower-priority running instances, it must either be preempted
by a higher-priority task or require extra cores to spawn new
parallel nodes. Condition (3) is trivially derived by noticing
that no lower-priority blocking may be experienced without
lower-priority instances being executed.

Lemma 3 enables upper-bounding the maximum number
of priority inversions for the eager approach as follows.

Lemma 4: With the LP eager approach, in any time inter-
val of length t, an upper bound on the number of additional
priority inversions that a DAG-task may experience after
starting its execution is

peagerk (t) = min
(
qk, swk + hk(t),

∑
∀τi∈lp(k)

⌈
t+Ri
Ti

⌉
× |Vi|

)
(4)

Proof: Condition (1) in Lemma 3 ensures that the number
of additional priority inversions cannot exceed the number of
potential preemption points predefined by the internal structure

of the DAG (qk). Condition (2) provides a further bound given
by the number of preemption requests from higher priority
instances during a time interval of length t (hk(t), see Equation
3) plus the overall number of extra cores requests by τk in
spawn operations (swk). Finally, Condition (3) allows deriving
one last bound given by the number of NPRs (i.e., nodes) of
the lower priority tasks that may arrive within the considered
scheduling window of length t

(∑
∀τi∈lp(k)

⌈
t+Ri

Ti

⌉
× |Vi|

)
.

The lower priority interference I lpk for the LP eager ap-
proach has been computed in [14] as:

Ieagerk = ∆m
k + peagerk (Rk)×∆m−1

k (5)

where (considering the LP-max approach [14]):

∆m
k =

m∑
l=1

Qlk and ∆m−1
k =

m−1∑
l=1

Qlk (6)

∆m
k upper-bounds the lower priority interference on the first

NPR of τk, while ∆m−1
k upper-bounds the lower priority

interference on the pth NPRs (2 ≤ p ≤ qk + 1) of τk, i.e.
when a priority inversion occurs. Qlk denotes the lth largest
NPR in the set lp(k). In order to upper bound the lower-
priority blocking suffered by a task τk, the analysis in [14]
considers that τk’s lower priority tasks are executing their m
longest NPRs on the m available cores when τk is released.
Moreover, in the worse case, at each τk’s potential priority
inversion (due to a higher priority tasks or because τk requires
extra cores), the m−1 longest NPRs of τk’s lower priority tasks
are executing on the m − 1 available cores. In [12], authors
demonstrate why only m − 1 lower priority tasks may block
τk at each preemption.

Note that we enhanced the derivation of peagerk with respect
to [14]. On one side, Equation 4 includes the potential blocking
impact of spawn operations (swk). Not considering it under-
estimates the number of priority inversions, as the potential
blocking impact when extra cores are requested is not taken
into account. On the other side, peagerk includes the maximum
number of nodes coming from lower priority tasks that may
interference with τk (

∑
∀τi∈lp(k)

⌈
t+Ri

Ti

⌉
×|Vi|), resulting in a

more accurate blocking estimation.

VII. LAZY PREEMPTION ANALYSIS

Under the lazy approach, preemption is delayed until the
lowest priority currently running task reaches a preemption
point. Authors in [25] estimated the worst-case interference
due to lower-priority tasks when considering sequential task-
sets and lazy preemptions. Under this scenario, a high priority
task τk may only suffer from lower priority interference before
it starts its execution, i.e., when it is released. With sequential
task-sets and the lazy approach, τk can only be preempted by
higher priority tasks if it is the lowest priority task executing
on the processor. As a result, τk cannot be interfered by lower
priority tasks once it has started executing.

Figure 4 illustrates an example of the worst-case blocking
pattern generated by lower priority tasks under a sequential
task-set scenario. Concretely, it shows 8 tasks τ1, ..., τ8 (in
decreasing priority order) running on m = 4 cores. Assume
that lower-priority tasks τ5, τ6, τ7 and τ8 are already executing

Fig. 4. Maximum lower priority blocking of a sequential task-set under the
lazy approach.

on the processor, when the higher-priority tasks τ1, τ2, τ3 and
τ4 are simultaneously released at time instant t1. The first task
to be preempted is τ8 (the lowest priority task) at time t2, when
a preemption point is reached, and so the highest priority ready
task τ1 can start its execution. In the worst case scenario task
τ7 reaches a preemption point at time t2 − ε in which the
lowest priority task (τ8) is still executing, and so it continues
executing (an so blocking τ2) until its next preemption point
is reached at t3, when τ2 can start executing. Subsequently
in the worst-case situation, τ6 enters in a node just before
the preemption point of τ7 is reached at time t3, blocking
τ3 until t4. Finally, τ4 is able to start its execution at time
t5. Overall, the worst-case blocking τ4 can suffer is equal to
(t2−t1)×4+(t3−t2)×3+(t4−t3)×2+(t5−t4)×1. In general,
the upper bound of the maximum blocking is computed by
adding the largest node from the lp(k) multiplied by m, the
second largest node from the lp(k) multiplied by m − 1, the
third largest node from the lp(k) multiplied by m− 2, and so
on, until the m-th largest nodes from lp(k) is considered.

However, with a DAG-based task system, the lazy approach
involves not only suffering low priority blocking on the first
node, i.e., when the task is released, but also at other interme-
diate execution points, namely, when extra cores are required
to spawn new parallel nodes.

Figure 5 shows an example of the lazy approach when
considering a DAG-based task-set composed of four tasks
τ1, τ2, τ3 and τ4, in decreasing priority order (Figure 5(a)),
scheduled on m = 3 cores (Figure 5(b)). We assume that
tasks τ2, τ3 and τ4 are executing its first node when the highest-
priority task τ1 is released at time t1. Under the lazy approach,
τ1 starts executing the first node v1,1 when the lowest-priority
running task τ4 reaches a preemption point at time t2. At time
t3, nodes v1,2 and v1,3 are ready to start executing, but only
the core in which v1,1 is being executed is available to start
executing v1,2. At time t4, τ2 reaches a preemption point,
but since it is not the lowest priority task, node v1,3 of τ1
is blocked until τ3 reaches a preemption point at time t5. As
a result, when considering DAG-based task-sets, intermediate
nodes can suffer from low priority blocking. In the example,
the lower priority task τ2 and τ3 block the execution of the
intermediate node v1,3. The reason is because, at time t3, τ1
spawned two parallel nodes, and so requested one extra core.

Lemma 5: Under the LP lazy approach, a DAG-task τk
that already started executing may experience additional lower
priority interference only if all the following conditions are
simultaneously satisfied:

1) τk encounters a preemption point
2) τk requires extra cores to spawn new parallel nodes
3) There are lower-priority task being executed

(a) Task-set composed of 4 DAGs. (b) Scheduling on a 3-core processor.

Fig. 5. Scheduling of a DAG-based task-set under the lazy approach.

Proof: Similarly to Lemma 3, Condition (1) guarantees
that, following the LP scheduling model, a task cannot be
preempted within the execution of a node. Condition (2)
follows from the observation that τk can only be preempted
by a higher-priority task and if it is the case, following the
lazy approach, τk would be the lowest priority tasks (there
are not other lower priority instances running and blocking
τk). However, if τk requires extra cores to spawn new parallel
nodes, all cores may be occupied by lower priority tasks
blocking τk. Condition (3) is trivially derived by noticing that
no lower-priority blocking may be experienced without lower-
priority instances being executed.

Lemma 5 enables upper-bounding the maximum number
of priority inversions for the lazy approach as follows:

Lemma 6: With the LP lazy approach, in any time interval
of length t, an upper bound on the number of additional priority
inversions that a DAG-task may experience after starting its
execution is

plazyk (t) = min
(
swk,

∑
∀τi∈lp(k)

⌈
t+Ri
Ti

⌉
× |Vi|

)
(7)

Proof: Similarly to the eager approach, the number of
additional priority inversions is upper bounded by the number
of extra cores requests swk (see Definition 1) and the number
of lower priority tasks’ nodes

(∑
∀τi∈lp(k)

⌈
t+Ri

Ti

⌉
× |Vi|

)
.

Despite Lemma 5 defines as a necessary condition to encounter
a preemption point, qk > swk so, additional priority inversions
are not conditioned to a preemption point but to a spawn
operation. To demonstrate it, consider a DAG-task with a node
spawning m different nodes. In this case, qk = m while
swk = m − 1 as the same core executing the first node can
execute one of the spawned nodes.

Overall, and following the approach in [14], the lower priority
interference I lpk , for the LP lazy approach is computed as:

I lazyk = Amk + plazyk (Rk)×Am−1k (8)

where (considering the blocking estimation presented in [25],
named ADS blocking estimation 2):

Amk =

m∑
l=1

Qlk × (m− l + 1) and Am−1k =

m−1∑
l=1

Qlk × (m− l)

(9)
As shown in the previous Section VI, Qlk denotes the lth

largest NPR in the set lp(k).

VIII. EVALUATION

This section evaluates the proposed response time analysis
of both the eager and lazy limited preemption approaches

Fig. 6. Number of additional priority inversions of LP-eager (peagerk) and
LP-lazy (plazyk) and DAG’s maximum number of preemptions (qk), when
varying the number of tasks.

(labeled as LP-eager and LP-lazy respectively) in terms of:
(1) number of priority inversions considered by our response
time analysis according to Equations 4 and 7, (2) number of
preemptions occurring at system deployment (by means of a
scheduling simulator), (3) impact of interference and blocking
coming from high-priority and low-priority tasks respectively,
and (4) schedulability analysis varying the overall system
utilization and number of tasks.

It is important to remark that the schedulability test is an
iterative procedure which computes the response time upper
bound of each task, starting from the highest priority task to
the lowest priority tasks. Therefore Ri,∀τi ∈ lp(k), is not
computed yet when, iterating over task k, we need to compute
peagerk or plazyk (see equations 4 and 7). As a result, in this
section we use a safe upper bound of Ri, which is Di (if Di

is greater than Ri then the task set is not schedulable).

LP-eager and LP-lazy are compared against an ideal FP
(labeled as FP-ideal) in which the impact of lower-priority
blocking is discarded in Equation 1, i.e. I lpk equals to 0.
Notice that the performance of a real FP strategy in which the
preemption overheads would be included in the analysis may
significantly decrease compared to LP. Accurately accounting
for preemption overheads in FP is very difficult (if not impos-
sible) since the execution can be preempted at any point of
the task. Preemption overheads have not been considered in
LP-eager nor in LP-lazy because they have the same impact
in the response time analysis of both strategies. Nevertheless,
a safe upper bound could be easily computed by multiplying
the maximum number of preemptions a task may suffer, qk,
by the maximum time required for a context switch.

All results have been implemented in MATLAB R©, con-
sidering the simulation environment presented in [14].

A. Case-studies: Randomly Generated Task-sets and an AU-
TOSAR Automotive Application

Experiments presented in Sections VIII-B and VIII-C con-
sider random DAG-based task-sets generated with the simu-
lation environment presented in [14], assuming the following
parameters: the maximum number of nodes (NPRs) per graph
is Vmax = 50; the probability of creating a terminal node
or keeping the expansion of the graph are pterm = 0.4
and ppar = 0.6, respectively; the probability of adding an
additional edge between sibling nodes is pdep = 0.1; the
maximum number of successors a node can have is npar = 6;

the longest path of the DAGs is at most 7; the WCET Ci,j
of each node is uniformly selected in the interval [1, 100]. For
each experiment, we generated 500 task-sets for each value in
the x-axis, considering the implicit deadline case (Dk = Tk).

Experiments presented in Section VIII-D consider an
AUTOSAR-compliant diesel Engine Management System
(EMS). AUTOSAR is a standardized system software architec-
ture upon which automotive applications are built and executed
[26]. In AUTOSAR, applications are composed of a set of
functions, named runnables, that communicate among them
through well-defined communication methods. Runnables, that
can be executed periodically or triggered by an interrupt, are
grouped into AUTOSAR tasks, which are the unit of schedul-
ing (UoS) of the AUTOSAR Operating System. The nature
of AUTOSAR execution model fits very well the preemptive
scheduling model [27] considered in this paper: an AUTOSAR
task can be modeled as a DAG-task where nodes correspond
to runnables and edges correspond to communication methods
among runnables. Runnables are executed uninterruptedly,
defining preemption points at runnable boundaries.

An EMS is a typical automotive complex application in
which the amount of fuel and the injection time are funda-
mental for smooth revolutions of the engine. To do so, the
EMS requires an update either from eleven cyclic executed
AUTOSAR tasks, with periods (and deadlines) of 1, 4, 5, 8,
16, 20, 32, 64, 96, 128 and 1024 ms, and one crank-angle
triggered task, with a minimum period of 1.25 ms. The crank-
angle task has a period that varies depending on the revolutions
of the engine, so with the objective of guaranteeing the correct
execution of the task, the smallest possible period is considered
for scheduling purposes. Overall, the EMS is composed by
more than one thousand runnables.

In order to compute the WCET estimates (C) of runnables,
we use a static timing analysis tool OTAWA [28], which
models a generic multi-core processor architecture. Concretely,
we consider 4-core, 8-core and 16-core processor setup with
private per-core scratchpads for instructions and write-through
data caches. For all processor configurations cores are con-
nected through a tree NoC to the on-chip RAM memory. The
impact of interferences resultant of accessing to shared proces-
sor resources are not considered in the WCET computation2.

B. Impact of Priority Inversions and Preemptions
This section evaluates the number of preemption points and

priority inversions considered at response time analysis, the
number of actual preemptions occurring at system deployment,
and the interference and blocking impact generated by high-
priority and low-priority tasks respectively. All experiments
presented in this Section consider randomly generated task-
sets with an overall task-set utilization of 2.5.

Figure 6 shows the number of additional priority inversions
considered by the LP-eager and LP-lazy strategies, i.e. peagerk

(Equation 4) and plazyk (Equation 7), and qk the number of
preemption points, i.e. the maximum number of preemptions
a task may suffer, when varying the number of tasks from 2
to 50 (in steps of 4). Notice that qk represents the maximum
number of priority inversions after starting its execution.

2The approach presented in this paper is independent of the processor
architecture and the timing analysis method, so other architectures and tools
can be used to compute the WCET estimates of runnables.

(a) m = 4 cores (b) m = 8 cores (c) m = 16 cores
Fig. 7. Observed preemptions when varying the number of tasks and considering 4 (a), 8 (b) and 16 (c) cores.

(a) m = 4 cores (b) m = 8 cores (c) m = 16 cores
Fig. 8. Average higher- and lower-priority interference for each task when varying the number of tasks and considering 4 (a), 8 (b) and 16 (c) cores.

As expected, Figure 6 confirms that the response time
analysis of the eager approach considers a higher number of
potential priority inversions than the lazy approach, being very
close to the maximum number of preemptions. The reason is
that in the eager approach, lower priority blocking can come
from (1) high-priority preemptions at the end of each node
while there are lower priority task running and (2) the spawn
of new parallel nodes requesting extra cores (see Lemma 3).
Under the lazy approach instead, only spawn operations can
generate blocking from lower priority tasks (see Lemma 5). In
fact, in most cases, pkeager is given by qk except for (1) the
highest priority task, for which pkeager = swk because hk = 0
and swk < qk, and (2) the lowest priority task, for which
pkeager = 0 since there are no lower priority tasks causing
blocking. The impact of these two tasks is shown in Figure 6,
in the small difference between qk and pkeager. In most cases,
pklazy is given by swk, except for the lowest priority task, for
which pklazy = 0 for the same reason than in LP-eager.

Such a trend is also observed when actually executing the
task-sets. Figure 7 shows the observed preemptions when ex-
ecuting the DAG task-sets in a scheduling simulation running
for 105 time units (which includes multiple task releases),
varying the number of tasks from 2 to 50 (in steps of 4), and
considering a 4-core (a), 8-core (b) and 16-core (c) processor.
In this case, the FP scheduling strategy has been considered
as well, for comparison purposes.

As expected, the LP eager approach generates more pre-
emptions than the LP lazy approach. Clearly, the number of
preemptions in both cases decreases as more cores are available
for the same number of tasks. In case of the FP scheduling
strategy, the number of preemptions is much higher than
LP, since more scheduling opportunities exist (resulting in a
higher schedulability rate, as will be shown in Section VIII-C).

However, this would (seriously) difficult response time analysis
if preemption overheads would be included.

Despite LP-eager enforces a higher number of priority
inversions compared to LP-lazy, as shown in Figure 6, it
results in less blocking and so better schedulability ratio in the
response time analysis (see Section VIII-C). Figure 8 shows the
contribution (in time units) that interference and blocking due
to high and low priority tasks make over the overall response
time when varying the number of tasks from 2 to 50 (in steps
of 4), and considering a 4-core (a), 8-core (b) and 16-core
(c) processor. Concretely, the Figure shows the contribution of
Ieagerk and I lazyk , and the sum of Ihpk +Ieagerk and Ihpk +I lazyk ,
to the response time analysis of LP-eager and LP-lazy. The
contribution of Ihpk alone is also shown for FP-ideal.

As shown, the blocking factor due to lower priority tasks
of LP-lazy (I lazyk) and LP-eager (Ieagerk) are almost equivalent
when m = 4 cores but it increases dramatically as the number
of cores increases. In case of m = 16 cores, I lazyk becomes the
dominant factor in the response time. It is important to remark
that the higher-priority interference Ihpk is alike computed for
FP, LP-eager and LP-lazy (see Equation 2). However, the
Ihpk for lazy is always worse than eager, which in turn, is
worse than FP. The reason for this is because Ihpk is computed
considering the window of interest in which higher priority
tasks can interfere, a.k.a the response time, which is iteratively
computed by Equation 1. As I lazyk or Ieagerk increase, the
window of interest increases as well, impacting on Ihpk .

Overall, factors Amk and Am−1k (used in I lazyk) add huge
pessimism, increasing the window of interest and impacting on
the system schedulability of LP-lazy as shown in next section.

(a) m = 4 cores (b) m = 8 cores (c) m = 16 cores
Fig. 9. Schedulability rate (in %) when varying the number of tasks and considering m = 4 (a), m = 8 (b) and m = 16 (c) cores.

(a) m = 4 cores (b) m = 8 cores (c) m = 16 cores
Fig. 10. Schedulability rate (in %) when varying the overall system utilization and considering m = 4 (a), m = 8 (b) and m = 16 (c) cores.

C. Schedulability Analysis

This section evaluates the schedulability rate (in percent-
age) resultant of the response time analysis presented in Sec-
tion IV. The lower priority interference I lpk has been computed
using Equations 5 (Ieagerk) and 8 (I lazyk) for the LP eager and
lazy approaches respectively. All experiments presented in this
Section consider randomly generated task-sets.

Figure 9 shows the percentage of schedulable task-sets for
FP, LP-eager and LP-lazy when varying the number of tasks
from 2 to 50 (in steps of 4), and considering a 4-core (a), 8-core
(b) and 16-core (c) processor. The overall task-sets utilization
is set to 2.5 for all cases. Since the number of tasks is a
fixed parameter in each experiment, we computed individual
utilization using UUnifast [29]. The common trend is that the
schedulability ratio increases as the number of task increase
conforming to the intuition that scheduling a large number
of light tasks (with low individual utilization) is easier than
scheduling fewer heavy tasks (with high individual utilization).
This is the case of the FP-ideal and LP-eager for all processor
configurations, with a schedulability rate of 100% (or very
close to it) on task-sets composed of 50 DAG-tasks

However, for LP-lazy, I lazyk hugely increases as the number
of cores increases (see Figure 8), resulting in a very pessimistic
response-time analysis, in which no task-set can be scheduled,
even with an utilization of 2.5 in a 16-core processor.

Figure 10 shows the percentage of schedulable task-sets for
FP, LP-eager and LP-lazy when varying the task-set utilization
and considering a 4-core (a), 8-core (b) and 16-core (c) pro-
cessor. The task-sets considered for this experiments contains
between 30 and 50 tasks. Results confirm what presented in
previous figures: the impact of blocking due to low-priority
tasks dominates on the response time analysis of the LP-lazy,
resulting in a very poor schedulability rate. LP-lazy cannot
schedule any task-set with values for the utilization above 3,

3 and 2, when considering 4, 8 and 16-cores respectively. For
LP-eager, these utilization values are 3, 4.5 and 6.

D. AUTOSAR Automotive case study

This section evaluates the schedulability of the EMS AU-
TOSAR application. We show the result of the response time
analysis presented in Section IV for each of the twelve tasks.

Figure 11 shows the percentage of schedulable tasks when
ranging the CPU frequency from 250 MHz to 4 GHz and
considering a 4-core (a), 8-core (b) and 16-core (c) processor.
The reason of ranging among different processor frequencies
is to evaluate the EMS application under different utilization
scenarios. WCET estimations of runnables, i.e., nodes in V,
are computed in CPU cycles, but tasks’ periods are expressed
in milliseconds (ms). Hence, the processor frequency must be
considered to derive WCET estimations in the same time unit
(ms). Moreover, increasing the CPU frequency is equivalent
to decrease the overall task-set utilization. For example, when
the processor operates at 250 MHz, the overall EMS utilization
equals to 0.57; 4 GHz corresponds to an utilization of 0.03.

The trend shown in Figure 11 is similar to the one observed
in Section VIII-C, i.e., LP-eager outperforms LP-lazy in all
cases. In fact, LP-lazy cannot schedule the EMS application
in any processor frequency configuration, except assuming a
4-core processor operating at 4 GHz. The pessimism added by
LP-lazy increases as the number of cores increases, resulting in
the counter-intuitive result where the schedulability decreases
as the number of cores increases. Instead, under the LP eager
approach, the EMS application is schedulable when the CPU
frequency is equal or higher than 1.75 GHz, 1.25 GHz and 750
MHz for a 4, 8 and 16-core configuration respectively (with
an overall utilization of 0.08, 0.11 and 0.2). As expected, the
schedulability increases as the number of cores increases.

Overall, we conclude that LP-eager clearly outperforms

(a) m = 4 cores (b) m = 8 cores (c) m = 16 cores

Fig. 11. Percentage of schedulable tasks from the EMS AUTOSAR application when varying the CPU frequency and considering m = 4 (a), m = 8 (b) and
m = 16 (c) cores.

LP-lazy, despite a higher number of priority inversions are
considered in the response time analysis (see Figure 6), and
a high number of preemptions are observed at system deploy-
ment (see Figure 7). In all cases, FP-ideal outperforms the
LP-eager, as the blocking impact of low-priority tasks is not
considered.

IX. CONCLUSIONS

With the advent of multi- and many-core embedded pro-
cessors, DAG-based scheduling models are gaining a lot of
attention due to its capability to effectively model the parallel
execution. This paper evaluates the limited preemption (LP)
strategy under global fixed priority for DAG-based task-sets.
It shows the necessary conditions under which DAG tasks
may experience lower priority blocking for the two identi-
fied preemption approaches: eager and lazy. Concretely, we
formally proved which are these conditions and compute the
number of priority inversions which leads to lower priority
blocking. Finally, we evaluate and compare the response time
analysis for the eager and lazy approaches with both, randomly
generated task-sets and a AUTOSAR-compliant automotive
application, i.e., a diesel engine management system (EMS).
Our analysis demonstrates that, despite the eager approach
generates a higher number of priority inversions, the blocking
factor of the lazy approach dominates the response time upper
bound. Therefore, contrary to what has been demonstrated
when considering sequential task-sets, the LP lazy scheduling
approach has been proven to be a very inefficient scheduling
strategy when DAG-based task-sets are considered, and so not
suitable for parallel execution.

REFERENCES

[1] B. D. de Dinechin, D. van Amstel, M. Poulhies, and G. Lager, “Time-
critical computing on a single-chip massively parallel processor,” in
DATE, 2014.

[2] E. Stotzer, A. Jayraj, M. Ali, A. Friedmann, G. Mitra, et al., “OpenMP
on the Low-Power TI Keystone II ARM/DSP SoC,” in IWOMP, 2013.

[3] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and
A. Wiese, “A generalized parallel task model for recurrent real-time
processes,” in RTSS, 2012.

[4] “OpenMP API, Version 4.5,” OpenMP ARB, Tech. Rep., Nov. 2015.
[5] S. Baruah, M. Bertogna, and G. Buttazzo, Multiprocessor Scheduling

for Real-Time Systems. Springer, 2015.
[6] B. B. Brandenburg, “Scheduling and locking in multiprocessor real-time

operating systems,” Ph.D. dissertation, University of North Carolina at
Chapel Hill, 2011.

[7] A. Bastoni, B. Brandenburg, and J. Anderson, “Cache-related preemp-
tion and migration delays: Empirical approximation and impact on
schedulability,” in OSPERT, July 2010.

[8] R. J. Bril, J. J. Lukkien, and W. F. Verhaegh, “Worst-case response time
analysis of real-time tasks under fixed-priority scheduling with deferred
preemption revisited,” in ECRTS, 2007.

[9] M. Bertogna and S. Baruah, “Limited preemption EDF scheduling of
sporadic task systems,” IEEE Transactions on Industrial Informatics,
vol. 6, no. 4, pp. 579–591, 2010.

[10] G. Buttazzo, M. Bertogna, and G. Yao, “Limited preemptive scheduling
for real-time systems: A survey,” IEEE Transactions on Industrial
Informatics, vol. 9, no. 1, pp. 3–15, March 2012.

[11] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and G. Buttazzo,
“Optimal selection of preemption points to minimize preemption over-
head,” in ECRTS, July 2011.

[12] A. Thekkilakattil, R. I. Davis, R. Dobrin, S. Punnekkat, and
M. Bertogna, “Multiprocessor fixed priority scheduling with limited
preemptions,” in RTNS, November 2015.

[13] A. Thekkilakattil, K. Zhu, Y. Nie, R. Dobrin, and S. Punnekkat, “An
empirical investigation of eager and lazy preemption approaches in
global limited preemptive scheduling,” in Ada-Europe International
Conference on Reliable Software Technologies, 2016.

[14] M. A. Serrano, A. Melani, M. Bertogna, and E. Quinones, “Response-
time analysis of DAG tasks under fixed priority scheduling with limited
preemptions,” in DATE, March 2016.

[15] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel real-
time tasks on multi-core processors,” in RTSS, 2010.

[16] A. Saifullah, J. Li, K. Agrawal, C. Lu, and C. D. Gill, “Multi-core
real-time scheduling for generalized parallel task models,” Real-Time
Systems, vol. 49, no. 4, pp. 404–435, 2013.

[17] C. Maia, M. Bertogna, L. Nogueira, and L. M. Pinho, “Response-time
analysis of synchronous parallel tasks in multiprocessor systems,” in
RTNS, October 2014.

[18] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese, “Fea-
sibility analysis in the sporadic DAG model,” in ECRTS, July 2013.

[19] S. Baruah, “Improved multiprocessor global schedulability analysis of
sporadic DAG task systems,” in ECRTS, July 2014.

[20] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. Buttazzo, “Response-time analysis of conditional DAG tasks in
multiprocessor systems,” in ECRTS, July 2015.

[21] S. Baruah, V. Bonifaci, and A. Marchetti-Spaccamela, “The global EDF
scheduling of systems of conditional sporadic DAG tasks,” in ECRTS,
July 2015.

[22] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, “A flexible
real-time locking protocol for multiprocessors,” in RTCSA, 2007.

[23] R. Davis, A. Burns, J. Marinho, V. Nelis, S. Petters, and M. Bertogna,
“Global and partitioned multiprocessor fixed priority scheduling with
deferred preemption,” ACM TECS, no. 3, May 2015.

[24] R. Vargas, E. Quinones, and A. Marongiu, “OpenMP and timing
predictability: a possible union?” in DATE, 2015.

[25] J. Marinho, V. Nélis, S. M. Petters, M. Bertogna, and R. I. Davis,
“Limited pre-emptive global fixed task priority,” in RTSS, Dec. 2013.

[26] AUTomotive Open System ARchitecture (AUTOSAR) Operating System,
AUTOSAR GbR, http://www.autosar.org. February 2013.

[27] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive
benchmark for free,” in Workshop on Analysis Tools and Methodologies
for Embedded and Real-Time Systems (WATERS), July 2015.

[28] H. Ozaktas, C. Rochange, and P. Sainrat, “Automatic WCET analysis
of real-time parallel applications,” in 13th Workshop on Worst-Case
Execution Time Analysis (WCET), July 2013.

[29] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, 2005.

