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Vendor-Managed Inventory (VMI) has attracted a lot of attention due to its benefits such as fewer stock-outs, higher sales, and
lower inventory levels at the retailers. Vendor-Managed Availability (VMA) is an improvement that exploits the advantages beyond
VMI. This article analyzes the benefits beyond information sharing and assesses the motivation for the manufacturer (vendor) behind
joining such a program. It is shown that such vendor-managed systems provide increased flexibility in manufacturer’s operations
and may bring additional benefits. An analysis is presented on how the system parameters affect the profitability and determine the
conditions that make the vendor-managed system a viable strategy for the manufacturer.
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1. Introduction

Vendor-Managed Inventory (VMI) is a collaborative
process between a supplier/manufacturer and a manufac-
turer/retailer/distributor, where the manufacturer gains
access to the demand and inventory information at the
retailer and uses this information to “better” manage the
retailer’s inventory. VMI started as a pilot program in the
retail industry between Procter&Gamble and WalMart in
the 1980s and resulted in significant benefits, such as lower
inventory levels, fewer stock-outs, and increased sales,
and has been adopted by many other supply chains such
as those of Dell, Barilla, and Nestle. In many research
and business articles, the benefits of VMI are attributed
to information sharing between the manufacturer and
the retailer (see, for example, Cachon and Fisher (1997)
and Schenck and McInerney (1998)). However, there
is more to VMI than just the information availability;
there are benefits hidden in the increased flexibility of the
manufacturer’s production operations. There exists limited
analytical work in the literature on how the manufacturer
can translate this flexibility into benefit and why the parties
join a VMI program. We believe that it is important to
emphasize the benefits of VMI additional to information
sharing, so that the motivation behind joining a VMI
program is better comprehended.
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In a vendor-managed setting, although the manufacturer
takes control of inventory, it is the retailer that usually
benefits from the manufacturer managing the inventory
(Dong and Xu, 2002). The reason for this is that the
retailer can always set the terms of the agreement such that
the performance measures (such as number of stock-outs,
average inventory level, etc.) will improve. Whether the
manufacturer benefits from the vendor-managed system,
on the other hand, depends on how well the manufacturer
can take advantage of the increased flexibility. In the
agreement, the retailer may reflect a required product
availability on the shelf or service level by imposing a
lower bound on the inventory level. Similarly, due to
shelf space constraints or to avoid high inventory levels,
the retailer may limit the amount of replenishment from
the manufacturer. Therefore, a contract may consist of
an upper and a lower bound on inventory level, where
overshooting or undershooting by the manufacturer
is penalized. While penalties compel the manufacturer
to conform with the inventory limits, it is definitely a
challenging task for the retailer to determine the penalties
as well as to set the bounds on the inventory level that will
result in the desired service level or inventory holding cost.

Our modeling of VMI is closer to Vendor-Managed
Availability (VMA) (Hausman, 2003), where the vendor
is more flexible in terms of replenishment operations than
VMI, since in VMI, replenishments are more restricted due
to the bounds on the retailer’s inventory level. VMA has
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been practiced by several major retailers such as J.C. Pen-
ney and Costco. J.C. Penney sources shirts from a Hong
Kong–based shirt maker and this supplier completely con-
trols the inventory by monitoring J.C. Penney’s stock levels
and makes replenishments directly to the store, if neces-
sary. To ensure availability, at times the supplier expedites
the delivery by air-shipping (Kahn, 2002; Hausman, 2003).
Similarly, Kimberly-Clark, a supplier of products such as
diapers, tissues, and paper towels for Costco in the United
States, is very flexible in its replenishment operations. The
company simply “keeps each (Costco) store’s inventory as
low as possible without risking empty shelves” (Nelson and
Zimmerman, 2000). These examples describe more flexible
agreement terms between the manufacturer and the retailer.
To reflect this practice, in our vendor-managed model we
assume that the service level is the only constraint for the
manufacturer, which results in an increased flexibility even
compared to VMI. For instance, at times the manufacturer
may not prefer to replenish a retailer’s stock if the capacity
can be used for a more profitable order. At other times when
there is excess capacity, i.e., when the capacity is less valu-
able, several replenishments may enable an increased ser-
vice level at the retailer. The retailer ends up with the same
service level, whereas the manufacturer effectively manages
its production, capacity allocation, and replenishment op-
erations. In this article, we consider the notions introduced
by VMA, an enhanced version of VMI. In the rest of this
article, we use the terms VMA or vendor-managed system
to represent this enhanced version of VMI.

In this study, we model a supply chain consisting of a
single manufacturer and a retailer. We first define the tradi-
tional system under which the manufacturer and the retailer
operate and then introduce the vendor-managed system
and compare the two systems. We assume that the retailer
sets the terms of the contract such that she is never worse
off under the new (vendor-managed) system. We make the
analysis from the perspective of the manufacturer who car-
ries most of the collaboration burden. The retailer faces
stochastic demand and in the traditional system periodi-
cally places orders to the manufacturer. The manufacturer
has limited capacity to meet the orders from the retailer and
a more expensive outsourcing option. To analyze the bene-
fits due to the vendor-managed system alone, our proposed
model for the traditional system considers a manufacturer
that has full information on end-demand distribution, de-
mand realization, and inventory levels at the retailer and
hence revisits capacity planning aspects of operating a tra-
ditional manufacturing system. We assume that the parties
do not share cost information. Furthermore, information
on available capacity or end-of-period inventory level at the
manufacturer is not shared with the retailer. Our focus is on
the vertical collaboration process in the supply chain under
this asymmetric and partially shared information setting.

In vendor-managed systems the issue of who owns
the inventory depends on the relationship between the
manufacturer (supplier) and the retailer (manufacturer).
If the manufacturer is very powerful (such as Dell) it

may force the suppliers to own the inventory at the
manufacturer’s site or at a supply hub nearby. On the other
hand, if the supplier is powerful, then inventory may not be
consigned. Intel, for instance, although it has an agreement
with Dell, does not operate through a supply hub as do
other suppliers (Barnes et al., 2000). We consider two
types of vendor-managed agreements, consignment stock
and no-consignment stock, and for each type analyze how
the manufacturer may benefit from managing the retailer’s
inventory. In our model there does not exist an upper and
lower bound restriction at the retailer’s inventory level;
however, the retailer explicitly specifies service level and
average inventory level requirements. Given this setting we
address the following questions.

1. Are there any benefits for the manufacturer in man-
aging the retailer’s inventory apart from what is already
achieved by sharing demand and inventory information?

2. What are the conditions that make the manufacturer
better off under the vendor-managed system considered?

3. Under the vendor-managed system should the manufac-
turer consign the stock or not?

Our work contributes to the literature in several ways.
Our work is one of the few studies that analyzes benefits due
to vendor-managed systems from the manufacturer’s per-
spective and that identifies the conditions to make the man-
ufacturer willing to join such an agreement. Earlier studies
either ignore the motivation behind vendor-managed sys-
tems or focus only on total supply chain benefits rather
than the individuals’ benefits. Furthermore, we make a
comparison of benefits under consignment stock and no-
consignment stock models to determine the type of agree-
ment under which the manufacturer will benefit, whereas
the previous literature mostly assumes centralized consign-
ment stock models.

The remainder of the article is organized as follows. In
Section 2 we review the previous work on vendor-managed
inventory systems. In Sections 3 and 4 the model charac-
teristics and structural properties are presented. In Section
5 we make an experimental analysis and discuss the results,
and based on these discussions we provide managerial in-
sights. We present our conclusions in Section 6.

2. Literature review

The majority of existing studies analyze the vendor-
managed system in a manufacturer-retailer setting, while
a few consider a supplier-manufacturer setting (Choi et al.,
2004). Inventory ownership is modeled either by totally
consigned stock or by the transfer of the title at the time
of arrival. In most of the previous studies, the focus of the
analysis is limited to designing an optimal operating pol-
icy for the vendor in a vendor-managed system, and the
motivation of the vendor in managing the inventory is not
under consideration.
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In the analysis of the vendor-managed systems under
a single manufacturer and multiple retailers, the focus is
mainly on the savings in transportation due to better order
consolidation or savings due to coordination of retailer
replenishments. To analyze the benefit of VMI, Cetinkaya
and Lee (2000) compare a VMI system with a traditional
system. In the traditional system the manufacturer sends a
shipment immediately when the demand arrives, whereas
in a VMI system shipments are consolidated. The authors
determine the optimal dispatch quantity under VMI
considering the inventory cost and the transportation
cost incurred by the manufacturer and conclude that
when inventory holding cost and dispatching cost are
low, VMI results in significant savings for the manufac-
turer. Kleywegt et al. (2002) study an inventory routing
problem of a manufacturer who owns the inventory at
the retailers. An approximation method is developed to
find the minimum-cost routing policy; however, there is
no discussion on whether the manufacturer is better off
under the vendor-managed system. Waller et al. (1999)
also consider a multiple retailer setting and through a
simulation analysis demonstrate the effects of VMI on
the inventory levels at the retailers and on the capacity
utilization at the manufacturer. VMI results in savings due
a decrease in the inventory levels, which is a consequence
of the increased frequency of retailer replenishments. Aviv
and Federgruen (1998) consider a capacitated supplier with
multiple retailers and analyze how coordination of retailer
orders under VMI decreases the system-wide cost of
operation. They explicitly model a traditional system with
no information sharing and with full information sharing
to assess the benefits of VMI beyond information sharing.

Fry et al. (2001) compare a VMI system with a tradi-
tional system in a single manufacturer, single retailer setting
under full information sharing. The authors identify the
optimal operating policies of both the manufacturer and
the retailer in a stochastic setting. Under VMI the retailer
determines the maximum inventory level and the vendor
incurs a penalty if the inventory level is outside the limits.
The authors find that VMI performs close to a centralized
model in the presence of high demand variance and high
cost of outsourcing. Several other papers study the optimal
decisions of the manufacturer under VMI in a deterministic
environment. Valentini and Zavanella (2003) and Shah and
Goh (2006) consider a consignment stock system where the
demand is deterministic with a constant rate. Jaruphongsa
et al. (2004) study a problem with delivery time windows
and early shipment penalties under dynamic demand. The
authors propose a dynamic programming algorithm to ob-
tain the minimum cost under VMI.

Depending on the form of agreement between the re-
tailers and the manufacturer, the system under a vendor-
managed regime can be very close to a centralized system.
A number of papers analyze the role of VMI as a chan-
nel coordinator. Bernstein et al. (2006) study the constant
wholesale price and quantity discount contracts that lead to

perfect coordination in a supply chain with multiple com-
peting retailers and show how VMI helps achieve the co-
ordination. Nagarajan and Rajagopalan (2008) show that
simple contracts in VMI can improve the performance of
the overall system under certain conditions. Dong and Xu
(2002) analyze the benefits of VMI both in terms of total
channel cost and vendor’s cost. In their model the retailers
set the purchasing price in the contract and the supplier,
in turn, determines the selling quantity. The authors de-
termine the conditions under which the supplier benefits
from VMI and conclude that VMI can always decrease the
cost of channel as a whole. Fry et al. (2001) also discuss
centralization of the supply chain.

There are only a few works on the service-level consider-
ations in a VMI system. In most of the papers the service
level is implicitly assumed in the lower inventory level set
by the lower echelon. Choi et al. (2004) study the service-
level relationship between a supplier and a manufacturer in
a VMI framework and show that high service levels at the
supplier do not guarantee the desired service level at the
manufacturer and that expected backorders should also be
taken into account.

Our study is most closely related to Fry et al. (2001).
We study a single-manufacturer, single-retailer system and
compare the vendor-managed system with the traditional
system to quantify the benefits beyond information shar-
ing. However, we focus on the benefits to the manufacturer
to determine the motivation to make an agreement. We
furthermore consider capacity management as an impor-
tant factor in determining the benefits of vendor-managed
systems. Additionally, we study both consignment and no-
consignment models to identify the conditions that make
either model beneficial for the manufacturer. In our model,
we do not necessarily regard the vendor-managed system as
a coordinated system. We propose a more realistic setting
with asymmetric and partial information sharing and focus
on the collaboration process. Since usually it is the man-
ufacturer that is reluctant in these agreements, we analyze
the problem from the manufacturer’s perspective. Finally,
we take service level considerations explicitly into account.

In summary, our model differs from the existing studies
in the following aspects.

1. We look at manufacturer benefits in joining to the
vendor-managed system.

2. We identify the benefits beyond information sharing to
clearly assess the manufacturer’s motivation.

3. We explicitly model the consignment and no-
consignment systems and provide a comparison of these
systems to determine which type of agreement is more
beneficial to the manufacturer. In practice, if the lower
echelon is more powerful, the stock is usually consigned
by the manufacturer. Otherwise, if the manufacturer is
powerful, the stock is not necessarily consigned. There-
fore, it is not apparent whether or not the manufacturer
should consign the stock.
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4. Finally, we analyze how benefits under a vendor-
managed system change with system parameters. Specif-
ically, we measure the effect of capacity management and
provide a detailed analysis of the benefits from produc-
tion and transportation flexibility.

3. A modeling framework for the manufacturer

We compare two settings: a traditional system where the
retailer manages and owns the inventory, and a vendor-
managed system. In the vendor-managed system we model
two cases based on the ownership of stock. Under the no-
consignment stock model (VM-NC), the stock is managed
by the manufacturer while owned by the retailer. Under
the consignment stock model (VM-C), the inventory is both
managed and owned by the manufacturer. We assume the
retailer accepts the agreement only if the performance mea-
sures are as good compared to the traditional case.

We consider a periodic-review model where the man-
ufacturer has limited and non-stationary capacity, which
is known by the manufacturer in advance. The non-
stationarity in the capacity reflects an environment where
the manufacturer has several customers and allocates some
portion of the capacity to the retailer and the remaining
to the other orders. We assume that the capacity allocated
to the retailer may be zero in some periods, i.e., the man-
ufacturer produces for the retailer in every Tp periods, and
without loss of generality we assume non-negative capacity
in the first period of Tp. We call the time span between two
positive capacity levels as the production cycle. Note that the
cyclic production concept is a well-known and utilized idea
in the literature. Maxwell and Muckstadt (1985) were the
first to introduce the idea of consistent and realistic reorder
intervals. Li and Wang (2007) mention cyclic structures
within the supply chain as a coordination mechanism. Fry
et al. (2001) consider a similar cyclic structure in their study.
We further assume that the level of capacity may be non-
stationary for the periods in which the manufacturer pro-
duces for the retailer. We assume this non-stationarity also
shows a cyclic behavior. In other words, in every Tm periods
the level of the capacity is the same and Tm may consist of
several Tp cycles, each cycle with possibly a different capac-
ity level (see Fig. 1). We call this larger cycle the capacity cy-
cle. Similarly, due to scheduling practices the retailer places
a replenishment order to the manufacturer in every Tr pe-
riods. We call the retailer’s cycle the replenishment cycle.

We assume that the replenishment orders are quan-
tized, where the replenishment size Q reflects economies
of scale in manufacturing and transportation and is an
agreed-upon quantity between the manufacturer and the
retailer. Note that this assumption implies that the man-
ufacturer is expected to operate with this “bucket” size
Q with all of the customers. Hence, we can assume that
the capacity at the manufacturer is a non-negative inte-
ger multiple of Q. This type of environment can be ob-

Periods

Capacity allocated 
to the retailer

Production cycle

Capacity cycle

Replenishment 

cycle

Fig. 1. The manufacturer’s capacity cycle is 12 periods, the pro-
duction cycle is 6 periods, and the retailer’s replenishment cycle
is 4 periods.

served in practice. For example, DMC, a French thread
company, lowered its shipment size from 24-unit cases to
12-unit cases after an agreement made with WalMart. Since
switching to a 12-unit case required significant investment,
the company is now shipping in 12-unit cases to all of its
customers (Fishman, 2006).

The end-item demand is stochastic and stationary. Hold-
ing cost is incurred based on end-of-period inventory level,
and the retailer operates based on a service level constraint.
Excess demand at the retailer can be backlogged (there
is no cost associated); however, the manufacturer (always)
meets the retailer’s order either through regular stock or
by subcontracting (for a similar usage of subcontracting
option, see, Gavirneni et al., 1999). Here, the term subcon-
tracting actually corresponds to a variety of alternatives to
meet the unsatisfied demand. The manufacturer can use
an additional “setup” from the capacity of other prod-
ucts/customers, make overtime production, expedite the
supply, or let the retailer take care of unmet demand but
pay an (implied) penalty. We assume that transportation
time is negligible and hence the produced amount is de-
livered at the same period (overnight). Note that this is
consistent with the just-in-time delivery concept.

We model the retailer’s and the manufacturer’s prob-
lem under the traditional system and the manufacturer’s
problem under the vendor-managed system as a Markov
Decision Process (MDP). We determine the optimal oper-
ating policy under each system. Model parameters, decision
variables, and state variables are presented in Table 1.

One of the objectives of this study is to quantify the ben-
efits of the vendor-managed system for the manufacturer
when demand and inventory information of the retailer is
available. Specifically, we make the following assumptions
on information sharing.

1. The information of periodic demand realization, end-
of-period inventory level at the retailer, and retailer’s
demand distribution is provided by the retailer to the
manufacturer.

2. Information of unit inventory holding cost or any other
cost information at the retailer is not shared with
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Table 1. Notation for traditional and vendor-managed system
models

Parameters

Tp: length of the production cycle for the manufacturer
Tm: length of the capacity cycle for the manufacturer
Tr: length of the replenishment cycle for the retailer under

traditional system
Di : random variable denoting demand over i periods,

i ∈ {1, . . . , Tr}

Pi : probability mass function for Di

Q: batch order (dispatch) quantity
c: unit production cost
w: unit outsourcing cost
h: (manufacturer’s) unit holding cost
1 − β: service level at the retailer
z: the number of production cycles in a capacity cycle,

zTp = Tm

Decision variables

R: reorder level at the retailer
pn : number of lots of Q produced in period n
dn : number of lots of Q dispatched in period n

State variables

In
m: number of on-hand lots at the manufacturer at the end

of period n − 1,
In
m ∈ {0, 1, . . . , ∞}

In
r : net inventory at the retailer at the end of period n − 1,

In
r ∈ {−∞, . . . , ∞}.

tn
m : the relative position of period n in capacity cycle,

tn
m ∈ {1, . . . , Tp, . . . , 2Tp, . . . , zTp = Tm}

tn
r : the relative position of period n in replenishment cycle,

tn
r ∈ {1, . . . , Tr}

Kn : the capacity level in period n (implied by tn
m),

Kn ∈ {0, K1, . . . , Kz}

ST: state under traditional system, ST = (Im, Ir, tm, tr)
SNC: state under no-consignment vendor-managed system,

SNC = (Im, Ir, tm)
SC: state under consignment vendor-managed system,

SC = (Ir, tm)

the manufacturer. Similarly, cost information of the
manufacturer is not shared with the retailer. Cost in-
formation is mutually unavailable.

3. Information on capacity level and end-of-inventory level
at the manufacturer is not shared with the retailer.

Therefore, information sharing is asymmetric and
partial.

3.1. Traditional system

In the traditional model, at the beginning of each period
the manufacturer decides on how much to produce and/or
to outsource. The manufacturer produces for the retailer in
every Tp periods, while the retailer places an order in every
Tr periods. Tr is known by the manufacturer. We assume

that the fixed cost of transportation is zero under tradi-
tional and under vendor-managed systems. We assume that
the retailer places orders based on an (R, nQ)-type policy,
where R is the reorder point that guarantees a specified
service level (Zheng and Chen, 1992). Note that due to
quantized shipments the analysis would not change under
a fixed cost of transportation per batch. The sequence of
events under the traditional system is as follows.

1. At the beginning of a period, the manufacturer gives the
decision of how many units to produce and/or to out-
source, considering the allocated capacity (if allocated
capacity is zero, there is no production). If an order is
placed by the retailer in the last period of the replen-
ishment cycle, a dispatch is made to the retailer in the
first period of the following replenishment cycle. Produc-
tion, outsourcing, and dispatch lead times are negligible.
Therefore, the dispatched quantity is immediately ready
at the retailer at the beginning of the replenishment cy-
cle, before any demand is realized at the retailer.

2. Demand is realized at the retailer. If there is enough in-
ventory in stock, the retailer fulfills the demand. If the
retailer cannot meet the demand completely, the unmet
amount is backordered (at no explicit penalty). If it is the
last period of the replenishment cycle, the retailer places
an order at the manufacturer (if any), which is a non-
negative integer multiple of Q. Otherwise, if it is not the
last period, the retailer only passes the demand informa-
tion to the manufacturer and updates the inventory level.

3.1.1. Retailer’s problem under the traditional system

The problem of the retailer is to minimize the expected
inventory level under a service-level requirement (there is
no explicit backorder cost for the retailer). We only con-
sider the operating policies with (R, nQ) structure. In the
last period of the replenishment cycle, after the demand is
realized, the retailer places an order if the inventory level
is equal to or less than the reorder point, R. The reorder
point, R, is the decision variable and Q is assumed to be a
parameter.

First, consider the two measures for a given R and Q: (i)
expected average inventory level ( Ī); and (ii) average service
level (1 − β).

The expected average inventory level is expressed as
follows:

Ī =
1

Q

R+Q
∑

i=R+1

i
∑

j=0

(i − j )
P1( j ) + P2( j ) + · · · + PTr

( j )

Tr

. (1)

In Equation (1), P1 is the probability mass function
of single-period demand and Pk, k ∈ {1, · · · , Tr}, is the
k-convoluted probability mass function (i.e., probability
mass function of k-period demand). Consider the replen-
ishment cycle Tr. Under the quantized ordering policy
(R, nQ), at the beginning of each cycle the inventory
level at the retailer is i with probability 1/Q, where
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i ∈ {R + 1, . . . , R + Q}. In the long run, for the first pe-
riod of the cycle, the expected end-of-period inventory

level is 1/Q
∑R+Q

i=R+1

∑i
j=0(i − j )P1( j ). Similarly, for the

second period, the expected end-of-period inventory level is

1/Q
∑R+Q

i=R+1

∑i
j=0(i − j )P2( j ), and so on. Since in the long

run the probability of being in any period in the replenish-
ment cycle is equal to 1/Tr, the time-averaged expected
inventory level is expressed as in Equation (1).

We define the average service level as 1 − β, where β

is the expected average fraction of backordered demand per
period. Let βi , i = 1, 2, . . . , Tr, denote the expected fraction
of backordered demand in the i th period of the replenish-
ment cycle. Then, βi would be expressed as follows:

βi =
∑

Ii

P(Ii )
E[(D1 − Ii )

+]

E[D1]
,

where Ii is the beginning inventory level of the i th period,
P(Ii ) is the probability that the beginning inventory level is
Ii , and D1 is the random variable denoting one-period de-
mand. Then, the expected average fraction of backordered
demand, β, is expressed as

β =
β1 + β2 + · · · + βTr

Tr

(2)

Equivalently, β is expressed as follows:

β =
1

Q

R+Q
∑

i=R+1

∞
∑

j=i+1

( j − i )
PTr

( j )

Tr E[D1]
. (3)

We limit the operating policy of the retailer to the (R, nQ)
policy. Under this policy, to minimize the expected average
inventory level in Equation (1), the retailer simply chooses
the minimum reorder point that guarantees the desired ser-
vice level. However, as we analyze below, under quantized
ordering the (R, nQ)-type policy is not necessarily the op-
timal policy for the retailer. In other words, even if the
optimal reorder point is chosen, the expected inventory
level may not be minimized. In Proposition 1, we identify
the conditions under which the optimal policy is indeed an
(R, nQ)-type policy for Tr = 1. We present the proofs in the
Appendix.

Each reorder point implies a service level (1 − β) and
an expected inventory level ( Ī). Let S be the set of the β

values implied by all (integer and non-negative) reorder
points (note that the elements of set S vary with Q). For
β ∈ S, let R(β) denote the reorder point that results in the
service level of 1 − β. (We assume there exists a unique R(β)
for each β ∈ S. Under Tr = 1 this is possible if R(β) + 1 ≤

max(D1)).

Proposition 1. Suppose Tr = 1.

1. For β ∈ S, the(R(β), nQ) policy is the unique inventory
level minimizing policy for the retailer.

2. For β �∈ S, there may exist more than one optimal ordering
policy for the retailer, none of which is an (R, nQ) policy.

Proposition 1 implies that for β ∈ S the only policy that
achieves the minimum inventory level is a (R(β), nQ) policy.
We use this result later in Section 4 when analyzing the
manufacturer’s policy.

3.1.2. Manufacturer’s problem under the traditional system

We determine the optimal operating policy of the manu-
facturer under the traditional system. We model the man-
ufacturer’s problem as a MDP under average cost criteria
as follows.

g(s) = min
δ

lim
N→∞

1

N
Eδ

s

[

N
∑

n=1

r (sn, an)

]

, (4)

where g(s) indicates the optimal average cost given that ini-
tial state is s, δ is any Markovian policy (note, the underly-
ing chain is weakly communicating and under average cost
criteria an optimal policy exists), sn indicates the state in pe-
riod n, an indicates the action in period n, and r (sn, an) is the
(immediate) cost of taking action an in state sn. We define
the states under traditional model as ST = (Im, Ir, tm, tr)
where:

Im is the number of on-hand lots at the manufacturer at
the end of the previous period or at the beginning of the
current period. Since capacity in every period is a non-
negative integer multiple of Q, without loss of optimality,
Im indicates a non-negative integer multiple of Q, Im =

{0, 1 . . . , ∞}. If Im = 2 for instance, there exists 2Q units
in inventory (see the discussion on action space).

Ir is the net inventory at the retailer at the end of the previ-
ous period, Ir = {−∞, . . . , ∞}.

tm denotes the relative position of a period in
the capacity cycle, tm ∈ {1, . . . , Tm}. We assume
Tm implies the following capacity structure,
(K1, 0, 0, . . . , 0, K2, 0, 0, . . . , 0, Kz, 0, 0, . . . , 0).

tr denotes the relative position of a period in the replenish-
ment cycle, tr ∈ {1, . . . , Tr}.

In the traditional model, the action is defined only by the
production quantity in period n, pn. The quantity to be
outsourced can already be inferred from the retailer’s order
quantity at the end of the replenishment cycle. If the order
quantity exceeds the amount in stock and the production
capacity of the manufacturer, then the remaining quantity
should be outsourced. This implies that outsourcing is not
an independent decision. Note that outsourcing takes place
only at the beginning of the replenishment cycle, since oth-
erwise it will result in additional holding cost. The retailer
orders in multiples of Q, and capacity available is a mul-
tiple of Qi ; therefore, without loss of optimality, we limit
the production quantity in every period to multiples of Q
(this implies Im is a multiple of Q). The action space in a
period is denoted by pn ∈ {0, 1, . . . , Kn}, where each value
corresponds to the multiple of Q. We assume that single-
period demand is characterized by a discrete probability
distribution.
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Next, we define the components of Equation (4) un-
der the traditional model. We define r (s, a), where s =

(In
m, In

r , tn
m, tn

r ) and a = (pn), as follows:

r (s, a) =

⎧

⎨

⎩

(

cpn + h
(

In
m + pn − L

)+

+ w
(

− In
m − pn + L

)+)

Q if tn
r = 1,

(

cpn + h
(

In
m + pn

))

Q if tn
r �= 1,

(5)

where L denotes the number of lots requested by the re-
tailer at the end of the replenishment cycle, i.e., at the end
of period Tr. The amount requested is dispatched by the
manufacturer in the first period of the replenishment cycle,
and is ready at the retailer before the demand is realized.
Note that the quantity L is deterministic and can be in-
ferred from Ir.

The transition probability P( j |s, a) denotes the proba-
bility that next state is j given current state is s and action
taken is a, where j = (In+1

m , In+1
r , tn+1

m , tn+1
r ). We catego-

rize all possible transitions under the traditional system as
follows:
For tn

r �= 1:

P( j |s, a) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

P1

(

In
r −In+1

r

)

if

In+1
m = In

m + pn,

tn+1
m = tn

m(1 − 1{tm=Tm}) + 1,

tn+1
m = tn

r (1 − 1{tr=Tr}) + 1,

0 otherwise.

where 1{tm=Tm} takes a value of one for the last period of the
capacity cycle. P1(In

r − In+1
r ) is the probability that single

period demand is In
r − In+1

r .
For tn

r = 1:
There are two possibilities. The retailer’s order quantity

does not exceed the available stock and production quan-
tity, and therefore outsourcing is not necessary. When this
is the case, In

m + pn − In+1
m = L. Otherwise, if outsourcing

is necessary, then In+1
m = 0. We present the transition prob-

ability as follows:

P( j |s, a)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

P1

(

In
r − In+1

r + LQ
)

if

In+1
m = (In

m + pn − L)+,

tn+1
m = tn

m(1 − 1{tm=Tm}) + 1,

tn+1
r = tn

r + 1,

0 otherwise.

3.2. Vendor-managed system

Under the vendor-managed system, we focus only on the
manufacturer’s problem since the retailer does not make
any decisions. The retailer only requires that her perfor-
mance measures are as good as those under the traditional
system. At the beginning of the production cycle the man-
ufacturer decides on how much to produce and in every
period how much to outsource and to dispatch. The dis-
patched quantity immediately arrives at the retailer, i.e.,
the lead time of transportation is zero. Note that due to the

agreement there does not exist a replenishment cycle. The
sequence of events is as follows.

1. At the beginning of a period, the manufacturer gives
the decision of how many units to produce (if possible),
to outsource, and to dispatch. Inventory status of the
manufacturer and the retailer are updated based on the
dispatch quantity.

2. The demand is realized at the retailer’s site. The inven-
tory status of the retailer is updated and end-of-period
holding costs at the manufacturer and at the retailer are
incurred.

We analyze the vendor-managed setting under two cases:
no-consignment stock and consignment stock.

3.2.1. No-consignment stock

Under the no-consignment stock model (VM-NC) the
ownership of the stock is transferred to the retailer once
the dispatch arrives at the retailer. To be compatible with
the traditional system, we assume that under the vendor-
managed system the retailer requires the average inventory
investment to be as low as, and average service level to be as
high as those levels under the traditional system. In other
words, the retailer is indifferent between the traditional and
the vendor-managed system.

We determine the manufacturer’s optimal operating pol-
icy under the no-consignment system. We model the manu-
facturer’s problem as a MDP under the average-cost criteria
as follows:

g(s) = min
δ

lim
N→∞

1

N
Eδ

s

[

N
∑

n=1

r (sn, an)

]

, (6)

s.t. average inventory level at retailer ≤ Ī, (7)

service level at retailer ≥ 1 − β, (8)

where β is defined as in Equation (3) and Ī as in Equa-
tion (1). The constraint on inventory level in Equation (7)
reflects the case where the retailer is not willing to pay
for inventory investment more than what she pays under
the traditional system. In practice, the retailer may require
that at least one of the performance measures described
by Equation (7) or Equation (8) is improved as a result of
the agreement. Hence, the service level specified by (1 − β)
can be regarded as a lower bound, and similarly the limit
specified by Ī on the average inventory level under a vendor-
managed system can be regarded as an upper bound.

In all our analysis, the right-hand side (RHS) of Equation
(7) or Equation (8) is used as is, so that we have compa-
rable cases. Note that it is through these constraints that
the availability is ensured at the retailer at the right level
of inventory. If instead, the retailer were to operate with
min–max bounds on inventory compared to the traditional
system, either the service level would be lower or average
inventory level would be higher or both. Furthermore, the
manufacturer’s benefits would decrease due to decreased
operational flexibility.
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The state is SNC = (Im, Ir, tm) where Im, Ir, and tm are
as defined in Table 1. At the beginning of the production
cycle the manufacturer decides on how much to produce,
pn, and in every period how much to outsource, yn, and
to dispatch, dn. The manufacturer produces, outsources,
and dispatches in multiples of Q, and the capacity available
at the beginning of the production cycle is a multiple of
Q. The action space is denoted as pn ∈ {0, 1, . . . , Kn} and
dn ∈ {0, 1, . . . , ∞}. Without loss of optimality, we limit the
action space to multiples of Q. Note that the outsourced
quantity at period n, yn, is defined by (dn − In

m − pn)+ and
is not an (independent) decision variable.

Next, we define the components of Equations (6) to (8).
In Equation (6) we define r (s, a), where s = (In

m, In
r , tn

m) and
a = (pn, dn), as follows:

r (s, a) =
(

c.pn + h
(

In
m + pn − dn

)+

+ w
(

− In
m − pn + dn

)+)

Q. (9)

Note that L in Equation (5) is now a decision variable
and is denoted with dn. We define transition probabilities
P( j |s, a) where j = (In+1

m , In+1
r , tn+1

m ) as follows:

P( j |s, a)

=

⎧

⎨

⎩

P1(In
r − In+1

r + dn Q) if
In+1
m = (In

m + pn − dn)+

tn+1
m = tn

m(1 − 1{tm=Tm}) + 1,

0 otherwise.

The left-hand side (LHS) of Equation (7) reflects the ex-
pected inventory level per period at the retailer under the
manufacturer’s optimal operating policy and is expressed
as

∑

Im,tm

∑

i>0

iπM
NC(Im, Ir = i, tm).

where πM
NC(Im, Im = i, tm) is the fraction of time spent (or

the steady-state probability) in state (Im, Ir = i, tm) under
the manufacturer’s optimal operating policy under no-
consignment system. The LHS of Equation (8) reflects the
average service level at the retailer under the manufacturer’s
optimal operating policy:

1 −
∑

Im,i,tmi+d(i )>0

πM
NC(Im, Ir = i, tm)

E[(D1 − i − d(i ))+]

E[D1]

−
∑

Im,i,tmi+d(i )≤0

πM
NC(Im, Ir = i, tm)

E[D1]

E[D1]
. (10)

In Equation (10) d(i ) is the optimal action taken. In the
expression note that expected backordered demand is cal-
culated differently if i + d(i ) ≤ 0. When i + d(i ) > 0, the
amount of available stock at the retailer before the de-
mand is realized is positive. Then, the expected backo-
rdered demand is E[(D1 − i − d(i ))+]. On the other hand,
if i + d(i ) ≤ 0, then all demand that occurs in that pe-
riod should be backordered and the expected backo-
rdered demand is E[D1]. For those periods service level

is 1 − E[D1]/E[D1] = 0. Averaging over all periods gives
the expression in Equation (10).

Finally, we note that if under optimal dispatch policy the
available stock at the retailer before the demand is realized
is always positive, then the service level is always positive
in all of the periods. When this is the case, the service-
level expression in Equation (10) can be replaced with the
following expression:

∑

Im,tm

∑

i<0

|i |

E[D1]
πM

NC(Im, Ir = i, tm). (11)

3.2.2. Consignment stock

In the consignment stock system (VM-C) the sequence of
events is the same as the sequence in the no-consignment
system except that the manufacturer owns and manages
the inventory at the retailer’s site. We determine the manu-
facturer’s optimal operating policy under the consignment
system. We model the manufacturer’s problem as an MDP
under average cost criteria as follows:

g(s) = min
δ

lim
N→∞

1

N
Eδ

s

[

N
∑

n=1

r (sn, an)

]

, (12)

s.t. service level at retailer ≥ 1 − β. (13)

Note that, since the stocking cost is incurred by the manu-
facturer there does not exist any constraint on the average
inventory level. Furthermore, as we will describe in the fol-
lowing, the reward function, r (s, a), now includes the hold-
ing cost at both the manufacturer and the retailer. Observe
that Equation (13) is the same as Equation (8).

In the consignment stock model, we assume that the unit
holding cost is the same at both the manufacturer’s site and
the retailer’s site. The carrying charge of the inventory at a
site is determined by the opportunity cost and risk level at
the site. Since stocks at both echelons belong to the same
firm (manufacturer), the opportunity costs of the tied-up
capital that could be used in some other investment is the
same at both sites. Furthermore, the risk levels at both sites
are the same, since the manufacturer has a single retailer.
If there were multiple retailers, the manufacturer would
prefer to keep stock at the upper echelon to minimize the
risks and send the items to the lower echelon only when
necessary. Due to increased risks, the implied unit holding
cost at the lower echelon would be higher. However, in this
single-retailer setting keeping the items at the lower echelon
rather than at both echelons does not affect the inventory
holding cost while improving the service level.

Since the unit holding cost is the same at manufacturer’s
site and the retailer’s site, the manufacturer keeps inven-
tory only at the retailer’s site and as a result immediately
dispatches whatever it produces and outsources to the re-
tailer’s site. Under the consignment stock system the state
is defined as SC = (Ir, tm) where Ir and tm are defined as
before, and the actions are only how much to dispatch at
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the beginning of period n, dn ∈ {0, 1, . . . , ∞}, where each
dn value corresponds to the multiple of Q.

We define r (s, a) where s = (In
r , tn

m) and a = (dn) as
follows:

r (s, a) = (c × min{dn, Kn} + w × max{dn − Kn, 0})Q

+ hE
[(

In
r + dn Q − D1

)+]

. (14)

Note that in r (s, a) the holding cost at the manufacturer’s
site is not expressed, since stock is kept only at the retailer’s
site. The transition probabilities are expressed as follows:

P( j |s, a)

=

{

P1

(

In
r − In+1

r + dn Q
)

if tn+1
m = tn

m(1 − 1{tm=Tm}) + 1,

0 otherwise

The consignment and no-consignment models are differ-
ent but related. Note that in the MDP the reward functions
and the constraints are different (see Equations (6) to (9)
and (12) to (14)). However, the two systems are related
in that there are parameter settings under which the ac-
tions taken under both systems are the same. Note that
Equation (7) in the no-consignment model implies a unit
holding cost. If the implied holding cost is equal to the man-
ufacturer’s holding cost, h, then the consignment and no-
consignment systems can be regarded as being equivalent
in terms of the actions taken. For tighter or more relaxed in-
ventory restrictions the consignment and no-consignment
systems are expected to result in different operating poli-
cies.

4. Analysis and comparison of traditional and
vendor-managed systems

In this part, we first provide an analysis on the struc-
tural properties of the optimal policy under traditional
and no-consignment systems. Then, we compare the cost
under a no-consignment system with the cost under a tra-
ditional system and the cost under a consignment system.
In the remainder of the text, we denote traditional sys-
tem with TRAD, no-consignment vendor-managed system
with VM-NC, and consignment system with VM-C. The
proofs are presented in the Appendix.

4.1. Structural properties of the optimal policy

We analyze the structural properties of the optimal pol-
icy under traditional and under no-consignment systems.
We show in Property 1 that the optimal policy under the
traditional system is a modified base-stock policy. For the
no-consignment system, we discuss how the retailer’s op-
timal policy and the resultant inventory-level and service-
level constraints affect the manufacturer’s optimal policy.
In Property 2 we show that under certain conditions, the
optimal policy under a no-consignment system is also a
modified base-stock policy.

Property 1. Optimal policy of the manufacturer under the
traditional system is a modified base-stock policy.

Next, we discuss optimal operating policy of the manu-
facturer under VM-NC. Under VM-NC the manufacturer
decides on how much to produce, outsource and dispatch
to the retailer’s site. The dispatch policy is subject to the
following two constraints.

1. The expected inventory level at the retailer cannot exceed
a certain level (as expressed in Equation (7)).

2. The service level at the retailer should satisfy a minimum
level (as expressed in Equation (8)).

These constraints make it difficult to characterize the
optimal operating policy of the manufacturer. However, as
we show in Property 2 under certain conditions the optimal
policy of the manufacturer has the rather simple base-stock
structure.

To define the manufacturer’s policy under VM-NC, we
should focus on the retailer’s operating policy under the
traditional system. In Proposition 1 we show that when
Tr = 1, for β ∈ S there exists a unique optimal policy, which
is (R(β), nQ). This result leads to the following observation.

Observation 1. For Tr = 1 and β ∈ S:

1. Under VM-NC the manufacturer’s optimal operating
policy is defined by a unique dispatch policy. This unique
dispatch policy is the same policy as the retailer’s order
policy under the traditional system, which is (R(β), nQ).

2. The manufacturer’s optimal operating policy under
VM-NC is independent of β.

Observation 1 states that for β ∈ S, under optimality the
only possible dispatch policy of the manufacturer that satis-
fies constraints (7) and (8) is the retailer’s (R(β), nQ) policy.
In other words, in every period the manufacturer dispatches
the minimum amount (in multiples of Q) to bring the re-
tailer’s stock level above R(β). Furthermore, the dispatch
policy is the same for all β ∈ S. The reason for this behavior
is that discrete reorder points define β and the value of the
reorder point does not have an impact on the dispatch pol-
icy of the manufacturer. (This structure resembles the one
in a base-stock system where the order-up-to point does
not affect the quantity ordered every period.) For β �∈ S,
multiple dispatch policies may satisfy the constraints (7)
and (8). Under optimality the manufacturer may select one
of the eligible dispatch policies. Using Observation 1, in
Property 2 we provide a characterization of the optimal
policy of the manufacturer.

Property 2. For Tr = 1 and β ∈ S, under VM-NC the manu-
facturer’s optimal policy is a modified base-stock policy.

4.2. Comparison of traditional and vendor-managed systems

In this section we make two comparisons. First, we
compare the no-consignment system with the traditional
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system. Using the structural results of the previous sub-
section, we show that the cost under the no-consignment
system is always lower than or equal to the cost under
the traditional system (Property 3). We then compare the
no-consignment system with the consignment system. In
Proposition 4 we show that under certain settings and un-
der certain sufficient conditions the cost of the consignment
system is lower than the cost of the no-consignment system.

4.2.1. Comparison of no-consignment and traditional
systems

Property 3. The cost of the manufacturer under VM-NC is
always lower than or equal to the cost under TRAD.

Property 3 states that if under a vendor-managed system
stock is not consigned, then the vendor-managed system
results in a lower cost than the traditional system; i.e., VM-
NC is a no-risk case for the manufacturer.

4.2.2. Comparison of no-consignment and consignment
systems

Although VM-NC is a no-risk case, the cost under VM-NC
is not always lower than the cost under VM-C. As we show
in the following analysis, under a vendor-managed system
consigning the stock may be less costly than not consigning
it. In the following, we introduce a specific instance. For this
instance, we first obtain a lower bound on the optimal cost
under VM-NC (Proposition 2) and an upper bound on the
optimal cost under VM-C (Proposition 3). We then identify
a set of sufficient conditions that make VM-C less costly
than VM-NC (Proposition 4).

Assume that Q = 1 and that the (single-period) demand,
D, has the following probability distribution:

P(D) =

{

1/2 if D = µ − 1,

1/2 if D = µ + 1.

Assume that capacity per period is E[D] = µ, and Tr = 1;
i.e., under the traditional system the retailer places orders
in every period. In the following analysis, we focus on the
cases where β ∈ S. In this setting since Q = 1, under the tra-
ditional system the retailer operates under the base-stock
policy.

Proposition 2. For the instance under consideration:

LB(VM-NC) =
√

(w − c)h −
h

2
+ cµ

is a lower bound on the manufacturer’s optimal cost under
VM-NC.

In the following, we determine an upper bound on the opti-
mal cost of the manufacturer under VM-C (Proposition 3).
Under VM-C the manufacturer dispatches whatever he pro-
duces and outsources, and the problem under consideration
is how much to produce and outsource every period where
the decisions are subject to the service-level constraint. We

now propose two upper bounds on the optimal cost under
VM-C.

Proposition 3. For the instance under consideration:

1. Suppose w ≥ 3h + c, and w is such that
√

(w − c)/h + 1 ∈ Z
+. Then,

U B(VM-C) = h

(

√

w − c

h
+ 1 −

1

2

)

+ cµ

is an upper bound on the optimal average cost under
VM-C.

2. Suppose for k ≥ 1 and k ∈ Z
+, 1 − β ≤

1 − ((k2 − k + 1)/2µ
√

((w − c)/h + (k2 − k + 1)),
w ≥ (5k + 3)h + c and w is such that
√

((w − c)/h) + (k2 − k + 1) ∈ Z
+. Then

U B(VM-C)

= h

(

√

w − c

h
+ (k2 − k + 1) −

(

k +
1

2

))

+ cµ

is an upper bound on the optimal average cost under VM-
C.

Proposition 3 suggests two upper bounds for the optimal
cost under VM-C. Part 1 implies more relaxed sufficient
conditions for the upper bound and does not require any
condition on the service level. When the service level is
as high as 100%, the upper bound in part 1 is applicable.
The upper bound in part 2 requires tighter sufficient con-
ditions and in return gives a tighter upper bound. Note
that UB(VM-C) in part 2 is decreasing in the parameter k.
Parameter k denotes how low the inventory level can be set
at the retailer. As the service level requirement is lower (i.e.,
as β gets higher) k increases, and UB(VM-C) decreases.

Using Propositions 2 and 3, in Proposition 4 we present
the main result of this subsection.

Proposition 4. Suppose the following conditions are satisfied.

1. β ≥
k2 − k + 1

2µ
√

((w − c)/h) + (k2 − k + 1)
,

2. w > (5k + 3)h + c,

where k ≥ 2 and
√

((w − c)/h) + (k2 − k + 1), k ∈ Z
+.

Then, the optimal cost under VM-C is lower than the op-
timal cost under VM-NC.

Proposition 4 compares the no-consignment and consign-
ment models under a deterministic reorder point at the
retailer. In practice, firms prefer a fixed operating policy
rather than a randomized one due to operational difficul-
ties, even if a randomized policy may yield lower costs.
The first condition in the proposition states that if the
service-level requirement at the retailer is not high, then
consignment stock is preferred. This result is in line with
our experimental study where we observed that under 99%
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service-level consignment stock is never preferred (see Sec-
tion 5.1). The intuition behind this result is as follows. If the
service-level requirement of the retailer is low, then this im-
plies the expected inventory level requirement at the retailer
is also low (i.e., RHS of the constraint in Equation (7)). This
corresponds to a high “implied unit holding cost” for the
stock at the retailer’s site. If the implied cost is very high
(i.e., if expected inventory level is very low), then the manu-
facturer simply prefers owning the stock rather than trying
to meet the requirement under the no-consignment system.
In practice, for items with low implicit stock-out costs, the
retailer may allow low service levels. Examples are those
items for which the retailer also carries substitutes or prod-
ucts that are not competitive. For these items the inventory
requirement imposed by the retailer to the manufacturer
would be low, and the manufacturer might prefer consign-
ing the stock to not consigning it. The second condition
states that if the outsourcing cost is high, then consigning
the stock is preferred. This result also supports our obser-
vations from the computational study. Under a high out-
sourcing cost the manufacturer would prefer to keep high
levels of inventory, which is allowed under the consignment
stock system but not under the no-consignment system.

Note that our construction assumes Tr = 1 and β ∈ S.
Under these assumptions the cost and operating policies
under TRAD and under VM-NC are the same. There-
fore, the intuition obtained from Proposition 4 could be
extended to the comparison of the consignment system
with the traditional system. We conclude that the manu-
facturer prefers VM-C to TRAD when the inventory level
constraint is “tight”; i.e., when the operating policy of the
retailer imposes an “inflexible” dispatch policy for the man-
ufacturer.

5. Computational analysis

We conducted experiments to analyze how the system
parameters affect the manufacturer’s savings under the
vendor-managed system and identified the conditions un-
der which manufacturer is willing to make an agreement.
In designing the experiments we kept unit holding cost, and
unit production cost, and expected demand per period as
constant at h = 1, c = 10, and E[D1] = 20. We assumed
the lot size was, Q = 5. We assumed that the capacity cycle
was two periods Tm = 2, production cycle was one period
Tp = 1 and replenishment cycle Tr could be one or two pe-
riods. Capacity levels in the capacity cycle were indicated
with K1 and K2. We considered the effect of the following
parameters on average cost per period.

1. Total capacity: We assumed the capacity levels were
“tight,” “medium,” or “excessive.” Under tight capacity
K̄ = (K1 + K2)/2 = E[D1] = 20, under medium capac-
ity K̄ = 25, and under excessive capacity K̄ = 30.

2. Outsourcing cost: w = 11, 15, 20, and 30.

3. Capacity non-stationarity: (K1, K2) = (40,0), (30,10),
(20,20), (10,30), and (0,40).

4. Replenishment cycle: Tr = 1, 2. When Tr = 2, under the
traditional system the retailer places orders in every two
periods, whereas she shares the demand and inventory
level information in every period. Comparing the tra-
ditional system under Tr = 2 with the vendor-managed
system, the manufacturer has a gain in terms of both
dispatch quantity and dispatch time (i.e., dispatch fre-
quency) flexibility. In Section 5.1.4 we quantify the ben-
efit of flexibility.

5. Demand coefficient of variation: The demand faced by
the retailer was modeled via a discrete distribution. The
distributions considered and the corresponding values
of the coefficient of variation, cv, are as follows: uniform
[11, 29] (cv = 0.28), truncated normal (µ = 20, σ = 30)
(cv = 0.57), beta (0.3, 0.3) (cv = 0.80).

6. Service level at the retailer: We assumed service levels of
90, 95, and 99%. When determining the service level at
the retailer, we only considered discrete reorder points,
and we set the reorder point such that the service level
is higher than 90% (or 95%, or 99%). For example, for
uniform distributed demand, when Tr = 1 the retailer’s
reorder point that gives a service level of at least 90%
is R = 18 and the service level implied by this reorder
point is 90.26%. We present the service levels in Table 2.

In this section we observe the effect of system parame-
ters on the benefits of vendor-managed systems. We have
already shown that the no-consignment system is a no-risk
case for the manufacturer, and for Tr = 1, the cost under
TRAD and VM-NC are the same, so when making obser-
vations we only compare TRAD and VM-C, unless oth-
erwise stated. However, for certain cases, when we believe
that comparison with VM-NC provides further insights we
explicitly state this in the discussion.

In the following subsections, we present our results under
two main titles: Analysis under Stationary Capacity and
Analysis under Non-Stationary Capacity. We used a Linear
Programming (LP) model to solve Equations (4) and (12)
and average cost per period criteria for the analysis. When
LP was used to solve the corresponding MDP problem
under VM-C we obtained at most a single randomized
action as we have one additional constraint (corresponding
to service level). We use the results as obtained. The number
of variables of the LP model (Cartesian space of states
and actions of the MDP) were 55 000 for the traditional

Table 2. Service levels (in percent)

T = 1 T = 2

Uniform Normal Beta Uniform Normal Beta

90% 90.26 91.06 90.41 90.66 90.72 90.40
95% 95.79 95.90 95.17 95.18 95.49 95.42
99% 99.47 99.25 99.41 99.11 99.12 99.22
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system, and 4060 for the VM-C system. The total number
of experiments carried out for the stationary capacity case
was 216, and for the non-stationary case it was 288. Due to
the computational burden associated with Equation (10),
we use Equation (11) as a surrogate of the service level at the
retailer. Note that Equations (10) and (11) are equivalent if
the retailer’s initial inventory level in every period is non-
negative. In our experimental setting under the vendor-
managed system we expect this to be the case and believe
that using Equation (11) instead of Equation (10) has a
negligible effect in the results.

5.1. Analysis under stationary capacity

We first made a comparison of the vendor-managed sys-
tem with the traditional system under stationary capacity,
when the capacity per period is tight (K̄ = 20), medium
(K̄ = 25), and excessive (K̄ = 30). Under stationary ca-
pacity, the capacity level over the periods was constant:
(K1, K2) = (20, 20), (25, 25), and (30, 30). Based on the in-
sights obtained in this section, we extended the analysis to
the non-stationary capacity.

5.1.1. Effect of unit outsourcing cost on savings

We analyze the effect of outsourcing cost (w) on percent-
age savings under the vendor-managed system (= 100 ×

(TRADcost − VMScost)/TRADCost) for service levels
of 90, 95, and 99% (we refer to the service levels in Ta-
ble 2, while we indicate the levels with 90, 95, and 99%). As
unit outsourcing cost increases, under both the traditional
and vendor-managed systems, the average inventory level
at the manufacturer increases while the number of units
outsourced decreases. However, although the number of
outsourced units decreases, the total outsourcing cost in-
creases under both systems. We observe that the increase in
inventory level and decrease in number of outsourced units
is more drastic under the traditional system compared to
the vendor-managed system. As a result of this, the number
of units produced in-house increases significantly under the
traditional system. We conclude that the traditional system
is less robust to the changes in unit outsourcing cost com-
pared to the vendor-managed system. As a result of the
changes in the production cost, total outcourcing cost, and
inventory holding cost, the cost under TRAD increases at a
steeper rate than the cost under VM-C. We observe that the
savings under VM-C increase with unit oursourcing cost.

Experimental results for Tr = 1 support the conclusions
derived in Proposition 4: we observe that when the service
level is 99% and the demand coefficient of variance is high,
the cost under VM-C is always higher than the cost under
TRAD or VM-NC. Otherwise, cost under VM-C can be
lower, especially if the outsourcing cost is high. For Tr = 2,
the manufacturer keeps a higher inventory compared to
Tr = 1 under the traditional system, and therefore VM-C
can be more beneficial. Finally, as the demand coefficient
of variance increases, we observe that the manufacturer’s

savings under VM-NC increase while savings under VM-C
decrease. We conclude that although a higher coefficient of
variation helps the manufacturer to manage the operations
more effectively, incurring the retailer’s inventory holding
cost outweighs these savings.

In the overall setting, savings under VM-C can be as high
as 5.37% (when outsourcing cost is high, demand coefficient
of variance is low and service level requirement is low) and
as low as −9.80%.

5.1.2. Effect of the vendor-managed system on capacity
utilization

We analyzed how the capacity utilization changes as the
system moves from traditional to vendor-managed system.
Capacity utilization is a measure of a manufacturer’s ability
to meet the demand through in-house production. The un-
met demand is outsourced and in this respect the outsourc-
ing cost acts as a lost sales penalty, and capacity utilization
reflects the service level provided by the manufacturer. Analy-
sis indicates that capacity utilization is always higher under
the vendor-managed system than the traditional system
(see Fig. 2). Also, as the unit outsourcing cost increases,
the capacity utilization increases. The capacity utilization
increases at a higher rate under the traditional system as
the unit outsourcing cost increases.

We also analyze the effect of capacity level on the cost
under TRAD and VM-C. An increase in capacity level from
tight to medium or medium to excessive decreases the cost
under both traditional and vendor-managed systems. We
observe that how the two systems react to an increase in
capacity level slightly differs with respect to the coefficient
of variation in demand.

1. When the coefficient of variation of demand is low, un-
der the vendor-managed system the inventory burden
on the manufacturer is low. The manufacturer already

Fig. 2. Effect of outsourcing cost on utilization when the total
capacity is tight.
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Fig. 3. Effect of capacity increases on costs under traditional and vendor-managed systems for (a) low demand variance and (b) high
demand variance.

uses the capacity effectively, and therefore the benefit of
additional capacity is relatively low. Beyond a certain
threshold, the increase in capacity does not decrease the
cost for the vendor-managed system. On the other hand,
under the traditional system, the additional capacity is
more beneficial, since additional capacity will help the
manufacturer to meet the retailer’s orders more effec-
tively. For sufficiently high capacity, we expect that under
the traditional system in-house production will be equal
to the demand, and no outsourcing cost or holding cost
will be incurred. This implies that under a sufficiently
high capacity, the cost under the traditional system will
be lower than the cost under the vendor-managed sys-
tem, since under the VM-C there will always be the bur-
den of inventory holding due to the retailer. Therefore,
when the coefficient of variation is low, as the capac-
ity level increases, the benefit of the vendor-managed
inventory decreases. Figure 3(a) shows the costs under
two systems when coefficient of variation is low.

2. When the coefficient of variation of the demand is high,
we observe that both the vendor-managed system and
the traditional system benefit from an increase in the ca-
pacity level. When the capacity level is excessively high,
both systems reach a stable level in terms of cost and the
cost does not decrease further with an increase in capac-
ity level. We observe that under sufficiently high capacity
the average cost under the traditional system can be as
low as the total in-house production cost (which is ex-
pressed as cE[D] and is the lowest level for the cost),
whereas under VM-C the cost consists of the in-house
production cost and the inventory cost at the retailer.
We conclude that, under sufficiently high capacity, the
vendor-managed system is not beneficial. In Fig. 3(b) we
show how the costs change with respect to the capacity
level when the coefficient of variation is high.

The amount of per period capacity necessary to attain
100% in-house production is higher under a high coeffi-

cient of variation of demand compared to the case where
coefficient of variation is low.

5.1.3. Effect of vendor-managed system on inventory levels

We compare the expected total inventory level in the sys-
tem (at the manufacturer and the retailer) and the expected
inventory level at the retailer’s site under the traditional sys-
tem and the vendor-managed system. Experimental results
show that the expected total inventory level in the system
is lower under VM-C.

Property 4. The expected inventory level at the retailer’s site
has the following properties

1. It is higher under VM-C compared to the traditional sys-
tem when Tr = 1,

2. It may or may not be higher under VM-C compared to
the traditional system when Tr = 2.

The inventory level at the retailer’s site may or may not
be lower under the vendor-managed system depending
on how the retailer operates under the traditional system.
If the retailer already requires small and frequent replen-
ishments under the traditional system (i.e., if Tr = 1),
then the inventory at the retailer’s site increases under the
vendor-managed system. The reason for this behavior is
that under the traditional system the retailer operates with
the minimum inventory level for a given service level, since
(R, nQ) is the optimal operating policy (see Proposition 1).
When the manufacturer manages the retailer’s inventory,
due to capacity restrictions at the manufacturer, the
vendor-managed system corresponds to a constrained
system compared to the traditional system. Therefore, the
expected inventory level at the retailer is higher.

If under the traditional system the retailer places infre-
quent and lumpy orders (i.e., when Tr = 2), then under high
outsourcing costs and low service levels the inventory level
at the retailer’s site is higher under VM-C. Under high ser-
vice levels the inventory level at the retailer’s site is lower
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under VM-C. We would like to note that the results may
vary if we relax the assumption on the same unit hold-
ing cost occuring at both echelons under VM-C. In that
case under both consignment and no-consignment stock
systems, inventory would be held at both sites and the in-
ventory kept at the retailer’s site would be lower. However,
there will still be instances under low service levels and high
outsourcing cost where the inventory level at the retailer’s
site is higher under VM-C. Under a low outsourcing cost,
we observe that the inventory level at the retailer is always
lower under VM-C compared to the inventory level under
the traditional system.

5.1.4. Quantifying dispatch time and dispatch quantity
flexibility

Under the vendor-managed system the manufacturer de-
cides on how much to dispatch in every period depend-
ing on the capacity level and demand. In some periods
the manufacturer may not make any dispatches whereas at
other times he may prefer more frequent dispatches. The
vendor-managed system implies a gain in “dispatch time”
and “dispatch quantity” flexibility compared to the tradi-
tional system. In the following we quantify the benefits due
to dispatch quantity flexibility and due to both dispatch
time and dispatch quantity flexibility:

5.1.4.1. Measuring dispatch quantity flexibility. To ana-
lyze benefits due to dispatch quantity flexibility only, we
compare the following two settings: Tr = 2 under the
traditional system, and Tr = 2 under the no-consignment
vendor-managed system. We restrict the dispatch time un-
der the vendor-managed system to one dispatch in two pe-
riods. This implies that compared to the traditional system
there does not exist an increase in dispatch time flexibility
under the vendor-managed system but only an increase in
dispatch quantity flexibility. (To obtain the optimal cost of
manufacturer under VM-NC with the Tr = 2 restriction we
use the constraint in Equation (10).)

5.1.4.2. Measuring dispatch time and quantity flexibility. To
analyze benefits under joint dispatch time and quantity flex-
ibility, we relax the restriction on the dispatch time under
the vendor-managed system, we simply compare the tradi-
tional system (with Tr = 2) with VM-NC. (To obtain the
optimal cost of the manufacturer under VM-NC with no
dispatch time restriction we use the constraint in Equation
(10).)

Note that when quantifying the benefits of flexibility, we
assume that inventory is not consigned.

Figure 4 shows that savings due to dispatch quantity
flexibility are high especially when the unit outsourcing
cost is high (for this analysis we assumed capacity is tight,
K̄ = 20 and demand has a simplified structure such that the
demand per period is either 15 or 25 each with probability
one-half). Analysis shows that while the dispatch quantity
flexibility may or may not decrease the inventory level at

Fig. 4. Effect of dispatch time and dispatch quantity flexibility on
savings.

the manufacturer, the additional flexibility due to dispatch
frequency decreases the inventory level in the system and
significantly increases the savings.

Finally, we note that under the vendor-managed system
dispatch time flexibility does not necessarily imply more fre-
quent shipments. Analysis shows that depending on capac-
ity restrictions, under VM-C the manufacturer may prefer
less frequent shipments compared to the traditional sys-
tem, which may result in a lower inventory cost and a lower
total cost compared to the traditional system.

5.2. Analysis under non-stationary capacity

We now analyze how the costs differ under traditional
and vendor-managed systems as the capacity levels change
throughout the periods. When the replenishment cycle is
one period, under both traditional and vendor-managed
systems the lowest cost is incurred when the capacity is sta-
tionary at (K1, K2) = (20, 20) (Fig. 5(a)). This is expected
since the end-demand is stationary. In the two-period re-
plenishment cycle, under the traditional system as more ca-
pacity is allocated closer to the replenishment point (which
is the first period of the replenishment cycle), the total cost
decreases. This is because the manufacturer can use the end-
demand information available in the previous period and
react accordingly in the replenishment period (Fig. 5(b)).

The analysis under a non-stationary capacity provides
insights on how a manufacturer should allocate the ca-
pacity under the traditional system versus under the
vendor-managed system (of course if possible; i.e., if the
manufacturer has the flexibility to change its capacity from
one period to another). Under the traditional system the
manufacturer would schedule the orders from different cus-
tomers so that the bulk of production for a certain customer
can be realized as the replenishment time for that customer
approaches. This may result in erratic orders placed by the
manufacturer to the upper echelons. On the other hand, un-
der the vendor-managed system the manufacturer prefers
smoothing out the production and dispatch process by
allocating the same capacity in every period. Allocating
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Fig. 5. Effect of capacity non-stationarity on savings. (a) One-period replenishment cycle and (b) two-period replenishment cycle.

capacity uniformly would result in much less fluctuation
in the orders placed by the manufacturer; therefore, the
vendor-managed system would also benefit the players in
the upper echelons of the supply chain. Note that Lee et al.
(1997) specify a similar manufacturing situation to show the
bullwhip effect. In our case, we show that capacity manage-
ment is a useful tool to reduce the bullwhip effect.

The analysis provides further insights on the type of set-
tings under which a manufacturer should or should not
prefer the vendor-managed system. If the orders from the
retailer are steady, frequent orders with small lot sizes (in
our case, when the replenishment cycle is one period), then
managing the retailer’s inventory would not bring much
benefit to the manufacturer, and the cost of consigning the
stock may outweigh the benefits (Fig. 5(a)).

On the other hand, if the retailer places the orders in-
frequently and in large lot sizes (in our case, when the
replenishment cycle is two periods), then the manufacturer
may or may not benefit from managing the retailer’s inven-
tory depending on the flexibility in its operations. When the
manufacturer does not have the flexibility to change the ca-
pacity (if, for instance, the manufacturer has customers with
strict delivery time requirements), experimental results indi-
cate that savings are high (around 1.9% under the consign-
ment system and 11.6% under the no-consignment system).
The inflexible system is modeled with (K1, K2) = (0, 40) un-
der the vendor-managed system and under the traditional
system.

These figures imply that when the manufacturer does not
have much control over allocating the capacity to respond
to the orders effectively, dispatch quantity and dispatch
time flexibility are most useful. However, if the manu-
facturer can change the capacity to react to the demand
patterns, then savings under the vendor-managed system
are rather limited. This is because it is already possible to
operate the traditional system effectively. Analysis shows
that the average savings under the consignment system are
−5.1%, and the savings under the no-consignment system
are 4.8% (here best performances are compared; i.e., aver-
aged cost under (40, 0) for the traditional system is com-
pared with the cost under (20, 20) for the vendor-managed

system). Fully consigning inventory may not be a prefer-
able option if the manufacturer has sufficient flexibility to
after its capacity.

5.3. Managerial insights

In this section we present the highlights of our analyses.
Several of the insights we obtained from the study support
and build on the previous findings in the literature, while
others reveal new information.

Insight 1. The benefits that the vendor-managed system will
bring to the manufacturer depends on the type of the vendor-
managed system relationship. There may be benefits beyond
sharing demand and inventory information. However, there
are a number of cases where VM-C does not yield any ad-
ditional savings over information sharing as well. Hence, in-
formation sharing should be considered as a first step in the
relationship with a retailer before going into “risky” vendor-
managed relationships. However, the next level of relationship
should not necessarily follow; it requires careful evaluation
of potential trade-offs.

Insight 1 complements the findings in the literature by
assessing the benefit of a vendor-managed system from the
manufacturer’s perspective. Fry et al. (2001) quantify the ef-
fect of VMI on the system-wide cost given that information
is already shared and conclude that if certain parameters
(such as dispatch quantity or penalty of violating inven-
tory bounds) are not chosen properly, a vendor-managed
setting can be more costly for the chain than the tradi-
tional setting. We show that if the conditions or the terms
of the agreement are tight for the manufacturer, then the
vendor-managed system does not bring additional benefit
to information sharing.

Insight 2. VM-NC constitutes a no-risk case for the manu-
facturer. However, there can be cases where VM-C is more
profitable than the VM-NC for the manufacturer.

We explicitly compare the no-consignment stock system
with the consignment stock system and conclude that if the
service-level requirement at the retailer and the coefficient
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of variance for demand are low, and as a result the inventory
level has to be tightly kept at a low level, then consigning
the stock might be less costly for the manufacturer. In the
literature either totally consigned stock or no-consignment
stock models are studied and the question of whether the
stock should be consigned is unaddressed.

Insight 3. If capacity allocated is sufficiently high, then
the manufacturer is less likely to benefit from the vendor-
managed system.

Insight 4. Manufacturers usually have the practice of
allocating capacity for a product or customer. It turns
out that the way to allocate this level “optimally” is not
very straightforward; whether the system operates with full
information only or under a certain type of the vendor-
managed system may lead to different capacity allocation
schemes, significantly affecting the performance. If the
manufacturer cannot easily change the capacity allocation,

i.e., if operating in a rigid system, then it is most likely to
benefit the vendor-managed system.

We analyze the interaction of capacity management and
the vendor-managed system. Gavirneni et al. (1999) quan-
tify the benefit of information sharing in a supply chain
and show that as capacity level increases, the cost savings
for the manufacturer increases (with diminishing returns).
We observe that the savings of the manufacturer created by
the vendor-managed system decreases with an increase in
capacity and there exist capacity levels at which the tradi-
tional system is less costly. We also analyze the impact of the
operating strategy on the capacity allocation decisions. Un-
der the vendor-managed system, the manufacturer prefers
smoothing the production decisions by allocating equal
capacities in each period, whereas under the traditional
system if the orders placed by the retailer are lumpy and
intermittent, then capacity allocation is unbalanced and
production amounts may fluctuate. Lee et al. (1997) specify
a similar manufacturing situation to show that lumpy or-
ders increase the bullwhip effect. We complement the study
by showing that the vendor-managed system benefits the
upper echelon through smooth production patterns. Our
finding is also in line with Disney and Towill (2003). Our
analysis on capacity management contributes to the litera-
ture by connecting the benefit of vendor-managed systems
to capacity management decisions.

Insight 5. The vendor-managed system may or may not de-
crease the inventory level at the retailer.

Insight 6. The main benefits of the vendor-managed sys-
tem can be described with “dispatch time” flexibility and
“dispatch quantity” flexibility, with the former potentially
leading to a reduction in inventory investment in the sys-
tem. Reduction in inventory investment may occur even if
dispatches are less frequent.

Finally, we quantify the benefit of vendor-managed sys-
tems in terms of dispatch quantity flexibility and dispatch

time flexibility. Cetinkaya and Lee (2000) contrast a tra-
ditional system with frequent shipments with a vendor-
managed system where shipments are consolidated at the
expense of increased inventory levels. Waller et al. (1999)
show through a simulation study that vendor-managed in-
ventory may increase the frequency of dispatches to re-
tailers which helps decrease the inventory level. We show
that dispatch time flexibility may contribute significantly
to the reduction of inventory in the system, and this is not
necessarily achieved through increased frequency of the
shipments.

6. Conclusions

In this study we analyzed a vendor-managed system for
a supply chain consisting of a single manufacturer and a
single retailer. We modeled the manufacturer effectively,
so that the benefits obtained by using a vendor-managed
agreement could be analyzed. We assumed that retailer
demand information is fully available to the manufac-
turer and hence only studied the benefits beyond informa-
tion sharing. We studied both the consignment stock and
no-consignment stock systems under the vendor-managed
system. We considered the capacity limitation of the man-
ufacturer in our analysis, which turned out to be a very
important factor for the manufacturer and analyzed the
problem under different capacity allocation schemes to
identify the effect of capacity management on benefits. Our
main findings are that the vendor-managed system indeed
brings benefit to the manufacturer beyond information
sharing. The benefits are high, especially under moderate
or tight production capacity rather than excessive capacity
or under low service-level requirements. Analyses indicated
that if the inventory and service-level requirements are too
tight, rather than conforming with the specifications, own-
ing the inventory might be less costly for the manufacturer.

Under the vendor-managed system a manufacturer can
take a proactive approach in responding to a retailer’s
demand and thus can increase the capacity utilization.
The vendor-managed system provides the manufacturer
with both dispatch time and dispatch quantity flexibility,
and this flexibility is most valuable when under the tra-
ditional system the retailer requests irregular/large ship-
ments rather than small and frequent shipments. We
also compared the inventory levels under traditional and
vendor-managed systems. Total inventory level in the sys-
tem is lower; however, the inventory level at the retailer may
not be lower. We analyzed the effect of end-demand vari-
ability on the savings. A higher variability resulted in higher
savings, but the savings were outweighed by the inventory
holding costs under the consignment stock model. Finally,
we observed the savings under varying capacity allocation
schemes. Under the vendor-managed system the manufac-
turer prefers uniformly allocated capacity, thus helping to
reduce the bullwhip effect in the total chain, whereas under
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the traditional system he allocates most of the capacity
towards the time of the replenishment. We conclude that
consigning inventory under the vendor-managed system
may not be a preferable option if the manufacturer has suf-
ficient flexibility in allocating the resources. If the manufac-
turer has limited or no flexibility, then the vendor-managed
system provides the highest benefit.

In the vendor-managed system, we limited the analysis
to the two extreme cases, totally consigned stock versus no
consignment stock. Between the two extreme cases, in gen-
eral either the cost of stock at the retailer might be shared
by the manufacturer and the retailer or the ownership of
inventory can be transferred from the manufacturer to the
retailer after some time period between zero and the sales
time. Future work will include analysis of a more general
ownership model.
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Appendix

Proof of Proposition 1. Before starting the proof, we for-
mally state the retailer’s problem of minimizing average
inventory level as a MDP under average-cost criteria and
present the corresponding LP formulation as follows:

(P) min
∑

i>0

iπR
i,a, (A1)

s.t.
∑

a

πR
j,a −

∑

i,a

πR
i,a Pj |i,a = 0 ∀ j, (A2)

∑

i,a

πR
i,a = 1, (A3)

∑

i<0

|i |πR
i,a

E[D1]
≤ β, (A4)
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πR
i,a ≥ 0

In (P) i is the end-of-period inventory level at the retailer,
πR

i,a is steady-state probability that inventory level is i at the
retailer, a are actions that are (quantized) order quantities,
1 − β is the required service level, and Pj |i,a is the transition
probability of being in state j in the next period given that
current state is i , and action is a.

Note that Pj |i,a = P1(i + aQ − j ), where P1 is defined as
in Table 1.

The objective function denotes the expected average end-
of-period inventory level in steady-state. Equation (A2) pre-
serves the flow balance and Equation (A3) ensures that sum
of the steady-state probabilities do not exceed one. Finally,
Equation (A4) ensures that the required service level is sat-
isfied.

We now present the proof.

Part 1. We show that for β ∈ S there is a unique solution to
problem (P), which is an (R, nQ) policy with reorder
parameter R(β).
Consider the Lagrange relaxation of (P):

L(λ) = min
∑

i>0

iπi,a + λ
∑

i<0

|i |πR
i,a − λβE[D1],

s.t.
∑

a

πR
j,a −

∑

i,a

πR
i,a Pj |i,a = 0 ∀ j,

∑

i,a

πR
i,a = 1,

πR
i,a ≥ 0,

where λ > 0 is the Lagrange multiplier. Note that
L(λ) is equivalent to the periodic-review stochas-
tic dynamic inventory problem with batch ordering
where the overage cost is linear with rate h = 1
and underage cost is linear with rate λ. For any
λ ∈ (0, ∞) optimal solution for L(λ) is an (R, nQ)
policy (Veinott, 1965). It is easy to see that ∃ λ,
namely λβ , for which (R(β), nQ) is the optimal in-
ventory policy. Note that by definition, the value of
the Lagrangian relaxation problem (for any λ) is a
lower bound on the optimal value of the main prob-
lem (P). Since the optimal solution of L(λβ) makes
Equation (A4) an equality and is a feasible solution
for (P), we conclude that λβ is the optimal Lagrange
multiplier forL(λ) and (R(β), nQ) is the optimal so-
lution for (P). (Note that, for L(λ), λβ may not be
unique.) Furthermore (R(β), nQ) is unique, since
any other policy (i.e., if reorder point is R(β) + 1
or R(β) − 1) would either violate the service-level
constraint in Equation (A4) or increase the objec-
tive function value in Equation (A1).

Part 2. Through an example, we show that for β �∈ S, there
may be more than one solution to (P).

Example 1. Let Q = 1. Under this assumption the (R, nQ)
policy is a base-stock policy with order-up-to level R + 1.
For some β �∈ S, consider the optimal ordering policy. Sup-

pose this policy could be a randomized or a deterministic
policy. A policy simply states a set of order-up-to levels and
the percentage of the time each order-up-to level is reached.
Therefore, any policy can be expressed as a convex combi-
nation of several order-up-to levels.

Consider the following instance. Let (single-period) de-
mand take values 1, 2, or 3 with probability 1/3. The opti-
mal policy under β = 0.1 is a randomized policy with the
following order-up-to levels: at states (i.e., beginning in-
ventory level) −1 and 1 order up to 2; at state 0, 1/5 of
the time order up to 2, 4/5 of the time order up to 3; at
state 2, order up to 3. Steady-state probabilities under op-
timal policy are π−1 = 6/30, π0 = π1 = 10/30, π2 = 4/30.
Therefore, the optimal policy implies the following: 3/5
of the time order up to 2, 2/5 of the time order up to 3.
There may be other policies that correspond to the same
scheme. For example, consider the policy: “At all states 3/5
of the time order up to 2, and 2/5 of the time order up to
3.” This policy also yields β = 0.1 and minimizes the in-
ventory level. We conclude that when β �∈ S, there may be
multiple optimal policies that are randomized. Note that
none of these optimal policies can be a non-randomized
(R, nQ) policy since in that case β ∈ S. �

Proof of Property 1. Under the traditional system, the
retailer places orders to the manufacturer at the end of
each replenishment cycle. At the beginning of every period
(before dispatch) the manufacturer observes the retailer’s
inventory level, Ir. If it is the first period of the replen-
ishment cycle, the manufacturer dispatches the quantity
required by the retailer that is, dispatches the minimum
amount that will bring the inventory level at the retailer
above R. The dispatch quantity is simply the “demand”
of the manufacturer for the first period of the replenish-
ment cycle, which is “known” due to Ir. For the other
periods “demand” is zero. Since the dispatch quantity is
already implied by Ir there does not exist any uncertainty.
This system is equivalent to a production–inventory system
where the manufacturer’s demand is known with certainty
in the current period. If the total production quantity plus
the available stock is not sufficient to meet the dispatch,
the remaining amount is outsourced. Outsourcing is sim-
ply equivalent to a “lost sales” structure where per unit
lost sales cost is w. Therefore, the manufacturer’s system is
a periodic–review single-echelon capacitated production–
inventory system with Markov-modulated demand, period-
ically changing capacity levels, and linear overage and “lost
sales” costs. The optimal policy of the manufacturer is a
modified base-stock policy (see, for example, Aviv and Fed-
ergruen (1997), Kapuscinski and Tayur (1998), and Gavir-
neni et al. (1999)). �

Proof of Property 2. To show why Property 2 holds,
we argue that the manufacturer’s problem under VM-
NC is a single-echelon capacitated production–inventory
model with Markov-modulated demand and periodically
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changing capacities. Under VM-NC the manufacturer de-
termines the optimal production, outsourcing and dispatch
policy. Based on Observation 1 the manufacturer’s dispatch
policy is already determined as (R(β), nQ). Specifically, the
manufacturer observes the retailer’s end-of-period inven-
tory level and dispatches exactly the minimum amount
that brings the inventory level above R(β) before demand
in the current period is realized at the retailer. The dis-
patch quantity is simply the “demand” of the manufac-
turer. The dispatch quantity is inferred from the retailer’s
inventory level, Ir, and therefore does not involve any un-
certainty. Similar to the traditional system, this system is
equivalent to a production–inventory system where the
manufacturer’s demand is known with certainty in the
current period. Therefore, the manufacturer’s system is
a periodic-review, single-echelon capacitated production–
inventory system with Markov-modulated demand, peri-
odically changing capacity levels, and linear overage and
“lost sales” costs. The optimal policy of the manufacturer
is a modified base-stock policy.

Finally note that for β �∈ S the manufacturer’s policy is
not necessarily a modified base-stock policy since there
may exist more than one dispatch policy that results in the
same β and Ī(β). The manufacturer may prefer any of the
dispatch policies to minimize the cost and the operating
policy can be randomized. �

Proof of Property 3. We make the comparison under
two cases: (i) for β ∈ S and Tr = 1 and (ii) for β �∈ S or
Tr �= 1. For β ∈ S and Tr = 1, Property 2 shows that the
dispatch policy of the manufacturer can be characterized
as (R(β), nQ). Note that the dispatch policy of the man-
ufacturer under TRAD is also (R(β), nQ) as imposed by
the retailer. From Property 1 and Property 2 both systems
operate under modified base-stock policies and the policies
are identical. Therefore, the costs are equal.

For β �∈ S or Tr �= 1, the cost under no consignment is
lower than the cost under the traditional system. The reason
for this behavior is that, when β �∈ S, the manufacturer can
now consider randomized policies and therefore is more
flexible in terms of dispatch policies. For Tr �= 1, under
the traditional system dispatches are not allowed in any
period except the first period of the replenishment cycle.
In the no-consignment system, on the other hand, there is
no restriction on the dispatch quantity in any period. This
corresponds to a more flexible system and therefore the cost
under the no-consignment system is lower compared to the
traditional system. �

Proof of Proposition 2. We make the proof in two steps.
In Step 1 for the simple scenario defined, we provide an
exact characterization of the optimal Markov-modulated
modified base-stock policy under VM-NC (in Lemma A1).
Using this characterization, in Step 2 we provide a lower
bound on the optimal cost under VM-NC.

(0,−µ−1)

(0,−µ+1)

(1,−µ−1)

(1,−µ+1)

(Imax,-µ-1)

(Imax,-µ+1)

. . . . . . .

. . . . . . .

1/2 1/2 1/2

1/2

1/2

1/2

1/2

1/2

Fig. A1. The transition diagram of the underlying Markov chain
of the optimal policy.

Step 1. We assumed β ∈ S and Q = 1. This implies under
optimality there exists a unique deterministic dis-
patch policy for the manufacturer, which is simply
“dispatch the last period’s realized demand.” The
states are (Im, Ir) where Im and Ir are the inven-
tory levels at the beginning of the period at the
manufacturer and at the retailer, respectively. If the
retailer’s demand in the last period is µ − 1, Ir =

retailer’s base-stock level −(µ − 1). The retailer’s
base-stock level is directly implied by the service
level requirement and is irrelevant to the manu-
facturer’s optimal production and dispatch policy
(see Observation 1). For notational simplicity, we
ignore “retailer’s base-stock level” and simply in-
dicate Ir with −(µ − 1) or −(µ + 1). Lemma A1
characterizes optimal production policy of the
manufacturer.

Lemma A1. Under VM-NC the optimal production
policy of the manufacturer is as follows (since in our
model outsourcing and lost sales are equivalent, we
use them interchangeably).
1. If Im = 0 and the retailer’s demand in the last

period is µ + 1 (i.e., if Ir = −µ − 1), produce µ

and outsource one unit (lose the sale of one unit).
2. If Im = Imax and demand in the last period is µ −

1 (i.e., if Ir = −µ + 1), produce µ − 1.

3. Else, produce µ (i.e., for 0 < Im ≤ Imax and Ir =

−µ − 1, or for 0 ≤ Im < Imax and Ir = −µ + 1
produce µ),

where Imax indicates the maximum inventory level at
the manufacturer (see Fig. A1).

Proof of Lemma A1. Property 2 states that un-
der VM-NC the optimal production policy is a
modified base-stock policy. The modified base-
stock policy states the following operating pol-
icy structure. For states Im = 0, 1, . . . , k produce
µ, for Im = k + 1 produce µ − 1 and decrease the
production quantity in unit increments as begin-
ning stock level, Im, increases. For Im = 0 produc-
ing less than µ might as well be optimal. Note
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that k might be different for different Ir levels.
In the following, for each state, we determine the
optimal production quantity (i.e., we determine k
for the two Ir levels, Ir = −µ + 1 and Ir = −µ − 1).
We analyze the states (Im, −µ + 1) and (Im, −µ −

1) separately. The reason for this is that the problem
has a Markov-modulated structure and the base-
stock levels might be different under Ir = −µ + 1
and Ir = −µ − 1. Note that Im ≥ 0.

The optimal production policy under VM-NC is
as follows.
1. For states (Im, −µ + 1) the dispatch quantity

is µ − 1. We start with the analysis of Im = 0.
For (0, −µ + 1) the manufacturer may prefer to
produce µ or µ − 1. Note that producing µ − 2
and outsourcing one unit or outsourcing sev-
eral units to accumulate stock are more costly
actions. Therefore, for (0, −µ + 1) only two ac-
tions, produce µ or µ − 1, are under considera-
tion. Note furthermore that outsourcing is not
an optimal action in any state (Im, −µ + 1).

For any (Im, −µ + 1) if the production quan-
tity is µ, then the next state is (Im + 1, −µ + 1)
or (Im + 1, −µ − 1) (each with probability one-
half). If, on the other hand, the production
quantity is µ − 1, then next state is (Im, −µ + 1)
or (Im, −µ − 1). In other words, the period
where the manufacturer decides to produce µ −

1 under (Im, −µ + 1) determines a candidate for
the maximum stock level under optimal policy,
say Imax. In point 2 below we show that Imax is
indeed the maximum stock level under optimal
policy, and in Step 2 we determine the Imax value
in terms of problem parameters. Under the opti-
mal policy, for 0 ≤ Im < Imax the manufacturer
produces µ and for Im = Imax the manufacturer
produces µ − 1 in state (Im, −µ + 1) (note that
Imax can be zero).

2. For states (Im, −µ − 1) the dispatch quantity is
µ + 1. We start with the analysis of Im = 0. For
Im = 0 the optimal production quantity is µ and
the remaining one unit is outsourced. Note that
producing less than µ and/or outsourcing more
than one unit are more costly actions. Also, for
Im > 0, outsourcing to accumulate stock is a
more costly action. This implies that when the
current state is (Im, −µ − 1), in the next state the
Im level decreases (for Im > 0). In other words,
the candidate Imax in point 1 is indeed the max-
imum stock level.

Modified base-stock policy states that produc-
tion quantity is µ for states 0 ≤ Im ≤ k and
then decreases in unit increments. We would
like to determine the optimal value of k (which
might as well be zero). First, observe that un-
der (Im, −µ − 1) if the production quantity is
µ, then the next state is (Im − 2, −µ + 1) or

(Im − 2, −µ + 1) (each with probability one-
half), if the production quantity is µ − 1 then
next state is (Im − 2, −µ + 1) or (Im − 2, −µ +

1), and so on. In the following, we show that for
0 ≤ Im ≤ Imax the optimal production quantity
is µ.

Define i as the state where the optimal pro-
duction quantity is µ for 0 ≤ Im ≤ i (where i
can be anything in {0, 1, · · · , Imax − 1}). At state
(i + 1, −µ − 1) possible actions are to produce
µ or µ − 1. The optimality equation (under av-
erage cost criteria) at state (i + 1, −µ − 1) is as
follows:

v(i + 1, −µ − 1)

= −g + min{produce µ, produce µ − 1},

v(i + 1, −µ − 1)

= −g + min{cµ + (i )h+
1

2
v(i, −µ+1)

+
1

2
v(i, −µ − 1), c(µ − 1) + (i − 1)h

+
1

2
v(i − 1, −µ + 1) +

1

2
v(i − 1, −µ − 1)},

(A5)

where v(i, j ) is the optimal bias value of starting
in state (i, j ), and g is the optimal average cost
in the MDP (Puterman, 1994).

Now consider the optimality equation at (i −

1, −µ + 1). Possible actions are produce µ or
µ − 1:

v(i − 1, −µ + 1)

= −g + min(produce µ, produce µ − 1),

v(i − 1, −µ + 1)

= −g + min{cµ + (i )h +
1

2
v(i, −µ + 1)

+
1

2
v(i, −µ − 1), c(µ − 1) + (i − 1)h

+
1

2
v(i − 1, −µ + 1) +

1

2
v(i − 1, −µ − 1)},

(A6)

Note that the RHS of Equation (A5) and
Equation (A6) is the same; therefore, the op-
timal actions taken at states (i + 1, −µ − 1)
and (i − 1, −µ + 1) must be the same. We
have shown in point 1 that for 0 ≤ Im <

Imax in state (Im, −µ + 1) the optimal action
is to produce µ. We conclude that for 0 ≤

i ≤ Imax, the optimal action at state (i, −µ −

1) is to produce µ. This equivalently im-
plies that for Ir = −µ − 1, optimal value of k
is Imax.

The analysis presented in points 1 and 2 com-
pletes the proof of Lemma A1. �
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Fig. 2. The transition diagram of the underlying Markov chain
under Policy-VMC.

Step 2. Given the manufacturer’s optimal policy structure,
it is possible to determine the Imax value that mini-
mizes the cost. Under the described optimal policy
structure, the corresponding Markov chain implies
that the steady-state probability of a state (Im, Ir)
is

πM
NC(Im, Ir) =

1

2.(Imax + 1)
.

The one-step reward at state (Im, Ir) is expressed as
follows:

r (Im, Ir)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

cµ + w(1) if Im = 0, Ir = −µ − 1,

c(µ − 1) + h(Imax) if Im = Imax, Ir= − µ+1,

cµ + h(Im) if 0 < Im ≤ Imax and

Ir = −µ − 1 , or

0 ≤ Im ≤ Imax and

Ir = −µ + 1.

Based on the steady-state probabilities and the re-
ward function, we express the average cost under
VM-NC as

cost(VM-NC)

=
w(1) + h(Imax)(Imax + 1) − c(1)

2(Imax + 1)
+ cµ, (A7)

where Imax is an integer. Note that cost(VM-NC)
is convex in Imax. The Imax value that minimizes
Equation (A7) is

I∗
max =

√

w − c

h
− 1. (A8)

In Equation (A8) I∗
max can be a real number or an

integer. Replacing Imax in Equation (A7) with I∗
max

gives a lower bound on the optimal average cost
under VM-NC:

LB(VM-NC)∗ =
√

(w − c)h −
h

2
+ cµ. (A9)

We write LB(VM-NC) ≤ cost(VM-NC), since I∗
max in

Equation (A8) is not necessarily an integer. �

Proof of Proposition 3. We consider the following operat-
ing policy.
Policy-VMC.

1. For Ir = Imin
r , produce (and dispatch) µ + 1.

2. For Ir = Imax
r , produce (and dispatch) µ − 1.

3. Otherwise, for Imin
r < Ir < Imax

r , produce (and dispatch)
µ.

We assume Imax
r ≥ Imin

r + 3 (i.e., under Policy-VMC there
exist at least four states). The proposed policy, Policy-VMC,
is not necessarily the optimal policy under VM-C; therefore,
the cost implied by this policy will be an upper bound on
the optimal cost under VM-C. Note that the transition
probabilities for all Ir are one-half. The transition diagram
of the underlying Markov chain is presented in Fig. 2.

The steady-state probabilities, πM
C (Ir), implied by Policy-

VMC are as follows:

πM
C (Ir) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1

2�
for Ir = Imin

r , Imin
r +1, Imax

r − 1, Imax
r ,

1

�
for Imin

r + 1 < Ir < Imax
r − 1,

0 otherwise,

where � = Imax
r − Imin

r − 1. The reward in state Ir is ex-
pressed as follows:

r (Ir) =

⎧

⎪

⎨

⎪

⎩

cµ + w(1) if Ir = Imin
r ,

c(µ − 1) + h(Imax
r ) if Ir = Imax

r ,

cµ + h(Ir)
+ Imin

r < Ir < Imax
r .

(A10)

Our aim is to determine an upper bound on the optimal av-
erage cost under VM-C. Note that in Equation (A10), Imax

r

is always positive, since otherwise β ≥ 1. Furthermore, Imin
r

is non-positive (since it is already possible to attain 100%
when Imin

r = 0). When determining Imin
r and � we make

sure that the service-level constraint in Equation (13), where
β ∈ S, is satisfied. In other words, the following constraint
is satisfied:

∑i=0
i=Imin

r
|i |πM

C (Ir = i )

E[D]
≤ β. (A11)

Based on r (Ir) and πM
C (Ir) we write an upper bound on

optimal average cost, U B(VM-C), as follows:

U B(VM-C) =
∑

Ir

r (Ir)π
M
C (Ir) = w

1

2�
+ h

(

1

�
+

2

�
+ · · ·

+
Imax
r − 2

�
+

Imax
r − 1

2�
+

Imax
r

2�

)

− c
1

2�
+ cµ.

The cost, UB(VM-C), consists of the cost of production
and outsourcing in all states {Imin

r , . . . , Imax
r } and the cost

of holding inventory in states {1, 2, . . . , Imax
r }. Replacing

Imax
r with � − |Imin

r | + 1:

UB(VM-C) = w
1

2�
+ h

(

1

�
+

2

�
+ · · · +

� − |Imin
r | − 1

�

+
� − |Imin

r |

2�
+

� − |Imin
r | + 1

2�

)

− c
1

2�
+ cµ,
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which is equivalent to

U B(VM-C) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

h(� − |Imin
r | + 1/2)2 + w − c + 3/4h

2�
+ cµ

if Imax
r ≥ 3,

w
1

2�
+ h

(

1

2
� +

2

2
�

)

− c
1

2�
+ cµ

if Imax
r = 2,

w
1

2�
+ h

(

1

2
�

)

− c
1

2�
+ cµ

if Imax
r = 1.

(A12)
To make the analysis simpler we focus on the case where
Imax
r ≥ 3. This is equivalent to � − |Imin

r | ≥ 2. In summary,
we make the following assumptions when defining Policy-
VMC.

A1. Imin
r ≤ 0.

A2. � − |Imin
r | ≥ 2.

From the second-order condition, for Imax
r ≥ 3 Equation

(A12) is convex in �. From the first-order condition, the
minimizing � is obtained as a function of Imin

r as follows:

�∗ =

√

w − c

h
+ (|Imin

r |2 − |Imin
r | + 1).

In order to obtain a “reasonable” upper bound (i.e., an
upper bound which is not too relaxed), we consider the �

that minimizes Equation (A12). To determine the values
Imin
r could take, we make the following observation.

Observation A1. Production and outsourcing cost of the man-
ufacturer is independent of Imin

r , and the inventory holding
cost decreases as Imin

r decreases.

Observation A1 implies that for a given �, as Imin
r de-

creases the total cost decreases. If there were no service-
level constraint, to lower the cost one should lower the
Imin
r value. However, there is a limit on the lowest value

Imin
r can take when minimizing U B(VM-C), determined by

the service level. Based on Equation (A11) and considering
Imax
r ≥ 3:

|Imin
r |

2�
+

|Imin
r | − 1

2�
+

|Imin
r | − 2

�
+ · · · +

1

�
≤ βµ.

In this expression, for β = 0 (i.e, for 100% service level) Imin
r

should be zero. Otherwise, to be able to set |Imin
r | as high as

k, β should satisfy:

β ≥
k2 − k + 1

2µ�
for k = 1, · · · . (A13)

For a required service level, if the |Imin
r | level is set to its

highest possible value, then this would correspond to the
lowest possible inventory holding cost under that service
level. A limit on how high |Imin

r | can be set is obtained
from Equation (A13). For a given |Imin

r |, �∗ minimizes the
UB(VM-C) value. We place �∗ in Equation (A13) and we

suggest two possible upper bound values for optimal aver-
age cost under VM-C: UB1 for Imin

r = 0, and a generalized
upper bound for |Imin

r | > 0.
Upper bound 1 (UB1): We set Imin

r to the highest possible
value, Imin

r = 0. Since as Imin
r decreases, U B(VM-C) de-

creases, the upper bound obtained under Imin
r = 0 can be

regarded as a “relaxed” upper bound.
For Imin

r = 0, we obtain:

�∗ =

√

w − c

h
+ 1.

From Assumption A2, �∗ must be greater than or equal
to two. This is equivalent to w ≥ 3h + c. Furthermore, to
guarantee that Equation (A12) is an upper bound, �∗ must
be an integer. Equivalently, we say w should be such that
�∗ is integer-valued.

Placing Imin
r = 0 and �∗ in Equation (A12) we obtain

the following:
Suppose that w ∈ W, where

W ={w|w ≥ 3h+c,

√

w−c

h
+1 ∈ Z

+}.

Then,

U B(VM-C) = h

(

√

w − c

h
+ 1 +

1

2

)

+cµ

is an upper bound on the optimal average cost under VM-C.
A generalized upper bound: We construct a more general
set of conditions for determining an upper bound. Let
Imin
r = k. For Imin

r = k, we obtain:

�∗ =

√

w − c

h
+ (|Imin

r |2 − |Imin
r | + 1).

From Assumption A2, �∗ must be greater than or equal
to |Imin

r | + 2. This is equivalent to w ≥ (5|Imin
r | + 3)h + c.

Also, �∗ must be an integer.
For a required service level 1 − β, the highest |Imin

r | level
is obtained as follows:

1 − β ≤ 1 −
|Imin

r |2 − |Imin
r | + 1

2µ
√

(w − c/h) + |Imin
r |2 − |Imin

r | + 1
(A14)

Placing Imin
r and �∗ in Equation (A12) we obtain the

following:
Suppose that w ∈ W, where

W =

{

w|w ≥ (5k + 3)h+c,

√

w − c

h
+ (k2 − k + 1) ∈ Z

+

}

and

SL ≤ 1 −
k2 − k + 1

2µ
√

(w − c/h) + k2 − k + 1
.

Then

U B(VM-C) = h

(

√

w − c

h
+ k2 − k+ 1 −

(

k −
1

2

))

+ cµ,
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where k ∈ Z
+, is an upper bound on the optimal average cost

under VM-C. �

Proof of Proposition 4. We compare LB(VM-NC) and
U B(VM-C) and obtain the (sufficient) conditions under
which VM-NC results in a higher cost than VM-C. In
Proposition 3 we obtain two upper bounds for the opti-
mal average cost of VM-C.

First we compare UB1 with LB(VM-NC). UB1 may be a
reasonable upper bound when the service level requirement
is very high. When Imin

r = 0, the upper bound is expressed
as

U B(VM-C) = h

(

√

w − c

h
+ 1 +

1

2

)

+ cµ.

Comparing this with

LB(VM-NC) =
√

(w − c)h −
h

2
+ cµ,

we obtain that U B(VM-C) is always higher than the
LB(VM-NC). Similarly, when Imin

r = 1, we again obtain
that U B(VM-C) is higher than the LB(VM-NC). There-
fore, we conclude that when the service level requirement
at the retailer is high, it is less likely that VM-C results in
lower cost.

For Imin
r ≥ 2, under �∗ the upper bound in Equation

(A12) is expressed as:

U B(VM-C) = h

(

√

w − c

h
+ |Imin

r |2 − |Imin
r | + 1)

−

(

|Imin
r | −

1

2

))

+ cµ.

Comparing this with LB(VM-NC), we obtain the fol-
lowing.

U B(VM-C) < LB(VMNC),

h

(

√

w − c

h
+ (|Imin

r |2 − |Imin
r | + 1) −

(

|Imin
r | −

1

2

))

< h

(

√

w − c

h
−

1

2

)

,

|Imin
r | < 2

√

w − c

h
(|Imin

r | − 1).

As |Imin
r | increases it is more likely that VM-C yields

lower cost. For Imin
r = k,

w >
1

4

(

k

k − 1

)2

h + c

is a sufficient condition for U B(VM-C) < LB(VM-NC).
Note that in Proposition 3 we obtained w ≥ (5k + 3)h +

c f or k ≥ 1 as a tighter condition than

w >
1

4

(

k

k − 1

)2

h + c.

Therefore, we only consider w ≥ (5k + 3)h + c.
We summarize the sufficient conditions for preferring

VM-C over VM-NC as follows.

1. SL ≤ 1 −
k2 − k + 1

2µ
√

(w − c/h) + k2 − k + 1
2. w ≥ (5k + 3)h + c.

3. w is such that
√

(w − c/h) + k2 − k + 1 is integer-
valued.

4. k ≥ 2.

We conclude that when the sufficient conditions are satis-
fied, the optimal cost under VM-C is lower than the optimal
cost under VM-NC. �
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