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Abstract:  

This article demonstrates the colossal energy harvesting capability of a lead-free (Bi0.5Na0.5)0.915-

(Bi0.5K0.5)0.05Ba0.02Sr0.015TiO3 (BULK) ceramic using the Olsen cycle. The maximum harvestable 

energy density estimated for this system is found to be 1523 J/L (1523 kJ/m
3
) where the results 

are presented for extreme ambient conditions of 20-160
o
C and electric fields of0.1-4 MV/m. This 

estimated energy density is 1.7 times higher than the maximum reported to date for the 

lanthanum-doped lead zirconate titanate (PLZT) (Thick film) system. Moreover, this study 

introduces a generalized and effective solid state refrigeration cycle in contrast to the 

ferroelectric Ericson refrigeration cycle. The cycle is based on a temperature induced 

polarization change on application of a unipolar electric field to ferroelectric ceramics. 
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1. Introduction 

Bi0.5Na0.5TiO3 (BNT) based materials have recently attracted the attention of researchers
1
 due to 

their remarkable ferroelectric properties. Solid solutions of these ceramics have been extensively 

studied to improve specific physical properties
1-4

. These include BNT-Bi0.5K0.5TiO3-BiFeO3
5
, 

BNT-Bi0.5K0.5TiO3-BaTiO3
6-8

, BNT-Bi0.5K0.5TiO3-SrTiO3
9
, BNT-K0.5Na0.5NbO3

10
, BNT-

Bi0.5K0.5TiO3
4, 11

, BNT-BaTiO3
3
, BNT-KNbO3

12
 and BNT-Bi0.5K0.5TiO3-KNbO3

13
. In 

addition to these systems, the literature also consists of several attempts to achieve A-site and B-

site substitutions
14, 15

. For example, Zuo et. al. 
16

 and Li at. el. 
8
 have reported tantalum and 

caesium doped solutions of these ceramics, respectively. In this regard, Lin and Kwok 

synthesized a new BNT-based lead free composition namely (Bi0.5Na0.5)0.915-

(Bi0.5K0.5)0.05Ba0.02Sr0.015TiO3 (0.915BNT-0.05BKT-0.02BT-0.015ST) using a conventional solid 

state route at 1200 ˚C for 2 h
17

. The system has a perovskite structure with rhombohedral 

symmetry. The piezoelectric constant (d33) for this composition was observed to be 203 pC/N 

and kP and kT values are found to be 31.4% and 46.7% respectively. Interestingly, the material 

also exhibits two dielectric anomalies at the depolarization temperature (Td) and Tm (the 

temperature of maximum dielectric constant). The depolarization temperature is the temperature 

at which a material undergoes a transition from a ferroelectric state to an anti-ferroelectric state. 

Similar anomalies have also been reported for other BNT-based ceramics
1-19

 and it is well 

documented that piezoelectricity in BNT-based ceramics almost disappears near Td 
9, 12, 14, 20, 21

. 

However, Tai et. al. determined experimentally that there was no evidence of anti-ferroelectric 

domains near Td
21

. Lin and Kwok explained that this composition may contain both polar and 

non-polar regions near Td, which is responsible for deformation of the hysteresis loop in the 
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vicinity of this temperature
17

. A dielectric constant (εr) of 6000 has been reported for 0.915BNT-

0.05BKT-0.02BT-0.015ST at Tm. The promising potential of this BNT based composition for 

various technological applications makes it interesting for thermal energy harvesting as well as 

refrigeration investigations, which will be discussed later in this paper.  

2. Pyroelectric Energy Harvesting 

Pyroelectric materials have been extensively explored for energy harvesting applications
22-38

. 

These intriguing materials produce an electrical current when subjected to a change in 

temperature. This particular feature of these materials can be used to take advantage of low-

grade waste heat, which is the thermal by-product of many energy conversion devices such as 

internal combustion engines, refrigerators, ovens, consumer electronics and other domestic 

appliances. In this context, numerous studies and novel designs of pyroelectric harvesters are 

reported in literature
30, 33, 35, 38-40

. To improve the thermal harvesting capability of ferroelectrics, 

the concept of energy harvesting by exploiting the ferroelectric hysteresis loop in a cyclic 

manner (the ‘Olsen’ cycle) was introduced in the early 1980s
30-35, 41, 42

; this approach provided 

new opportunities for harnessing waste thermal energy. It has been reported that energy 

harvesting using the Olsen cycle, by virtue of a change in the induced polarization with a change 

in temperature and electric field, can be of the order of 10
3
 higher than simply using the 

pyroelectric effect
24

. This interesting concept led to numerous trials
30-35, 41, 42

 and to the best of 

author’s knowledge the maximum energy density to date reported in the literature is  888 kJ/m
3
 

(888 J/L/cycle) for 8/65/35 lanthanum-doped lead zirconate titanate (PLZT) operating between 

temperatures of 25-160
o
C and fields of 0.2-7.5 MV/m 

30-35, 42, 43
.  
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3. Cycles 

3.1 Olsen Cycle 

Olsen et. al. proposed that any material which exhibits a significant shift in its D-E (hysteresis) 

loop or induced polarization with respect to a change in temperature and electric field can be 

employed in a cyclic manner for thermal energy harvesting
41

. This phenomenon is not the ‘pure’ 

pyroelectric effect as it is necessary in the Olsen cycle to induce a polarization using both an 

electric field and thermal energy. The cycle introduced by Olsen was initially defined for 

materials in which the polarization decreases with an increase in temperature, since most 

materials behave in this manner. It is to be noted at this stage that the materials that are most 

suitable for harvesting using the Olsen cycle at those in which there is a large change in 

polarization with temperature and electric field. Such features have been reported in the 

(Bi0.5Na0.5)0.915-(Bi0.5K0.5)0.05Ba0.02Sr0.015TiO3 ceramic
17

 and in the composition examined in this 

paper we consider a more unusual case whereby the material exhibits an increase in polarization 

with increased temperature. Figure 1 illustrates a peculiar shift in P-E loop of this composition 

with an increase in temperature from 20 
o
C to 170 

o
C, as observed from the detailed 

characterization study of Lin and Kin
17

. Similar shifts have been reported by the same authors for 

temperatures of 60 
o
C, 80 

o
C, 140 

o
C, 160 

o
C, 180 

o
C and 200 

o
C (which are not shown here)

17
. 

Figure 2 explains the necessary working Olsen cycle for these unusual loop shifts, where loop A 

and B are sections of the bipolar hysteresis loops for the material at low and high temperature 

respectively. Area 1-2-3-4’ (Figure 2 (a)) is the effective thermal energy harvesting between the 

two hysteresis (D-E) loops operated betweenapplied fields of EH and EL (where EH>EL), taken at 

a high and low temperature (TL and TH where TH>TL). However, this area can be increased by 
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maintaining a unipolar electric field by cycling between EH and EL. This is due to the fact that the 

hysteresis loop does not form under unipolar electric fields and the polarization can be reversed 

between Pr (remanent polarization) to PS (saturation polarization) through the upper branch of 

the bipolar hysteresis loops in Figure 2a
41

. In this scenario, point 4’ can be further moved to 4 

(Figure 2 (a)) and energy harvesting can be increased by the area 4’-4-3 (shaded area in Figure 

2(a)).  

The Olsen cycle to be used in this case consists of two isoelectric (1-4 and 3-2) and two 

isothermal processes (1-2 and 3-4). The 1-2-3-4 cycle is anti-clockwise since the polarization of 

the material increases with increasing temperature; this is in contrast to the more conventional 

clockwise direction
41

 used when cycling materials whose polarization decreases with increasing 

temperature. Figure 2 (a) and (b) shows the corresponding electric displacement versus electric 

field and temperature versus entropy diagrams respectively. The unipolar electric field is raised 

from a low field (EL) to a high field (EH) by doing work (WP) on the system (Process 1-2). This 

leads to an increase in polarization from P1 to P2 at a constant temperature TL; this also decreases 

the entropy from s1 to s2, as shown in Figure 2(b). It should be noted that due to an increase in 

the polarization the work of polarization (WP) leads to some heat (QWP) being released by the 

material. Additionally, it can be assumed that there is only a small consumption of electric 

energy (applied in order to change in polarization) since the materials are good insulators and no 

current flows through the material. In Process 2-3 heat (QS) (generally waste heat from other 

sources) is supplied to the material (system) iso-electrically to heat the material from TL to TH. 

The polarization of the system then rises from P2 to P3. Again due to a rise in polarization the 

entropy further decreases to s3 (Figure 2(b)). Indirectly, the absorption of heat (QS) by the 
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material results in cooling of the surrounding environment. Thereafter, depolarization work 

(WDP) is done to reduce the applied unipolar electrical field isothermally from EH to EL leading to 

reduction of polarization of the material to P4 (Process 3-4). This reduction is polarization is 

responsible for an increase in entropy during this process. Finally, in order to complete the cycle 

and to bring it to its initial state (TL, P1, s1 and EL) heat (QR) is extracted from the system (Process 

4-1). This process is known as isoelectric heat rejection. The direction of the T-s diagram is 

clockwise in Figure 2(b) and is indicative of a cycle for a heat engine.  

The overall electrical energy that can be harvested using this cycle can be calculated as the area 

enclosed by the complete cycle (1-2-3-4 of D-E curve) and is expressed as 
34, 43

 

 DEND d.            (1) 

3.2 Reversed Olsen/Proposed Ferroelectric Refrigeration Cycle 

It is to be noted that if the direction of the above explained cycle can be reversed then the 

material will exhibit a refrigeration effect. Though similar attempts exist in literature
44, 45

, the 

cycle proposed by us is generalized for all ferroelectric materials as it is based on a temperature 

induced change in the unipolar P-E loop. It also provides a broad idea of the ideal working range 

and is more effective as hysteresis losses are reduced. In order to have better understanding of 

refrigeration cycle the P-E and T-s diagrams for this regime are shown in Figure 3 (a) and 3 (b) 

respectively. The T-s diagram with an anticlockwise direction indicates a refrigeration cycle. 

Here, the initial Process 1-2 of heating from TL to TH at EL corresponds to the compressor work 

of a “Vapor Compression Cycle”. This can be termed as the work of heating (WH) in the case of 

solid state refrigeration. During Process 1-2 the heat (QS) from a waste source is supplied to the 
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material (system). In Process 2-3 work of polarization (WP) is done on the material to raise the 

applied field to EH from EL, which is equivalent to the heat (QWP) rejected in a condenser in a 

“Vapor Compression Cycle” as the entropy of the system is reduced from s1 to s2 (Figure 3 (b)) 

due to the electrocaloric effect. Thereafter, as the material is cooled form TH to TL in Process 3-4 

the heat (QR) of the system is rejected to the surroundings using some mechanical arrangement, 

such as using heat exchanger fins. Finally, reduction of the applied field from EH to EL in Process 

4-1 is responsible for the refrigeration effect (heat absorption (QAb)) corresponding to work of 

depolarization (WDP) in the evaporator. The area under the curve can be termed as overall work 

done (WD) to run the cycle. This cycle can also work for a more usual shift of the unipolar 

ferroelectric loop in which there is a decrease in polarization with increasing temperature. 

In order, to have a comparison criterion for “Electrocaloric refrigeration”, Emmanuel et.al.
46

 

introduced the Electrocaloric (EC) efficiency (ɳ), which is given as : 

W

Q
            (2) 

Where Q (isothermal heat) and W (electrical work) can be calculated as follows  
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In the similar way for the novel refrigeration cycle proposed here, the efficiency can be defined 

as  

D

Abwp

W

QQ
COP




Done Work Overall

Heat IsothermalNet 
orRefrigerat         (5) 

The net isothermal heat in the present scenario is the difference of the heat absorbed 
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 by the material to the surroundings.   

4. Results and Discussion 

Finally, we perform thermal energy harvesting calculations for this composition for a fixed value 

of lower temperature (TL ~ 20 ˚C) since the hysteresis loop becomes almost paraelectric at this 

temperature
17

. The resulting energy densities are shown in Figure 4 as a function of an increase 

in maximum values of applied electric fields (EH) for the temperature ranges of 20-60˚C, 20-

80˚C, 20-140˚C, 20-160˚C, 20-170˚C, 20-180˚C, and 20-200˚C. Thermal energy harvesting 

using the Olsen cycle is for operation under unipolar electric fields thus the lower value of 

electric field (EL) is maintained constant at 0.1 MV/m for all cycles under consideration. The 

maximum energy density for the system under study is estimated to be 1523 kJ/m
3

 (1523 J/L) in 

the temperature range of 20-160
o
C (0.1-4 MV/m). This value is substantially higher than many 

reported lead-based ferroelectrics such as 8/65/35 PLZT (888 J/L/cycle)
43

, PZST (100-130 

J/L/cycle) 
32, 34, 35

,  73/27 P(VDF-TrFE) (30 J/L/cycle) 
42

, 60-40 P(VDF-TrFE) (52-130 
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J/L/cycle) 
23, 47

, PZN-5.5PT (52-130 J/L/cycle) 
25

, PZN-5.5PT (52-130 J/L/cycle) 
38

, PMN-PT 

(100-186 J/L/cycle) 
24, 48

. The trend in the energy density plots reveal that the energy density for 

the temperature range of 20-80˚C is much higher in comparison to 20-60˚C. This is due to the 

gradual intensification of the pyroelectric coefficient with an enhancement in temperature from 

60˚C (p=20µC/cm
2
) to 80˚C (p=35µC/cm

2
) 

17
. Intriguingly, the variations in the energy density 

for 20-140˚C, 20-160˚C and 20-170˚C are nearly equal throughout with the increase in EH. This 

suggests that 20-140˚C is the most appropriate working range for a thermal energy harvesting 

device made of 0.915BNT-0.05BKT-0.02BT-0.015ST since for a smaller temperature change it 

is possible to harvest the same amount of energy. Thereafter, in the temperature limits of 20-

180˚C the energy density falls and this trend continues further for the temperature domain of 20-

200˚C. This is due to ferroelectric to anti-ferroelectric like transition in this composition. The 

depolarization temperature (Td) for this composition is reported to be 184˚C and it has been 

reported that the piezoelectricity of BNT-based ceramics almost vanishes above Td 
4, 9, 12, 14

. 

Careful examination of the pyroelectric coefficient with temperature provides an understanding 

of the decrease in energy density since it decreases exponentially after 170˚C (23 µC/cm
2
) to 

approximately 7 µC/cm
2

 at 180˚C and the value keeps on falling until 200˚C
17

. This suggests that 

the energy harvesting devices built using BNT-based compositions should not be used beyond 

the depolarization temperature. Moreover, the governing conditions of lead-based ferroelectrics 

indicate that most of these provide a high energy density under the application of large applied 

electric fields, e.g. P(VDF-TrFE: 4-60 MV/m 
23, 31, 42, 47, 49, 50

; PLZT (0.2-7.5 MV/m)
43

. This 

clearly indicates that the lead-free composition understudy is a thermal energy harvesting 

material of interest based on the maximum energy harvesting and the low applied electric fields 
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within similar temperature ranges. Moreover, 0.915BNT-0.05BKT-0.02BT-0.015ST 

composition possesses the highest estimated energy harvesting potential (1523 kJ/m
3
) reported to 

date. Secondly, we estimate the efficiency of refrigeration (COPRefrigerator) for all temperature 

ranges under various possible combinations of applied electric field. The maximum efficiency 

(COPRefrigerator) (using eq 5) is found to be 2.016 within the temperature range of 80-160 
o
C for 

an applied field of 0.1-0.5 MV/m. Although this value is calculated for the bulk material, it is 

high in comparison to reported efficiency  (COPRefrigerator ~1.2) of doped multilayered thin films 

of BaTiO3
46

. It is important to note that the aforementioned efficiency does not provide 

refrigeration efficiency or COP (coefficient of performance) of the cycle. Here, our aim is merely 

to provide a figure of merit for the selection and comparison of materials working on these 

cycles form application view point. 

Conclusions 

The present study demonstrated the potential for colossal thermal energy harvesting using lead-

free materials with a peculiar polarization shift with an increase in temperature for  

(Bi0.5Na0.5)0.915-(Bi0.5K0.5)0.05Ba0.02Sr0.015TiO3. This material has an estimated maximum energy 

density of 1523 J/L (1523 kJ/m
3
) in the temperature domain of 20-160

o
C at an applied electric 

field 0.1-4 MV/m. Interestingly, the energy density for 20-140˚C, 20-160˚C and 20-170˚C are 

found to be nearly equal in the same electric field range. Thus we conclude that this material 

should be explored in the temperature span of 20-140˚C to have maximum thermal energy 

harvesting. In addition, we have introduced a potentially efficient solid state refrigeration cycle 

based on the Olsen cycle using the temperature induced polarization in ferroelectric ceramics. 
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Figures Captions: 

Figure 1: Ferroelectric (D-E) hysteresis loops for 0.915BNT-0.05BKT-0.02BT-0.015ST samples 

at two different temperatures
17

. Note the increase in polarization with an increase of temperature. 

Figure 2: (a) Isothermal unipolar electric displacement versus electric field (D-E) hysteresis 

loops (b) temperature versus entropy (T-S) curves for electrical energy harvesting (1-2-3-4) using 

Olsen cycle operated between different temperatures TL and TH  

Figure 3: (a) Isothermal unipolar electric displacement versus electric field (D-E) hysteresis 

loops (b) temperature versus entropy (T-S) curves for a ferroelectric refrigeration cycle (1-2-3-4) 

operated between different temperatures TL and TH  

Figure 4: Estimated energy density for 0.915BNT-0.05BKT-0.02BT-0.015ST as a function of 

high electric field (EH). The cold temperature (TL) source and low electric field (EL) are kept at 

20 ˚C and 0.1 MV/m respectively. 

 

 

 


