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Bluetooth Low Energy (BLE) 4.0 beacons will play a major role in the deployment of energy-e�cient indoor localization
mechanisms. Since BLE4.0 is highly sensitive to fast fading impairments, numerous ongoing studies are currently exploring the
use of supervised learning algorithm as an alternative approach to exploit the information provided by the indoor radio maps.
Despite the large number of results reported in the literature, there are still many open issues on the performance evaluation of
such approach. In this paper, we start by identifying, in a simple setup, the main system parameters to be taken into account on
the design of BLE4.0 beacons-based indoor localization mechanisms. In order to shed some light on the evaluation process using
supervised learning algorithm, we carry out an in-depth experimental evaluation in terms of the mean localization error, local
prediction accuracy, and global prediction accuracy. Based on our results, we argue that, in order to fully assess the capabilities of
supervised learning algorithms, it is necessary to include all the three metrics.

1. Introduction

A large number of proposals have been reported in the
literature aiming to develop accurate indoor localization
mechanisms. Most recent studies are being developed using
the Received Signal Strength Indication (RSSI) of various
reference wireless transmitters as a mean of estimating the
position of a smartphone device. Among the technologies
being considered, Wi-Fi networks have attracted the atten-
tion of many researchers and practitioners over the last years.
Many experimental studies have been conducted to construct
radio maps and models enabling the estimation of the
distance between a reference transmitter and a smartphone
device. Due to the characteristics of the wireless signal, the
use of Kalman 	lters [1, 2], among others, have been required
to remove the noise. Novel Bluetooth Low Energy (BLE)
devices have become a strong alternative to Wi-Fi-based
indoor location mechanisms. �eir lower cost, low energy
consumption, and size of the Bluetooth devices are among the

most important design features involving battery-operated
smartphone devices, mainly smartphones and tablets.

Several studies have been conducted aiming to develop
RSSI-based localization systems [3, 4] or simply computer
vision using Kalman [5] or particle 	lters [6]. Early studies
limited the use of Bluetooth localization mechanism to
determine the locations of stationary smartphone devices at
a room level [7]. Moreover, recent studies have shown that
BLE4.0 signals are very susceptible to fast fading impairments
making it di�cult to apply the RSSI/distance models com-
monly used in the development of Wi-Fi-based localization
mechanisms [8, 9]. In [10] the authors explore various
methods used in smartphone-based indoor localization with
di�erent techniques and technologies, analyzing in-depth
map, trilateration, and 	ngerprint techniques.

Other recent studies reported in the literature have
explored alternative methods. In [11], Pei et al. have proposed
a hybrid method combining 	ngerprinting with trilateration.
In [12], the same authors have explored the impact of the
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Figure 1: Overall schema proposal.

presence of people over the wireless signal used on the
development of the localization mechanism. In [13], Guo
et al. have analyzed the RSSI in di�erent indoor environ-
ments, improving the accuracy and mean positioning error
for smartphones with BLE4.0 beacons. �e authors of [14]
evaluate the mean localization error under various scenarios.
In [15], the authors distribute e�ciently the BLE4.0 beacons
and make use of the information provided by additional
sensors attached to the smartphone devices. Finally, Pagano
et al. have proposed a system based on the ranging time of
arrival, between anchor nodes and BLE4.0 beacon node [16].

In this work, in order to properly justify our proposal,
we 	rst study the signal propagation of the BLE4.0 beacon.
From this 	rst analysis, we justify the use of supervised
learning algorithm as a feasible methodology to characterize
the BLE4.0 beacon signal propagation to be used as a basis
to develop indoor localizationmechanisms. Later, we analyze
the main con	gurable parameters based on BLE4.0 beacons
and algorithms.�e results obtained in a real-world scenario
validate the proposal.

Figure 1 shows the overall schema proposal in this work.
�e rest of the paper is organized as follows. Section 2

reviews the related work and describes the main contri-
bution of our work. Section 3 analyzes the BLE4.0 signal
propagation and justi	es the use of classi	cation algorithms
on developing BLE4.0 beacons-based indoor localization
mechanisms. Section 4 shows an in-depth RSSI attenua-
tion study analyzing the impact of physical materials in
our laboratory and noise introduced by other peripheral
devices. Subsequently, Section 5 describes the experimental
tools including the challenges to be faced when develop-
ing a BLE4.0 	ngerprint-based localization mechanism. We
also include a brief description of the two classi	cation
algorithms used on our proposal, experimental setups and
survey campaign characteristics. Based on these preliminary
results, Sections 6.1 and 6.2 present the results obtained in
two di�erent scenarios using BLE4.0 beacons as transmit-
ter and smartphone as receiver. Moreover, we analyze the
performance of the two algorithms in terms of three main
metrics: (i) global accuracy; (ii) mean positioning error;
and (iii) local accuracy. Section 7 briefs the results obtained
in the two previous experimental areas and highlights the

main 	ndings and lessons learned in two main areas: (i)
the system con	guration of a BLE4.0 beacons-based indoor
localization setup and (ii) the performance evaluation of
supervised learning algorithms on the development of indoor
localization mechanisms. Finally, we conclude the paper in
Section 8 exhibiting the 	nal conclusions and our future work
plan.

2. Related Work

Wireless indoor localization is a hot topic of research nowa-
days. Depending on the wireless sensor network technology,
the use of a technique/algorithm may be more suitable
or feasible with respect to others. In this section, we 	rst
overview the major trends and results. We then overview
the various approaches being explored when using BLE4.0
beacons.

2.1. Standard Wireless Positioning. Nowadays, the main three
technologies being explored to develop indoor localization
mechanisms are ZigBee [17, 18], Wi-Fi, and Bluetooth. Main
localization techniques for indoor localization are based on
trilateration or indoor channel propagation models [9] or
by means of classi	cation algorithms [19, 20]. Main metrics
used in indoor localization are global accuracy and mean
positioning error [19, 21].

In [22], the authors compare the performance of Wi-
Fi and BLE4.0 beacons and conclude that BLE4.0 beacons
outperformWi-Fi by 27% in terms ofmean positioning error.
In [19], the authors show that the positioning error of Wi-Fi
is around 5–10m and 1-2m using BLE4.0, that is, an overall
50% improvement. Nevertheless, in [23] good results are
presented for Wi-Fi 	ngerprint, obtaining an average error
of 2.5 meters. In [6], the authors make use of RANSAC with
the aim of improving the quality of the information to be
used to feed a particle 	lter. �eir main goal has been to
enhance the mean positioning error and accuracy of Wi-Fi-
based indoor localization mechanisms. In [24], the authors
have shown that the use of particles 	lters or Kalman 	lter
algorithms may not always be a good choice for BLE4.0
beacon, where the use of di�erent classi	cation algorithms
seems to provide better results. From the above, it is clear
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that the development of accurate and robust wireless indoor
localization mechanisms is still a long way to go. Besides
the technological development, mainly radio systems and
antennas, the use of 	ltering and/or classi	cation algorithms
is still one of the main research topics [25].

2.2. BLE4.0-Based Localization Mechanisms. Nowadays, it
is widely recognized that multipath fading is one of the
main challenges faced on the development of robust and
accurate BLE4.0-based indoor localization mechanisms [12].
In order to overcome this challenge, the research community
is actively exploring on de	ning the best system con	gu-
ration, for example, density of BLE4.0 beacons and relative
placement [26], and on identifying the most suitable data
processing methodologies, that is, 	ltering and classi	cation
algorithms.

Some works have explored the use of regression model,
separate channel 	ngerprints supplemented by Extended
Kalman 	lters (EKF) [27] or particle 	lters [28]. In the later
work, the mean positioning error of less than 4m has been
reported. Both works have shown that the physical area plays
a major role on the results, not only the materials but also the
dimensions.

In order to reduce the mean positioning error, di�erent
classi	cation algorithms have been studied as new localiza-
tion techniques based on 	ngerprinting. However, one of the
main challenges is to properly tune the various parameters
of the classi	cation algorithms, since they play a major
role in the achievable accuracy and mean positioning error
[29, 30]. In [29], the authors have compared three di�erent
classi	cation algorithms, Neural Networks, SVM, and �-NN.

�eir results have shown that �-NN reports the best mean
positioning error, approximately 4m. In [30] better results
are presented by using a combination of BLE4.0 beacon and
Wi-Fi technologies and the same classi	cation algorithms.
A more in-depth analysis on the parameters of di�erent
classi	cation algorithms is presented in [31], where the best
results have been obtained using a weighted distance (WD)
for �-NN. In [32], Peng et al. have obtained similar results
using �-NN, testing di�erent values for “�.”

In summary, all the abovementioned works present
localization results studying di�erent parameters, ranging
from the dimensions of the area under study to the hyper-
parameters of the classi	cation algorithms. In this paper,
we discuss in depth the impact of two sets of parameters:
(i) system con	guration: the deployment and setting of the
BLE4.0 beacons, namely, density and transmission power,
and (ii) algorithms: the parameters governing the di�erent
classi	cation algorithms. In this context, Figure 2 shows the
overall system and algorithmic parameters studied in this
paper.

3. BLE4.0 Signal Characterization

Recent studies have shown that BLE4.0 beacon signals are
highly sensitive to interference and fast fading. Similar to
Wi-Fi, BLE4.0 operates in the 2.4GHz band divided into 40
channels, each 2MHz wide. In order to avoid interference
between BLE4.0 and Wi-Fi devices, BLE4.0 mainly uses
channels 37 (2402MHz), 38 (2426MHz), and 39 (2480MHz)
[21]. BLE4.0 devices transmit on these channels cyclically, and
they only make use of other channels when paired with other
devices.
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Figure 3: RSSI-distance correlation for three di�erent transmission power (Tx) levels.

As for the multipath e�ect, it requires the development
of tools and methodologies enabling the setup planning
of robust and accurate BLE4.0-based indoor localization
systems. In this section, we experimentally study the channel
propagation of BLE4.0 signal. Our main goal is setting
a baseline experimental prototype allowing us to identify
the key system parameters. We then motivate the use of
supervised learning algorithms as a viable methodology to
enhance the accuracy and robustness of BLE4.0-based indoor
localization mechanisms.

3.1. Radiopropagation Model. A large number of recent
e�orts on developing RSSI-based localization mechanisms
have made use of a RSSI-distance mapping function [9]
depicted in the following equation:

RSSI = �� − 10 ⋅ � ⋅ log( ��0) , (1)

where �� denotes the RSSI in dB at �0 distance (typically
1 meter), � is the path loss coe�cient factor, and � is the
distance inmeters between twowireless devices: a transmitter
and a receiver.

All the parameters in (1) can be experimentally measured
except �, which needs to be estimated. Classical approaches

determine the � value that minimizes the estimation error in
a set of ground truth preliminary measurements [24]. �is is
usually done using the lowest squared error as metric.

3.2. BLE4.0 Beacon RSSI Distance Modelling. In order to
verify the suitability of applying this approach using BLE4.0
beacons, we conducted a preliminary experimental test. We
initially placed the smartphone device at 1m from the BLE4.0
beacon and, progressively, moved it away from the BLE4.0
beacon in steps of 1m up to the maximum distance of
15m. At each location, we sampled the RSSI level for a
period of one minute. We made use of an Android 5.1
smartphone, from now on referred to as the receiver. We
conducted three sets of independent measurements by vary-
ing the transmission power (Tx) level of the BLE4.0 beacon,
namely 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, and 0x07, which,
respectively, correspond to 4 dBm, 0 dBm, −4 dBm, −8 dBm,
−12 dBm, −16 dBm, and −20 dBm [33]. All measurements
were conducted under Line-of-Sight (LoS) conditions.

Figures 3(a), 3(b), and 3(c) show the results for Tx = 0x01,
Tx = 0x04, and Tx = 0x07 transmission power levels,
respectively. As seen in the 	gures, the RSSI decreases as a
function the distance between the BLE4.0 beacons and the
target receiver. We also include in the 	gures the results of
adjusting the samples to the model given by (1).
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Table 1: Mean squared error and standard deviation obtained for a
distance of up to 15m for all transmission power (Tx) levels.

Tx Mean squared error (m) Standard deviation (m)

0x01 7.81 0.68

0x02 5.99 0.60

0x03 6.66 0.70

0x04 4.31 0.40

0x05 5.75 0.59

0x06 5.55 0.57

0x07 1.53 0.13

Table 2: Mean squared error and standard deviation obtained for a
distance of up to 8m for all transmission power (Tx) levels.

Tx Mean squared error (m) Standard deviation (m)

0x01 6.71 0.58

0x02 5.25 0.52

0x03 6.01 0.65

0x04 2.49 0.23

0x05 4.10 0.40

0x06 3.49 0.39

0x07 1.44 0.14

Table 1 provides the mean squared error and standard
deviation for all Tx tested. �e results show the infeasibility
in looking for a direct relation using the aforementioned
RSSI-distance model in combination with a triangulation
technique: a given RSSI value may correspond to di�erent
distance estimates [6]. Nevertheless, the results obtained
establish the basis to explore alternative solutions, as well
as the guidelines on setting the BLE4.0 beacons. In fact, a
closer look to the results depicted in Figure 3(c) show that the
RSSI-distancemodelmay hold up to an approximate distance
between 7 and 8 meters. In all cases, we notice that the RSSI
drops substantially between one and three meters, but it then
exhibits smaller variations in the range between three and
six meters. In the case when the transmission power is set
to Tx = 0x04 and Tx = 0x07, we notice a higher decrease
on the RSSI in the 6 to 8m interval than in the case when
Tx = 0x01. Beyond the distance of 8m, the RSSI levels show
severe discrepancy with the RSSI/distance model.

Table 2 provides the mean squared error and standard
deviation for all transmission power levels for a maximum
distance of 8m. According to these results, it is clear that
the use of the lowest transmission power, Tx = 0x07,
o�ers the best solution. �is is an important result, since
one of our main aims is to limit the power consumption
as a means to span the lifetime of the BLE4.0 beacons. �e
results also show that limiting the size of the experimental
area will play an important role in the localization process.
For instance, in the case of Tx = 0x07, a mean RSSI value of
−96 dBm may correspond to a distance of 8m when limiting
the maximum distance to 8m, while −95 dBm, a higher
RSSI, may correspond to 11m or 12m when we consider a
maximum distance of 15m.�ese results provide the basis on
determining the initial deployment and power setting of the

BLE4.0 beacons. In fact, this analysis provides us the basis to
con	gure the setup to obtain the data required to guide the
supervised learning algorithms.

4. Bluetooth Signal Attenuation

In this section we analyze in depth the RSSI 	ngerprint
throughout the experimental area and its behaviour at di�er-
ent times of the day. Our main aim is to get an insight on the
factors that may drastically a�ect the localization process [23,
30]. For this experiment we choose a medium transmission
power level, that is, Tx = 0x04. We de	ned an experimental
area fragmented into 15 zones, of 1m2 each, separated by a

guard zone of 0.5m2 to better di�erentiate the RSSI of joint
sectors (see Figure 4 for details). �e experimental setup
consists of a total area of 9.6m by 6.3m, where the minimal
distance between a BLE4.0 beacon and the receiver will be
1.5m.

In Figure 5, four di�erent views of the physical area
represented in Figure 4 (our laboratory) are shown, which
are the perspective images taken from four di�erent BLE4.0
beacons positions. As seen in the picture, BLE4.0 beacons
“Be10” and “Be11” have been placed by the window side while
BLE4.0 beacons “Be07,” “Be08,” and “Be09” have been placed
by the drywall side.

4.1. RSSI Fingerprint. During our 	rst survey, we monitored
the RSSI of each BLE4.0 beacon at each one of the 	�een
sectors of our experimental area.

Figures 6(a)–6(e) depict the RSSI average values of each
of the 	ve BLE4.0 beacons over the experimental area. Note
that the RSSI reported by the BLE4.0 beacons placed close to
the windows, namely, BLE4.0 beacons “Be10” and “Be11,” are
characterized by a lower signal strength; see Figures 6(d) and
6(e). In the case of BLE4.0 beacon “Be11,” the signal vanishes
quickly starting at neighbouring sectors.

Hence, from these 	gures we can extract the following
conclusions:

(i) We can easily identify the location of each BLE4.0
beacon from the RSSI 	ngerprint.

(ii) �e RSSI level of the beacons placed by the drywall
side is higher than the one reported by the beacons
located by the window side.

�ese results show the need to evaluate the attenuation of
the BLE4.0 beacons under di�erent conditions.

4.2. Intraday RSSI Surveys. In order to illustrate the chal-
lenges faced on developing RSSI-based indoor localization
mechanisms, we carried out three survey campaigns. Similar
to our previous survey campaign, we monitored the RSSI
levels of the various BLE4.0 beacons throughout the experi-
mental area.�e campaignswere carried out at three di�erent
times throughout a day: morning, midday, and a�ernoon.
We will refer to the sample traces as Take 1, Take 2, and
Take 3, respectively. In the following, we will discuss our
main 	ndings on the analysis of the data obtained for BLE4.0
beacon “Be09.” Our choice has been based on the fact that
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Figure 5: Pictures, each one of each of the four corners of the laboratory.

BLE4.0 beacon “Be09” was placed at the midpoint of the
drywall side. �is should allow us to compare the RSSI levels
at the two opposite sides of the experimental area over the
same distance.

Figure 7 shows the RSSI traces for Sectors 1, 3, 9, and 15.
Recall that BLE4.0 beacon “Be09” is located at the right side of
Sector 7.We have also included themean RSSI corresponding

to each one of the traces. Table 3 summarizes the main
statistics of all three traces. From the analysis of the traces,
we can make the following observations:

(i) �e RSSI varies substantially throughout the time.
�e values reported for Sector 13, located close to the
corridor, exhibit the major di�erences between the
highest and lowest RSSI value; see Table 3.�is clearly
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Table 3: Statistics for three di�erent RSSI values (dBm) traces of BLE4.0 beacon “Be09” using Tx = 0x07.
Sector

Take 1 Take 2 Take 3

Mean/variance Min/Max Mean/variance Min/Max Mean/variance Min/Max

1 −84.1/6.9 −106.0/−72.0 −84.5/7.1 −109.0/−72.0 −82.9/6.4 −105.0/−73.0
3 −90.7/6.9 −108.0/−76.0 −90.9/5.6 −108.0/−80.0 −88.6/6.8 −105.0/−74.0
7 −83.0/11.9 −110.0/−66.0 −85.0/9.2 −105.0/−67.0 −82.7/8.7 −107.0/−69.0
9 −86.8/7.3 −105.0/−73.0 −88.5/7.4 −110.0/−75.0 −82.0/9.4 −109.0/−68.0
13 −85.1/9.8 −110.0/−64.0 −88.2/10.1 −106.0/−68.0 −82.1/9.1 −110.0/−68.0
15 −84.0/7.3 −109.0/−70.0 −83.5/7.4 −101.0/−68.0 −80.4/7.4 −105.0/−70.0
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Figure 6: RSSI 	ngerprint for the BLE4.0 beacons.

shows the need of taking into account the �oor plan
when developing an indoor localization mechanism.

(ii) �e mean RSSI levels of sectors located at the same
distance from Be09 substantially vary from one to
another. For instance, the RSSI levels of Take 3 of
Sectors 3 and 15 located both at the same distance
from BLE4.0 beacon “Be09” exhibit a di�erence as

high as 8 dBm. �e gap between mean of the three
traces for these two sectors consistently report a high
value.

(iii) �e RSSI varies substantially from one survey cam-
paign to another in the sectors located by the win-
dows. We notice that the RSSI level of Sector 1, the
one located at the corner of two drywalls, exhibits a
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Figure 7: RSSI intraday traces for BLE4.0 beacon “Be09.”

more constant value. From these results, we con	rm
that counting with the �oor plan of the experimental
area is amust to be able to properly analyze the results.

According to the previous analysis and the experimen-
tation carried out in Section 3, we can remark the following
characteristics for the RSSI using BLE4.0 beacons:

(i) Some of the levels of the RSSI for the sectors close
to the window side are more than 10% lower than
the ones reported for the sector located close to the
drywall. �is behaviour of the RSSI a�ects the classi-
	cation process since the RSSI varies substantially.

(ii) �e RSSI from BLE4.0 beacons is very sensitive
and depending on structural characteristics of the
surrounding walls.

(iii) �e levels of the RSSI reported for sector located at
the same distance from the reference BLE4.0 beacon,

“Be09” in our case, may substantially vary from one
sector to another.

Our results show the need of exploring alternative data
processing mechanisms towards the development of a RSSI-
based localization solution. In order to be able to focus on
the characterization of the signal in an indoor environment
taking into account only the �oor plan, we have restricted the
access to the lab premises during our experiments.

5. Experimental Apparatus and Algorithms

In this section, we introduce the speci	cations and technical
details of our experimental setting. Firstly, we describe the
experimental tools developed in our research. Next, the
two classi	cation algorithms used in our experiments are
explained with their con	gurations and metrics analyzed in
the third and fourth part, respectively. Finally, we described



Journal of Sensors 9

the physical layout of the testbed we have used to carry out all
the indoor localization experiments.

5.1. Experimental Tools. From the previous sections analysis,
we argue that the following holds:

(i) Supervised learning algorithms are worth exploring.
We therefore suggest evaluating the use of Support
Vector Machine (SVM) and �-Nearest Neighbour (�-
NN) algorithms.

(ii) �e actual distance between the BLE4.0 beacon
transmitter and the target plays a central role in
the estimated RSSI. We should therefore consider
multiple experimental setups by varying the number
and distance between the reference BLE4.0 beacons
and the target.

(iii) Line-of-Sight seems to be an essential requirement in
order to get a 	rst insight into the Bluetooth capa-
bilities towards the development of indoor location
	ngerprints.

(iv) Data preprocessing. Given that our interest is to
evaluate the system con	guration, beacons density,
and power, we have decided not to apply any 	ltering
or outliers detection technique. We therefore use the
raw data collected during our surveys.

(v) �e transmission power (Tx) level should also be
carefully considered to ensure the long run of the
BLE4.0 beacons. We use Tx = 0x07 throughout our
	rst set of experiments and Tx = 0x04 and Tx =
0x07 during the second set of experiments.�ese two
transmission power levels o�er the best characteris-
tics for our study: lower power consumption and an
almost monotonic decrease of the mean RSSI level as
a function of the distance in the 0–8m interval.

5.2. Supervised Learning Algorithms. In this work, we pro-
pose making use of supervised learning algorithms (SLAs)
to estimate the position of the receiver. SLAs consist of two
phases, a training phase, where input data should have been
previously annotated with their corresponding category.�is
phase generates a classi	cation model, which is subsequently
used to infer the category of provided test data during
the classi	cation phase. �at is to say, when applied to
localization, SLA is used to generate theRSSI 	ngerprint from
which the location can be obtained.

In this work, we explore the use of two popular SLAs,
namely, the �-Nearest Neighbour (�-NN) [21, 29–31] and
the Support Vector Machine (SVM) [28, 29] algorithms. A
brief description of these two algorithms is included in the
following:

(i) �-NN: given a test instance, this algorithm selects
the �-Nearest Neighbours, based on a prede	ned
distance metric of the training set. In our case, we use
the Euclidean distance since our predictor variables
(features) share the same type, that is, the RSSI values,
properly 	tting the indoor localization problem [34].
Although �-NN uses the most common neighbour

of the � located categories (which is the mode of the
category), some variations are used (e.g., weighted
distance) to avoid removing relevant information.
In this paper, we have set the hyperparameter to
� with values 1, 3, and 5. We have veri	ed that
further increasing � does not improve our results. We
use both mentioned versions of the algorithm: the
weighted distance (WD) and mode (MD).

(ii) SVM: given the training data, a hyperplane is de	ned
to optimally discriminate between di�erent cate-
gories. If a linear classi	er is used, SVM constructs
a line that performs an optimal discrimination. For
the nonlinear classi	er, kernel functions are used,
which maximize the margin between categories. In
this paper, we have explored the use of linear classi	er
and polynomial kernel with two di�erent grades,
namely, 2 and 3. Finally, we present only the best
results which were obtained with a polynomial kernel
with a quadratic function [34].

5.3. Experimental Setups. From our preliminary experimen-
tal analysis, it is clear that we should keep in mind the
following aspect. If the locations of the BLE4.0 beacons
change, we must carry out a new o�-line/on-line sample
collection campaign. �e measurement campaigns mainly
consisted of the following three steps.

(i) O�-Line. RSSI measurements collection phase: during this
phase, we use the receiver for collecting a set of RSSI samples
at predetermined locations spread over the experimental 	eld
covered by	 BLE4.0 beacons.

(ii) Data Storage. �e data is organized into a	th dimension
vector and labelled with the coordinates of the receiver
position.

(iii) Classi	cation. We evaluate the performance of the two
SLAs using the RSSI measurements as our source data. �e
evaluation will be measured in terms of the accuracy of the
estimated location of the target.

5.4. Classi	cation Metrics. Prior to the training phase, RSSI
measurements are obtained by placing the receiver at di�er-
ent locations. �ese captures are then stored in a database
during an o�-line phase including the ⟨�, �⟩ coordinates and
RSSI level for each sample. A�erwards, the RSSI receiver
measures are captured again in an on-line phase. �ese latter
instances are then compared with the model derived in order
to predict the location of the receiver, that is, generate the
RSSI-based location 	ngerprint.

We evaluate the localization performance of the two
classi	cation algorithms in terms of the following metrics:

(i) Global accuracy: it is the algorithm’s precision in the
classi	cation phase.�evalue is calculated in percent-
age (%) between the exact positioning operations and
the total number of positioning operations over the
whole experimental area.
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(ii) Local accuracy: it is the individual algorithm’s pre-
cision in the classi	cation phase for each sector of
the experimental area. �e value is calculated in
percentage (%) too.

(iii) Mean positioning error: it is the average error for the
whole experimental area. �is error is calculated in
meters (�) taking into account the total dimensions
of each area. From now it is named as “mean error.”

5.5. Survey Campaign Characteristics. Our experiments were
conducted in a lab of our research institute. We placed
four BLE4.0 beacons at each one of the four corners in a
rectangular area, and we considered two experimental areas
with di�erent dimensions. A 	�h BLE4.0 beacon was placed
in the middle of one of the longest edges of the room.

For the experimental areas used in this paper, we carried
out a survey campaign as follows:

(i) We 	xed the Tx of all BLE4.0 beacons to the same
level.

(ii) We placed the receiver at the center of each one of the
sectors, and we measured the RSSI of each one of the
	ve BLE4.0 beacons during � minutes depending on
the experimental area.

(iii) �e survey was carried out through a time period
of 	ve days. �e lab occupancy was limited to two
people, the same that were in charge of collecting the
data during the a�ernoon hours.

Once the initial parameters are established, in the next
sections we proceed to analyze other parameters for indoor
localization in the two di�erent environments taking into
account the physical area represented in Figure 5.

6. Performance Evaluation Results

�is section analyzes the results for the classi	cation algo-
rithms in two di�erent areaswith di�erent physical character-
istics. �is analysis has been performed taking into account
the three classi	cation metrics: (i) global accuracy; (ii) local
accuracy; and (iii) mean error.

6.1. Experimental Area 1. In this 	rst setup, we explore
the distribution and number of BLE4.0 beacons in the
experimental 	eld. �e total size of the experimental 	eld
used for this 	rst experiment is set to an area of 4m× 3m
subdivided into twelve sectors of 1m2, as shown in Figure 8.
Five BLE4.0 beacons, denoted by “Be07,” “Be08,” “Be09,”
“Be10,” and “Be11,” were placed around the area. With the
main goal of identifying blind spots in the experimental 	eld
and the number of required BLE4.0 beacons, we carried out
six independent trials: in the 	rst con	guration, we used 	ve
BLE4.0 beaconswhile, in the following 	ve trials, we removed
one BLE4.0 beacon at a time. As already mentioned, by
limiting the maximum distance between the BLE4.0 beacon
and the target to lower than 8m, we avoid huge discrepancies
on the distance-estimation model.

RSSI samples were collected in each of the 12 sectors
during approximately 	ve to six minutes. We evaluate and
store the arithmetic mean of all the collected samples. No
samples were discarded during this phase.

For each trial, the data training set consisted of 231 vectors
and a validation set of 99 vectors, randomly selected for each
experiment. �e results show the classi	cation metrics of the
algorithm executed 50 times.

6.1.1. Case 1: �-NN. Weuse three di�erent values of �, namely
� = 1, � = 3, and � = 5. �is should allow us to identify the
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Table 4: �-NN, global accuracy (%) for di�erent BLE4.0 beacon
setups for Tx = 0x07. Best result is shown in bold.

Con	guration � = 1 � = 3 � = 5
Be07, Be08, Be09, Be10, Be11 12.96 12.82 12.32

Be08, Be09, Be10, Be11 10.06 10.12 9.79

Be07, Be09, Be10, Be11 11.67 10.54 10.92

Be07, Be08, Be10, Be11 13.83 11.81 11.75

Be07, Be08, Be09, Be11 14.20 12.82 12.78

Be07, Be08, Be09, Be10 13.17 12.28 12.64

best value 	tting our requirements. Furthermore, the analysis
used global and local accuracy andmean error with twomain
criteria, namely, theMDof the � values, and theWDbetween
the � values obtained.
Global Accuracy. Table 4 shows the global accuracy according
to the di�erent BLE4.0 beacons setups for Experimental Area
1 using the MD of the � values. We can notice the best global
accuracy is obtained for � = 1, being the best con	guration
without BLE4.0 beacon “Be10.” Moreover, the worst setup
occurs when the BLE4.0 beacon “Be07” is eliminated, being
for � = 5 the worst results. As seen from the results as the �
value is increased, the global accuracy decreases. In fact, this
case represents theworst case; it clearly shows that attempting
to estimate the position of the target using neighbouring
values without taking into account their relevance has a
negative impact on the results.

Mean Error. Table 5 shows themean error for di�erent setups.
As seen from the table, increasing the number of neighbours
� has a negative impact on the mean error when using the
MD modality. On the contrary, the mean error is reduced by
approximately 20% in most cases when increasing � from 1
to 5 in the WD modality. In this case, the setup with BLE4.0
beacons at the corners (i.e., without BLE4.0 beacon “Be09”)
gives us better results for � = 5.�eworst results are obtained
when we remove one of the two BLE4.0 beacons, “Be07” or
“Be08,” placed by the drywall side of the experimental area.

Figure 9(a) shows the positioning error heatmap for the
best global accuracy and Figures 9(b) and 9(c) the best
positioning error using MD andWD, respectively.

From the results shown in tables and heatmaps, we can
conclude the following:

(i) A closer look at the heatmaps reveals very good
results, an estimation positioning error as low as
0.4m.

(ii) Table 5 shows that the lowestmean errors are obtained
using only four BLE4.0 beacons placed at the corners.

(iii) Table 5 shows that increasing � from 1 to 5 has a
positive impact when using the WD modality of the
�-NN algorithm but a negative impact when the MD
modality is preferred. �is shows the importance of
weighting the information according to its relevance.

(iv) Figure 9(c) reveals that the use of theWDmodality of
the �-NN considerably improves the accuracy at the
center of the experimental area: fusioning the WD of
the BLE4.0 beacons proves e�ective.

(v) �e heatmaps reveal a higher mean error in the sec-
tors close to the BLE4.0 beacons, being considerably
lower in the case of “Be10.”�is latter BLE4.0 beacon
has exhibited the lowest RSSI level among all BLE4.0
beacons; see Figure 6(d). �is may translate into the
estimation of a slight change on the distance as the
signal decreases.

Local Accuracy. In this section, we evaluate the local accuracy
for the best global accuracy and the lowest mean error
cases; see Figures 10(a), 10(b), and 10(c), respectively. We are
mainly interested in de	ning the guidelines to con	gure the
localization setup according to the user needs.

Figure 10(c), for � = 5, shows that the sectors close to
“Be07” and “Be11” estimate a mean error of around 2.25m
(refer to Figure 9(c)), with an accuracy of 40% while the
accuracy at the center experimental area, corresponding to
the lowest mean error, is approximately 6%. We also notice
that the lowest accuracy is reported in the sector close to
BLE4.0 beacon “Be10.” Figure 10(a) shows that the accuracy
over thewhole experimental area with respect to the accuracy
of the other two 	gures can be improved by discarding
BLE4.0 beacon “Be10.” However, we notice that the mean
error in sectors close to BLE4.0 beacons “Be07” and “Be11”
gets severely a�ected. Figure 10(b) shows similar results to the
case when BLE4.0 beacon “Be10” is removed. �ese results
clearly show that the placement of four BLE4.0 beacons at
the corners of the experimental area provides amore uniform
localization accuracy over the whole area. However, from
Figure 10(c) it is also clear that it is important to consider the
relevance of the information provided by the BLE4.0 beacons,
that is, the di�erence on the initial RSSI levels of each BLE4.0
beacon.

6.1.2. Case 2: SVM. For the SVM classi	er, we use three
di�erent kernels: linear, polynomial of degree 2 (� = 2), and
polynomial of degree 3 (� = 3). As in the �-NN case, the
analysis has been developed for the same experimental area
and the same number of training and validation samples.

Global Accuracy. Global accuracy values for SVM are pre-
sented in Table 6. In all system con	gurations, but the one
not making use of “Be07,” the table shows that a polynomial
kernel of degree � = 3 provides better results, that is, linear
and � = 2. When comparing one to one the results for each
BLE4.0 beacon system con	guration, we 	nd that SVM (with
� = 2) reports a global accuracy approximately between 1%
and 4%, depending on the BLE4.0 beacons setup, lower than
the one obtained using �-NN with � = 1.
MeanError. Table 7 shows themean error for di�erent BLE4.0
beacon setups. As can be observed all mean error values are
very similar, but the lowest mean error is provided for the
SVM with a polynomial kernel with � = 2. Furthermore, we
note that all values are higher than the ones reported by the
�-NN algorithm using WDmodality.
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Table 5: �-NN, mean error (m), using statistical mode (MD) and weighted distance (WD), for di�erent BLE4.0 beacon setups for Tx = 0x07.
Best results are shown in bold.

Con	guration
MD (m) WD (m)

� = 1 � = 3 � = 5 � = 1 � = 3 � = 5
Be07, Be08, Be09, Be10, Be11 1.52 1.74 1.69 1.52 1.34 1.29

Be08, Be09, Be10, Be11 1.64 1.73 1.75 1.64 1.40 1.35

Be07, Be09, Be10, Be11 1.56 1.71 1.68 1.56 1.36 1.30

Be07, Be08, Be10, Be11 1.52 1.66 1.61 1.52 1.33 1.27

Be07, Be08, Be09, Be11 1.54 1.64 1.63 1.54 1.32 1.28

Be07, Be08, Be09, Be10 1.51 1.72 1.68 1.51 1.32 1.28
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Figure 9: �-NN, positioning error heatmaps, using statistical mode (MD) and weighted distance (WD), for di�erent BLE4.0 beacon setups
for Tx = 0x07.
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Figure 10: �-NN, local accuracy heatmaps for di�erent BLE4.0 beacon setups for Tx = 0x07.
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Figure 11: SVM, positioning error heatmaps for di�erent BLE4.0 beacon setups for Tx = 0x07.

Table 6: SVM, global accuracy (%) for di�erent BLE4.0 beacon
setups for Tx = 0x07. Best result is shown in bold.

Con	guration Linear Pol. � = 2 Pol. � = 3
Be07, Be08, Be09, Be10, Be11 10.00 9.29 11.21

Be08, Be09, Be10, Be11 8.38 10.60 10.70

Be07, Be09, Be10, Be11 10.80 9.39 9.49

Be07, Be08, Be10, Be11 9.29 9.79 10.51

Be07, Be08, Be09, Be11 9.70 10.50 10.71

Be07, Be08, Be09, Be10 9.70 10.60 12.32

Table 7: SVM, mean error (m) for di�erent BLE4.0 beacon setups
for Tx = 0x07. Best results are shown in bold.

Con	guration Linear Pol. � = 2 Pol. � = 3
Be07, Be08, Be09, Be10, Be11 1.65 1.64 1.65

Be08, Be09, Be10, Be11 1.64 1.60 1.65

Be07, Be09, Be10, Be11 1.63 1.64 1.62

Be07, Be08, Be10, Be11 1.65 1.62 1.62

Be07, Be08, Be09, Be11 1.63 1.60 1.61

Be07, Be08, Be09, Be10 1.64 1.66 1.64

Figure 11(a) shows the positioning error heatmaps for
the best global accuracy and Figures 11(b) and 11(c) for the
lowestmean error. Similar to the results reported by the �-NN
algorithm, sectors close to the BLE4.0 beacons exhibit higher
mean error. However, in contrast to the mean error heatmaps
for �-NN (see Figure 9), the heatmaps for SVM are more
uniform throughout the central sector of the experimental
area. Moreover, the sector around BLE4.0 beacon “Be10”
exhibits worse results than the other ones obtained using the
�-NN algorithm. �is clearly shows the bene	ts of taking
into account the RSSI levels reported by the various BLE4.0
beacons. �ese RSSI levels do not exclusively depend on

the distance but also on the structural characteristics of the
environment.

Local Accuracy. Figure 12 shows the local accuracy corre-
sponding to the highest global accuracy and the lowest mean
errors using SVM. Figure 12(a) shows similar behaviour to
the results depicted in Figure 10(b): the sectors close to
BLE4.0 beacons “Be07,” “Be08,” and “Be11” show better local
accuracy results. However, the local accuracy for the sectors
close to the BLE4.0 beacons is considerably lower than the
one obtainedwhen using the �-NN algorithm.�is e�ect also
causes a lower global accuracy. Figures 12(b) and 12(c) show
similar behaviours, that is, lower local accuracies with respect
to the ones reported by the �-NN algorithm.

From the results obtained with both algorithms (�-NN
and SVM), we can conclude that, in order to assess the
capabilities of BLE4.0-based wireless indoor mechanisms,
it is essential to count with all the three metrics: mean
error, global accuracy, and local accuracy. Up to date, most
studies limit their evaluation to report on the mean error and
global accuracy. We should argue that, by providing the local
accuracy, together with the system parameters, transmission
power, and actual placement of the BLE4.0 beacons, the
system designer should be able to identify the shortcomings
to overcome.

In the following, we will carry out a second set of
experiments. Our main aim is twofold:

(1) We aim to explore the system localization parameters.
In this case, we will consider a slightly larger exper-
imental area and the use of a medium transmission
power level, Tx = 0x04.

(2) We aim to use larger training and validation datasets
with respect to the one used in the previous study.

6.2. Experimental Area 2. In this second experimental setup,
we further explore the performance of the �-NN and SVM
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Figure 12: SVM, local accuracy heatmaps for di�erent BLE4.0 beacon setups for Tx = 0x07.

Table 8: Average RSSI and training and validation data for two
transmission powers (Tx) level.

Tx RSSI 1m (dBm) # training data # validation data

0x04 −57 608 261

0x07 −75 757 290

algorithms using two di�erent transmission power settings,
namely, Tx = 0x04 and Tx = 0x07. We de	ne an

experimental area fragmented into 15 zones of 1m2 each
separated by a guard zone of 0.5m2 to better di�erentiate
the RSSI of joint sectors. �e experimental setup consists of
a total area of 9.6m by 6.3m, where the minimal distance
between a BLE4.0 beacon and the receiver is 1.5m; see
Figure 13.

Similar to the previous experimental trials, we sampled
theRSSI during twominutes at the center of each of the 	�een
zones. Table 8 shows the RSSI and the size of the training
and validation dataset used for two transmission power levels
under study.

6.2.1. Case 1: �-NN. Similar to the previous study, we pro-
ceeded to analyze �-NN with the same classi	cation metrics
for Tx = 0x04 and Tx = 0x07.
Global Accuracy. Table 9 shows di�erent BLE4.0 beacon
setups used in our environment, where the best con	guration
is obtained eliminating the BLE4.0 beacon “Be09” for Tx =
0x04. Furthermore, for both transmission power levels we
can see that the BLE4.0 beacons placed at the corners are
essential in this experimental area. Moreover, a higher value
of � improves the global accuracy considerably.

�erefore, the use of a larger area with guard zones
enables an improvement on the global accuracy: the clas-
si	cation algorithm is able to better di�erentiate the RSSI
between the di�erent sectors. Table 4 shows an improvement

as high as 7% with respect to the results obtained for the
Experimental Area 1 setup. Also, as expected, an intermediate
transmission power level and a higher value of � improve
the global accuracy. Furthermore, our results also show that
the BLE4.0 beacons should be placed at the corners of the
experimental area setup.

Mean Positioning Error. Table 10 depicts the mean error for
all system con	gurations for the �-NN algorithm. As can be
observed, when MD is used, increasing the value of � does
not always improve the mean error as in the previous case.
When WD is used, similar to the previous experiment, the
mean error is considerably reduced. Also, in this latter case,
the con	guration with the four BLE4.0 beacons located at
the corners and the one using 	ve BLE4.0 beacons, o�ers
very similar results. From this table, we also notice that better
results are obtained when a higher transmission power level
is used, that is, for Tx = 0x04. �en, better mean error results
are obtained at the expense of using a higher transmission
power level.

Figure 14 depicts di�erent error heatmaps. Figures 14(a)
and 14(b) show the heatmaps for the best results when setting
Tx = 0x04 using MD andWD, respectively. �e fact of using
WD proves e�ective in reducing the mean error across all the
experimental area. On the contrary, the heatmaps produced
when using the MD modality show that the classi	cation
algorithm is unable to take into account the di�erence on
the RSSI levels of the di�erent BLE4.0 beacons. �e sectors
close toBLE4.0 beacon “Be07” are characterized by the largest
mean error. In other words, since the RSSI value of BLE4.0
beacon “Be07” is higher than the ones characterizing the
other BLE4.0 beacons, the estimated distance is longer than
expected. �is e�ect is worsened by the inclusion of BLE4.0
beacon “Be09”; see Figure 14(c). Also, when MD is used,
the classi	cation splits the area into two main sectors; see
Figures 14(a) and 14(c). Finally, the use of higher transmission
power, Tx = 0x07, results in a more uniform positioning
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Table 9: �-NN, global accuracy (%) for di�erent BLE4.0 beacon setups for Tx = 0x04 and Tx = 0x07. Best results are shown in bold.

Tx Con	guration � = 1 � = 3 � = 5

0x04

Be07, Be08, Be09, Be10, Be11 17.38 19.45 20.02

Be08, Be09, Be10, Be11 14.15 17.26 18.64

Be07, Be09, Be10, Be11 15.54 17.84 18.76

Be07, Be08, Be10, Be11 16.92 18.07 21.29

Be07, Be08, Be09, Be11 16.57 16.46 17.84

Be07, Be08, Be09, Be10 15.42 14.96 17.72

0x07

Be07, Be08, Be09, Be10, Be11 15.21 15.44 16.11

Be08, Be09, Be10, Be11 13.87 14.09 15.32

Be07, Be09, Be10, Be11 14.32 12.64 13.87

Be07, Be08, Be10, Be11 13.98 14.54 15.77

Be07, Be08, Be09, Be11 15.21 15.21 13.76

Be07, Be08, Be09, Be10 13.09 11.52 12.98

Table 10: �-NN,mean error (m), using statistical mode (MD) and weighted distance (WD), for di�erent BLE4.0 beacon setups for Tx = 0x04
and Tx = 0x07. Best results are shown in bold.

Tx Con	guration
MD (m) WD (m)

� = 1 � = 3 � = 5 � = 1 � = 3 � = 5

0x04

Be07, Be08, Be09, Be10, Be11 2.25 2.17 2.12 2.25 1.91 1.82

Be08, Be09, Be10, Be11 2.35 2.32 2.33 2.35 2.04 1.99

Be07, Be09, Be10, Be11 2.25 2.19 2.17 2.25 1.87 1.84

Be07, Be08, Be10, Be11 2.30 2.26 2.16 2.30 1.92 1.84

Be07, Be08, Be09, Be11 2.32 2.34 2.30 2.32 2.00 1.93

Be07, Be08, Be09, Be10 2.29 2.38 2.23 2.29 2.01 1.91

0x07

Be07, Be08, Be09, Be10, Be11 2.30 2.32 2.29 2.26 2.02 1.96

Be08, Be09, Be10, Be11 2.35 2.36 2.29 2.35 2.03 1.95

Be07, Be09, Be10, Be11 2.41 2.44 2.44 2.41 2.12 2.07

Be07, Be08, Be10, Be11 2.31 2.39 2.37 2.31 2.00 1.90

Be07, Be08, Be09, Be11 2.39 2.43 2.44 2.39 2.16 2.01

Be07, Be08, Be09, Be10 2.41 2.52 2.44 2.41 2.12 2.04

Be07

Be09

Be08

Be11

Be10

Figure 13: Con	guration of Experimental Area 2.
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(a) MD, no “Be09,” Tx = 0x04
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(b) WD, all beacons, Tx = 0x04
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(c) MD, all beacons, Tx = 0x04
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(d) WD, all beacons, Tx = 0x07

Figure 14: �-NN (with � = 5), positioning error heatmaps, using statistical mode (MD) and weighted distance (WD), for di�erent BLE4.0
beacon setups for Tx = 0x04 and Tx = 0x07.

error throughout the whole area; see Figure 14(b). In fact, this
system con	guration provides the best results in terms of the
mean positioning error, as shown in Table 10.

Local Accuracy. As already mentioned before in this section,
the BLE4.0 beacons located at the corners are essential, as can
be seen in Figure 15, which represent the behaviour of the
local accuracy throughout the experimental area. Speci	cally,
Figures 15(a) and 15(b) are related to the best global accuracy
and mean error for Tx = 0x04, respectively.

In this case, we notice that a more uniform local accuracy
results in a lower mean positioning error; see Figures 15(b)
and 14(b). More speci	cally, comparing Figures 15(c) with
15(d), we can see that the use of BLE4.0 beacon “Be09”
provides better local accuracy in remote sectors. �e results
of local accuracy for Tx = 0x07 provided similar results.

6.2.2. Case 2: SVM. Similarly as with Experimental Area 1,
we have proceeded to analyze the SVM experimental results

with the same classi	cation metrics for Tx = 0x04 and Tx =
0x07.
Global Accuracy. Table 11 shows the global accuracy for Tx =
0x04 and Tx = 0x07. We can see that the best results,
for both transmission power levels, are obtained when the
con	guration of all BLE4.0 beacons is used.

Moreover, using a linear kernel for Tx = 0x04 provides
signi	cantly better results than other SVM con	gurations.
For Tx = 0x07 the best result is obtained using a polynomial
(� = 2) kernel, but far from the results obtained with
Tx = 0x04. Comparing results with Experimental Area 1 (see
Table 6), we can see how SVM improve the accuracy a 10%
when using a bigger experimental area.

Mean Positioning Error. Table 12 shows themean error values.
Again, the best results for Tx = 0x04 are obtained when all
BLE4.0 beacons are used and with the linear kernel function,
but for Tx = 0x07 the best performance is obtained when
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Table 11: SVM, global accuracy (%) for di�erent BLE4.0 beacon setups for Tx = 0x04 and Tx = 0x07. Best results are shown in bold.

Tx Con	guration linear P. � = 2 P. � = 3

0x04

Be07, Be08, Be09, Be10, Be11 23.48 21.17 20.94

Be08, Be09, Be10, Be11 19.68 21.29 19.56

Be07, Be09, Be10, Be11 21.17 18.99 15.65

Be07, Be08, Be10, Be11 22.55 22.09 21.40

Be07, Be08, Be09, Be11 20.71 18.53 19.33

Be07, Be08, Be09, Be10 20.14 21.40 20.02

0x07

Be07, Be08, Be09, Be10, Be11 15.32 17.89 15.55

Be08, Be09, Be10, Be11 16.00 14.43 14.77

Be07, Be09, Be10, Be11 13.42 13.98 13.31

Be07, Be08, Be10, Be11 16.00 17.33 17.56

Be07, Be08, Be09, Be11 11.63 14.76 15.32

Be07, Be08, Be09, Be10 13.20 14.43 15.55
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Figure 15: �-NN (with � = 5), local accuracy heatmaps for di�erent BLE4.0 beacon setups for Tx = 0x04.
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Table 12: SVM, mean error (m) for di�erent BLE4.0 beacon setups for Tx = 0x04 and Tx = 0x07. Best results are shown in bold.

Tx Con	guration linear P. � = 2 P. � = 3

0x04

Be07, Be08, Be09, Be10, Be11 1.93 2.01 1.99

Be08, Be09, Be10, Be11 2.14 2.10 2.10

Be07, Be09, Be10, Be11 1.96 2.07 2.21

Be07, Be08, Be10, Be11 2.06 2.05 2.14

Be07, Be08, Be09, Be11 2.12 2.12 2.12

Be07, Be08, Be09, Be10 2.09 2.04 2.09

0x07

Be07, Be08, Be09, Be10, Be11 2.39 2.08 2.28

Be08, Be09, Be10, Be11 2.38 2.21 2.19

Be07, Be09, Be10, Be11 2.58 2.37 2.29

Be07, Be08, Be10, Be11 2.33 1.98 2.09

Be07, Be08, Be09, Be11 2.47 2.36 2.36

Be07, Be08, Be09, Be10 2.64 2.26 2.36
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(a) Linear, all beacons, Tx = 0x04
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(b) P. � = 2, all beacons, Tx = 0x07
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(c) P. � = 2, no Be09, Tx = 0x07

Figure 16: SVM, positioning error heatmaps for di�erent BLE4.0 beacon setups for Tx = 0x04 and Tx = 0x07.

the BLE4.0 beacons are located at the corners (con	guration
without BLE4.0 beacon “Be09”) of the experimental area and
using a polynomial (� = 2) kernel function.

Figure 16(a) depicts the positioning error heatmaps for
the best global accuracy for Tx = 0x04, which is also the
same with lowest mean error. Figures 16(b) and 16(c) depict
the best global accuracy and lowest mean error for Tx =
0x07, respectively. Similar results are obtained as in previous
experiments, where we can observe that a good global accu-
racy does not provide a lower mean error (in general), but
a balanced mean error throughout the area provides better
results. In this ExperimentalArea 2, comparing Figure 14with
Figure 16, we also observe that �-NN have a more uniform
mean error than SVM, since the central sectors normally have
lower mean error. Finally, comparing SVM for Experimental
Areas 1 and 2 (see Figures 11 and 16) we observe that themean
error is improved in bigger areas, specially in sectors close to
the BLE4.0 beacons, with themean error beingmore uniform
throughout the whole area.

Local Accuracy. Figure 17 shows the local accuracy behaviour
for di�erent setups and transmission power levels.

We obtained similar results as in previous sections,
where in general a balanced local accuracy provides lower
mean error (comparing Figures 17(a) and 16(a)). Typically,
sectors placed in the corners have higher local accuracy, and
BLE4.0 beacon “Be09” usually improves the local accuracy
throughout the area as we can see in �-NN experiments,
comparing Figure 15 with Figure 17.

7. Lessons Learned

In this section, we summarize the main guidelines on setting
the system con	guration and algorithm parameters enabling
the setting of a more accurate and robust localization mech-
anism. In our discussion, we will present our main 	ndings
by following the parameters related to the classi	cation
algorithms and the localization system setup. In order to
guide our discussion, we will follow Figure 2, where we have
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(a) Linear, all beacons, Tx = 0x04
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(c) P. � = 2, no “Be09,” Tx = 0x07

Figure 17: SVM, local accuracy (%) heatmaps for di�erent BLE4.0 beacon setups for Tx = 0x04 and Tx = 0x07.

listed the main parameters to be set. Furthermore, we will
refer to the setting of our experimental system as a means to
illustrate the applicability of our guidelines. Since the results
obtained using the second experimental setup were clearly
superior to those obtained in the 	rst setup, we will derive
the main guidelines from the lessons learned through our
experimental trials. Our main aim is to provide guidelines
allowing us to identify the main system and algorithm
parameters to be tuned on the development of a robust and
accurate BLE4.0-based indoor localization mechanism.

Table 13 summarizes the best system and algorithms
setups derived from our study. As already mentioned, we
focus on our second experimental setting. In fact, the size
and organization of the experimental area were among the
	rst parameters to be set; see Figure 2. From our preliminary
study on the channel characterization, Section 3, we were
able to identify the signal propagation allowing us to better
distinguish the various sectors. As for the actual organization
of the experimental area, our results have shown that the
use of a guard zone proves to be e�ective in improving the
classi	cation process.

As for all the other parameters related to the system
setting, the following guidelines can be derived.

(i) BLE4.0 Beacon Transmission Power. �e setting of this
parameter has to be derived taking into account the infor-
mation that it may provide in order to enable the classi	ca-
tion of the process. In this case, it should provide enough
information to enable distinguishing the various sectors of
interest. In our particular study, we found out that the use of
a medium power level showed slightly better results in terms
of the mean positioning error for the case of the �-NN (WD)
and the SVM classi	cation algorithm setups. In the case of
the �-NN (MD) algorithm, the results exhibited a higher
discrepancy. For this latter setup, we notice that both system
con	gurations include all 	ve BLE4.0 beacons. It is therefore
clear that the information of BLE4.0 beacon “Be09” helps to
compensate the discrepancies on the RSSI levels reported by

the BLE4.0 beacons located close to the windows and those
located close to the drywall. As for the accuracy reported for
the two transmission power setups, we notice that the use of a
medium transmission power level considerably improves the
accuracy of the localization mechanisms; see Tables 9 and 11.

(ii) BLE4.0 Beacons Position and Topology. From our prelim-
inary study, Section 3, we have found out the importance
of identifying the materials composing the various walls.
In a more complex setup where, for instance, big metal
cabinets may be present, the designers should take care
of evaluating the RSSI levels close to and around such
objects. �e information obtained from such preliminary
study should condition the actual topology of the system. In
our case, we have foundout that the levels of theRSSI detected
may considerably vary depending on whether the BLE4.0
beacon has been placed close to a drywall or window. As seen
in Table 13, the system con	gurations for the �-NN (WD)
and SVM algorithms when using transmission power level
Tx = 0x07 do not include BLE4.0 beacon “Be09.” Since in
this case the RSSI levels reported by the BLE4.0 beacons close
to the window and those to the drywall do not greatly di�er,
there is no requirement for BLE4.0 beacon “Be09.” However,
in the case when Tx = 0x04 is preferred, the inclusion of
BLE4.0 beacon “Be09” provides some extra information and
therefore compensates for the discrepancies on theRSSI levels
reported by all the other BLE4.0 beacons.

(iii) BLE4.0 Beacons Density and Spacing. From our results,
it is clear that the number of required BLE4.0 beacons to
cover a given area will depend on the size of the area to cover,
the transmission power, and the RSSI levels reported by the
BLE4.0 beacons. As our results show, the discrepancies on the
RSSI reported by the BLE4.0 beacons due to the structural
characteristics of the surrounding walls will require the use of
additional BLE4.0 beacons. In our case, the use of four BLE4.0
beacons placed at the four corners provided the best results
when using the lowest transmission power; see Table 13.
�e inclusion of BLE4.0 beacon “Be09” under these latter
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Table 13: Mean positioning error (m) for the best con	gurations and setups for �-NN, using statistical mode (MD) and weighted distance
(WD) and SVM.

Algorithm Power Tx = 0x04 Power Tx = 0x07
�-NN (MD), � = 5 [07, 08, 09, 10, 11] ⇒ 2.12 [07, 08, 09, 10, 11] ⇒ 2.29
�-NN (WD), � = 5 [07, 08, 09, 10, 11] ⇒ 1.82 [07, 08, 10, 11] ⇒ 1.90
SVM, � = 2 [07, 08, 09, 10, 11] ⇒ 1.93 [07, 08, 10, 11] ⇒ 1.98

Algorithms parameters

Technique for indoor

�ngerprinting

Training phase

SVM hyperparameters

k-NN classifier

k-NN hyperparameter

Localization

BLE4.0 beacon parameters

Tx
BLE4.0 beacons

BLE4.0 beacons
position

BLE4.0 beacons
distance

BLE4.0 beacons
density

BLE4.0 beacons
area

BLE4.0 beacons
RSSI

BLE4.0 beacons
topology

Classification
algorithms

No peripheral devices

and occupancy

Many samples and
good training of the
algorithm

Linear

Polynomial

d = 2

Big areas

Big areas

Small areas

Big areas

Small areas

Small areas

Weighted

distance

k = 1

k = 5

Low

High

Not close to the
window’s zones

Up to 8Ｇ

Place the beacon
2 meters before the
first sector

1 BLE4.0 beacon
for each 6Ｇ

1 for each corner
and one in the center

Design a guard zones

Design an indoor area

with RSSI balanced

Use of big areas

Figure 18: Overall recommended values for the parameters.

conditions exhibited slightly worse results; see Tables 10 and
12.

Regarding the operation and setting of the algorithm
parameters, the following guidelines can be derived:

(i) Classi	cation algorithms: a classi	cation process
needs to be able to di�erentiate the RSSI levels of
the BLE4.0 beacons at di�erent sectors. �erefore,
a steeper fall on the RSSI should provide the best
results. Furthermore, ambiguities should be removed
in order to reduce errors on the classi	cation process.
In our particular setup, we had to limit the distance
to 8m and use medium and low transmission power
levels.

(ii) �-NN classi	er: the use of values of � higher than
or equal to 	ve provides good results given the lim-
itations on the mean positioning error and accuracy
reported by BLE-based localization mechanisms. In
our setup, we have observed that the use of � = 5
may compensate the discrepancies on the reported
RSSI levels when using low transmission power levels.
In fact, in the case when using Tx = 0x07, the best
con	guration for �-NN (WD) does not make use
of BLE4.0 beacon “Be09.” However, the overall best
results were obtained for the system con	guration

�-NN (WD), with � = 5 and using all the 	ve
BLE4.0 beacons. �is clearly shows that the use of a
transmission power level enabling di�erentiating the
various sectors together with the use of a compensat-
ing BLE4.0 beacon “Be09” proves e�ective.

(iii) WD criteria work better than MD criteria due to the
fact that the 	rst one use all the � neighbours in
order to polish the 	nal result with a weighted average
distance.

(iv) SVM algorithm: similar to the results obtained for
the �-NN algorithm, the choice of the transmission
power plays a major role in the setting of the algo-
rithm parameters. In the case when the lower trans-
mission power is used, the best results are obtained for
a system con	guration not making use of the BLE4.0
beacon “Be09.” Furthermore, the use of a higher
transmission power level simpli	es the con	guration
of the SVM. In this latter case, a linear classi	er is
used.

Finally, Figure 18 summarizes the recommendations for
tuning up the indoor localization mechanism. �e recom-
mendations include the setting of the parameters of the
classi	cation algorithms and con	guration of the BLE4.0
beacons.



Journal of Sensors 21

8. Conclusions and Future Plans

In this paper, we have explored the use of two supervised
learning algorithms towards the development of BLE4.0
beacon-based locationmechanisms. From our study, we have
identi	ed that the use of �-NN and SVM algorithms may
prove e�ective in developing an indoor location 	ngerprint-
ing mechanism. Furthermore, our results have provided us
with some useful insight on the key parameters of both,
the physical infrastructure and the supervised learning algo-
rithm.�e Tx level and the number and placement of BLE4.0
beacons are the main physical parameters to be looked at,
while the number of neighbours to be used plays a major role
in the performance of the �-NN algorithm.

Moreover, with the purpose of improving indoor local-
ization parameters, it is necessary to count with a �oor plan
de	ned, for example, guard zones, for the data acquisition
phase, in order to di�erentiate the RSSI in contiguous sectors.

With respect to the environment, we can say that it
must be con	gured so that we have a fall on the RSSI.
�is is due to the fact that sectors that are close to the
transmitters do not provide good results. Other important
aspects to improve the indoor localization mechanisms are
the topology, the Tx levels, and, above all, the classi	cation
algorithms hyperparameters.

Our immediate research activities will focus on the
impact of room occupancy using multiple additional sensors
and the impact of using di�erent and much more Machine
Learning algorithms for the location estimation.
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statistical analysis for the design of indoor particle-	lter-based
localization mechanisms,” International Journal of Distributed
Sensor Networks, vol. 12, no. 8, 2016.

[7] M. S. Bargh and R. de Groote, “Indoor localization based on
response rate of bluetooth inquiries,” in Proceedings of the the
First ACM International Workshop, pp. 49–54, San Francisco,
Calif, USA, September 2008.

[8] R. Faragher and R. Harle, “An analysis of the accuracy of
bluetooth low energy for indoor positioning applications,” in
Proceedings of the 27th International Technical Meeting of the
Satellite Division of the Institute of Navigation (ION GNSS+ ’14),
pp. 201–210, Tampa, Fla, USA, September 2014.

[9] T. Rappaport,Wireless Communications: Principles and Practice,
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd edition,
2001.

[10] P. Davidson and R. Piche, “A survey of selected indoor position-
ing methods for smartphones,” IEEE Communications Surveys
& Tutorials, vol. 19, no. 2, pp. 1347–1370, 2017.

[11] L. Pei, R. Chen, J. Liu, T. Tenhunen, H. Kuusniemi, and Y.
Chen, “Inquiry-based bluetooth indoor positioning via RSSI
probability distributions,” inProceedings of the 2nd International
Conference on Advances in Satellite and Space Communications
(SPACOMM ’10), pp. 151–156, Athens, Greece, June 2010.

[12] L. Pei, M. Zhang, D. Zou, R. Chen, and Y. Chen, “A survey
of crowd sensing opportunistic signals for indoor localization,”
Mobile Information Systems, vol. 2016, Article ID 4041291, 16
pages, 2016.

[13] Y. Guo, Y. Sun, H. Luo, and N. Guizani, “Accurate indoor
localization based on crowd sensing,” in Proceedings of the 2016
International Wireless Communications and Mobile Computing
Conference (IWCMC), vol. 16, pp. 2852–2868, Paphos, Cyprus,
2016.

[14] M. S. Aman, H. Jiang, C. Quint, K. Yelamarthi, and A.
Abdelgawad, “Reliability evaluation of iBeacon for micro-
localization,” in Proceedings of the 7th IEEE Annual Ubiquitous
Computing, Electronics and Mobile Communication Conference,
UEMCON 2016, New York, NY, USA, October 2016.

[15] M. Castillo-Cara, E. Huaranga-Junco, G. Mondragón-Ruiz,
A. Salazar, L. O. Barbosa, and E. A. Antúnez, “Ray: smart
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