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Abstract

Accurate analytic models for the area, delay and power of NoC routers realized in

FPGA technology are presented. Several router designs are explored, including the

demultiplexer-multiplexer design, the broadcast-and-select design, a RAM-based de-

sign, and pipelined designs with arbitrary amounts of buffering. The buffers can be

realized using embedded memory blocks or using D flip-flops. The analytic models

are compared with extensive experimental results, and shown to be very accurate.

Using these router models, accurate analytic models for the area, delay and power of

graph-based and hypergraph-based NoC topologies realized in FPGAs are presented,

including 2D Mesh, Torus, Binary Hypercube (BHC), Generalized Hypercube (GHC),

and Hypermesh. Three traffic patterns are considered, (a) Random-Uniform traffic

patterns, (b) traffic patterns in Bitonic sorting algorithm, and (c) traffic patterns in

FFT parallel algorithm.

The analytic models for NoCs are compared to extensive experimental results and

shown to be very accurate, typically within 10%. Using these analytical models,

architectural choices such as NoC topology, buffer sizing, crossbar switch design, and

degree of pipelining can be explored analytically early in the design-space exploration

process. It has been observed that an efficient and accurate early design process

results in lower system costs, and in order to come up with feasible designs, early
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design-space exploration tools are essential.

Early design-space exploration tools using analytic models are ideal, as they do

not require the generation of detailed logic design in a hardware description language

such as VHDL or Verilog. However, to date there are no analytic models for NoCs in

FPGAs. This thesis addresses this problem.

According to our analytic power models, in an FPGA environment with equal

bisection bandwidth the 2D BHC outperforms the 2D Mesh and Torus significantly.

For example under equivalent bisection bandwidth, when performing FFT computa-

tions in an FPGA environment the 2D BHC consumes ≈ 8% of the power of a 2D

Mesh, and ≈ 15% of the power of a 2D Torus.

Hypermeshes are based on the concept of hypergraphs, which consist of a set of

nodes and a set of hyperedges, where the hyperedges represent low-latency switches.

Under equivalent bisection bandwidth, 2D Hypermesh NoCs outperform the 2D Mesh

and Torus significantly. To improve the performance of the Hypermesh, two new

hyperedge designs are proposed. We propose the energy-area product as a design

metric to compare the NoCs. The energy-area product reflects both the cost and

performance design metrics. Our analysis indicates that the 2D Hypermesh NoCs

generally have considerably lower area, energy, and energy-area product compared

to the 2D Hypercubes. Under equal bisection bandwidth, the area usage of the 2D

Hypermesh using the broadcast-and-select designs as the hyperedges uses 30% of the

area of the GHC and 42% of the area of the BHC. The energy-area product of the 2D

Hypermesh under the FFT algorithm is 9% of the GHC, and 29% of the BHC.
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Chapter 1

Introduction

The Network on Chip (NoC) is a new paradigm for System on Chip (SoC) design that

uses an interconnection network for communication instead of buses. NoCs are high

performance, scalable, and power efficient alternative to the bus-based architecture

[1][2][4]. Some chip vendors are exploiting NoCs in their chip architectures (such as

the AMD Radeon HD 2900 series).

The design of NoCs is a trade off between multiple constraints such as minimizing

power, minimizing area, and minimizing packet delay [53]. It is critical to explore

early design spaces in order to achieve near-optimal designs due to the trade offs

between area, latency, performance, and power consumption.

Early design-space exploration tools can follow analytic or simulation-based method-

ologies. Most studies in NoC domain have focused on software simulation in order to

evaluate design metrics [5][6][7][41]. These software simulation tools such as Altera’s

PowerPlay can be highly accurate however they are complex to develop and they lack

a theoretical basis. Furthermore, simulation based tools require a detailed hardware

design which must be developed in Hardware Description Languages such as VHDL,
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Verilog, System Verilog, etc.

On the other hand analytic models have a theoretical basis and they do not require

any detailed logic design in VHDL or Verilog, and they are reasonably accurate [8][56].

An evaluation through an analytical model can be performed much faster compared

to the amount of time which simulation would take. An accurate design requires

a detailed model however this leads to a much complicated analysis. Therefore,

in process of developing analytical models, a trade off exists between accuracy and

complexity.

Another important advantage of analytic models is to enable the early design

optimization. Usually 90% of system costs are fixed early in design cycle, before

detailed design in VHDL or Verilog is performed. NoC designers cannot design, test,

and debug multiple different NoCs in VHDL or Verilog to find the best NoC. Early

design space exploration tools are needed to find the best designs and also fix the

significant system costs before detailed design in VHDL or Verilog can begin.

Field Programmable Gate Arrays (FPGAs) are considered a good alternative to

the Application Specific Integrated Circuits (ASICs) to accommodate NoC-based

SoCs due to the following advantages: 1) low development cost, 2) low time to market,

3) ease of upgrading, and 4) wide range of memory and functional blocks as well as

soft processors.

The FPGA-based NoC is one of the most recent attractive fields of research. It is

important to choose a right set of NoC architectures as well as FPGA features that

work best together. To date, there are no analytic models for the area, delay and

power of NoCs realized in FPGA technologies. The goal of this thesis is to propose

analytic models which enable NoC designers to perform an early design exploration
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in FPGAs.

1.1 Thesis Contributions

In this thesis, analytic models of NoC routers, and graph and hypergraph-based

NoC topologies in FPGAs are proposed. The models are very accurate and general

which allow early design-space exploration and evaluation before detailed design are

undertaken.

This thesis makes the following specific contributions:

1. Analytic power, area, and delay models for the basic components of NoCs in FP-

GAs and several crossbar switch designs : These switches are Pipelined and un-

pipelined Demultiplexer-Multiplexer, Broadcast-and-Select, and Memory-based.

The analytic models for switches with 2 different types of input buffers, Em-

bedded Memory Blocks and DFF Registers, are presented. Different routers

can be made by different combinations of switches and input buffers. These

combinations should be considered carefully to choose the best candidate for

different applications.

2. Analytic area, delay, and power models for 5 different NoC topologies in FP-

GAs : These NoCs are 2D Mesh, Torus, Binary Hypercube (BHC), Generalized

Hypercube (GHC), and Hypermesh. These models can be extended to ASICs

easily.

3. Analytic power models for wormhole-switched NoCs in FPGAs : Analytic power

models for crossbar switches, input buffers, and links in wormhole-switched
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NoCs are proposed. These power models depend on the topology and charac-

teristics such as expected distance and number of hops traversed by one packet,

number of links, number of ports per router, and length of inter-router links. To

evaluate an NoC under a specific algorithm, we only need the expected distance

and number of hops traversed by a packet in the algorithm. These models can

be extended to ASICs easily.

4. The expected number of hops and distance traversed by a packet for the 5 topolo-

gies under Random Uniform traffic pattern, the traffic pattern in the Bitonic

sorting algorithm, and the traffic pattern in the Cooley-Tukey FFT : These traf-

fic patterns are mathematically modelled and are used for the power and energy

evaluation of the NoC topologies.

5. Evaluation of the NoCs : The NoCs are compared based on their resource usage

and power consumption. The NoCs are also evaluated by their energy consump-

tion per algorithm. The energy consumption of the NoCs are considered under 2

parallel algorithms: (1) Bitonic sorting algorithm, and (2) Cooley-Tukey FFT.

6. New Hyperedge Designs : Conventional hyperedge designs use the Broadcast-

and-Select switch design. To improve the performance of Hypermeshes, two

new hyperedge designs are proposed, which are explained in Appendix C.

7. Energy-Area Product : The energy-area product is proposed as a proxy for a

comparison between topologies, which reflects both the cost and performance

metrics in the NoC domain. The NoCs are also compared in terms of the

energy-area product.
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1.1.1 Publications

This thesis includes work that has been published or submitted as follows:

1. M. Binesh Marvasti, and T. H. Szymanski, “The performance of hypermesh

NoCs in FPGAs,” In Proc. 30th IEEE International Conference on Computer

Design (ICCD), 2012.

2. M. Binesh Marvasti, and T. H. Szymanski, “A power-area analysis of NoCs in

FPGAs,” In Proc. 25th IEEE International SOC Conference (SOCC), 2012.

3. M. Binesh Marvasti and T.H. Szymanski, “An Analysis of Mesh and Hypercube

NoCs in FPGAs,” Submitted to IEEE Transactions on CAD, 2013.

4. M. Binesh Marvasti and T.H. Szymanski, “An Analysis of Hypermesh NoCs in

FPGAs,” Submitted to IEEE Transactions on Parallel and Distributed Systems

(TPDS), 2013.

1.2 Thesis Organizations

This thesis is organized as follows: Chapter 2 presents background information related

to both NoC architectures and FPGAs. Chapter 3 explains two different simulators:

1) a “pseudo random walk” simulator for area, delay, and maximum power analysis,

and 2) a wormhole simulator for the power analysis under different traffic patterns.

Chapter 4 presents analytic area, delay, and power models of basic components of

NoCs in FPGAs and seven different router designs. Accurate area, delay, and power

analysis of 5 NoC topologies, 2D Mesh, Torus, BHC, GHC and Hypermesh NoCs, are

presented in chapters 5 and 6. In these chapters, analytic models for random uniform
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traffic pattern, traffic patterns in Bitonic sorting algorithm and traffic patterns in

FFT algorithm for the topologies are presented. Chapter 7 concludes the thesis and

presents future directions of this research.
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Chapter 2

Network on Chip and FPGAs

In a System on Chip (SoC), the communication between Processing Elements (PEs)

(or IP cores) is handled by dedicated wiring or shared bus. However, the use of

dedicated wires or shared bus is problematic for several reasons. First, buses are

limited in connecting between 3 to 10 PEs [34] and they can not scale to large systems

with numerous components. Second, as the number of cores increases on chip, the

amount and length of wiring required to connect every component increases. This

results in long global latency and higher power consumption.

The Network on Chip is an attractive alternative to dedicated wiring or shared

bus in SoCs. It represents a scalable solution for communication between IP cores.

The Networks on Chip can leverage ideas of topology, switching strategy, routing

algorithm, and flow control policy from the off-chip networks. However, there are

some key differences between NoCs and off-chip networks.

First, NoCs should be designed under very tight area and power budgets. Inte-

grating a large number of cores under area and power constraints is a big challenge

for designers. The interconnection networks in the NoCs use a significant amount

7



PhD Thesis - Mohammadreza Binesh Marvasti McMaster - Electrical Engineering

of chip power, i.e. 30% of Intel’s 80 core network [9] and 36% for the RAW on-chip

network (MIT’s Microprocessor) [10].

Second, in off-chip networks, communication latency depends on the link trans-

mission latency. However in NoCs where links are relatively short, data can traverse

the links with low latency. This quick traversal makes the router latencies dominate

in the overall communication latency [11].

Another key difference is bandwidth. Bandwidth in on-chip networks is signifi-

cantly higher than off-chip networks due to the cheap and plentiful wires in the chip

[11]. Therefore, NoC architectures are supposed to offer higher performance while

having limited area and power budget.

As Field Programmable Gate Array (FPGA) capacity and capability grow, and

they are increasingly used to build a wide range of SoC applications. Therefore,

FPGAs can be one of the best candidates for NoC designs.

In this chapter, we give an overview of FPGA architectures and explore the NoC

characteristics that have been presented in the literature.

2.1 Topology

Topology relates to the physical layout and connectivity between nodes in the net-

work. Topologies can be classified into four main categories: direct, indirect, graph-

based, and hypergraph-based networks.
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Figure 2.1: 2D Mesh with 16 nodes

2.1.1 Direct Topologies

In a direct network topology, each router is connected to a network node (IP core). In

these topologies, as the number of routers in the system increases, the total available

communication bandwidth usually increases as well. This offers a desirable scalability

to implement massively parallel computers. However, an essential tradeoff between

the offered bandwidth and area of routers should be taken into consideration. Higher

bandwidth results in lower latency but increases the energy and area costs for the

router and link implementations.

In this category, 2D Mesh and Torus (Mesh with wrap-around links) are popular

in the NoC domain as they can be easily mapped into the floorplan. Figures 2.1 and

2.2 show an example of 4x4 2D Mesh and Torus.

2.1.2 Indirect Topologies

In indirect network topologies, routers have point-to-point connections to other routers

[35], and there are several intermediate routers that are not connected to network

nodes (IP core). Examples of popular multi-stage indirect networks are the fat-tree
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Figure 2.2: 2D Torus with 16 nodes

Figure 2.3: Fat-tree with 16 nodes

and butterfly networks [35]. Figure 2.3 shows a fat-tree with 16 nodes (PEs). In the

fat-tree topology the root and its neighbors have higher traffic than leaves, therefore

the datapath width of the links increase as they get closer to the root. Another

example of indirect topologies is a butterfly network. A butterfly topology can be

described as k-ary n-fly, which includes kn nodes (IP Core) and n stages of switches.

At each stage there are Kn−1 switches [35].

10
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Figure 2.4: Hypermesh with 16 nodes

2.1.3 Graph-based Vs. Hypergraph-based Topologies

In conventional graph-based network such as the Mesh and Torus, each node has a

router with direct connections to its nearest neighbors.

Hypergraphs are generalizations of conventional graph in which edges are gener-

alized to yield hyperedges. A hyperedge represents a logical relationship among arbi-

trary number of vertices rather than just two vertices [12]. An example of hypergraph-

based topology is Hypermesh which is shown in figure 2.4.

2.2 Flow Control

In NoCs, flow control is defined as a policy that determines how resources are allocated

to messages as they travel through the network [17]. Flow control policy plays a

significant role in enhancing the system performance and reliability by managing

buffers and links allocated to packets. The flow control is classified into 2 classes: (i)

bufferless and (ii) buffered. In NoCs, switching mechanisms are considered in the flow
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control domain [13]. The switching mechanism determines how and when messages

can traverse the routers in the network. In NoCs, a generated message is broken

into multiple packets. A packet can be further broken down into a number of flits

(flow control digits). Circuit switching and packet switching are two main forms of

switching mechanisms and are explained in the following sub-sections.

2.2.1 Circuit Switching

Circuit switching is a form of bufferless flow control which works at the message level.

In circuit switching, a physical path between a source and a destination is set up and

reserved to transmit an entire message. Circuit switching suffers from poor scalability

as the size of the network grows. Moreover it suffers from long initialization time for

connection setup. This is due to the fact that several links should be reserved for the

entire message transmission process [36].

2.2.2 Packet Switching

Packet switching schemes are a form of buffered flow control. In packet switching,

messages are broken down into multiple packets and each packet is handled indepen-

dently by the network [11]. In contrast to circuit switching, packet switching takes

advantage of the per-hop basis to transmit the messages. In this mechanism packets

include routing information and data to traverse their path towards their destinations.

Packets can also have variable delay depending on the traffic load in the network.

Packet switching improves the bandwidth utilization, transmission latency, and com-

munication robustness of the NoCs [2]. There are three well-known buffered packet

switching schemes: store-and-forward, virtual-cut-through, and wormhole switching
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which are explained below:

Store-and-forward

The store-and-forward is a simple switching protocol in which each node waits to

store the complete packet before forwarding any part of the packet to the next node

[13]. In this type of switching an entire packet must be buffered, and the buffer size

in the router must be at-least equal to the size of the packet. If the buffer in the next

router has no sufficient space to buffer the entire packet, the packet has to be stalled.

This switching technique requires a large buffer size which makes it less attractive for

NoC architectures.

Virtual-cut-through

The virtual-cut-through switching allows a packet to move forward to the next node as

soon as the header of the packet is received at the current node and resources (buffer

and channel) are acquired [13][16]. In this switching technique, following the header

flit, the other flits of a packet are transmitted consecutively. This technique decreases

network latency experienced by a packet and increases the network throughput since

it doesn’t wait for the entire packet to be received. In addition, if the packet stalls,

it will stay in the current node and will not block any link. The buffer requirement

of this technique is the same as the store and forward switching therefore it is not

commonly used in the NoC domain.
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Wormhole

The wormhole switching [14] uses the concept of circuit switching mixed with the

packet switching technique in order to reduce the packet latency compared to the

store-and-forward and the virtual-cut-through switching. In this technique, each

router processes the header flit of an incoming packet to determine its next hop

and then forwards it. The other flits follow the header flit as they arrive. In this

switching technique, a packet can be distributed among a number of routers in its

path through the network when there is insufficient buffer space in the next router to

store the entire packet. A stalling packet blocks the intermediate links occupied by

its flits. The wormhole switching reduces packet latency by allowing a flit to move

forward to the next router when a sufficient buffer is available for the flit. Moreover, it

requires much smaller buffers than the store-and-forward and the virtual-cut-through

switching techniques. As a result wormhole switching is the most attractive and

cost-effective switching technique for the NoC architectures.

In wormhole switching the network latency of a packet with H hops length is

given by [54]:

T = H × (TRouting + TXbar + TLink) + (m− 1)× (TXbar + TLink) + Bl (2.1)

where m is the average number of flits in the packet, and where TRouting, TXbar, and

TLink are the delays for the routing, crossbar switch, and link traversal respectively.

The term Bl is the average blocking time seen by a header flit [54].
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2.3 Virtual Channels

Wormhole switching has been proposed to reduce the buffer requirements and en-

hance the system throughput. However, each packet may occupy several intermediate

switches and links at the same time. This may introduce the problem of deadlocks

[2]. To avoid this problem, virtual channels are used. Virtual channel flow control

exploits an array of parallel buffers at each input port. In this technique, there are

multiple queues per physical channel and as a result if one packet is blocked other

packets which belong to other virtual channels can use the idle bandwidth. This

improves the throughput of the network and reduces the average packet latency by

allowing blocked packets to be bypassed.

In general, virtual channels offer many advantages such as avoiding deadlocks by

breaking cycles in the resource dependency graph [20], optimizing wire utilization

by letting several logical channels share the physical wires, improving performance

by minimizing the stall frequency [19], and providing quality-of-service (QoS) by

assigning different priorities to different data flows [21].

2.4 Router Architecture

The router forms the heart of the NoC backbone. It is responsible for transporting

packets generated by IP cores. It is comprised of input buffers, crossbar switch,

routing logic, and allocation unit as shown in figure 2.5. The router shown in figure

2.5 has N+1 ports, where the additional port is used to connect the router to its IP

core (PE).

An arriving flit is stored at the input buffer which is divided into virtual channels
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Figure 2.5: An IQ Router

to prevent deadlock and increase throughput. Virtual channels provide multiple input

buffers per physical input channel so that packets with different destination output

ports can pass blocked packets in a router. The routing unit decodes the routing

information in the received header flit in order to find the requested output port.

Then the arbitration unit decides if the header flit can proceed toward the output

port or not. Once the output port is allocated for the header flit, the header flit

traverses the crossbar switch toward the next hop.

2.5 Routing

The routing algorithm determines the path a message takes through the network to

reach its destination. Routing algorithm has a direct effect on the performance, power

consumption, area, and robustness of NoC-based systems. The routing algorithms can

be categorized as unicast or multicast, distributed or source routing, deterministic,
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oblivious, or adaptive, minimal or non-minimal.

2.5.1 Unicast and Multicast Routing

A routing algorithm is called unicast when it has a single destination. Multicast

(one-to-many) is defined as delivering of a message from a source node to an arbitrary

number of destination nodes.

2.5.2 Distributed and Source Routing

Routing can be classified depending on the location of routing information and routing

decision logic.

In source routing, the routing path is determined at the source node (before the

packet is injected) using pre-computed routing tables which are stored at the asso-

ciated network interface. Therefore, routing information is inserted to the header of

packet and no look-up table or routing logic is needed in the intermediate routers.

In distributed routing, the routing path is determined at each router. Therefore

each router must have a routing unit to determine the requested output port of every

incoming packet, based on the destination address in the packet.

2.5.3 Deterministic, Oblivious, and Adaptive Routing

According to [13], in terms of how routing algorithms select between the set of possible

paths from a source node to a destination node, they are classified into 3 groups.

A deterministic algorithm always produces the same output for a given particular

input. Under the assumption of the unicast routing, in deterministic routing algo-

rithms the same path between a source and destination pair is always chosen [13].

17



PhD Thesis - Mohammadreza Binesh Marvasti McMaster - Electrical Engineering

This routing algorithm is suitable for NoCs where network traffic is predictable and

relatively simple. In deterministic routing algorithms the current state of the network

in terms of traffic load, faulty link, temperature are not considered. An example of

this routing algorithm is the XY ordered-dimension routing algorithm.

In oblivious routing algorithms a path is selected from the set of possible paths

from a source node to a destination node without considering the state of the network

[13]. An example of this algorithm is the Max-Flow routing algorithm. Deterministic

routing algorithms are the subset of oblivious routing algorithms.

In adaptive routing algorithms a path is selected among alternative paths based

on the factors presented in the current state of the network [13]. This adaptivity

usually results in more efficient distribution of traffic in a network but at the cost of

additional run-time monitoring and management logic. This routing is suitable for

networks in which traffic conditions show irregularity and unpredictability.

2.5.4 Minimal and Non-Minimal Routing

Minimal routing algorithms choose the shortest possible path between the source and

the destination nodes, while in non-minimal routing algorithms paths may be longer

than the minimum path which might be useful for avoiding congestion and criti-

cal (faulty or hotspot) regions. NoCs which are sensitive to communication latency

typically choose minimal routing algorithms.

2.5.5 Deadlock and Livelock

A deadlock occurs when a group of packets are unable to move in a network because

they are waiting for each other to release resources in a cyclic fashion. Deadlock can be
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avoided by analyzing and breaking cyclic dependencies in the dependency graph of the

shared network resources by applying routing restrictions or using additional hardware

resources such as virtual channels [19]. Livelock occurs when packets continue to move

through the network, but they do not make progress toward their destinations [13].

In adaptive non-minimal routing, livelock can occur because of its flexible capability

of redirecting packets. One of the ways to avoid livelock in a network is to add a

misroute count, which holds the number of times a packet has been misrouted [13].

Once the count reaches a threshold, no more misrouting is allowed.

2.6 Field Programmable Gate Arrays

A Field Programmable Gate Array (FPGA) is a special kind of semiconductor device

that can be programmed after manufacturing. FPGAs usually are constructed by

arrays of pre-fabricated logic blocks, routing paths, I/Os, and reconfigurable switches.

FPGAs have the ability to be programmed many times to implement any desired

digital design.

In an FPGA, logic functions are configured through a series of programmable

resources. At the lowest level of the hierarchy, these programmable resources are

typically called Logic Elements (LEs), Adaptive Logic Modules (ALMs), or Slices.

Each of these programmable resources typically includes one or more Look-Up Tables

(LUTs) and D flip-flops (DFFs). These programmable resources are configured to

perform complex combinational functions or simple logic gates such as AND and

XOR. Array of LEs, ALMs, or slices are typically placed in logic blocks. These logic

blocks are usually called Logic Array Blocks (LABs) or Configurable Logic Blocks

(CLBs). In most FPGAs, the logic blocks also include memory elements which are
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simple D flip-flops (DFFs) or more complete blocks of memory.

The design usually is implemented using a Hardware Description Language (HDL),

i.e VHDL, Verilog or Systemverilog, which is programmed to the chip after a compila-

tion procedure. This compilation procedure is done by special software such as Altera

Quartus II and Xilinx ISE and it includes synthesizing, placement, routing, and floor

planning. Afterwards, the FPGA is programmed by loading data bits into the mem-

ory cells. These memory cells control transistor switches to establish non-permanent

connections.

An FPGA can support upto a few million logic gates operating at speeds of hun-

dreds of MHz [22]. With growing chip density in terms of the number of transistors

and gates in the latest process technology and a host of other features, such as em-

bedded processors, embedded memory blocks, DSP blocks, clocking, and high-speed

serial at ever lower price points, FPGAs are a suitable platform for almost any type

of designs [22][23].

Figures 2.6 and 2.7 illustrate the general architecture of the LE and ALM in Altera

FPGAs. As seen in figure 2.6, an LE includes a 4-input LUT and a DFF register.

The LUT is a SRAM memory which contains the truth-table of a combinational logic

function after FPGA programming. The LUT with n inputs can implement any n-bit

function. Referring to the ALM in figure 2.7, each ALM consists of a 8-input LUT

and 2 DFF registers.

2.6.1 FPGA Advantages and Disadvantages

FPGAs and Application Specific Integrated Circuits (ASICs) provide different values

to the designers. These values must be carefully evaluated. While FPGAs used to
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Figure 2.6: Structurer of an LE [23]

Figure 2.7: Structure of an ALM [23]
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be selected for lower speed/complexity/volume designs in the past, todays FPGAs

easily push the 500MHz performance barrier [22].

Below is a brief list of advantages and disadvantages of using FPGAs:

1. Advantages:

(a) Reprogramability: FPGAs can be programmed and re-programmed many

times to implement or debug any desired digital circuit

(b) FPGAs provide flexible and fast prototyping implementation for embedded

systems

(c) Lower development cost and shorter time to market

(d) FPGAs are using the latest process technologies whereas most ASICs are

still using previous process generations

(e) Suitable for research purposes because of:

i. Fast design cycle

ii. Immediate results

iii. No manufacturing operations involved

2. Disadvantages:

(a) Generally slower than ASICs

(b) Limited area

(c) Need more power

(d) Not suitable for very high volume designs
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2.6.2 Capacity of a Programmable Logic Component in FP-

GAs

Since FPGAs can be configured in a variety of patterns, and because their fundamen-

tal logic structures are different among different FPGA vendors, there is no direct one

theoretical mapping to compare the logic unit of one FPGA architecture to another.

The comparison can be done after performing full place and route compilations using

the appropriate software tools [24]. The efficiency of logic utilization of an FPGA

architecture depends on the following factors [24]:

1. The logic capacity of a single logic unit

2. The embedded functions that are present in the FPGA, such as a DSP block

or embedded RAM

3. The structure of the design, such as whether the design includes multiplexing,

wide functions, or arithmetic functions

4. The effectiveness of the synthesis tool

5. The quality of the place and route software

2.6.3 FPGA-based NoCs

An SoC realized with an FPGA is common today. As FPGA capacity and capability

grow, they are increasingly being used to build a wide range of SoC appliances. The

increasing logic density with higher operating frequencies as well as functional memory

and operating blocks, enable FPGAs to replace ASICs in several high performance

applications.
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The concept of dynamically reconfiguring FPGAs applies well to micro-network

design [2]. The advantage of FPGAs is to efficiently execute a large variety of tasks

with distinct requirements using reconfigurable amount of resources [29].

Reference [30] discussed the fixed communication layer of interconnection network

on FPGAs to perform dynamic multitasking by tile-based reconfiguration. It was con-

cluded that FPGA-based NoCs are suitable for instances where the reconfigurability

is required due to a low hardware overhead. In FPGAs, tasks can be dynamically

instantiated in the network by partial reconfiguration, which opens a new way to

dynamic multitasking applications.

In FPGAs, there is a rich routing fabric. Reference [31] studied the routability

of wiring on FPGAs and explored multiprocessor designs in FPGAs. This was done

by considering various NoC topologies and scaling the number of IP cores. It was

concluded that it is not required to limit the connectivity to economize the use of

resources at the expense of performance.

So far, some different switching techniques for NoCs have been implemented in

FPGAs. Exploration of the area, route latency, and route quality between time-

multiplexed and packet switched network routers on FPGAs was done in [33]. A

virtual-cut-through NoC router designed for FPGAs was proposed in [39]. Reference

[32] proposed and demonstrated a lightweight circuit-switched approach for FPGA-

based NoCs. It was discussed that their router is flexible enough to be used in general

embedded systems and is high-performance enough for many high-throughput data

flow applications.

Recently, Altera announced a new family of FPGAs based on Intel 14 nm Tri-Gate

process technology, providing designers with upto a 10X increase in programmable
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gates [25]. Xilinx announced a new 3D FPGA (Virtex-7 HT) with 6.8 billion transis-

tors, providing designers with access to 2 million logic cells. This is equal to 20 million

ASIC gates, which makes this FPGA ideal for system integration, ASIC replacement,

and ASIC prototyping and emulation [28].

NoCs are supposed to be a perfect solution for the communication challenges

of on-chip interconnections. FPGAs also offer many features such as latest process

technology combined with new 3D packaging technology and wide range of memory

and functional blocks. Hence, FPGAs can be perfect candidates for NoC designs.

Different designs and features of FPGAs affect the design metrics such as area,

power and delay. Therefore it is important to choose a right set of NoC architectures

as well as FPGA features that work best together.

2.6.4 NoC Evaluation Metrics

Area and power consumption are the most leading metrics of NoC cost [37]. The

NoC designers’ goal is to minimize them especially for small and mobile applications,

where these resources are limited. More considerations about theses costs are required

to accommodate on-chip interconnection network and SoCs into FPGAs.

Since FPGAs have fixed logic units and routing paths, their area and power con-

sumption are relatively correlated. The area and power efficiency of a design usually

depends on NoC design parameters and FPGA characteristics. Buffers are the most

power and area hungry components among a router’s parts. However, buffers are

important to reduce the latency and to handle data flow problems. Therefore, buffer

type and capacity as well as reduction of area and power of other router’s components

should be studied in order to acquire cost-efficient design.
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There are many metrics to evaluate the speed of routers and topologies. Maxi-

mum operating frequency is one of the important factors that influences the speed

of message delivery. Other metrics are throughput and latency which are defined

respectively as the amount of data transferred over a period of time and the average

time taken between sending the data at a source node and receiving it at a destination

node. Usually latency is calculated as the average delay of a packet/flit traversing

the NoC. The lower bound of average latency is called the best case latency or zero

load latency which has no packet blocking in the NoC. Other forms of latency include

the presence of blocking.

Bisection Bandwidth:

Bisection bandwidth is one of the metrics for a fair comparison between topologies

and it is used as a proxy for cost metrics (Area and Power) [11]. By using equal

bisection bandwidth, we try to equalize the cost of topologies.

A bisection of a network is defined as a cut that divides the network into two

halves of nearly equal size. The bisection bandwidth of a network is defined as the

minimum bandwidth over all bisections of the network [13]. For example, in a bus

the bisection bandwidth is defined as the bandwidth of a line but for a ring it is

bandwidth of two lines.

In this thesis 5 topologies are considered, so we define the bisection bandwidth

for each of the topologies in the thesis. Figures 2.8 and 2.9 show the topologies used

in this thesis. In these figures each edge denotes two unidirectional links going in

opposite directions.

1. For a KxK 2D Mesh (Fig. 2.8a), the bisection bandwidth is proportional to the
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bandwidth of 2K lines. There are 2 lines per row, and there are K rows.

2. For a KxK 2D Torus (Fig. 2.8b), the bisection bandwidth is proportional to

the bandwidth of 4K lines. There are 4 lines per row, and there are K rows.

3. For a KxK 2D Binary Hypercube which has 2n nodes (Fig. 2.8c), the bisection

bandwidth is proportional to the bandwidth of K2 lines [15]. There are K lines

per row, and there are K rows.

4. For a KxK 2D Generalized Hypercube which has 2n nodes (Fig. 2.8d), each node

is connected to all other nodes in the same dimension, the bisection bandwidth

is proportional to the bandwidth of K3

2
lines. There are K2

2
lines per row, and

there are K rows.

5. For a KxK 2D Hypermesh which has 2n nodes (Fig. 2.9), the bisection band-

width is proportional to the bandwidth of K2 lines. There are K lines per row,

and there are K rows.

To have a fair comparison between the NoC topologies, each topology can be nor-

malized to have an equal bisection bandwidth of O(N) bits/sec. In this thesis the dat-

apath width of the topologies with N nodes are adjusted to have equal bisection band-

width as follows: WGHC = 2√
N
.WHypermesh = 2√

N
.WBHC = 8

N
.WTorus =

4
N
.WMesh.

2.7 Methodology

To design a system using an Application Specific Integrated Circuit (ASIC), an ASIC

design methodology must be followed. First, the functional requirements and exter-

nal interfaces of a system should be specified in a Design-Specification. Next, the
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Figure 2.8: The bisection bandwidth in 4 topologies a) 2D Mesh, b) 2D Torus, 3)
2D BHC, 4) 2D GHC (each edge denotes two unidirectional links going in opposite
direction)
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Figure 2.9: The bisection bandwidth in a 2D Hypermesh

system in the Design-Specification should be modelled using a Hardware Descrip-

tion Language (HDL). The task of developing a design in an HDL requires expert

knowledge, and is very time consuming. Once the HDL description is developed, the

functionality corresponding to the design specification should be verified. Once the

functional verification is done, the HDL description is converted into an optimized

gate level netlist using the synthesis tools. A synthesis tool requires several inputs:

(a) the HDL description of the system, (b) a Standard Cell Library from an ASIC

manufacturer, and (c) timing constraints. The synthesis tool then produces a gate-

level netlist as output; equivalently it realizes the system using typically thousands

(or millions) of standard cells selected from the Standard Cell Library, and it specifies

the cells used and the interconnection of wires between these standard cells.

The synthesis step is a very important step in the ASIC design flow, as it ensures
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that the realization of the design is done to achieve optimal or near-optimal results.

Synthesis tools often use complex optimization engines, to achieve low area, low

power and low delays. Once the synthesis is completed, the gate-level netlist with the

timing information is used to perform a pre-layout static timing analysis. When the

pre-layout timing model is verified, the synthesized design undergoes a process called

Place-and-Route. In this process, the standard cells are placed onto a silicon substrate,

and the wires are routed to realize the required interconnects. Call the output the

Physical Layout. After the Place and Route process, a post-layout timing analysis is

done on the Physical Layout. This step is similar to the pre-layout timing analysis,

but it includes physical layout information as well. It verifies that the Physical Layout

meets the Design Specification, after considering realistic wires delays and standard

cell delays reported by the ASIC manufacturer in their Standard Cell Library. When

the post-layout timing analysis is completed, the next step is to verify the post-

layout logic functionality of the physical layout. In this step, the physical layout is

simulated to ensure that the design has the correct functionality. When the design

has completely passed the simulation, it proceeds to tape-out where it is eventually

shipped to the ASIC manufacturer for fabrication.

It is occasionally discovered that a design cannot meet the requirements stated

in the Design Specification, very late in the design process. The development of a

detailed and functionally correct design in an HDL often takes several months of

time, by a large design team. The steps of Place-and-Route, pre-layout static timing

analysis, post-layout timing analysis and post-layout logic functionality verification

can also take several months of time by a large design team. If it is discovered that a

design cannot meet the design specifications at this point, then a significant amount
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of time has been lost (several months, potentially up to a year), and significant sums

of money has been lost (potentially millions of dollars in salaries). At this point, the

company has likely lost the race to be ’first to market’ with a design. It may continue

to redesign the product, investing more time and money, or it may abandon the design

and forfeit the market-share completely. Consider for example if Apple released the

first iPhone 6 months after Samsung debuted a similar product. Apple would not the

market leader that it currently is, affecting billions of dollars of market capitalization.

For this reason, early design space exploration tools are very important. Early design

space exploration tools can accurately estimate the area, delay and power used by a

design, very early in the design process, before months of time and millions of dollars

are invested.

Given a CMOS technology (i.e., a 40 nanometer or a 20 nanometer CMOS process,

etc), the ASIC vendors perform extensive experimental results, to generate their

Standard Cell Libraries. They fabricate several designs using their standard cells

on a silicon ASIC, and they experimentally measure numerous data related to the

performance. They typically develop a delay equation to curve-fit the experimentally-

observed delay for each type of CMOS logic gate, with N fan-outs for variable N, and

they publish this data in the Standard Cell Library. The libraries include the VLSI

area used for each logic cell, the power used by the cell (at a given clock rate), and

the delay of the cell depending on the fan-out load N.

CAD tools can use these proprietary Standard Cell Libraries to explore the design

space in the early stage of the design process. CAD tools can estimate a logic circuit’s

delay, by analysing a network description as a collection of interconnected standard

cells, and using the data reported in the Standard Cell Library. These Standard
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Cell Libraries are typically available to universities and companies under an NDA

(Non-Disclosure-Agreement). Unfortunately, university researchers typically cannot

publish the data in a Standard Cell Library, or use this data in an analytic model,

due to the NDA. In [55], publically available data not covered by an NDA for a 180

nanometer CMOS process was published, however this process is too old to be used

today, where 20 nanometer technology is often used.

Unfortunately, there are no similar libraries of area, delay or power for logic cells

used in an FPGA. A system designer using FPGAs does not have access to a library of

data for various logic functions once realized on an FPGA, for use in early design space

exploration. In this thesis, we developed a methodology to collect similar performance

data for logic functions when realized in FPGAs, using only a few simple experiments

on the FPGAs. We also develop analytic models which can predict the area, delay

and power of a complex logic design, using only basic data collected from an FPGA.

In order to estimate delay and power of a wire, the length of the wire in an FPGA

should be known. In this thesis, a method first introduced in [60] is used to define

length of a wire in an FPGA.

Definition: One ‘LE-Length’ represents the square-root of the area of the basic

programmable resource in an FPGA, typically called the ‘Logic Element’ (or LE).

In this thesis, all wire lengths are expressed in multiples of the LE-length. We

assume that an LE has unity aspect ratio as shown in figure 4.6, and we define the

length of one LE in the x and y dimensions to be 1 LE-length. In the Altera Cyclone

IV family of FPGAs, every logic array block (LAB) has 16 LEs. As shown in figure

2.10, we assume that each LAB is square with unity aspect ratio (with an array of 4

by 4 LEs).
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Figure 2.10: The LE-Length and the placement of 16 LEs in a LAB

We also define a new concept for distance in an NoC design using a regular array

of identical nodes.

Definition: Given a NoC topology of N identical nodes that has undergone the

Place-and-Route process in an FPGA, define the ‘Node-Distance’ (ND) as the shortest

distance between 2 adjacent nodes in the X or Y dimensions. The ND of an NoC with

N nodes is denoted by ΓTopology =
√

ATopology/
√
N , where ATopology is the area of the

NoC topology (excessed as a number of LEs used to realize the NoC in the FPGA).

Figure 2.11 shows the ND in a 2D Mesh, expressed in terms of the LE-length.

ASICs and FPGAs use the same laws of physics, however there are some differences

in their logic structures. For example in ASICs, each N-to-1 multiplexer can be

constructed with N−1
m−1

smaller m-to-1 multiplexer standard cells arranged in a tree

topology. Eq. 2.2 shows the area equation for an N-to-1 multiplexer with datapath

width of W bits when realized in an ASIC.

AMux(N, 1,W ) =
⌈

(N − 1)

m− 1
.Amux(m,1)

⌉

.W (2.2)
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Figure 2.11: Node-Distance in a 2D Mesh

The term Amux(m,1) is the area of a m-to-1 mux standard cell, expressed in square

nanometers, available in the ASIC Standard Cell Library.

In an FPGA environment, Eq. 2.2 needs to be modified. The ‘area’ of a logic

design in an FPGA is defined as the number of LEs used to realize the design in the

FPGA. The synthesis efficiency of a basic logic cell is defined as the average number

of LEs used to synthesize the basic logic cell, given a particular FPGA family [60]. For

example, Eq. 2.3 shows the area equation for an N-to-1 multiplexer with datapath

width W in FPGAs:

AMux(N, 1,W ) =
⌈

(N − 1)

m− 1
.SMux(m,1)

⌉

.W (2.3)

where SMux(m,1) is the synthesis efficiency for a m-to-1 Mux cell, and the value of m is

determined for a FPGA device family. A few simple experiments are needed to find

the value of m in a family of FPGAs. To find the synthesis efficiency for a multiplexer,

several large multiplexers (i.e., 16-to-1, 32-to-1, 64-to-1) can be synthesized, and the
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LEs used for each large multiplexer are recorded. The data is then curve-fitted to the

preceding equation, to find the synthesis efficiency and parameter m.

If FPGA vendors would publish a library of useful data for common standard

logic cells (i.e., the synthesis efficiency, the delay equation parameters, etc.), then

FPGA designers could use this published data for early design-space exploration and

optimization, just as ASIC designers can use published Standard Cell Libraries of

data. Unfortunately, FPGA vendors do not currently publish such synthesis efficiency

data, and in any case there have been no published analytic models to use such data.

We show that FPGA designers can perform a few simple experiments and derive a

small table of data (constants), to be used to model large logic designs in FPGAs,

comparable to the Standard Cell Libraries published for the ASIC VLSI domain.

Note that each FPGA family (i.e., Altera or Xilinx FPGA families) has its own

set of data constants (synthesis efficiencies and delay constants), just as each family

of ASIC standard cells has its own Standard Cell Library.

2.7.1 Methodology for Validation of Results

To validate the analytic models for logic functions in FPGAs, many validation ex-

periments are performed for different switch designs, input buffers, NoC topologies,

and traffic patterns. Each NoC is designed modularly and implemented using VHDL

hardware description language. Figure 2.12 shows the CAD flow for obtaining the

validation results. As stated earlier, 2 VHDL simulators were implemented. The

simulators run on a Intel Core 2 Duo system with 2GB RAM, running Windows.

The time required to acquire each design metric is different. The experimental

area and delay reports can be found using the Quartus and TimeQuest analyzer tools.
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Figure 2.12: Experimental design flow with Altera FPGA CAD tools

The time required to find the experimental area and delay reports for a crossbar switch

design is about 2 to 5 minutes of CPU time, depending the datapath width and switch

degree. The compilation time to find the experimental area and delay of an NoC is

about 15-20 minutes of CPU time. (The time required to find the analytic area or

delay using the analytic methods developed in this thesis is virtually instantaneous.)

The most time consuming CAD report is the experimental power report. To de-

termine the power consumption, a testbench associated to the HDL design is required

to perform a post-synthesis simulation. The Modelsim tool performs a detailed gate-

level simulation, and generates several signal activity files called Value Change Dump

(VCD) files. The Altera PowerPlay analyser tool processes these VCD dump files, and
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determines the experimental power used. To acquire accurate experimental power re-

sults, the simulation should be run for a long period of time (i.e., for several thousand

packet transmissions in an NoC) using a suitable testbench. This simulation step can

take several hours of CPU time, depending upon the complexity of the circuit. The

time require to perform a gate-level simulation varies from 15-20 minutes for a small

crossbar switch, or up to 5-10 hours for an 16 node NoC, depending on the router

degree, NoC topology, and datapath width. (The time required to find the analytic

power using the analytic methods developed in this thesis is virtually instantaneous.)

We performed the validation experiments for NoCs using the Batch-Mean method.

Each simulation run is divided to 8 batches. To avoid systematic errors in the power

measurement of the NoCs, it is necessary to ignore the warm-up batch since simulators

have empty buffers and idle resources initially, before any packets are injected. The

remaining batches can be processed to find the average power utilization (and the

95% confidence intervals is desired).

2.8 Summary

In this chapter, we have given an overview of the NoCs and FPGAs. We discussed

different aspects of NoC design, such as network topology, switching techniques, rout-

ing algorithms, and flow control mechanisms. Moreover, a typical input-queued based

router architecture for NoCs was illustrated and discussed. Then, we explained the

FPGA’s concepts as well as its advantages and disadvantages over ASICs. In addi-

tion, we explained why FPGAs are suitable platforms for future NoCs. At the end,

we had a brief explanation of the evaluation metrics in NoC domains.
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Chapter 3

Simulators

In order to explore the design space in FPGA-based NoCs, I implemented two parametrized

VHDL simulators for five NoC topologies (2D Mesh, Torus, BHC, GHC, and Hyper-

mesh). Both simulators use wormhole switching. The first simulator implements a

‘Pseudo random walk’ model and is designed to acquire experimental area, delay,

and maximum power consumption of routers and NoCs. The second simulator imple-

ments traditional XY ordered-dimension routing to acquire the power consumption

of different traffic patterns.

3.1 Related Works

To date, different NoC simulators have been introduced in the literature. These

simulators are implemented with different programming languages such as C, C++,

Java, C#, SystemC, Verilog and VHDL. Examples of these simulators are Booksim

[47], Wormsim [48], Nirgam [50], Noxim [49], Atlas [51], Xmulator [52], ORION [41],

etc.
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Although these simulators are useful for research purposes, they do not satisfy the

expectations of this thesis. Firstly, the simulator should have the ability to implement

different topologies. Secondly, the simulator should be modular in order to be capable

of evaluating every component of NoCs. Thirdly, it should be designed for FPGA

environments. Fourthly, the expected simulator must use real circuit parameters

of FGPAs. Due to these reasons, I was obligated to design and implement 2 NoC

simulators such as the pseudo random walk and the wormwhole simulators.

3.2 Pseudo Random Walk Simulator

The pseudo random walk simulator is implemented in VHDL to find the area, maxi-

mum power consumption, and maximum operating frequency of NoCs. In this simu-

lator, all the links in an NoC topology are filled by packets in every clock cycle. As a

set of N packets leave and new set of N packets enter the NoC, the new packets are

forwarded in all routers according to a newly generated pseudo-random switch state.

In the pseudo random walk simulator packets are not blocked in the routers and every

link is 100% loaded in every clock cycle. In this simulator we have maximum load for

NoCs (See Appendix A).

As previously stated, an input-queued router includes input buffers, a crossbar

switch, a routing unit, and an arbitration unit. The functionality of each component

in the pseudo random walk simulator as well as packets format are described below.
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3.2.1 Packet format

In order to forward packets in NoCs, packets are divided into small pieces called flits.

Therefore the size of a packet can be expressed in terms of flits. In this simulator

the packet size is 32 flits and packets have no routing information (i.e. source or

destination address). The size of a flit equals to the data path width (which is 16

bits).

3.2.2 Packet Generator

In this simulator, the router injection channel is connected to a PE which generates

packets with an injection rate of one flit per node per clock cycle. Each packet gener-

ator produces packets containing pseudo-random sequences by using a linear feedback

shift register (LFSR) [46]. The initial value of this LFSR (seed) is a repeated stream

of ’1010’. The initial value is used to start the LFSR sequence at a certain position

in the pseudo-random sequence. The implemented LFSR provides 32 different binary

numbers and the size of these binary numbers is equal to the physical datapath width.

The packet generator sends these binary numbers untill a full packet is sent.

3.2.3 Input Buffers

With every input port, an input buffer is used for temporarily storing the incoming

flits. The input buffer works on the basis of the first in first out (FIFO) mechanism.

This input buffer can be implemented with 2 methods, (i) with Embedded Memory

(EM) blocks, or (ii) with DFF registers. In this simulator, input buffers have a

capacity of 4 flits. At each clock cycle one flit is written into an input buffer and is

read in the next clock cycle. Since there is no blocking in this simulator, the average
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number of flits in an input buffer is 1. Note that in order to read and write in every

clock cycle, the read and write request signals should be always active. Therefore the

rate of the packet read and write is equal to the packet injection rate.

3.2.4 Arbitration Unit and Routing Unit

In order to move the packets through the switch, an arbitration unit is required. The

arbitration unit generates arbitration signals to provide synchronous connections be-

tween input ports and output ports of the crossbar switch. In the pseudo random

walk simulator, the arbitration signals are chosen from predefined states and these

states are identical for all the switches in the network. These states ate explained in

Appendix A. In an NxN crossbar switch, the arbitration signals always provide N con-

nections for N input-output pairs. In other words, in an NxN crossbar switch, every

input port is connected to a specific output port which results in 100% throughput

for the crossbar switch. To see more detail, please see Appendix A.

3.2.5 Crossbar Switches

Different crossbar switches are used in this simulator. Figure 3.1 shows 4 types of

crossbar switches. In every crossbar switch the selector signals are derived by the

arbitration unit. The arbitration unit makes N connections for N input-output pairs

possible therefore the crossbar switch in this simulator works with 100% throughput

(To see more detail, please refer to Appendix A).
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Figure 3.1: Crossbar switches, (a) DM,(b) B&S, (c) PDM, (d) Ram-Based
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3.2.6 Simulation

In the pseudo random walk simulator, each packet generator generates a packet with

32 flits at time t=0. Each router initially implements a pseudo-randomly selected

permutation of its IO ports for the duration of the packet transfer. As a set of N

packets leave and new set of N packets enter the NoC, the new packets are forwarded

in all routers according to a newly generated pseudo random switch state. (To see

more detail, please refer to Appendix A). Each packet traverses pseudo random paths

through the NoC topology, traversing many routers and edges, and exits at a pseudo-

randomly selected router. At any one time, there are N packets active in the simulator,

and all routers and links are 100% loaded. Figure 3.2 shows a snapshot of inter-router

links in a 2D Mesh. As seen in this figure, all the links are 100% loaded.

3.3 Wormhole Simulator

A credit-based wormhole simulator was implemented in VHDL to route packets in

the presence of packet blocking under different traffic patterns. In this section, the

components of a router and the packet format in this simulator are explained. All

the routing information is in the packet therefore we start from the packet format.

3.3.1 Packet Format

The main role of a packet-switched network is to transport packets from the source

to the destination. A packet is the smallest logical unit of data that an IP core can

inject into the network. As stated earlier, in the wormhole switching, a packet is

broken down into multiple flits. In this simulator a flit is the smallest physical unit
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Figure 3.2: Snapshot of the simulation of the inter-router links in a 2D Mesh (all the
links are 100% loaded)
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Figure 3.3: Packet format

of data that is routed in the network. The first flit of the packet is called header flit.

It contains the routing information (i.e. source address, destination address, etc.) of

the packet. The last flit of the packet is called tail flit which indicates the end of

packet transmission. The rest of the flits contain the actual data of the packet which

are called payloads.

Figure 3.3 shows the structure of a packet in the wormhole simulator.

3.3.2 Packet Generator

In this simulator, the router injector channel (as shown in figure 2.5) is also connected

to a packet generator which has the capability of generating packets with different

injection rates. Each packet generator uses an LFSR to produce pseudo-random

sequences of data. The format of LFSR is same as the LFSR explained in the pseudo

random walk simulator.

The packet generator is responsible to form the packets in the required format. It

should generate packets for different traffic patterns and put all the routing informa-

tion in each packet. It is also responsible to generate the packets following a Poisson

distribution. We use the LFSR to provide the Poisson process behaviour.

45



PhD Thesis - Mohammadreza Binesh Marvasti McMaster - Electrical Engineering

Figure 3.4: Architecture of the Input Buffer Component

3.3.3 Input buffer

As shown in figure 2.5, each input port is connected to an input buffer to store the

incoming flits. The input buffer works on the basis of a FIFO mechanism. In this

simulator, the input buffer component includes 2 parts. One part handles the control

signals (i.e. request, grant, back-pressure, etc) and the other, which is a FIFO buffer,

is responsible for storing the incoming packets. The second part can be Embedded

memory blocks or DFF registers. Figure 3.4 shows the picture of an input buffer

component.

As soon as the header flit arrives at the input port, the ‘Write Request’ signal is

set to 1 in order to store the incoming flit in the FIFO buffer. Once the header flit

is written in the first location of the FIFO, the buffer is read and a request signal

including the routing information is sent to the router Arbitration unit. Once the

request gets a ‘Grant’, the buffer is read. The reading operation stops when the

control signal ‘Credit in’ coming from the Arbitration unit becomes invalid. This

invalidity of ‘Credit in’ signal indicates that there is no more space in the adjacent

router to store the flits. However the current buffer will continue to fetch new flits

until it becomes full. The control signal ‘Credit out’ is ‘Credit in’ signal for the
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previous router. Both ‘Credit in’ and ‘Credit out’ signals are used for the back-

pressure technique.

3.3.4 Arbitration unit

In order to move the packets through the switch, an arbitration unit is used in every

router. The arbitration unit generates arbitration signals in a round-robin scheme to

provide synchronous connections between every pair of the crossbar switch input and

output ports. Once it receives a request from an input port, it sends out the routing

information to the routing unit and receives the direction information. Then the

availability of free buffer locations in the neighbouring destination router is checked

by examining the validity of the signal ‘Credit in’. If it is available, it generates a

‘Grant’ signal to the requested input buffer component. It also generates a ‘Write

request’ signal to the input port of next router. Figure 3.5 shows the diagram of the

arbitration unit.

3.3.5 Routing Unit

In order to find the destination output port for a requested input buffer, a routing unit

is needed (as shown in figure 2.5). This unit is responsible for obtaining the direction

that a packet should take based on the address provided by the header flit. The rout-

ing unit receives the routing information from the arbitration unit. Once it receives

the routing information, it decodes the destination address and finds the associated

output port. Finally the routing unit sends the results back to the arbitration unit.

In our simulator, we used the ordered-dimension XY routing algorithm.
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Figure 3.5: Architecture of the Arbitration unit
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3.3.6 Crossbar Switch

The crossbar switch is the final stage of the router. It maps the packets coming

from the input ports to the assigned output ports. In the wormhole simulator, the

Broadcast-and-Select switch design (shown in figure 3.1b) is used.

3.3.7 Communication Between Routers

The most popular scenarios of flow control are handshaking (ACK/NACK) and credit-

based protocols. We use a credit-based protocol for the communication between the

routers due to its high efficiency. It consumes only one clock cycle to forward a flit

from one node to another. Moreover it requires only a one-bit credit signal which

is called ‘Credit in’ or ‘Credit out’ in our simulator. However, the handshaking

protocol requires more clock cycles (at least two) and more wiring ( i.e. Request and

Acknowledge) for each channel.

3.4 Simulation Software Settings

To implement our simulator, we used the Altera Quartus II V.11 FPGA design tool.

The experimental power was determined using the ModelSim simulation tool, and

the Altera PowerPlay tool. Modelsim performs detailed circuit-level simulations, and

generates signal activity files called Value Change Dump (VCD) files. The VCD file

is fed into the Altera’s PowerPlay tool to determine the power of each part of the

router. The power consumption reported by the Altera’s PowerPlay tool includes the

power dissipated in the each component and the interconnections (switch boxes and

tracks) which are driven by the component. The operating conditions for the power
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estimation were standard (25◦ C ambient and board level).

The optimization technique was set to ‘balance’, which tries to have high perfor-

mance with minimal logic usage. The fitter settings was also set to the ‘standard fit’

which maximizes the maximum frequency of the design. Synopsys Design Constraints

(SDC) and TimeQuest timing analyzer were also used for the static timing analysis.

The TimeQuest timing analyzer reports the interconnect and logic gate delays for the

critical path. The timing delays (FMAX) reported in this thesis are under the slow

0◦C timing model. FMAX is reported regardless of the user-specified clock periods

and indicates the maximum allowable frequency of a design. The SDC file is also

used in the PowerPlay analyzer to determine accurate power results.

An overview of the experimental flow and the design tools used in this paper is

summarized in figure 3.6. The followings also are the settings for the Quartus II CAD

tool:

1. FPGA Device: Altera Cyclone IV EP4C75F29C6

2. Analysis and Synthesis Settings:

(a) Optimization Technique : Balance (Speed/Area)

(b) Fitter Effort : Standard Fit (Highest effort)

(c) Simulator : Modelsim-Altera

(d) Simulation Mode : Gate-level simulation

3. PowerPlay Analyzer Settings:

(a) Input file : Signal activity file (VCD) generated by Modelsim

(b) Device power characteristics: Typical
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Figure 3.6: Experimental flow with CAD tools
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(c) Ambient temperature :25 ◦C

(d) Junction-to-case:2.2 ◦/CW

(e) Case-to-heat sink : 0.10 ◦/CW

(f) Heat sink-to-ambient : 2.80 ◦/CW

(g) Board thermal model : Typical

(h) Junction-to-board : 3.80 ◦/CW

(i) Board temperature : 25 ◦C

(j) Default toggle rate used for input I/O signals: 12.5%

(k) Default toggle rate used for remaining signals: 12.5%

In order to tune our analytic models for Altera Family of FPGAs, many experi-

ments are used in order to determine the equations coefficients in chapter 4. Table

3.1 depicts the parameters and associated values for the Altera Cyclone IV FPGA.

These parameters will be defined in later chapters.

3.4.1 PowerPlay Analyzer

PowerPlay analyzer [26] estimates the power consumption of a design by considering

the followings:

1. Environmental Conditions

2. Resource Usage

3. Signal Activities
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Table 3.1: List of Parameters and associated values for the Altera Cyclone IV FPGA
Parameter Value
m 2
SMux(2,1,1) 0.666
fclock 50 MHz
KMux(2,1,1) 1.96E-4 (mW/MHz)
SDmux(1,2,1) 1.1
KDmux(1,2,1) 3.36E-05 (mW/MHz)
Kwire 4.62E-06 (mW/MHz)
Zstd 3.56E-05 (mW/MHz)
KDFF 0.1825E-03 (mW/MHz)
KIBEM 2.7E-02 (mW/MHz)
KIBDFF 0.1825E-03 (mW/MHz)
FMux(4, 1, 16) 765 MHz
FDmux(1, 4, 16) 1285 MHz
FEM 405 MHz

To evaluate different designs, they should be tested under the same environmental

conditions. Therefore, environmental conditions must be same for all the evaluations.

Signal activities or toggling is another important factor that impacts the power

consumption of the design and is used for the power evaluation. Power usually in-

creases linearly with the toggle rate as the capacitive load is charged more frequently

for the logic and routing [26]. Therefore in order to have an accurate comparison,

different designs should have the same input data.

Different designs use different resources. A design that uses more basic units of

the FPGAs (i.e. LEs, ALMs, Slices, multiplier elements, and memory blocks) tends

to consume more power than a design with fewer elements.

The Powerplay analyzer reports 2 types of power [26]:

1. Static Power

2. Dynamic Power
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Static power is the power consumption of a device regardless of the design activity.

Dynamic power is the additional power consumption of a design due to signal activity

or toggling. Dynamic power increases linearly with the toggle rate as the capacitive

load are more frequently charged for the logic and routing [26]. The dynamic power

is the dominant power consumption [38]. As the technology scales down, clock fre-

quencies are increased and therefore, the percentage of dynamic power increases. We

always refer to power consumption of a design as the Dynamic Power.

In this thesis, we are interested in acquiring the dynamic power consumption of

the components in the interconnection networks of NoCs (crossbar switches, buffers,

and links). Dynamic power consumption reported by Quartus includes the power

consumed by the elements (i.e combinational logic, DFF registers, multiplier elements,

and memory blocks) and power consumed by the routings (switch boxes and tracks).

The power consumed by local clock distribution within elements (i.e combinational

logics, DFF registers, multiplier elements, and memory blocks) are included in the

power consumption of the elements [27].

The PowerPlay analyzer also reports the power dissipation of the clock control

blocks and I/O buffers at the pins of FPGAs. A clock control block is a clock buffer

that dynamically enables or disables the clock networks [27]. The power consumed by

the I/O buffers at the pins of FPGAs includes both the static and dynamic powers.

Since the clock control blocks and I/O buffers at the pins of FPGAs are not the

components of NoCs, we ignore them in the analysis.

Figures 3.7 and 3.8 illustrate 2 screen snapshots of the reported power by the

PowerPlay analyzer for a 2D Mesh with 16 nodes. In figure 3.7 embedded memory

blocks are used as input buffers while in figure 3.8 DFF registers are used.
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Figure 3.7: Screen Snapshot of 2D Mesh with 16 nodes using EM blocks as input
buffers 55
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Figure 3.8: Screen Snapshot of 2D Mesh with 16 nodes using DFF registers as input
buffers
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When an NoC uses DFFs as input buffers, the total dynamic power is equal to the

power consumed by the combinational cells plus the power consumed by the register

cells. When the design uses embedded memory blocks, the total dynamic power

equals to the summation of power consumed by combinational cells, register cells and

embedded memory blocks.

3.5 Summary

In this chapter, two different simulators called the Pseudo random walk and the

Wormhole simulators, were presented. The experimental flow, different tools, and

settings for the simulation software were explained. Moreover, an overview of the

Altera PowerPlay analyzer tool and how to estimate power using this tool was pre-

sented.
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Chapter 4

Analytic Model of Basic

Components of NoC Routers

As stated in chapter 2, in an FPGA, logic functions are configured through a series

of programmable resources. These programmable resources are called Logic Elements

(LEs), Adaptive Logic Modules (ALMs), or Slices, and are typically the basic unit of

FPGAs. Each of these basic units consists of one or more look-up tables (LUT) and

DFF registers.

The basic components of an NoC router in FPGAs are Multiplexers (Mux), De-

multiplexers (Demux), wires, broadcast buses, and input buffers (as shown in figures

2.5 and 3.1). In this chapter, (1) the analytic area, delay, and power models for the

basic components of NoCs, (2) analytic models for 7 types of crossbar switches, (3)

and a comparison between analytic and experimental results are presented. At the

end, a comparison of area per throughput and power per throughput of the switches

is presented.
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4.1 Related Works

Architectural-level estimation of area, delay, and power are suitable for design-space

exploration because it is much faster than low-level simulation, and still gives us

reasonable accuracy.

In [55], an analytic methodology was proposed for the area and power of a IQ-

switch using a Broadcast-and-Select architecture, using 180 nm CMOS VLSI. The au-

thors also proposed an approach to minimize the power dissipation in the Broadcast-

and-Select switches. The power analysis of Input-Queued and CIXQ crossbar switches

implemented in an FPGA technology was proposed in [60]. In [60], Broadcast-and-

Select, pipelined and unpipelined Demux-Mux crossbar switch designs were consid-

ered.

An analytical power model to explore different switch configurations was proposed

in [40]. Their model estimates the average and maximum power of the Alpha 21364

router and the IBM Infini-Band switch. According to their experimental results, input

buffers are the largest power hungry component in routers, followed by the crossbar

switch. At the end, the arbiter consumes negligible power.

Reference [45] analyzed the power consumption of the switch fabric in network

routers and proposed the bit-energy model to estimate the power consumption. This

model is tightly dependent on circuit implementations.

Reference [44] proposed a high-level power model based on the number of flits

passing through a router, and used parametric regression to derive the model.

There are some power and area libraries, such as ORION 2.0 [41], Xpipes [42], etc.,

which are based on certain architectures and circuit implementations. However, using

these libraries cannot guarantee an acceptable accuracy for evaluation of different NoC
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designs and there might be upto 40% error [43]. This much of inaccuracy can lead to

erroneous NoC design choices. In this chapter, we propose an analytic power, area

and delay model for the FPGA-based NoCs’ components which is accurate enough

to predict and evaluate the design metrics of the components.

4.2 Basic Components

In this section analytic area, power and delay models of the basic components of NoC

routers such as Mux, Demux, wires, broadcast buses, and input buffers are presented.

The power model presented in this chapter reflects the maximum power consumption

of each component when it is 100% loaded.

4.2.1 Mux and Demux

In ASICs, each N-to-1 multiplexer tree can be constructed with N−1
m−1

smaller m-to-1

multiplexer cells arranged in a tree topology [55]. However in FPGAs, the area of an

N-to-1 Mux tree with a datapath width of W bits (expressed as the number of LEs,

ALMs, or Slices) is given by Eq. 4.1 [60] (we changed the equation slightly to be

more accurate), where the value of m is determined by the synthesizer compiler and

FPGA device family.

AMux(N, 1,W ) =
⌈

(N − 1)

m− 1
.SMux(m,1,1)

⌉

.W (4.1)

In Eq. 4.1, the parameter SMux(m,1,1) is defined as the Synthesis Efficiency of a

basic m-to-1 multiplexer cell, i.e., it equals the average number of LEs, ALMs, or

Slices used for the synthesis of a basic m-to-1 logic cell, given a particular FPGA
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Figure 4.1: Area Model for an 8-to-1 Mux

family [60]. The area model for a 8-to-1 Mux tree is shown in figure 4.1.

In the Altera Cyclone family of FPGAs (which use 4-input LUTs), experimental

results indicate that m=2, while in the Altera Stratix family of FPGAs (which use

Adaptive-LUTs), experimental results indicate that m=4.

The delay of a Mux(N,1,W) tree is given by the delay of a basic m-to-1 Mux cell

times the depth of the large Mux-tree, and is given by Eq. 4.2:

DMux(N, 1,W ) = logm N.DMux(m,1,W ) (4.2)

where DMux(m, 1,W ) is defined as the delay of a m-to-1 Mux cell. The delay model

of a 8-to-1 Mux is shown in figure 4.2.

In general, the power of typical standard cell is given by Eq. 4.3, where fclk is the

clock rate, fduty is the probability of a signal transition at the output port, Cint is the

intrinsic capacitance of the cell switched during an output transition, and Cload is the
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Figure 4.2: Delay Model in an Mux 8-to-1

capacitive load being driven (including wire and input capacitances).

P (stdcell) =
1

2
.fclk.fduty.(Cint + Cload).(Vdd)

2 (4.3)

The power consumption of a N-to-1 Mux tree, with a datapath width of W bits,

is derived by Eq. 4.3 and evaluated by 2 models: a) full power model and b) low

power model [55]. In the full power model all smaller Mux cells are active at the

same time while in low power model, only logm N smaller m-to-1 Mux cells need to

be active and unnecessary Mux cells are switched off. The power consumption of a

large N-to-1 Mux tree is proportional to the number of active cells. Therefore the

low power model considerably reduces the power [60]. However, a circuit must be

designed so that the data signals at each inactive input port can be held constant

[60].

The power consumption of a N-to-1 Mux tree in the full power model, with a

datapath width of W bits, is derived by Eq. 4.3 and can be expressed by Eq. 4.4 [60]:

PMux(N, 1,W ) = ⌈(N − 1)

m− 1
.SMux(m,1,1)⌉.KMux(m,1).fclk.fduty.W (4.4)
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Figure 4.3: Implementation of a 4-to-1 Mux in Cyclone family of Altera FPGAs [87]

where KMux(m,1) reflects the average intrinsic and load capacitances switched for a

m-to-1 Mux logic cell in the Eq. 4.3. In this model, the (1/2)V 2
dd term has been

absorbed into the parameter KMux(m,1).

In the low power model [55], a large N-to-1 Mux tree has only logm N active cells

and the power model is explained in [60] (we changed the equation slightly to be more

theoretically justifiable), and is given by:

PMux(N, 1,W ) = ⌈logm N⌉.KMux(m,1).fclk.fduty.W (4.5)

In the Altera Cyclone family of FPGAs where m=2, a 4-to-1 Mux cell is con-

structed by two 4-input LUTs [87] (shown in figure 4.3). This technique of imple-

mentation of 4-to-1 Mux cell reduces the number of Lookup Tables (LUTs) needed to

implement multiplexers [87]. In other words, instead of using three 4-input LUTs, two
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(a) (b)

Figure 4.4: Analytic and experimental power consumption of N-to-1 Muxes in (a)
Full Power Model, (b) Low Power Model (W=16).

4-input LUTs are used. Therefore, the synthesis efficiency of a 2-to-1 Mux (SMux(2,1))

in the Altera Cyclone family of FPGAs is 2
3
= 0.666.

As seen in figure 4.3, if any input port gets data, both LUTs are switched on. For

large N the low power model significantly reduces the power consumption of N-to-1

Mux tree.

In the Altera Cyclone family of FPGAs where m=2, the KMux(2,1) is experimen-

tally determined as the average ofKMux(2,1) in the full power model and the low power

model. However using 2 different KMux(2,1) leads to the better results.

Figures 4.4a and 4.4b depict the analytic and experimental power consumptions

of N-to-1 Muxes in the full power model and the low power model. In these 2 figures,

the datapath width is 16 bits and fclk=50 MHz. By comparing these 2 figures, the

low power model of Muxes reduces the power consumption of large N-to-1 Muxes

considerably.

Using the same methodology, it is possible to construct a large 1-to-N Demux tree

using a binary tree of smaller 1-to-m Demux cells. Hence, the area, delay, and power
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Figure 4.5: Analytic and experimental power consumption in 1-to-N Demuxes
(W=16)

of a 1-to-N Demux tree (with datapath width = W) can be found by Eq. 4.6 [60],

Eq. 4.7, and Eq. 4.8 respectively.

ADmux(1, N,W ) =
⌈

(N − 1)

m− 1
.SDmux(1,m,1)

⌉

.W (4.6)

DDmux(1, N,W ) = logm N.DDmux(1,m,W ) (4.7)

PDmux(1, N,W ) = ⌈logm N⌉.KDmux(1,m).fclk.fduty.W (4.8)

where KDmux(1,m) reflects the average intrinsic and load capacitances switched for a

1-to-m Demux logic cell in the Eq. 4.3.

Figure 4.5 shows the analytic and experimental power consumption in 1-to-N

Demuxes in the Altera Cyclone IV family of FPGAs. In this figure, the datapath

width is 16 bits and fclk=50 MHz.

65



PhD Thesis - Mohammadreza Binesh Marvasti McMaster - Electrical Engineering

Figure 4.6: The LE-Length and the placement of 16 LEs in a LAB

From now on, we refer to LEs as the basic unit of programmable logic for the

Cyclone family of Altera FPGAs and m=2.

4.2.2 Broadcast buses and links

The programmable interconnections in FPGAs use wire segments with different lengths.

Long distance wires are constructed by aggregating multiple short wire segments [64],

and they use repeaters to increase the signal strength and lower delays. The delay of

long wire in an FPGA is linearly related to the length of the wire [64] [65].

Definition: One ‘LE-Length’ represents the square-root of the area of the basic

programmable resource, the ‘Logic Element’ (or LE).

In this thesis, all wire lengths are expressed in multiples of the LE-length. We

assume that an LE has unity aspect ratio as shown in figure 4.6, and we define the

length of one LE in the x and y dimensions to be 1 LE-length. In the Altera Cyclone

IV FPGAs, every logic array block (LAB) has 16 LEs. As shown in figure 4.6, we

assume that each LAB is square with unity aspect ratio (4 by 4).
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Figure 4.7: Experimental and analytic delay of a wire with different LE-lengths.

According to our experimental tests, the delay of a short bus is O(logL), and the

delay of a long bus is O(L). Let Dbus(L) be the delay of a bus of length L connecting

two LEs in an FPGA. Referring to figure 4.7, at X=20 LE-Length, the slope of delay

line changes. To fix this issue, we use an accurate 2 piece-wise linear approximation

for the bus delay. The delay of a bus with W parallel wires and length L is modelled

as (1) delay of a short wire when 4 ≤ L ≤ 20 LE-Length, and (2) delay of a long wire

when 20 ≤ L. The lower bound of 4 is due to the minimum distance between 2 logic

array blocks (LAB) which is the minimum length of wire that is possible to measure.

The delay of a bus of length L is given by (in nanoseconds):

Dbus(L) = a.(L) + b (4.9)

where for 4 ≤ L ≤ 20 the parameters a=1.98E-2, b=0.85, and for 20 ≤ L the

parameters a=1.2E-2, b=1.01.

In a bus composed of W parallel wires which drives several gates, the power is
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given by Eq. 4.10:

PBus(L,W,N) = LN .Kwire.fclk.fduty.W +N.Zstd.fclk.fduty.W (4.10)

where Kwire represents the capacitance switched by the wire during a signal transition

for one LE-length, where Zstd represents the input capacitance switched by one wire

per signal transition for every standard-load, and where LN is the average length of

each wire. In this model, the (1/2)V 2
dd term has been absorbed into the constant

Kwire and Zstd.

To determine Kwire, different lengths of wires with one fan-out were realized on

an FPGA and the power was measured. The source and destination were DFF arrays

with width W=16 bits, and these were manually positioned and fixed using the Altera

tools. Kwire is defined as the weighted average of the power dissipated in a wire of

unit length, measured over several different lengths. In practice, Kwire has different

values in the x and y dimensions, since the LEs do not have unity aspect ratios.

However, to yield a tractable analysis we assume a single value of Kwire by taking

the average of the experimental results. Figure 4.8 illustrates the test circuit for the

power consumption of a wire. Referring to figure 4.8 the power consumed in a wire

connecting DFF1 1 and DFF2 1 is determined by the total power consumption of the

DFF1 1 (which includes the power consumption of DFF and the power consumption

of the wire) minus the power consumption of DFF.

Figure 4.9 shows the analytic and experimental power consumption in a wire with

different LE-lengths.
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Figure 4.8: Test circuit for power consumption in a wire

Figure 4.9: Analytic and experimental power consumption of a bus with one load
(W=16)
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LN in Broadcast-and-Select Crossbar switches:

To determine the length and power consumption of a bus of length of LN in an NxN

Broadcast-and-Select (B&S) crossbar switch, we need to assume the following:

1. All multiplexers and the crossbar switch have unity aspect ratios (ie a square

shape)

2. The wires are vertical or horizontal (No diagonal wires)

3. The placements of all components are manually fixed

4. DFFs are manually placed very close to the crossbar switch, around the perime-

ter

5. Each LAB is square with unity aspect ratio (i.e. size (x by x)).

To estimate the length of a broadcast bus in an NxN B&S crossbar switch, we can

consider the minimum-cost spanning tree that connects one input or source (root) to

N Multiplexers (children), where the cost is the sum of the edge lengths. A minimum-

cost spanning tree is a Steiner tree, which in general is very difficult to find. However,

for this regular switch, the Steiner trees are straight-forward to find.

An NxN crossbar switch consists of N Multiplexers. Let each multiplexer be

constructed with M LEs. The dimensions of one multiplexer are
√
M by

√
M . The

switch with N multiplexers each composed of M LEs and has dimensions
√
NM by

√
NM . The length of a minimum-cost spanning tree connecting the source to all N

destinations is given by:

LN =
√
M.N (4.11)
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Figure 4.10: a) Test case for power estimation of a broadcast bus b) a Steiner tree
for acquiring LN

Proof. Consider a large N*N crossbar switch. Each axis consists of
√
N multiplexers.

Consider a bus entering the lower left corner, and crossing the switch horizontally.

This bus will cross horizontally over
√
N multiplexers, and have length

√
N.

√
M =

√
N.M units. In each column, the bus must traverse an extra

√
N − 1 multiplexers

vertically. Therefore, each column will have a vertical bus of length
√
M(

√
N − 1).

Therefore, the total length of the broadcast bus is
√
NM +

√
N.

√
M.(

√
N −1) which

is equal to
√
M.N .

Figure 4.10 (a) shows the test case for power estimation, and (b) shows the model

to find LN for a broadcast bus in a 4x4 crossbar switch.

Referring to Eq. 4.10, the power of a bus equals the power used to drive the wires

plus the power to drive the loads. By modelling a wire which drives several loads in

Eq. 4.10, it is possible to infer the standard load Zstd. Figure 4.11 depicts a broadcast

bus which drives 4 Muxes. Figure 4.12 shows the analytic and experimental power

consumption of a broadcast bus in an NxN Brodcast-and-Select crossbar switches.
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Figure 4.11: A Broadcast bus driving 4 loads

Figure 4.12: Analytic and expermental power consumed by a broadcast bus in an
NxN Brodcast-and-Select crossbar switches(W=16)
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4.2.3 Input Buffer

Generally, input buffers can be implemented with 2 methods, (i) with Embedded

Memory (EM) Blocks, or (ii) with DFF registers. Hence, we will use both methods

(EM blocks and registers) to realize the input buffers. In Altera FPGAs, thousands

of EM blocks named MXK are available, each with X Kbits of SRAM. In the Altera

Cyclone IV FPGA, hundreds of EM blocks named M9K are available, where each has

9 Kbits of SRAM. Each EM can be programmed as a W-bit wide memory, for 1 ≤ W

≤ 32 bits. The use of EM requires some control logic and short wires for interfacing.

The power consumption of the control logic and the short wires is very low and can

be ignored.

When using EM blocks as a FIFO queue, two pointers are required (for reading

and writing), and the resource usage of these pointers will depends upon the capacity

of the input buffer. The number of the LEs used for these pointers is given by Eq.

4.12:

AIBEM(Depth) = 2× log2 Depth (4.12)

where Depth is the depth of an input buffer.

In FPGAs, the power of a FIFO queue realized in an EM block is relatively

independent of the FIFO capacity or the data path width [60], when FIFO queue

fits completely within one EM block. The power consumed in an input buffer (i.e.,

a FIFO queue) residing in one EM block, for W ≤ 32 bits, is expressed by Eq. 4.13

[60]:

PIBEM = KIBEM .fclk.fduty (4.13)
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Referring to Eq. 4.13, KIBEM represents the intrinsic and load capacitance

switched by each output bit of the memory block during a signal transition, and

fduty is the duty cycle. In this model, the (1/2)V 2
dd term has been absorbed into the

constant KIBEM .

In the second method to realize input buffers, the input buffers are constructed

using DFFs available in the LEs in the FPGA. The resource usage depends on the

buffer depth and width. An output buffer is typically used for latching the result of

a read operation when depth of the input buffer is more than 1. The area and power

consumption of the input buffers constructed by DFF registers are given by Eq. 4.14

and Eq. 4.15:

AIBDFF (Depth,W ) = (Depth+ 1).W (4.14)

PIBDFF (Depth,W ) = (Depth+ 1).KDFF .fclk.fduty.W (4.15)

where KDFF is the intrinsic and load capacitance switched by each output bit of a

single DFF register during a signal transition. In this model, the (1/2)V 2
dd in Eq. 4.3

has been absorbed into the constant KDFF .

4.3 Crossbar Switches

In this section, analytic models for seven switch designs in 2 groups, shown in fig-

ure 4.13, are presented. In the first group 4 switch designs called the Demux-Mux,
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Figure 4.13: 4 Crossbar switches, (a) DM,(b) B&S, (c) PDM, (d) Ram-Based

Broadcast-and-Select, Pipelined Demux-Mux, and Ram-based crossbar switch are ex-

plained. The second group includes the crossbar switches in first group (except the

ram-based switch), however, the Muxes and Demuxes are pipelined (Figure 4.14).

From now on we refer to Demux as a Demultiplexer, and Mux as a Multiplexer.

4.3.1 The Demux-Mux (DM1) Design (S1)

Referring to figure 4.13a the DM1 crossbar design consists of Demuxes that connect

to the input ports, and Muxes that connect to the output ports. In FPGAs, for small

size switches (3x3 and less), the Demux are often replaced by broadcast buses by the

synthesizer. The total resource usage of a DM1 switch (W bits wide) uses the area
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model in Eq. 4.1 and Eq. 4.6, and is given by Eq. 4.16 [60]:

AS1(N,W ) = N.ADmux(1, N,W ) +N.AMux(N, 1,W ) (4.16)

The total power consumed by the DM1 switch uses the low power model of Mux

(Eq. 4.5) and Eq. 4.8 and is given by Eq. 4.17:

PS1(N,W ) = N.PDmux(1, N,W ) +N.PMux(N, 1,W ) +N.Pbus(L̄,W, Z) (4.17)

where L̄ is the average wire length in a bus between a Demux and Mux tree ≈
√

AS1(N,W ) and Z = 1. Referring to Eq. 4.17, in every clock cycle at-most N buses

are active. For small switches (4x4 or less), the power in the wires can be ignored.

The delay of DM1 switch of size NxN is equal to the delay of a large Demux tree

(Demux(1,N,W)) plus delay of a large Mux tree (Mux(N,1,W)) and is given by Eq.

4.18:

DS1(N,W ) = DDemux(1, N,W ) +DMux(N, 1,W ) (4.18)

4.3.2 The Broadcast-and-Select (B&S1) Design (S2)

Figure 4.13b illustrates an NxN Broadcast-and-Select (B&S) crossbar switch. Each

input buffer broadcasts over a dedicated broadcast bus to all output ports. Each out-

put port has one (N-to-1) mux-tree, which selects the broadcast from the appropriate

input buffer.
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The total area of this router is given by Eq. 4.19 [60]:

AS2(N,W ) = N.AMux(N, 1,W ) (4.19)

The total power consumed in this switch uses the models Eq. 4.4 and Eq. 4.10 and

is given by Eq. 4.20 [60]:

PS2(N,W ) = N.Pbus(L,W,N) +N.PMux(N, 1,W ) (4.20)

The length of a broadcast bus L is equal to N ∗
√
X, where X is the average number

of LEs in the Mux N-to-1 and can be found by Eq. 4.11.

The delay ofB&S1 switch NxN is equal to the delay of a large Mux tree (DMux(N, 1,W ))

plus the delay of a bus with average length of
√

AS2(N,W ), and is given by Eq. 4.21:

DS2(N,W ) = DMux(N, 1,W ) +Dbus(
√

AS2(N,W )) (4.21)

4.3.3 The Pipelined (PDM1) Design (S3)

Figure 4.13c illustrates a pipelined-DM1. N2 pipeline DFFs (with W DFFs each) are

inserted between the Demuxes and Muxes of switch design S1 (DFFs are shown by

black square in figure 4.13c). In our experiments, the DFFs in the existing LEs can

be used, and no new resources (LEs) are needed. The area and power consumption

are given by Eq. 4.22 and Eq. 4.23 respectively [60].

AS3(N,W ) = AS1(N,W ) (4.22)
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PS3(N,W ) = PS1(N,W ) +W.N2.PDFF (4.23)

The power of a DFF PDFF is given by PDFF = KDFF .fclk.fduty, where KDFF

represents the capacitance switched by one DFF per transition. The (1/2)V 2
dd term

in Eq. 4.3 has been absorbed into the constant KDFF . Referring to Eq. 4.23, the

fduty of PDFF is equal to (1/N) [60] because in every clock cycle at-most N words of

data move through the switch and N DFFs get new data.

The delay of pipelined design switch of size NxN is equal to the delay of a large

Mux tree (Mux (N,1,W)) (since it is larger than the delay of a large Demux tree),

and is given by Eq. 4.24:

DS3(N,W ) = DMux(N, 1,W ) (4.24)

4.3.4 A Ram-Based Design (S4)

Figure 4.13d illustrates a Ram-based switch. In a Ram-based switch, the crossbar

switch is replaced by one EM block. A N-to-1 Mux connects to the N input ports to

the EM, and a 1-to-N Demux connects the EM to the output ports. The area of the

crossbar (in terms of LEs) equals the area of Mux and Demux and is given by Eq.

4.25:

AS4(N,W ) = AMux(N, 1,W ) + ADmux(1, N,W ) (4.25)
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The total power consumed by Ram-based crossbar switch with datapath width W is

given by Eq. 4.26:

PS4(N,W ) = PMux(N, 1,W ) + PEM(W ) + PDmux(1, N,W ) (4.26)

where PEM is the power consumed by an EM and is given by Eq. 4.13.

The delay of Ram-based switch NxN is equal to delay of the EM block (DEM)

and the large Mux tree which has a larger delay than the large Demux tree, and is

given by 4.27:

DS4(N,W ) = DEM +DMux(N,W ) (4.27)

where in Cyclone family of FPGAs DEM = 2.53ns.

Although this type of switch uses fewer resources, it suffers from low throughput,

since the switching is done in the time domain.

4.3.5 The Demux-Mux 2 (DM2) Design (S5)

Figure 4.13a illustrates a Demux-Mux 2 switch design. The Demuxes and Muxes

are constructed in tree topologies. Pipeline latches (2⌊(log2 N)/2⌋ DFFs) are inserted in

the middle level (⌊ log2 N
2

⌋) of the Demux and Mux trees, creating many smaller Mux

and Demux trees of
√
N -to-1 and 1-to-

√
N respectively. Figure 4.14 shows the 1-to-4

pipelined Demux and 4-to-1 pipelined Mux. These pipeline latches use DFFs within

the existing LEs (no new LEs are required). By pipelining the trees, the trees are

broken into (1+
√
N) sub-trees of size

√
N . The total resource usage of a Demux-Mux

switch (DM2) uses the area model in Eq. 4.1 and Eq. 4.6 and is given by Eq. 4.28:
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Figure 4.14: Pipelined Mux and Demux (Black squares denote DFFs)

AS5(N,W ) = N.(1 +
√
N).

(

ADmux(1,
√
N,W ) + AMux(

√
N, 1,W )

)

(4.28)

As stated previously, for small sizes of Demux-Mux switches (3x3 and less), the

Demuxes are often replaced by broadcast buses by the synthesizer. For example in

the 1-to-4 Demux of 4x4 DM2 crossbar switch, only one of the three 1-to-2 Demuxes

is remaining and others are replaced by a broadcast buses.

As mentioned earlier, by pipelining the trees, the trees are broken into (1 +
√
N)

sub-trees of size
√
N . These (1 +

√
N) sub-trees are arranged in 2 stages (as shown

in figure 4.14). In the first stage only one sub-tree exists, and in the second stage

there are
√
N sub-trees. In the DM2 switch, the low power model of Muxes is used

since only one input port of a pipelined Mux switches. Therefore, in every clock cycle

in the pipelined Muxes of the DM2 switch only 2 sub-trees of size
√
N − to − 1 are

active. In the pipelined Demuxes there are 2 sub-trees of size 1− to−
√
N active in

every clock cycle. The total power consumed by the switch design DM2 uses the low

power model of Mux in Eq. 4.5 and power model of a Demux in Eq. 4.8, and is given

by Eq. 4.29:

PS5(N,W ) = N.2.
(

PDmux(1,
√
N,W ) + PMux(

√
N, 1,W )

)

+ N.Pbus(L̄,W, Z) +N.2.W.PDFF (4.29)
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where L̄ is the average wire length in a bus between a Demux and Mux tree ≈
√

AS5(N,W ) and Z = 1. Referring to Eq. 4.29, in every clock cycle at-most N buses

are active. The last term in Eq. 4.29 is the power used by the DFFs located in the

Demuxes and Muxes. Since in the pipleined Mux of the DM2 switch design only one

input port switches, only one DFF is active in every clock cycle. In the pipelined

Demuxes, only one DFF is active in every clock cycle (as shown in figure 4.14).

The delay of a NxN DM2 switch is equal to the delay of a Demux(1,
√
N ,W) plus

Mux(
√
N ,1,W), and is given by Eq. 4.30:

DS5(N,W ) = DDemux(1,
√
N,W ) +DMux(

√
N, 1,W ) (4.30)

However, in an 4x4 DM2 some of the Demuxes are replaced by broadcast buses, and

therefore the delay of DM2 switch NxN is equal to the delay of a Mux(
√
N ,1,W)

plus delay of a bus. The length of a bus is approximated by the square root of area

of all the Muxes in DM2.

4.3.6 The Broadcast-and-Select (B&S2) Design (S6)

Figure 4.13b illustrates a B&S2 switch design. In this switch, pipeline DFFs (2⌊(log2 N)/2⌋

DFFs) are inserted in level ⌊ log2 N
2

⌋ of each Mux tree, creating (1+
√
N) smaller Mux

trees of size
√
N -to-1. These DFFs are shown by black squares in figure 4.14. These

latches use the DFFs already available in the LEs, and do not incur an additional

cost. The total area of NxN B&S2 switch is equal to the area of N N-to-1 Muxes

which N-to-1 Mux is constructed by (1 +
√
N)

√
N -to-1 Muxes, and is given by Eq.
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4.31:

AS6(N,W ) = N.(1 +
√
N).AMux(

√
N, 1,W ) (4.31)

The total power consumed uses Eq. 4.4 and Eq. 4.10 and is given by Eq. 4.32:

PS6(N,W ) = N.(1 +
√
N).PMux(

√
N, 1,W )

+N.2⌊(log2 N)/2⌋.W.PDFF +N.PBus(L,W,N) (4.32)

where the first term is the power consumed in N Muxes, where the second term is

the power consumed in the 2⌊(log2 N)/2⌋ pipeline DFFs, and where the last term is the

power dissipated in the N broadcast buses. The length L is equal to N ∗
√
X, where

X is the average number of LEs in the pipelined Mux N-to-1 and is found by Eq.

4.11.

The delay of B&S2 switch NxN is equal to the delay of a Mux (
√
N ,1,W) plus

the delay of a bus
√

AS6(N,W ) expressed in multiples of LE-Length, and is given by

Eq. 4.33:

DS6(N,W ) = DMux(
√
N, 1,W ) +Dbus(

√

AS6(N,W )) (4.33)

4.3.7 The Pipelined Demux-Mux 2 (PDM2) Design (S7)

The PDM2 switch design is illustrated in figure 4.13c, but DFFs are inserted in the

Demux and Mux tree as shown in figure 4.14. These DFFs use the DFFs already

available in the LEs, and do not incur an additional cost. The area and power
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consumption are given by Eq. 4.34 and Eq. 4.35 respectively:

AS7(N,W ) = N.(1 +
√
N).

(

ADmux(1,
√
N,W ) + AMux(

√
N, 1,W )

)

(4.34)

PS7(N,W ) = PS5(N,W ) +W.N2.PDFF (4.35)

where the fduty of PDFF is equal to (1/N) [60] because in every clock cycle at-most N

words of data move through the switch and N DFFs get new data.

In the delay model of NxN PDM2, to determine the wire length we assume that the

Muxes are placed in a square with unity aspect ratio and Demuxes are placed around

the square. There are also N2 DFFs between the Demuxes and Muxes. Therefore,

the delay of a NxN PDM2 switch design is equal to the delay of a Mux (
√
N ,1,W)

(since it is larger than delay of a large Demux tree) and delay of a bus with length of

≈
√

N.(1 +
√
N).AMux(

√
N, 1,W ). We approximate the length of the bus connecting

the pipelined DFF (the DFF in figure 4.13c) to the Mux as the square-root of area

of Muxes in the PDM2. Therefore the delay model of PDM2 is given by Eq. 4.36:

DS7(N,W ) = DMux(
√
N, 1,W ) +Dbus(

√

N.(1 +
√
N).AMux(

√
N, 1,W )) (4.36)

where N.(1 +
√
N).AMux(

√
N, 1,W ) is the area of Muxes in the PDM2 switch.

4.3.8 Experimental Results of the Crossbar switches

Table 4.1 compares the analytic and experimental results in different crossbar switches

of sizes 4x4, 8x8, and 16x16. As seen in this table, the ‘Ram-based’ crossbar switch
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(S4-Ram) dissipates the lowest power and area for large N. However, this switch

operates in a slow Time division Multiplexing (TDM) mode and has low throughput.

The switch design S1 (DM1) has the next lowest power consumption. Using the

pipelined Mux or Demux increases the maximum frequency of the crossbar switches.

However it affects their area and power consumption. For a small N, switch S5-DM2

has the highest maximum frequency. But for large N, switch S7-PDM2 has the highest

frequency.

The analytic and experimental results in Table 4.1 show a good agreement (typi-

cally within 5-10%) which indicates that the analytic models for the crossbar switch

designs are very accurate.

Several metrics can be used to choose the best crossbar switch for NoC routers.

Since integrating a large number of crossbar switch under area and power constraints

is a big challenge for designers, switches are compared by power per throughput

(mW/Mbps) and area per throughput (LEs/Mbps). Figures 4.15 and 4.16 compare

different crossbar switches in terms of power per throughput (mW/Mbps) and area per

throughput (LEs/Mbps). The throughput of each switch is defined as the maximum

possible delivered Mbps, expressed as (N ports) * (width W ) * (clock rate fmax),

assuming the switches are fully loaded. The results in figures 4.15 and 4.16 are based

on experimental results.

In terms of power per throughput, the switch design S1 (DM1) has the lowest

power per throughput for 4x4 and 8x8 crossbar switches. However for the 16x16

switch, the design S3 (PDM1) is the lowest power per throughput among the switches

due to the relatively higher frequency. The B&S2 switch (S6) has the best area per

throughput since it uses only pipelined Muxes. The B&S1 switch (S2) is the second
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Table 4.1: Analytic and Experimental results for different crossbar switches (W= 16)
Crossbar
Switch

Size
(NxN)

Anlyt.
Area
(LE)

Exp.
Area
(LE)

Area
Error
(%)

Anlyt.
Power
(mW)

Exp.
Power
(mW)

Power
Error
(%)

Anlyt.
Fmax
(MHz)

Exp.
Fmax
(MHz)

Fmax
Error
(%)

S1-DM
4x4 384 384 0% 1.47 1.44 2% 479 457 5%
8x8 1664 1664 0% 5.84 5.98 2% 319 364 12%
16x16 6912 7168 4% 17.12 16.74 2% 240 280 14%

S2-B&S
4x4 128 128 0% 2.04 1.95 5% 421 480 12%
8x8 640 640 0% 10.21 9.58 6% 305 385 20%
16x16 2560 2560 0% 44.34 44.39 1% 237 314 24%

S3-PDM
4x4 384 384 0% 2.05 2.25 9% 765 589 29%
8x8 1664 1664 0% 7.00 8.59 18% 510 505 1%
16x16 6912 7168 4% 19.46 22.16 12% 382 422 9%

S4-Ram
4x4 96 96 0% 1.72 1.92 10% 264 271 2%
8x8 208 208 0% 2.21 2.21 0% 225 250 10%
16x16 432 432 0% 3.02 2.68 12% 197 232 15%

S5-DM2
4x4 320 328 3% 3.01 3.04 1% 624 774 19%
8x8 1536 1456 5% 9.59 10.73 10% 479 476 1%
16x16 7680 7680 0% 22.60 24.63 8% 479 390 22%

S6-B&S2
4x4 192 192 0% 3.91 3.61 8% 624 756 17%
8x8 768 768 0% 14.00 12.60 11% 432 454 4%
16x16 2560 2560 0% 53.69 48.24 11% 398 418 5%

S7-PDM2
4x4 576 576 0% 3.69 4.12 10% 624 702 11%
8x8 1920 1920 0% 10.90 12.42 12% 432 532 18%
16x16 7680 7680 0% 24.40 26.83 9% 398 460 13%

lowest area per throughput. The Ram-based design (S4) has the highest power and

area per throughput, since at each time slot at-most one output is activated, resulting

in low throughput.

4.4 Summary

In this chapter, analytic models for the area, power, and delay of the basic components

of a router realized in FPGAs were studied. In addition the analytic models of 7
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Figure 4.15: Area per throughput (Expermental Results)

Figure 4.16: Power per throughput (Expermental Results)
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crossbar switches were studied. Crossbar switches are compared in terms of power

per throughput and area per throughput. If the crossbar switch is power-constrained,

then the Demux-Mux crossbar switch (S1) is optimal, as it consistently has the lowest

power. If the crossbar switch is the delay-constrained, then the Pipelined Demux-

Mux switches (S3 and S7) are optimal, as they consistently have low delays. If the

crossbar switch is area-constrained, then the B&S switch designs (S2 and S6) are

optimal, as they consistently have low area.
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Chapter 5

Analytic models for 2D Mesh,

Torus and BHC

To date, there are no analytic models for the area, delay and power of NoCs realized

in FPGA technologies. In this chapter, analytic area, power, and delay models for 3

different topologies are presented. All these topologies are made by the basic com-

ponents which were described in chapter 4. The power model includes (a) maximum

power consumption and (b) power consumption under 3 traffic patterns in wormhole

switching. The 3 traffic patterns are (1) the Random Uniform traffic pattern, (2) the

traffic pattern in Cooley-Tucky FFT algorithm, and (3) the traffic pattern in Bitonic

sorting algorithm. The analytic models are compared to the experimental results,

which result in good agreement. These models can be used for the early design-space

exploration and evaluation of different NoC topologies for FPGAs.
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5.1 Related Works:

Analytic models have been widely studied in ASIC NoC design. Recently, some ana-

lytic power and performance models using wormhole switching have been proposed in

the NoC domain. Wormhole switching is more attractive in NoCs since it needs small

buffers. In NoCs, most power is dissipated through buffers. In [54], two analytical

models for predicting the average message latency and network power consumption

using arbitrary buffer allocation schemes are presented. These models are based on

queuing theory to predict the average packet latency in wormhole NoCs.

Reference [57] and [58] present a general performance model for latency and

throughput of different NoCs using queuing theory. These models use the M/G/1/K

queue and complex inter-dependent equations to estimate end-to-end delay of a

packet. In these models, they assume that each PE independently injects a packet

into the local buffer of its router following a Poisson model. This is a key assump-

tion to simplify the analytic model by using queueing models that are already solved

in queuing theory. However, studies have shown that higher packet injection rates

decreases the percentage of exponentially distributed inter-arrival times [79].

An analytic model for energy consumption of different NoCs realized in ASICs is

proposed in [66]. An analytic delay model at the transaction level (signal level) was

proposed in [62] and then used for analysis of NoC topologies. Although these models

are suitable for comparison, they are not accurate enough for the actual evaluation.

Some papers have used standard cell library parameters to analyze NoC cost

metrics. In [56], analytic energy and area models of NoC topologies for tiled chip

multiprocessors using predicted 65nm VLSI technology were presented. They also

compared various topologies including a Mesh, concentrated Mesh, Torus and fat tree
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Table 5.1: Previous Analytic models for NoCs
Model Network Delay Power Area

H. S. Wang et al. [59] - ✦

H. S. Wang et al. [66] Mesh & Torus ✦

U. Y. Ogras et al. [57], [58] Arbitrary ✦

J. Balfour and W. Dally.
[56]

Arbitrary ✦ ✦

M. Arjomand and H.
Sarbazi-Azad [54]

Arbitrary ✦ ✦

M. Binesh Marvasti and T.
H Szymanski [72]

Torus & GHC ✦ ✦

S. E. Lee and N.
Bagherzadeh [69]

- ✦

T. H Szymanski [77] [83] Mesh&BHC &
Hypermesh

✦

in terms of cost (power and area) and performance. In [55], an analytic methodology

was proposed for the area and power of an IQ-switch using a Broadcast-and-Select

architecture, which uses 180 nm CMOS VLSI.

Table 5.1 illustrates the analytic models proposed for NoCs based on a general

router model. The Analytic models for FPGAs are based upon the same laws of

physics as the analytic models for an ASIC, however FPGAs offer some unique fea-

tures and constraints such as EM blocks at fixed locations on the die or limited type

of primitive gates. These must be incorporated into the analysis.

5.2 Area and Delay Analysis of NoC Topologies

An NoC can be represented as a graph G(V,E) where V is the set of vertices (or

nodes) and E is the set of directed edges. Each vertex v(x, y) ∈ V can be identified

by its x and y coordinates on a plane. Assume each processor core uses C LEs of
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the FPGA. In a Concentrated network, each NoC node has M processor cores with

an area of M*C LEs. The area usage in each router is denoted by AR,TDM(D,W ),

where D is the router degree and W is the number of bits in each directed edge.

Three different topologies are studied in this section. Assume each topology has N

nodes, one router per node, and a concentration of M processors per node. There are

2 main design options for interconnecting processors to the routers: (i) each of the M

processors in a node has its own dedicated high-speed IO port on the local router, or

(ii) all of the M processors in a node share Y high-speed IO ports on the local router,

where Y ≤ M . Either option can be analytically modelled; we will assume router

option (ii). In option (ii), each node has Y M-to-1 Mux trees and 1-to-M Demux

trees, to connect the communicating processors to the Y ports on the router. The

area of the interfacing logic for concentration in one router is given by:

AConc(Y,M,W ) = Y × ADmux(1,M,W )

+ Y × AMux(M, 1,W )

(5.1)

There are 2 design options to multiplex multiple Virtual Channels (VCs) onto each

directed edge, Space-Division-Multiplexing (SDM) or Time-Division-Multiplexing (TDM).

The TDM design option is less costly and is assumed here. When K VCs are mul-

tiplexed onto each edge, each router input port also has a 1-to-K Demux, a K-to-1

Mux, and K VC latches (each W bits wide), to implement the K VCs. Each TDM

router output port has also one latch (W bits wide). In analytic and experimental

results the latch in output port is ignored.

Therefore, the total area of the router with router degree = D, data path width
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= W bits, and K VCs multiplexed onto each edge is given by:

AR,TDM(D,W,K) = ASi(D,W ) +D ×
(

K.AV C +W
)

+ D × ADmux(1, K,W )

+ D × AMux(K, 1,W ) (5.2)

where ASi(D,W ) is the total resource usage of the crossbar switch design i, (i = 1..7),

as described in chapter 4. Note that in direct networks, which every router can

generate and absorb traffic, an NxN router uses Demuxes and Muxes with N-1 ports.

The slightly smaller Mux and Demux sizes are due to the fact that a packet arriving

on a given port doesn’t depart on the same port, since self-directed traffic is not

injected into the network. The area for memory a VC (AV C) is given by Eq. 4.12

and Eq. 4.14.

The total area of any NoC topology with N nodes (with router degree = D,

Datapath width = W, with K VCs per edge, with area of the processor core = C,

with Concentration = M, and with number of injector and extractor channels = Y)

can be expressed by following parametric equation:

ANOC(D,K,M, Y,W ) = N ×M × C

+N × AR,TDM(D,W,K)

+N × AConc(Y,M,W )

(5.3)

5.2.1 2D Mesh

A 2D Mesh with 16 nodes and without wrap-around edges is shown in figure 5.1a.

This physical placement allows for fast communications over short-distance paths
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between nearest neighbors. The 2D Mesh network with N nodes and contraction M

has one router per node. Therefore each local router, except routers in corners and

edges, has degree 4+Y per node, with 4 directed edges to nearest neighbors (North,

East, South, West- N,E,S,W) and with Y local shared high-speed IO ports. The total

area of Mesh NoC with N nodes can be obtained by Eq. 5.3, where the degree D =

4+Y except the routers on the edges.

5.2.2 2D Torus

A 2D Torus with 16 nodes and with wrap-around edges is shown in figure 5.1b. The

layout in figure 5.1b results in a long wrap-around edge, which increases the critical

path delay and decreases the maximum clock frequency. The optimization engine

in the Altera compiler will typically use the ‘Folded Torus’ layout shown in figure

5.1d, which reduces the maximum wire length and which allows for reasonably fast

communications. The area 2D Torus NoC with N nodes can be obtained by Eq. 5.3,

where the degree D=4+Y.

5.2.3 2D BHC

A Binary Hypercube (BHC) with 16 nodes is shown in figure 5.1c. In a BHC with N

nodes, each node has an integer label composed of log2N bits. Each node has log2N

connections to nearest neighbors, whose integer labels differ from its own in one bit.

The BHC with N nodes and contraction M has one router and M processors per node.

Using the second router option, the router degree is (log2N + Y ). The total area of

the BHC is given by Eq. 5.3, where its router degree is D=log2N + Y .
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Figure 5.1: 3 NoC Topologies: (a) 2D Mesh, (b) 2D Torus, (c) Binary Hypercube
(BHC), (d) 2D ‘Folded’ Torus layout.
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5.2.4 Critical Path Delay

The maximum working frequency of each topology is mathematically modelled as the

inverse of the critical path delay in the topology. The critical path delay is defined as

the maximum delay of combinational logic between a source and destination register,

including the setup and hold times for the registers. In each NoC topology the critical

path depends on the router delay, the type of input buffers (EM or DFFs), and the

wire delay between routers. The delay models for wires and routers were presented

in chapter 4.

Definition: Define the ‘Node-Distance’ (ND) of an NoC topology with N nodes

as the shortest distance between 2 adjacent nodes in the X or Y dimensions. The

ND is equal to the length of the shortest edges in figure 5.1, expressed in terms of

the LE-length as defined in chapter 4. The ND of an NoC is denoted by ΓTopology =
√

ATopology/
√
N , where ATopology is the area of the NoC topology.

In FPGAs, the position of EM blocks are fixed on the die floorplan during the

fabrication process. When EM blocks are selected as input buffers, the distance

between 2 EM blocks in one row may affect the delay of topology. However, our

experiments indicate that the delay of the short wires in an FPGA is small relative

to the delay of combinational logic.

The delay of an NoC topology using EM blocks as Input Buffers given by:

DNoC−EM(D,W ) = Dbus(L) +DSi(D,W ) +DEM (5.4)

where L is the length of the longest link between the input buffers in 2 neighboring

routers in one row or column of the FPGA, and DEM is delay of an EM block. In
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the Altera Cyclone IV family of FPGA, the delay of a link connecting 2 EM blocks

in a row is 2.2 ns. Note that in Eq. 5.4 if the pipelined switch designs are used, the

pipeline DFFs break the critical path of the NoC topology into 2 shorter paths. The

higher delay path yields the critical path.

The delay of an NoC topology using DFFs as input buffers is typically smaller,

since the DFFs are faster than EM blocks. For the larger networks (N ≥ 16) the

delay of a NoC topology using DFFs will depend on the delay of the router and the

delay of the longest wire between neighboring routers, and is given by:

DNoC−DFF (D,W ) = Dbus(Z × ΓNOC) +DSi(D,W ) (5.5)

where Z is the length of the largest wire connecting 2 neighboring nodes (expressed

in multiples of the ND). In the BHC, let Z =
√
N
2
. In a 2D Mesh, let Z = 1. In a 2D

folded Torus using the layout in figure 5.1d, let Z = 2.

5.3 Analytic Power Models

The power of an NoC operating in steady-state is modelled by 3 components, the

power consumed in the routers, buffers and wires, as shown in Eq. 5.6.

E[PNOC ] = E[Pswitches] + E[Pwires] + E[Pbuffers] (5.6)

In a given time interval, Pswitches denotes the average power consumed in the switches,

Pwires denotes the average power consumed in the wires, and Pbuffers denotes the
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average power consumed in the buffers. When the NoC operates under a steady-

state condition, these powers can experimentally be measured. Figure 5.3 illustrates

the typical fractions of power used by crossbar switches, wires and input buffers

in an FPGA in the 2D BHC NoC with 16 nodes using Demux-Mux 1 (S1). The

power reported in this figure is the maximum achievable power consumption in the

components.

Let Nrouter denote the number of routers in the NoC. Let NPort denote the average

router degree, i.e., the average number of input buffers per router. Let L̂wires denote

the total length of wires (for all NoC edges), expressed as a multiple of the Node-

Distance. Assuming all components (switches, input buffers and wires) are 100%

loaded, the maximum power used by an NoC is given by:

Prouter = PSwitch +NPort.PIB (5.7)

max(PNOC) = Nrouter.Prouter + L̂Wires.PWire (5.8)

where Prouter and PIB are the average power consumed by each component assuming

100% load, and are given in chapter 4. PWire equals the power used by one wire

segment of length L = 1 Node-Distance (with datapath width = W).

For all power analyses in this section, the following assumptions are made:

1. The NoC uses a deterministic ordered-dimension XY routing algorithm, and

packets are delivered along minimum hops paths.

2. The load evenly distributed over the nodes.
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Figure 5.2: An NoC after Synthesis and Placement in an Altera FPGA

Figure 5.3: NoC Power Distribution, Saturated Mode, a) Buffer EMs b) Buffer DFFs.
(2D BHC, N=16, W=16, Switch=DM, Buffer=4 flits, 50 MHz)

We also assume the layout of the NoC on the FPGA is relatively square after

layout, synthesis and optimization, as shown in figure 5.2.

5.3.1 Power Model in Wormhole Switching

Let each idle PE generates a packet following a Poisson distribution with average

arrival rate of λP < 1 packets per node per clock cycle. Therefore, the average

injection rate of flits per idle node is λF = λP × m flits per node per clock cycle,
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where m is the average number of flits per packet. In an NoC with N independent

nodes, the maximum flit arrival rate before blocking is considered is ≈ NλF flits

per clock cycle. Assuming an average blocking probability per header flit of PB, the

average effective rate of flits arrivals to the network per node per clock cycle is given

by [71]:

λ′
F = λF (1− PB) (5.9)

The blocking probability PB can be defined as the expected waiting time that a header

flit waits in the blocking queues over the packet latency, when their requested output

links are busy (See Appendix B).

A ‘hop’ is defined as an edge traversal regardless of edge length. Let H be the

expected number of hops traversed by a packet from the source to the destination. If

the destinations are uniformly distributed, the average arrival rate of flits to one link

can be estimated as the effective arrival rate of flits to the network (N×λ′
F ), weighted

by the number of links traversed by a packet on average divided by the number of

links in the network (NLink) [78]:

λLink = N × λ′
F × H

NLink

(5.10)

Similarly, the average arrival rate of flits to one IO port of a crossbar switch can be

estimated as follows: Due to the wormhole routing, each packet generated at one

node will appear at several components, which is reflected in the following equations:

λXbar = λ′
F × (H + 1)

NPort

(5.11)
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λIB = λ′
F × (H + 1)

NPort

(5.12)

where NLink is the total number of links in the topology, and NPort is the average

number of ports per router in the topology.

Given the Random-Uniform or Butterfly traffic patterns, the analytic power model

for any NoC network can be approximated by modifying Eq. 5.8, to reflect the reduced

load of each component:

PNOC = λXbar.N.PSwitch + λIB.N.NPort.PIB

+ λLink.NLink.
LX+Y

H
.PWire (5.13)

where LX+Y is the expected length of wires traversed by a packet under the given

traffic pattern. In Eq. 5.13, the average wire length per edge hop traversed by a

packet under the given traffic pattern is LX+Y /H. In Eq. 5.13, λlink, λXbar and λIB

are the effective arrival rates to each component, which have been lowered to reflect

the blocking probability PB due to wormhole switching. However, for light loads the

PB is very low and often can be ignored (PB ≈ 0) [54], and we assume it in this thesis.

For moderate loads, PB can be computed using analytic models presented in [54] and

[91].

5.3.2 Wire Lengths and Hop Count

To determine the power consumption of NoC topologies under a given traffic pattern,

we need to determine (1) the expected distance traversed by a packet (LX+Y ) in the

given traffic pattern, and (2) the expected number of hops H per packet. Three
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Table 5.2: List of Symbols Used Throughout This Thesis
Symbols Description Units
N Network Size
n log2 N

K
√
N

ΓT Node Distance (ND) of Topology T
√
LEs

LX The X distance traversed by one packet in a
row

ND

LY The Y distance traversed by one packet in a
column

ND

H The expected number of hops traversed by one
packet in a given topology

Integer

Ej Butterfly Permutation, j = 0, ..., log2(N)− 1
LBR The distance traversed by a packet in bit re-

versal permutation
ND

traffic patterns are explored; (1) Random Uniform traffic, (2) the traffic pattern in

the Cooley-Tukey FFT Algorithm, and (3) the traffic pattern in the Bitonic sorting

algorithm. Table 5.2 lists the symbols used throughout this chapter.

5.3.3 Random Uniform

For the Random Uniform (RU) traffic pattern, each node is equally likely to send a

packet to every node. If the source and destination of a packet are the same router,

assume that the packet does not traverse the router or the NoC.

2D Mesh

Consider a 2D Mesh with N nodes, as shown in figure 5.4a. Each row or column

has K=
√
N nodes. The 2D Mesh is a non-symmetric network; the edge nodes differ

from the interior nodes, and symmetry cannot be exploited. The expected horizontal

distance traversed by one packet depends upon the position of the source node i in
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Figure 5.4: 3 NoC Topologies: (a) 2D Mesh, (b) 2D Torus, (c) Binary Hypercube
(BHC), (d) 2D ‘Folded’ Torus layout.
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each row, where i = 0, .., K − 1.

Theorem 1: In a 2D Mesh, the expected distance traversed by a packet in the X

dimension under the RU traffic pattern, expressed as multiples of the Node-Distance

ΓMesh, is given by:

E[LX ] =
2

K2
×

⌊K

2
⌋

∑

i=1

(

K − (2i− 1)
)2

(5.14)

Proof. (Theorem 1). The proof is established by enumeration. Consider any node

p in a row in the X dimension for 0 ≤ p ≤ K − 1. The traffic leaving node p is

uniformly distributed over the K nodes in the row. Let i and j represent the number

of edge traversals in the left and right directions respectively. The expected distance

traversed in the X dimension by traffic leaving node p is given by:

1

K

( p
∑

i=0

i+
K−p−1
∑

j=0

j
)

(5.15)

By taking the expectation for nodes 0 ≤ p < K and mathematically rearranging the

terms, the result in Eq. 5.14 is obtained.

By symmetry, the expected distance traversed by a packet in vertical (Y) dimen-

sion is given by:

E[LY ] =
2

K2
×

⌊K

2
⌋

∑

i=1

(

K − (2i− 1)
)2

(5.16)

Based on Theorem 1, the total expected distance traversed by a packet in a 2D

Mesh in both dimensions under the RU traffic pattern, expressed as multiples of the
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Node-Distance ΓMesh, is given by:

E[LX+Y ] = (E[LX ] + E[LY ])

=
4

K2
×

⌊K

2
⌋

∑

i=1

(

K − (2i− 1)
)2

(5.17)

This result Eq. 5.17 is used in Eq. 5.13 to compute the 2D Mesh power. The expected

number of hops (H ) traversed by a packet in a 2D Mesh under the RU traffic pattern

is also given by Eq. 5.17, since every edge has a length L = 1 ND.

Note that if the source and destination of a packet belong to the same router, the

packet is routed by the resource network interface (RNI) and does not traverse the

router or the NoC.

2D Torus

A 2D Torus is shown in figure 5.4b and figure 5.4d. The expected distance traversed

by a packet under the RU traffic pattern in the 2D torus is easily computed by

exploiting the symmetry of the network. The expected distance depends upon the

layout of the Torus. The Altera Quartus CAD tools will lay out the 2D Torus using

the folded Torus layout in figure 5.4d. The average distance traversed by a packet

using the 2D folded Torus layout in figure 5.4d is given by Property 1.

Property 1: In a 2D Torus using the ‘folded Torus’ layout shown in figure 5.4d,

where packets are constrained to follow minimum hop and minimum distance paths,

the expected distance traversed by a packet in the X and Y dimensions under the RU

traffic pattern, expressed as multiples of the Node-Distance ΓTorus, is given by:

E[LX+Y ] = 2(K/2) (5.18)
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where N = K2. The proof follows by enumeration. Let each edge in figure 5.4d have

a length of 2 NDs (the length of the two short edges can be increased to 2 ND). By

examining all possible source nodes, the expected distance traversed per packet in

the X or Y dimension is K/2. The expected number of hops (H ) traversed per packet

in both the X and Y dimensions is obtained by dividing the expected distance in Eq.

5.18 by 2, as the length of each edge = 2 ND. Therefore the expected number of hops

(H ) traversed by one packet in both the X and Y dimensions K/2.

2D BHC

A binary hypercube (BHC) with N = 2n nodes is shown in figure 5.4c. The BHC can

be viewed an an n-dimensional Torus, with 2 nodes aligned along each dimension.

The average distance traversed by a packet in the BHC is given by Theorem 2.

Theorem 2: In a Binary Hypercube with the physical layout shown in figure

5.4c, where packets are constrained to follow minimum hop and minimum distance

paths, the expected distance traversed by a packet in the X dimension under the RU

traffic pattern, expressed in terms of the node distance ΓBHC , is given by:

E[LX ] =
K − 1

2
(5.19)

Proof. (Theorem 2). The proof is established by induction. Suppose the theorem is

true for N = K2. Therefore the expected distance traversed by a packet leaving any

node in a row is given by Eq. 5.19, which is repeated below:

E[LX ] =
1

K

(

K−1
∑

i=0

i
)

=
K − 1

2
(5.20)
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The theorem is clearly true for K = 2 (basis step), where the expected distance is

given by:

0 + 1

2
=

K − 1

2
(5.21)

Consider the Binary Hypercube with N = (2K)2 nodes, using the 2D physical

layout shown in figure 5.4c. According to the induction step, we assume that the

Eq. 5.19 is true for N = K2, then we need to prove that the Eq. 5.19 is true for

N = (2K)2 nodes. For N = (2K)2, the expected distance traversed by a packet

leaving any node which is RU distributed over all other nodes is given by:

1

2K

(

K−1
∑

i=0

i+
K−1
∑

j=0

(K + j)
)

=
2K − 1

2
(5.22)

where the second summation includes traversal over the long edge of length K to

the other half of the row. By rearranging, the expected distance traversed by traffic

leaving any node which is RU distributed over all other nodes in the same row is given

by Eq. 5.19 in Theorem 2. The result of Eq. 5.19 for N = (2K)2 is equal to Eq. 5.22.

Therefore, if the theorem is true for N = K2 then it is also true for N = (2K)2, and

by induction, the theorem is true for all N.

By symmetry, the distance in the Y dimension is equal to Eq. 5.19. Based on

Theorem 2, the total expected distance traversed by a packet in a 2D BHC in both

dimensions under the RU traffic pattern, expressed as multiples of the Node-Distance

ΓBHC , is given by:

E[LX+Y ] = K − 1 (5.23)
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The 2D BHC can be viewed as an n dimensional torus, with 2 nodes aligned along

each dimension. The average number of hops (H) per packet given the RU traffic

pattern is n/2, as each dimension is traversed with probability 1/2. These results are

used in Eq. 5.13 to compute the BHC power.

5.3.4 Cooley-Tukey FFT Algorithm

The Cooley-Tukey FFT algorithm is shown in figure 5.5. In a large FFT, neighboring

nodes may transfer of several Kbytes to Mbytes of data. The bold lines in figure 5.5

show the complete paths for packets in the FFT. For example, a packet generated

by node 0 visits nodes [8,12,14,15,15]. The FFT data-flow graph consists of log2N

Butterfly permutations (denoted Ej for 0 ≤ j < log2N) followed by a Bit-Reversal

(BR) permutation. In the next sub-sections, we compute the expected number of

hops and the expected distance traversed by a packet in the FFT graph, to be used

in Eq. 5.13 to find the NoC power.

2D Mesh

Assume the 2D Mesh layout as shown in figure 5.4a, and let n = log2N . By examining

each Butterfly permutation in figure 5.4a, the following properties are observed to be

true:

Property 2: Each Butterfly permutation Ej for 0 ≤ j ≤ n/2 − 1 requires each

packet to traverse 2j Node-Distances.

Property 3: Each Butterfly permutation Ej for n/2 ≤ j ≤ n − 1 requires each

packet to traverse 2(j−n/2) Node-Distances.

Property 4: In a 2D Mesh with the layout in figure 5.4a, where packets are
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Figure 5.5: Cooley-Tukey FFT algorithm with 16 nodes

constrained to follow minimum hop and minimum distance paths, the expected dis-

tance traversed by one packet in the X and Y dimensions under the FFT algorithm,

expressed as multiples of the Node-Distance ΓMesh, is given by:

E[LX+Y ] =
n/2−1
∑

j=0

2j +
n−1
∑

j=n/2

2j−n/2 + E[LBR]

= 2.(2
n

2 − 1) + E[LBR]

(5.24)

Table 5.3: Average number of hops and distances under BR permutation
Network Size

Topology Results 16 64 256 1024

Mesh (Fig. 5.4a)
Hops E[HBR] 2.5 5.25 10.62 21.312

Distance E[LBR] 2.5 5.25 10.62 21.312

Torus (Fig. 5.4d)
Hops E[HBR] 2 4 8 16

Distance E[LBR] 4 8 16 32

BHC (Fig. 5.4c)
Hops E[HBR] 2 3 4 5

Distance E[LBR] 3 7 15 31
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where E[LBR] is the expected distance per packet in the BR permutation. E[LBR]

is determined experimentally in a Matlab program. According to Table 5.3, in a

2D Mesh E[LBR] is exactly equal to the expected distance per packet in the RU

traffic pattern, given in Eq. 5.17. Similarly, according to Table 5.3, in a 2D Mesh

the expected number of hops per packet in the BR permutation (E[HBR]) is exactly

equal to the expected hops per packet in the RU traffic pattern, also given in Eq.

5.17. According to Matlab simulations, the same equalities holds for the 2D Torus,

BHC, GHC, and Hypermesh networks.

To find the power of the NoC using the FFT algorithm in Eq. 5.13, an expression

for the average distance traversed by each packet transmission (L) is required. The

distance reported in Eq. 5.24 is based on (n + 1) packet transmissions, as shown in

figure 5.5. The expected distance per packet transmission is given by:

E[LX+Y ] =
1

(n+ 1)
.(2.(2(n/2) − 1) + E[LBR]) (5.25)

This result is used in Eq. 5.13 to determine the NoC power given the FFT traffic

pattern. The average number of hops (H) traversed by a packet in the 2D Mesh under

the FFT algorithm is also given by Eq. 5.25.

2D Torus

Properties 2 and 3 can be applied to a 2D folded Torus layout as shown in figure

5.4d (with slight adjustments due to the repositioning of the nodes in figure 5.4d

relative to figure 5.4b.) Each butterfly permutation Ej for 0 < j < n/2 requires a

packet to traverse 2(j+1) Node-Distances. Similarly, each butterfly permutation Ej

for n/2 ≤ j < n requires a packet to traverse 2(j+1−(n/2)) Node-Distances. In a 2D
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folded Torus with the layout in figure 5.4d, where packets are constrained to follow

minimum hop and minimum distance paths, the expected distance traversed by each

packet in the X and Y dimensions under the FFT algorithm, expressed as multiples

of the Node-Distance ΓTorus, is given by:

E[LX+Y ] =
1

(n+ 1)
∗ (4.(2(n/2) − 1) + E[LBR]) (5.26)

The expected number of hops (H ) traversed per packet in both the X and Y dimen-

sions is again obtained by dividing the expected distance by 2. The expected number

of hops traversed by one packet under FFT traffic pattern is:

E[HTorus] =
1

(n+ 1)
∗ (2.(2(n/2) − 1) + E[HBR]) (5.27)

where E[HBR] is the expected number of hops traversed by a packet in 2D Torus

under the BR permutation.

2D BHC

Referring to the BHC in figure 5.4c, each packet in a butterfly permutation Ej for

0 ≤ j < n/2 traverses one edge with distance 2j, as stated in Property 2. Each

packet in a butterfly permutation Ej for n/2 ≤ j < n traverses one edge with

distance 2(j−n/2), as stated in Property 3. Therefore, the expected distance traversed

by one packet in the FFT graph in the BHC and 2D Mesh topologies are equal. The

expected number of hops traversed by one packet under the FFT traffic pattern is:

E[HBHC ] =
1

(n+ 1)
∗ (n+ E[HBR]) (5.28)
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Figure 5.6: Bitonic sorting algorithm with 16 nodes [83]

where E[HBR] is the expected number of hops traversed by a packet in the 2D BHC

under the BR permutation.

5.3.5 Bitonic sorting algorithm

The Bitonic sorting algorithm is shown in figure 5.6. The Bitonic sorting algorithm

consists of log2 N.(log2 N+1)
2

butterfly permutations (denoted Ej for 0 ≤ j < log2 N).

In the following, we compute the expected distance and average number of hops

traversed by a packet in the Bitonic sorting algorithm.

2D Mesh

Consider the 2D Mesh layout with N nodes as shown in figure 5.4a, and let n = log2 N .

In the 2D Mesh, the distance traversed by each packet in a butterfly permutation Ej

for 0 ≤ j < n is given by Property 2 and 3. The expected distance traversed by each

packet in the Bitonic sorting algorithm, in a 2D Mesh, is given by Property 5.
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Property 5: In a 2D Mesh with the layout in figure 5.4a, where packets are

constrained to follow minimum hop and minimum distance paths, the total distance

traversed by each packet in the X and Y dimensions under the Bitonic sorting algo-

rithm, expressed as multiples of the Node-Distance ΓMesh, is given by:

LX+Y =
n/2−1
∑

j=0

(n− j)× 2j +
n−1
∑

j=n/2

(n− j)× 2j−n/2 (5.29)

where the (n − j) denotes the number of an Ej permutation per node in Bitonic

sorting algorithm, as shown in figure in figure 5.6. For example in figure 5.6, there

are 4 E0, 3 E1, 2 E2, and 1 E3 permutations.

The distance reported in Eq. 5.29 is based on n.(n+1)
2

packet transmissions, as

shown in figure 5.6. The average distance per packet transmission is given by:

E[LX+Y ] =
2

n.(n+ 1)
.(
n/2−1
∑

j=0

(n− j)× 2j +
n−1
∑

j=n/2

(n− j)× 2j−n/2) (5.30)

This result is used in Eq.5.13 to determine the NoC power given the Bitonic sorting

algorithm. The average number of hops (H) traversed by a packet in the 2D Mesh

under the Bitonic sorting algorithm is also given by Eq. 5.30.

2D Torus

Properties 2 and 3 can be applied to a 2D folded Torus layout as shown in figure

5.4d (with slight adjustments due to the repositioning of the nodes in figure 5.4d

relative to figure 5.4b.) Each butterfly permutation Ej for 0 < j < n/2 requires a

packet to traverse 2(j+1) Node-Distances. Similarly, each butterfly permutation Ej

for n/2 ≤ j < n requires a packet to traverse 2(j+1−(n/2)) Node-Distances. In a 2D
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folded Torus with the layout in figure 5.4d, where packets are constrained to follow

minimum hop and minimum distance paths, the expected distance traversed by each

packet in the X and Y dimensions under the Bitonic sorting algorithm, expressed as

multiples of the Node-Distance ΓTorus, is given by:

E[LX+Y ] =
2

n.(n+ 1)
.(
n/2−1
∑

j=0

(n− j)× 2(j+1) +
n−1
∑

j=n/2

(n− j)× 2(j+1−n/2)) (5.31)

where the (n − j) denotes the number of an Ej permutation per node in Bitonic

sorting algorithm, as shown in figure in figure 5.6.

The expected number of hops (H ) traversed per packet in both the X and Y

dimensions is again obtained by dividing the expected distance by 2, i.e., the length

of each edge. The expected number of hops H traversed by one packet under Bitonic

sorting algorithm is:

E[HTorus] =
2

n.(n+ 1)
.(
n/2−1
∑

j=0

(n− j)× 2j +
n−1
∑

j=n/2

(n− j)× 2j−n/2) (5.32)

2D BHC

Referring to the BHC in figure 5.4c, each packet in a butterfly permutation Ej for

0 ≤ j < n/2 traverses one edge with distance 2j, as stated in Property 2. Each

packet in a butterfly permutation Ej for n/2 ≤ j < n traverses one edge with

distance 2(j−n/2), as stated in Property 3. Therefore, the expected distance traversed

by one packet in the Bitonic sorting algorithm in the BHC and 2D Mesh topologies

are equal.

In the 2D BHC, each packet in a butterfly permutation Ej for 0 ≤ j < n is

realized by one edge traversal. Therefore, the expected number of hops traversed by
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one packet under Bitonic sorting algorithm is given by:

E[HBHC ] = 1 (5.33)

5.4 Results

In this section, analytic and experimental results of different topologies are studied.

The resource usage reported for the NoCs includes the resource usage of switches and

input buffers in terms of LEs. The additional resource usage by the processors is

not considered. As stated in Eq. 5.13, the power of an NoC is given by the power

consumed in the switches, wires and input buffers. In our experiments, each NoC

is clocked at the same clock frequency fclk = 50 MHz. For the analytic results, we

assume that the clock frequency of 50 MHz is feasible for all the topologies. The

additional power consumed by the processors is not modelled, to focus on the power

used in the NoC topology.

Given the RU, Bitonic or FFT traffic patterns, the crossbar switches and links in

an NoC may be partially loaded. The power consumed by a partially loaded crossbar

switch utilizing j ports out of D ports is simply equal to the maximum power of the

crossbar switch, pro-rated by the fraction j/D, as shown in Eq. 5.13.

Table 5.4 shows the expected number of hops traversed by a packet under various

traffic patterns, for NoCs with different sizes. As seen in this table, the BHC has the

lowest number of hops, especially for large N.

To validate the proposed analytic models for the NoCs using different router de-

signs, we compare the analytic results to extensive experimental results. The simula-

tors are explained in chapter 3, and are used for getting experimental results.
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Table 5.4: Average number of hops traversed by a packet for NoC topologies
Network Size

Topology Traffic Pattern 16 32 64 128 256

Mesh
Uniform 2.5 3.64 5.25 7.48 10.625
Bitonic 1.4 2.04 2.05 3.09 3.11
FFT 1.7 2.16 2.75 3.513 4.513

Torus
Uniform 2 2.82 4 5.65 8
Bitonic 1.4 2.04 2.05 3.09 3.11
FFT 1.6 2.02 2.57 3.28 4.22

BHC
Uniform 2 3 4
Bitonic 1 1 1
FFT 1.2 1.28 1.33

Tables 5.5 and 5.6 compare the analytic and experimental results for the 2D Mesh,

Torus, and BHC NoCs, with different switch designs. All networks use a datapath

width W = 16 bits. In Table 5.5, EM blocks are used as input buffers, while in Table

5.6, DFF registers are used. The experimental power reported in these 2 tables is

the peak power, obtained under the pseudo random walk model. The results show

excellent agreement, typically within 8%.

As illustrated in Tables 5.5 and 5.6, realizing the Input-Buffers using EM blocks

will reduce the cost (in LEs) and will require fewer memory bits, but it will decrease

the maximum frequency. The lower frequency occurs since (i) the EM blocks are built

by SRAM cells which are slower than DFFs, and (ii) the placement of EM blocks are

fixed within the FPGA die, which will slightly increase the delay of the critical path.

Figures 5.7, 5.8, and 5.9 compare the analytic and experimental power results of

topologies shown in figures 5.4a, 5.4c, and 5.4d using wormhole switching under RU

traffic pattern, FFT, and Bitonic algorithms (all datapath widths W = 16 bits). The

power consumed by arbitration and routing is excluded, to focus on the datapath. The
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Table 5.5: Analytic and Experimental results for different NoC topologies with 16
nodes (Input buffer= EM blocks, Pseudo Random Walk model, W= 16, Freq.=50
MHz)
NoC Switch

De-
sign

Anlyt.
Area
(LE)

Exp.
Area
(LE)

Area
Error
(%)

Anlyt.
Power
(mW)

Exp.
Power
(mW)

Power
Error
(%)

Anlyt.
Fmax
(MHz)

Exp.
Fmax
(MHz)

Fmax
Error
(%)

Mesh

S1 3392 3407 1% 112.89 102.35 1% 147 163 10%
S2 2112 2112 0% 118.07 113.27 5% 141 157 10%
S3 5312 5312 0% 119.20 117.32 2% 264 242 9%
S4 1856 1860 1% 117.77 104.35 3% 170 151 12%

Torus

S1 8000 8000 0% 148.05 127.42 16% 147 146 1%
S2 2880 2880 0% 158.05 149.89 6% 141 143 1%
S3 8000 8000 0% 159.73 159.82 1% 264 237 11%
S4 2368 2317 3% 145.17 126.19 15% 170 150 13%

BHC

S1 8000 8000 0% 148.05 127.42 16% 147 146 1%
S2 2880 2880 0% 158.05 149.89 6% 141 143 1%
S3 8000 8000 0% 159.73 159.82 1% 264 237 11%
S4 2368 2317 3% 145.17 126.19 15% 170 150 13%

experimental results were obtained using Batch-mean method, were each simulation

is divided into 8 batches. The first batch is ignored since it is used as a warm-up

period. Each batch consists of 6000 clock cycles. Each packet includes 32 flits and

and packet arrival rate is 0.0078 packets per node per clock cycle. Each input buffer

is 4-flits deep. The analytic and experimental results show very good agreement,

typically within 12%.

To have a fair comparison between the NoC topologies, each NoC is normalized

to have an equal bisection bandwidth of O(N) bits/sec. We fix the datapath width of

BHC (WBHC) to 16 bits, and adjust the widths of the Mesh and Torus as described

in chapter 2. For example, For N=64, the datapath widths for the Mesh, Torus and

BHC are 64, 32 and 16 bits respectively. It is also assumed that each input buffer

has capacity of 4 flits.
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Figure 5.7: Analytic vs. experimental results of power under RU traffic (W=16,
Buffer=EM block, Switch=S2)

Figure 5.8: Analytic vs. experimental results of power under traffic pattern in FFT
algorithm (W=16, Buffer=EM block, Switch=S2)
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Table 5.6: Analytic and Experimental results for different topologies (Input buffer=
DFF registers, Pseudo Random Walk model, W= 16)
NoC Switch

De-
sign

Anlyt.
Area
(LE)

Exp.
Area
(LE)

Area
Error
(%)

Anlyt.
Power
(mW)

Exp.
Power
(mW)

Power
Error
(%)

Anlyt.
Fmax
(MHz)

Exp.
Fmax
(MHz)

Fmax
Error
(%)

Mesh

S1 8256 7990 3% 74.66 69.02 8% 296 249 18%
S2 6976 6788 3% 80.06 86.61 8% 273 260 5%
S3 10176 10173 1% 80.76 90.85 11% 326 270 20%
S4 6720 7255 7% 79.81 83.17 4% 204 193 6%

Torus

S1 14080 12945 9% 101.04 101.2 1% 262 215 21%
S2 8960 8826 2% 112.09 112.01 1% 251 246 2%
S3 14080 13938 1% 112.72 117.43 4% 329 279 18%
S4 8448 8395 1% 99.41 103.29 4% 192 173 11%

BHC

S1 14080 12945 9% 101.04 101.2 1% 262 215 21%
S2 8960 8826 2% 112.09 112.01 1% 251 246 2%
S3 14080 13938 1% 112.72 117.43 4% 329 279 18%
S4 8448 8395 1% 99.41 103.29 4% 192 173 11%

Figure 5.10 shows the expected power consumption in different NoC topologies

under the RU traffic pattern, when each router has one processing node and uses

the ‘Demux-Mux’ (S1) crossbar switch, given equivalent bisection bandwidth. Each

input buffer is constructed by DFFs and has capacity of 4 flits. The packet arrival

rate is 0.0078 packet per node per clock cycle. Note that the y-axis is logarithmic.

As seen in figure 5.10, the BHC uses lowest power compared to other topologies,

by a significant margin. For example, for N=256 nodes with DFFs as input buffers,

the power of the (BHC, 2D Mesh, 2D Torus) are (0.678 Watts, 7.822 Watts, 3.542

watts) respectively (given equal Bisection BW). The BHC consumes only 9% of the

power of the 2D Mesh, and the BHC consumes only 19% of the power of the Torus, for

RU traffic. (It is well-known that for N=16, the 2D torus and BHC are topologically

equivalent. This equivalence is observed in figure 5.10, where the power used by the

BHC and Torus for N=16 are equivalent.)
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Figure 5.9: Analytic vs. experimental results of power under Bitonic sorting algorithm
(W=16, Buffer=EM block, Switch=S2)

Figure 5.10: Analytic power results for different topologies and sizes under RU traffic
pattern (with Equal Bisection Bandwidth, Switch=S1, Buffer= DFF Registers)
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Figure 5.11: Analytic power results for different topologies and sizes under the Cooley-
Tukey FFT Algorithm (with equal Bisection Bandwidth, Switch=S1, Buffer= DFF
Registers)

Figure 5.11 shows the expected power consumption for different NoC topologies

when the Cooley-Tukey FFT algorithm is used (given equal Bisection BW). Again,

each router has one node and uses the ‘Demux-Mux’ crossbar switch. As seen in

figure 5.11, the BHC uses lowest power compared to other topologies, by a significant

margin. For example, for N=256 nodes with DFF registers as input buffers, the power

consumption of the (BHC, 2D Mesh, 2D Torus) are (0.289 Watt, 3.627 Watt, 2.002

Watt) respectively. The BHC uses only 8% of the power of the 2D Mesh, and the

BHC uses only 15% of the power of the 2D Torus, under the FFT traffic pattern with

equivalent bisection bandwidth.

Figure 5.12 shows the analytic power consumption in the BHC with the 4 different

switch designs, when RU traffic pattern is used. This figure can be used to select the

best switch design, and to decide whether EM blocks or DFFs are used to realize the

switch input buffers. (Note that the y-axis is logarithmic.)

Choosing a suitable crossbar switch and input buffer design is a trade-off among
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Figure 5.12: Power analysis of different switch designs in BHC with different network
diameter, under RU traffic (W=16)

many competing design constraints. For small and medium sizes, if the applica-

tions are power-constrained then the Demux-Mux crossbar switches would be the

best choice. If a design is delay-constrained, the best choice of switch would be the

Pipelined-Demux-Mux design. For the area-constrained designs, the Broadcast-and-

Select switch design is the best choice.

As stated in previous chapter, two types of input buffers are available on the

FPGAs, the EM blocks and DFF registers. Using EM blocks (rather than DFFs) for

the input buffers will reduce the NoC area, since this choice uses embedded memory

bits rather than DFFs. However, the use of EM will decrease the maximum allowable

clock frequency. In a design with multiple VCs or large input buffers, realizing input

buffers using EM is power efficient and area efficient since all the buffer memory for

multiple virtual channels can fit into one EM block.
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5.5 Conclusions

Analytic models for the area, power, and delay of 3 NoC topologies have been pro-

posed, including 2D Mesh, Torus, and BHC. Three traffic patterns are considered,

Random Uniform, the traffic pattern in the FFT algorithm, and the traffic pattern

in the Bitonic sorting algorithm. The NoC analytic models are compared to exten-

sive simulations, and shown to be very accurate, typically within 10%, comparable to

the ORION CAD modelling tool [41]. The experimental results shows that the pro-

posed analytic models can be efficiently used for the early design-space exploration of

various NoC configurations and topologies within an acceptable accuracy level. Our

analysis indicates that given equivalent bisection bandwidth, Binary-Hypercubes con-

sume much less power than the 2D Torus and Mesh, primarily due to the reduction

in area and power consumed by the routers. In BHC, packets traverse fewer routers

on average, which significantly lowers the required power. In an FPGA environment,

when performing FFT computations the BHC consumes ≈ 8% of the power of a 2D

Mesh, and ≈ 15% of the power of a 2D Torus.

In addition, when using multiple VCs on an edge, the use of Embedded Memory

blocks for input buffers rather than DFFs will significantly decrease both the area

(measured in LEs) and power used in the routers and NoCs.
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Chapter 6

Analytic models for 2D

Hypermesh and GHC

In chapter 5, we studied analytic models for the graph-based NoC topologies such as

2D Mesh, Torus, and BHC. In this chapter, 2 other topologies, named the Generalize

Hypercube (GHC) and Hypermesh, are studied. The 2D Mesh, Torus, BHC, GHC

are graph-based NoC topologies, while the Hypermesh is based on the concept of

hypergraphs, which are generalizations of the conventional graph in which individual

edges are able to join an arbitrary number of nodes [83]. In a 2D Hypermesh, the

nodes in each row or column are members of a hyperedge, where packets can tra-

verse a hyperedge with minimal queuing delays. The Cray TITAN supercomputer

located at the Oak Ridge National Laboratory in the USA uses an optical Hypermesh

type of interconnection network. Several other supercomputers also use Hypermesh

Networks.

In this chapter, accurate analytic models for the area, delay and power of the

2D Hypermesh and GHC NoC topologies realized in FPGAs are presented. These 2
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topologies are constructed by the basic components which were explained in chapter 4.

The power models consist of (a) peak power and (b) power consumption in wormhole

switching. Power consumption in wormhole switching includes the RU traffic pattern,

the traffic pattern in the FFT algorithm, and the traffic pattern in the Bitonic sorting

algorithm. The 2D Hypermesh, BHC, and GHC are compared in terms of power, area,

and energy consumption. To compare the NoCs we also propose a design metric,

called the energy-area product, which includes both cost and performance metrics.

At the end, the 2D Hypermesh, BHC, and GHC are evaluated in terms of energy-area

product.

6.1 Related Works

The concept of a hypergraph-based Hypermeshes was presented in [81] [83]. In the

Hypermesh network, all the nodes aligned along a hypercube dimension are inter-

connected by a distributed switching capability, which is formally modelled as a hy-

pergraph hyperedge. Hypermeshes are particularly attractive for optical implemen-

tation, where large distributed optical Broadcast-and-Select switches can be realized.

The optical implementation of Hypermeshes can reduce the complexity problems of

electrical implementation [83]. Two possible Hypermesh implementations using cen-

tralized crossbar switch are proposed in [83]. One of them is a 2D Hypermesh with

electrical crossbar switch and electrical transmission, while the other one is electri-

cal crossbar switch and optical transmission. It has been shown in [83] that the

Hypermesh topology provides better performance relative conventional graph-based

networks, such as the Mesh, Torus and hypercubes.

Another implementation for Hypermeshes is to use a ‘Distributed Crossbar Switch’
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(DCS) [83] [85] [86]. In [86], the DCS Hypermesh was examined under uniform and

non-uniform traffic models. In a network with N nodes, the DCS Hypermesh is con-

structed by
√
N (

√
N−1)-to-1 Multiplexers. The DCS Hypermesh uses bit-pipelining

to reduce latency. The major concerns in the DCS Hypermesh are the way the con-

tention is handled in the buses and the wiring complexity. It has been shown that Hy-

permeshes generally outperforms meshes, Torus, and hypercubes under both uniform

and non-uniform traffic models [81] [83] [90]. Reference [88] proposed a performance

model to predict the mean average latency in wormhole-switched Hypermeshes in the

presence of hot-spot traffic. The performance comparison between DCS Hypermesh

and spanning-bus hypercube was done in [83] [89]. It has been shown that the DCS

Hypermesh implementation outperforms the spanning-bus hypercube.

To date, most of the papers either have proposed cost and performance model

for graph-based networks such as Mesh, Torus, or hypercube topology, or have been

related to performance models of the Hypermesh topology. None of the prior works

presents accurate analytic area, delay, and power models for the Hypermesh NoC

realized in FPGA technologies, or compares different graph-based NoC topologies

with the Hypermesh topology, when realized in FPGA technology.

6.2 Hypermesh Topology

In conventional graph-based network such as the Mesh, Torus, BHC, and GHC, each

node has a router with direct connections to its nearest neighbours.

An n-dimension k-radix Hypermesh can be defined as a regular hypergraph which

has kn nodes. Each node is identified with an n digit vector in radix k arithmetic. All

the nodes aligned along any of the n dimensions are interconnected with a distributed
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low-latency switch, which is modelled as a hypergraph hyperedge. Each Hypermesh

node is connected to all the other nodes whose positions differ from its own in exactly

one dimension. Figure 6.2 shows the logical diagram of a 2D Hypermesh, where each

bold vertical or horizontal line denotes a hyperedge. It is possible to use a centralized

electronic crossbar switch to realize each hyperedge. Figure 6.4 shows a 4x4 2D

Hypermesh implemented with centralized electrical crossbar switches. Each black

box represents a centralized electrical crossbar switch, while each circle represents

a node. The node contains a small router to allow packets to traverse the multiple

dimensions, and to interconnect the hyperedges in 2 dimensions to the processors.

The Hypermesh has higher bisection bandwidth when compared to the spanning-bus

hypercube, since the single spanning buses are replaced by switches.

The logic diagram of a 2D Hypermesh with distributed switches is shown in figure

6.3 and its implementation is shown in figure 6.5. In this distributed implementation,

multiplexers are connected to the long row and column channels.

The 2D Hypermesh is similar to a 2D Mesh in that each node can communicate

with its nearest neighbors in one transmission or one hop. It is different from a

2D Mesh in that a transmission along a row (or a column) only encounters a queue

(i.e., an input buffer with associated arbitration) once each hyperedge traversed. In

contrast, a 2D Mesh with virtual channels may entail queuing in every input-queued

router along a row or column. In a 2D Hypermesh the graph-theoretic diameter is

fixed at 2 hops but the graph-theoretic diameter in the 2D Mesh is equal to 2
√
N .
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Figure 6.1: 2D GHC with 16 nodes

6.3 Area and Delay Analysis of Hypermesh and

GHC NoCs

In this section, area and delay models of 2D GHC and Hypermesh are discussed.

6.3.1 2D GHC

A 2D Generalized Hypercube with 16 nodes is shown in figure 6.1. In a 2D GHC with

N nodes, each node has 2× (
√
N − 1) connections to the neighbours. In other words,

each node has a directed connection to other nodes in the same row and column, plus

Y links to connect to the associated PEs. The area model of a 2D GHC NoC with N

nodes can be obtained by Eq. 5.3, where the degree of routers is D= 2(
√
N − 1)+Y.

6.3.2 2D Hypermesh

Hypermeshes cannot be modelled as conventional graphs with point-to-point edges.

The 2D Hypermesh network with N nodes is modelled as a hypergraph H(V,HE),
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Figure 6.2: 2D Hypermesh with 16 nodes (logical diagram) [83].

where V is the set of nodes and HE is a set of hyperedges. Each hyperedge h ∈ HE

represents a set of nodes which are interconnected with multiple transmission channels

(each of width W bits). In a 2D Hypermesh with N nodes, there is one hyperedge in

each row and in each column for a total of 2
√
N hyperedges (when N is divisible by

4). A hyperedge with
√
N nodes can represent a

√
N ×

√
N crossbar switch.

In figures 6.4 and 6.5, each hyperedge is implemented by a 4x4 B&S crossbar

switch. Each node is connected to the nodes in a same row and column by the

4x4 B&S crossbar switch (with datapath width W bits). Therefore, each node in

the hyperedge can transmit data on its own dedicated transmission channel without

conflict. Each node contains a simple 3x3 input-queued router, to connect its PEs to 2

hyperedges. Data can be transmitted from a node to another node in one dimension

in one hop, so in a 2D Hypermesh data traverse the network in at-most 2 hops.

In general, for large Hypermeshes the transmission channels in each hyperedge can

contain pipeline latches. However, for small networks, unpipelined channels can be

used.
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Figure 6.3: A hyperedge realized as a distributed crossbar switch [83][84][85].

Figure 6.4: Hypermesh with 16 nodes using crossbar switches (or routers) as hyper-
edges [83].
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Figure 6.5: Hypermesh with 16 nodes using distributed crossbar switches as hyper-
edges (Triangles = 3x3 buffered inputs Router, Squares= PEs).

In a Hypermesh with N nodes as shown in figure 6.5, they are 2
√
N hyperedges in

both dimensions. Each hyperedge can be implemented by a
√
Nx

√
N B&S crossbar

switch. Totally there should be 2
√
N

√
Nx

√
N crossbar switches in the network

for implementing row and column channels. Each node are connected to 2 crossbar

switches in different dimension. Therefore, for connecting each node to the row and

column hyperedges, there is a need of a 3x3 input-queued router. Hyperedges can be

implemented with input buffers or without input buffers. In this thesis, the buffered

hyperedge uses DFF registers as the input buffers for the hyperedge, and the capacity

of each input buffer is 1 flit. Using DFF registers as input buffer for hyperedges is

more cost-efficient than using EM blocks as DFFs in the existing LEs can be used and

no more resources (LEs) are needed (DFFs are placed in the 3x3 routers by the Altera

Quartus CAD tools). Therefore, the area usage of hypredges with input buffers and
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without input buffers are equal.

The 2D Hypermesh network with N nodes and concentration M has M processors

per router and one router per node as well as 2
√
N hyperedges. There are 2 main

design options for interconnecting processors to the routers: (i) each of the M proces-

sors in a node has its own dedicated high-speed IO port on the local router, or (ii) all

of the M processors in a node share Y high-speed IO ports on the local router, where

Y ≤ M . Either option can be analytically modeled; we will assume router option (ii).

The total area of 2D Hypermesh with N nodes is expressed by the following

parametric equation:

AHM(K,M, Y,W ) = N ×M × C

+ N × AR,TDM(3,W,K)

+ N × AConc(Y,M,W )

+ 2
√
N × AHE(

√
N,W ) (6.1)

where the first 3 terms come from Eq. 5.3 in chapter 5 and are related to the total area

of a 2D Hypermesh topology with N nodes except the area of hyperedges (with router

degree = 3, Datapath width =W, with K VCs per edge, with area of the processor core

= C, with Concentration = M, and with number of injector and extractor channels

= Y). The last term in Eq. 6.1 refers to the area of the hyperedges (AHE). The area

of a hyperedge constructed by B&S crossbar switch (AHE) in a 2D Hypermesh with

N nodes is given by:

AHE(N,W ) = N × AMux(N − 1, 1,W ) (6.2)
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where there are
√
N (

√
N-1)-to-1 Muxes in a hyperedge.

6.3.3 Critical Path Delay

As stated in chapter 5, the maximum allowable frequency of a topology is mathemat-

ically modeled as the inverse of critical path delay in the topology. The delay of a

2D GHC using EM blocks as input buffers is expressed by Eq. 5.4. The delay of a

2D GHC using DFF registers as input buffers is also given by Eq. 5.5, where Z (the

number of Node-Distance in the largest link connecting 2 nodes) is
√
N − 1.

In 2D Hypermesh with unbuffered hyperedges, when EM blocks are used as input

buffers, the critical path is defined as the delay of an input buffer, a crossbar switch,

and a hyperedge. Let’s assume that an Hypermesh has a 2D layout with a unity

aspect ratio. Therefore, the delay of an Hypermesh is given by:

DHM−EM(D,W ) = DS2(3,W ) +DEM +DS2−HE(
√
N,W )

+ Dbus(
√

AHM −
√

AHE) (6.3)

where DEM is delay of an EM block, DS2(3,W ) is the delay of an 3x3 router,

DS2−HE(
√
N,W ) is the delay of a B&S switch design in an hyperedge, where

√
AHM

is the length of the Hypermesh, and where
√
AHE is the length of the hyperedge. A

hyperedge connects all the nodes in a row or column. We assume that a hyperedge

has a 2D layout with a unity aspect ratio. The length of a wire connecting all the

nodes in a row or column is approximated by the length of a 2D Hypermesh (
√
AHM).

Since the delay of a wire with length of
√
AHE is considered in the delay of the hy-

peredge, the delay of wire with length of an heyperedge (
√
AHE) should be deducted
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Figure 6.6: The wire length of a hyperedge (
√
AHE) and the wire length of a 2D

Hypermesh (
√
AHM)

from the delay of a wire with length of the 2D Hypermesh (
√
AHM) (See figures 6.6

and 6.7).

Delay of a 2D Hypermesh (with unbuffered hyperedges) using DFF registers as

input buffers for the 3x3 routers is given by:

DHM−DFF (D,W ) = DS2(3,W ) +DS2−HE(
√
N,W ) +Dbus(

√

AHM −
√

AHE) (6.4)

where DS2(3,W ) is the delay of an 3x3 router, DS2−HE(
√
N,W ) is the delay of a

B&S crossbar switch in an hyperedge. In Eq. 6.4, Since the delay of a wire with

length of
√
AHE is considered in the delay of the hyperedge, the wire with length

of an heyperedge (
√
AHE) should be deducted from the wire with length of the 2D

Hypermesh (
√
AHM) (See figures 6.6 and 6.7).

6.4 Analytic Power Models

As stated in chapter 5, the power of a graph-based NoC operating in steady-state is

modelled by 3 components, the power consumed in the switches, input buffers, and

wires, as shown in Eq. 5.6 .
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The maximum power consumption of a 2D GHC NoC with N nodes is obtained

by Eq. 5.7.

The expected power consumed by a 2D Hypermesh can be obtained by substi-

tuting E[Pwires] by E[PHE] in Eq. 5.6. The maximum power consumption of a 2D

Hypermesh NoC with N nodes is given by:

Max(PHM)(N,W ) = N.Pswitch + 2
√
N.PHE(

√
N,W ) +N.NPort.Pbuffer (6.5)

where Pswitch, PHE, and Pbuffer are the average power consumed by a 3x3 switch, a

hyperedge, and an input buffers assuming 100% loaded, and where NPort=3 is the

degree of 3x3 router.

In the ‘pseudo random walk’ model, the unbuffered DCS is used as hyperedges. In

a 2D Hypermesh constructed by unbuffered DCS s with N nodes (as shown in figure

6.5), the average power consumed by an unbuffered hyperedge (which is 100% loaded)

is given by:

PHE(
√
N,W ) =

√
N.PMux(

√
N − 1, 1,W ) +

√
N.PBus(

√

AHM ,W,
√
N − 1) (6.6)

where the second term is the power consumed in the
√
N broadcast buses, which

is found by Eq. 4.10. Note that in a 2D Hypermesh with N nodes, there are
√
N

(
√
N-1)-to-1 Muxes.

In the wormhole-switched Hypermesh, Altera Quartus CAD tool will lay out the

hyperedges as the centralized switches (as shown in figure 6.4).

In wormhole model of Hypermesh, we assumed that each hyperedge is a
√
N×

√
N

router. Figure 6.7 shows an Hypermesh NoC constructed by centralized switches
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Figure 6.7: An Hypermesh NoC after Synthesis and Placement in an Altera FPGA
(HE denotes hypergraph). The light gray boxes are the crossbar switches (HEs),
which have been centralized by the CAD tool.
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(as the hyperedges) after synthesis, placement, and optimization. The square ‘HE ’

denotes hyperedges (H=Horizental, V=Vertical hyperedge). Every hyperedge has

an arbitration and routing unit. The Altera Quartus CAD tools will lay out the

hyperedge with an arbitration and routing unit using the centralized crossbar switches

(regardless of input buffers).

Let ΓHM =
√

AHM

N
be an Node-Distance in 2D Hypermesh with N nodes and

K =
√
N be the number of nodes in each dimension. The power consumption of an

input-queued hyperedge includes the power consumed in K input buffers, an KxK

B&S crossbar switch, and 2.K wires connecting 3x3 routers in a row or column to

the hyperedge.

Synthesizer always tries to minimize the length of wires in the hyperedges to reduce

the delay and power consumption. To minimize the wire length, the synthesizer places

the centralized B&S crossbar switches of hyperedges in the centre of each row and

column as shown in figure 6.7. Figure 6.7 illustrates the placement of the hyperedges

(after synthesis, placement, and optimization) in each row and column. As seen in

figure 6.7, the hyperedge switches are approximately placed in the middle of each row

and column. We assume that every hyperedge has a 2D layout with a unity aspect

ratio (as approximately shown in figure 6.7). This implementation is similar to the

figure 6.4.

To determine the length of 2.K wires connecting 3x3 routers to a hyperedge, we

assume that the hyperedge is placed in the centre of a row/column as shown in figure

6.4. Now we can estimate the total length of 2.K wires. For ease of understanding,

we currently ignore the area of the hyperedges (We will consider the area of the

hyperedges later).
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Figure 6.8: An example of a hyperedge connecting 8 routers in a row

In a 2D Hypermesh with K =
√
N nodes in each dimension, the node position in

a row is defined as p = 0, ..., k−1. Let i and j represent the number of Node-distances

(ΓHM =
√

AHM

N
) in the left and right directions respectively. The total wire distance

connecting the output ports of the 3x3 routers in a row/column to the input ports of

a hyperedge is given by (expressed in terms of the Node-distance):

K

2
−1

∑

i=0

(i+
1

2
) +

K

2
−1

∑

j=0

(j +
1

2
)) = 2×

(

K

2
−1

∑

i=0

(i+
1

2
)
)

= 2×
(

(K
2
− 1).(K

2
)

2
+ (

K

2
)× 1

2

)

=
K

2
× K

2
(6.7)

Figure 6.8 shows an example for a centralized hyperedge connecting 8 routers. For

example, the length of an I/O wire connecting the output of the router 0 to the input

port of the hyperedge is 7
2
.ΓHM .

Using the same methodology, the total wire distance connecting the output ports

of a hyperedge to the input ports of the 3x3 routers in a row/column is equal to

Eq. 6.7. Therefore, the total wire distance required (expressed in terms of the Node-

Distance) to connect a hyperedge to the all 3x3 routers in a row/column is given
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by:

L = 2× (K/2)× (K/2) = K × (K/2) (6.8)

The Eq. 6.8 includes the length of a hyperedge as well (as shown in figure 6.7).

To accurately determine the length of wires connecting a hyperedge to the all 3x3

routers in a row/column, the length of a hyperedge must be considered in Eq. 6.8.

As we assume that hyperedges have a 2D layout with unity aspect ratio, the length of

a hyperedge is equal to
√
AHE. For every I/O wire connecting a hyperedge to a 3x3

routers, ≈
√
AHE

2
wire length should be removed (See figures 6.7 and 6.8). Therefore,

the total wire distance (expressed as multiples of LE-Length) connecting an hyperedge

to 3x3 routers in one row or column is equal to K × (K/2)× ΓHM − 2K ×
√
AHE

2
.

The average length of 2K wires connecting a hyperedge to all the 3x3 routers in

a row or column (expressed as multiples of LE-Length) is given by:

L̂ =
K × (K/2)× ΓHM −K ×

√
AHE

2K
(6.9)

where the dominator (2K ) is the number of wires connecting a hyperedge to the

routers in a row/column.

As stated earlier, the power consumption of a centralized input-queued hyperedge

(as shown in figure 6.7) includes the power consumed in K input buffers, an KxK

B&S crossbar switch, and 2.K wires connecting 3x3 routers in a row or column to

the hyperedge.

In total, the analytic power model for an KxK centralized hyperedge including its
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input buffers (which is 100% loaded) is given by:

PHE(K,W ) = PS2(K,W ) +K.PIB

+ 2.K.PBus(L̂,W, 1) (6.10)

where L̂ is the average average length of 2K wires connecting a hyperedge to all the

3x3 routers in a row or column, and is given by Eq. 6.9.

The power consumption in a centralized hyperedge without input buffers is ob-

tained by modifying Eq. 6.10 (in Eq. 6.10, the power consumption of the input

buffers is removed).

6.5 Analytic Power Model for Traffic Patterns

In this section, a power analysis of the 2D GHC and Hypermesh under 3 deterministic

traffic patterns will be studied; (1) the RU traffic pattern, (2) the traffic pattern in

the Bitonic Sorting algorithm, and (3) the traffic pattern in the Cooley-Tukey FFT

algorithm.

For all power analyses in this section, the following assumptions are made:

1. The NoC uses a deterministic ordered-dimension XY routing algorithm, and

packets are delivered along minimum hops paths.

2. The loads are evenly distributed over the nodes.

3. Packets are assumed to have a fixed length of m flits.

4. PEs generate traffic independently of each other. The traffic follows a Poisson
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process with mean rate of λP per node per clock cycle. The flit arrival rate can

be estimated as λF = λP ×m per node per clock cycle.

To find the power consumption of a 2D GHC in the wormhole-switched model,

Eq. 5.8, 5.9, 5.10, 5.11, and 5.12 from chapter 5 are used.

In the following subsections, the analytic power model for 2 wormhole-switched

Hypermeshes are studied; the Hypermesh using (1) hyperedges with input buffers

(HM-Buf ) where DFF registers are used as the input buffers of hyperedges and the

buffer capacity is one flit, and (2) the Hypermesh using hyperedges without input

buffers (HM ).

As stated previously, the analytic power model for HM-Buf and HM are identical,

except that in hyperedges without input buffers (HM ) the power consumption of input

buffers in Eq. 6.10 is removed.

6.5.1 Power Model in Wormhole Switching

Let suppose that each PE generates a flit with rate λF per node per clock cycle. Let

λ′
F be the effective arrival rate, which can be found by Eq. 5.8. The total effective

arrival rate of flits to the Hypermesh NoC is N × λ′
F . Based on the assumption that

the loads are uniformly distributed across the network, the effective arrival rate of

flits to the network (N×λ′
F ) are distributed among the hyperedges. As stated before,

the number of hyperedges in a Hypermesh with N nodes is 2 ×K, where K =
√
N .

Each active IO port pair in a hyperedge consumes a fraction 1
K

of the fully-loaded

hyperedge of degree K. Let’s suppose that in wormhole switching a flit traverses

H hops. Therefore, the effective flit arrival rate to one IO port of a hyperedge is

estimated as the effective arrival rate of flits to the network (N×λ′
F ) weighted by the
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number of hyperedges traversed by a packet on average (H ) divided by the number

of hyperedges (2K ) times the number of ports per hyperedge (K ).

λHE = (N × λ′
F )×

H

2×K
× 1

K
= λ′

F × H

2
(6.11)

where H is the average number of hops traversed by a packet in a given traffic pattern.

Power consumption in an Hypermesh NoC is expressed by the power consumed

in switches, input buffers, and hyperedges. Given the traffic patterns, the analytic

power model for a 2D Hypermesh NoC can be approximated by modifying Eq. 6.5

to reflect the reduced load (effective load) of each component, and is given by:

PHM = λXbar.N.PSwitch + λIB.N.NPort.PIB + λHE.2.K.PHE (6.12)

where λXbar, λIB, and λHE are the effective flit arrival rate for a switch, input buffer,

and hyperedge and are determine by Eq. 5.10, 5.11, 6.11 respectively. NPort=3 is the

degree of the 3x3 routers. PHE, PSwitch, and PIB are the average power consumption

in a hyperedge, switch, and input buffer receptively (when they are 100% loaded).

6.5.2 Wire Lengths and Hop Count

To determine the power consumption of NoC topologies under a given traffic pattern,

we need to determine (1) the expected distance traversed by a packet (LX+Y ) in the

given traffic pattern, and (2) the expected number of hops H per packet in the given

traffic patterns. Three traffic patterns are explored; (1) Random Uniform traffic, (2)

the traffic pattern in the Cooley-Tukey FFT Algorithm, and (3) the traffic pattern in

the Bitonic sorting algorithm.
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We also use the list of definitions for each symbol in Table 5.2.

6.5.3 Random Uniform Traffic

For the RU traffic pattern, each node is equally likely to send the packet to all nodes.

GHC

Consider a 2D GHC topology with N nodes placed in a square shape, as shown in

figure 6.1. Each row or column has K=
√
N nodes. To determine the expected wire

distance traversed by a packet in the X dimension, we use the theorem 3.

Theorem 3: In a 2D GHC with the physical layout shown in figure 6.1, where

packets are constrained to follow minimum hop and minimum distance paths, the

expected distance traversed by a packet in the X dimension under the RU traffic

pattern, expressed as multiples of the Node-Distance ΓGHC , is given by:

E[LX ] =
2

K2
×

⌊K

2
⌋

∑

i=1

(

K − (2i− 1)
)2

(6.13)

Proof. (Theorem 3). The proof is established by enumeration. Consider any node

p in a row in the X dimension for 0 ≤ p ≤ K − 1. The traffic leaving node p is

uniformly distributed over the K nodes in the row. Let i and j represent the number

of edge traversals in the left and right directions respectively. The expected distance

traversed in the X dimension by traffic leaving node p is given by:

1

K

( p
∑

i=0

i+
K−p−1
∑

j=0

j
)

(6.14)

By taking the expectation for nodes 0 ≤ p < K and mathematically rearranging the
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terms, the result is obtained.

By symmetry, the expected distance traversed by a packet in vertical (Y) dimen-

sion is given by:

E[LY ] =
2

K2
×

⌊K

2
⌋

∑

i=1

(

K − (2i− 1)
)2

(6.15)

Based on Theorem 3, the total expected distance traversed by a packet in a 2D

GHC in both dimensions under the RU traffic pattern, expressed as multiples of the

Node-Distance ΓGHC , is given by:

E[LX+Y ] =
4

K2
×

⌊K

2
⌋

∑

i=1

(

K − (2i− 1)
)2

(6.16)

In 2D GHC, every node sends a packet to every other nodes in same row and

column by an edge traversal. If the source and destination of a packet are in a row

or column, the average number hops traversed by a packet is 1. In 2D GHC, every

node has 2(
√
N − 1) connections to other nodes. If the source and destination of a

packet are not in a same row or column, the average number of hops traversed by a

packet is 2. Therefore, the expected number of hops traversed by one packet is given

by:

E[HGHC ] =
(2(

√
N − 1)× 1 + (N − 2(

√
N − 1)− 1)× 2

N

= 2− 2
√
N

N
(6.17)

These results are used in Eq. 5.13 to compute the 2D GHC power.
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Hypermesh

Consider 2D Hypermesh in figure 6.4. If the source and destination of a packet are

in a row or column, the average number hyperedges traversed by a packet is 1. If the

source and destination of a packet are not in a same row and column, the average

number of hyperedges traversed by a packet is 2. Hence, the expected number of

hyperedges traversed by one packet is given by:

E[HHM ] =
(2(

√
N − 1)× 1 + (N − 2(

√
N − 1)− 1)× 2

N

= 2− 2
√
N

N
(6.18)

The results of Eq. 6.18 and Eq. 6.11 are used in Eq. 6.12 to compute the Hypermesh

power.

6.5.4 Bitonic Sorting Algorithm

The Bitonic sorting algorithm is shown in figure 6.9. The Bitonic sorting algorithm

consists of log2 N.(log2 N+1)
2

butterfly permutations (denoted Ej for 0 ≤ j < log2 N).

In the following, we compute the expected distance and average number of hops

traversed by a packet in the Bitonic sorting algorithm.

GHC

Assume the 2D GHC layout as shown in figure 6.1, and let n = log2 N . Each packet

in a butterfly permutation Ej for 0 ≤ j < n/2 traverses one edge with distance 2j,

as stated in Property 2 in chapter 5. Each packet in a butterfly permutation Ej for

n/2 ≤ j < n traverses one edge with distance 2(j−n/2), as stated in Property 3 in
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Figure 6.9: Bitonic sorting algorithm with 16 nodes

chapter 5. Therefore, the expected distance traversed by one packet in the Bitonic

sorting algorithm in the GHC and 2D Mesh topologies are equal and is given by

Property 6:

Property 6: In a 2D GHC with the layout in figure 6.1, where packets are

constrained to follow minimum hop and minimum distance paths, the expected dis-

tance traversed by each packet in the X and Y dimensions under the Bitonic sorting

algorithm, expressed as multiples of the Node-Distance ΓGHC , is given by:

E[LX+Y ] =
2

n.(n+ 1)
.(
n/2−1
∑

j=0

(n− j)× 2j +
n−1
∑

j=n/2

(n− j)× 2j−n/2) (6.19)

where the (n− j) denotes the number of Ej permutations per node in Bitonic sorting

algorithm, as shown in figure in figure 6.9. In the 2D GHC, each packet in a butterfly

permutation Ej for 0 ≤ j < n is realized by one edge traversal. The average number

of hops (H ) traversed by one packet under Bitonic traffic pattern is given by:

E[HGHC ] = 1 (6.20)
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These results are used in Eq. 5.13 to compute the GHC power given the Bitonic

sorting algorithm.

Hypermesh

In a 2D Hypermesh, each packet in a butterfly permutation Ej for 0 ≤ j ≤ n − 1

traverses one hyperedge. Therefore, the average number of hops traversed by a packet

under Bitonic sorting algorithm is given by:

E[HHM ] = 1 (6.21)

The results of Eq. 6.21 and Eq. 6.11 are used in Eq. 6.12 to compute the Hypermesh

power.

6.5.5 Cooley-Tukey FFT Algorithm

The Cooley-Tukey FFT algorithm is shown in figure 5.4. The FFT algorithm consists

of n Butterfly permutations (denoted Ej for 0 ≤ j < n) followed by a BR permu-

tation. In the following, we compute the expected distance and average number of

hops traversed by a packet in the FFT algorithm.

GHC

Referring to the GHC in figure 6.1, each butterfly permutation Ej for 0 ≤ j < n is

realized by one edge traversal. Therefore, the expected number of hops traversed by
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Table 6.1: Average number of hops and distances under BR permutation
Network Size

Topology Results 16 64 256

GHC (Fig. 6.1)
Hops E[HBR] 1.5 1.75 1.875

Distance E[LBR] 2.5 5.25 10.62
Hypermesh Hops E[HBR] 1.5 1.75 1.875

one packet under FFT algorithm is given by:

E[HGHC ] =

n−1
∑

j=0
1 + E[HBR]

n+ 1
=

n+ E[HBR]

n+ 1

(6.22)

where E[HBR] is the expected number of hops traversed by a packet in the 2D GHC

under the BR permutation.

Table 6.1 shows the results for E[LBR] and E[HBR] in the BR permutation, which

are determined experimentally in a Matlab program. According to Table 6.1, in a

2D GHC the expected number of hops per packet in the BR permutation (E[HBR])

is exactly equal to the expected hops per packet in the RU traffic pattern, which is

given in Eq. 6.17. Similarly, E[LBR] in 2D GHC is exactly equal to the expected

distance per packet in the RU traffic pattern, given in Eq. 6.16. According to Matlab

simulations, the same equalities holds for the 2D Hypermesh.

Referring to the GHC in figure 6.1, each packet in a butterfly permutation Ej for

0 ≤ j < n/2 traverses one edge with distance 2j, as stated in Property 2 in chapter

5. Each packet in a butterfly permutation Ej for n/2 ≤ j < n traverses one edge

with distance 2(j−n/2), as stated in Property 3 in chapter 5. Therefore, the expected

distance traversed by one packet under the FFT algorithm in the GHC and 2D Mesh

topologies are equal and is given by Property 7.

Property 7: In a 2D GHC with the layout in figure 6.1, where packets are
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constrained to follow minimum hop and minimum distance paths, the expected dis-

tance traversed by each packet in the X and Y dimensions under the FFT algorithm,

expressed as multiples of the Node-Distance ΓGHC , is given by:

E[LX+Y ] =
1

(n+ 1)
∗ (2.(2(n/2) − 1) + E[LBR]) (6.23)

where E[LBR] is the expected distance traversed by each packet in the BR permu-

tation, which is exactly equal to the expected distance per packet in the RU traffic

pattern, given in Eq. 6.16.

These results are used in Eq. 5.13 to compute the GHC power.

Hypermesh

In 2D Hypermesh as shown in figure 6.4, each packet in a butterfly permutation Ej

for 0 ≤ j ≤ n − 1 traverses one hyperedge traversal. The expected number of hops

traversed by a packet under FFT algorithm is given by:

E[HHM ] =

n−1
∑

j=0
1 + E[HBR]

n+ 1
=

n+ E[HBR]

n+ 1

(6.24)

where E[HBR] is the expected number of hops traversed by a packet under the BR

permutation in the Hypermesh NoC, which is exactly equal to the expected distance

per packet in the RU traffic pattern, given in Eq. 6.18.

148



PhD Thesis - Mohammadreza Binesh Marvasti McMaster - Electrical Engineering

Table 6.2: Average number of hops traversed by a packet for NoC topologies
Network Size

Topology Traffic Pattern 16 64 256

Hypermesh
RU 1.5 1.75 1.875

Bitonic 1 1 1
FFT 1.1 1.1 1.1

GHC
RU 1.5 1.75 1.875

Bitonic 1 1 1
FFT 1.1 1.1 1.1

BHC
RU 2 3 4

Bitonic 1 1 1
FFT 1.2 1.28 1.33

6.6 Results

In this section, analytic and experimental results of different topologies, i.e. the 2D

Hypermesh, 2D GHC, and 2D BHC, are studied. According to chapter 5, the BHC

outperforms 2D Mesh and Torus, and is a good candidate for comparison in this

chapter. The results of BHC come from chapter 5. The resource usage reported for

the NoCs includes the resource usage of switches and input buffers in terms of LEs.

The additional resource usage by the processors is not considered. In our experiments,

each NoC is clocked at the same clock frequency fclk = 50 MHz. For the analytic

results, we assume that the clock frequency of 50 MHz is feasible for all the topologies.

The additional power consumed by the processors is not modelled, to focus on the

power used in the NoC topology.

Table 6.2 shows the expected number of hops traversed by a packet under various

traffic patterns, for NoCs with different sizes. As seen in this table, the GHC and

Hypermesh have the the lowest number of hops.
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Table 6.3: Analytic and Experimental results for the topologies (Input Buffers=EM
blocks, Pseudo random walk model, W= 16)
NoC Switch

Design
Anlyt.
Area
(LE)

Exp.
Area
(LE)

Area
Error
(%)

Anlyt.
Power
(mW)

Exp.
Power
(mW)

Power
Error
(%)

Anlyt.
Fmax
(MHz)

Exp.
Fmax
(MHz)

Fmax
Error
(%)

HM B&S 1984 1984 0% 95.22 92.59 3% 150 135 11%
GHC B&S 7616 7616 0% 281.22 263.52 7% 130 132 1%
BHC B&S 2880 2880 0% 158.05 149.89 6% 141 143 1%

6.6.1 Experimental Results

To validate our analytic models, we compare analytic and experimental results of the

topologies under the ‘pseudo random walk’ and the wormhole model. In the pseudo

random walk model we assume the DCS Hypermesh with unbuffered hyperedges. For

all experimental results, the number of nodes is 16, the datapath width is 16 bits,

and clock frequency is 50MHz. The capacity of input buffers are 4 flits and each flit

is 16 bits.

Table 6.3 and 6.4 show the experimental and analytic results for the 3 topologies

with 16 nodes under the pseudo random walk model. In table 6.3 the input buffers

are built with EM blocks, while in table 6.4 the input buffers are built with DFFs.

The datapath width is 16 bits. In these tables, area, power and maximum working

frequency (at 0oC and 1.2V model) of 2D BHC, GHC, and Hypermesh are studied

using the pseudo random walk model, assuming all data widths W = 16 bits. . The

power results in these 2 tables is the peak power, where links, hyperedges and routers

are 100% loaded. Comparison between analytic and experimental results shows an

excellent match, on average with 6% error.

As illustrated in Tables 6.3 and 6.4, realizing the input buffers using EM will

reduce the cost (in LEs) and will require fewer memory bits (in terms of LEs), but
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Table 6.4: Analytic and Experimental results for the topologies (Input Buffers=
DFFs, Pseudo random walk model, W=16)
NoC Switch

Design
Anlyt.
Area
(LE)

Exp.
Area
(LE)

Area
Error
(%)

Anlyt.
Power
(mW)

Exp.
Power
(mW)

Power
Error
(%)

Anlyt.
Fmax
(MHz)

Exp.
Fmax
(MHz)

Fmax
Error
(%)

HM B&S 5632 5119 10% 69.07 64.51 7% 219 226 3%
GHC B&S 16128 15054 7% 217.65 213.38 2% 195 191 2%
BHC B&S 8960 8826 2% 112.09 112.01 1% 251 246 2%

it will decrease the maximum frequency. This happens since (i) the EM blocks are

built by SRAM cells and the access time to SRAM cells is more than that for register

buffers, and (ii) the placement of EM blocks are fixed within the FPGA floorplan,

which will increase the delay of the critical path.

Table 6.5 illustrate the comparison between analytic and experimental power re-

sults for 2D Hypermeshes, BHC, and GHC under RU traffic pattern, traffic pattern

in Bitonic sorting algorithm, and FFT algorithm in wormhole model, assuming all

data widths W = 16 bits.

As seen in table 6.5, there are 2 types of Hypermeshes; (1) the Hypermesh using

hyperedges with input buffers (HM-Buf ) where DFF registers are used as the input

buffers of hyperedges and the buffer capacity is one flit, and (2) the Hypermesh using

hyperedges without input buffers (HM ).

In all power analysis in wormhole-switched NoCs, it is assumed that the packet

injection rate is 0.0078 packet/node/clock cycle and the length of a packet is m=32

flits. We analyse the experimental results using Batch-Mean method. Each simulation

is divided to 8 batches and the first batch is ignored as a warm-up period. Each batch

includes 6000 clock cycles. The comparison between analytic and experimental power

results in table 6.5 shows an acceptable agreement, typically 8%.
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Table 6.5: Analytic and experimental power results for wormhole-switched NoCs with
16 nodes (Input buffer= EM blocks, W= 16, Freq.=50 MHz)

NoC Traffic
Pattern

Analytic
Power (mW)

Experimental
Power (mW)

Error
(%)

HM-Buf
RU 20.64 19.43 6%
FFT 16.85 15.72 9%
Bitonic 15.9 14.73 8%

HM
RU 19.76 18.72 6%
FFT 16.21 14.86 9%
Bitonic 15.32 14.3 7%

BHC
RU 23.46 22.11 7%
FFT 17.08 15.94 7%
Bitonic 15.45 14.16 9%

GHC
RU 24.55 22.93 7%
FFT 20.35 18.64 9%
Bitonic 19.18 17.59 9%

6.6.2 Evaluation Methodology of the NoCs

In this sub-section (1) the NoCs are compared based on their area, and energy con-

sumption, and then, (2) the NoCs are evaluated by their energy-area product which

reflects cost and performance metrics of the NoCs.

To have a fair comparison between the NoC topologies, each NoC is normalized

to have an equal bisection bandwidth of O(N) bits/sec. We set the datapath width

of GHC (WGHC) to 16 bits, and adjust the widths of the BHC and Hypermesh as

described in chapter 2. For example, for N=16 nodes, WGHC = 16, WBHC = 32, and

WHypermesh = 32 bits.

Area

Figure 6.10a and 6.10b illustrate area comparison of the 3 topologies with 256 nodes

under equal bisection bandwidth. The resource usages are in terms of Logic Elements
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(a) (b)

Figure 6.10: Area analysis of the NoCs with 256 nodes a) in terms of LEs b) in terms
of EM blocks (With Equal Bisection Bandwidth, Switch=S1 (B&S1))
.

(LEs) and EM blocks. For N=256 nodes and with equal bisection bandwidth, each

router in the GHC, BHC, and Hypermesh uses 31, 36, and 12 EM blocks respectively.

Based on our assumption that the buffers in hyperedges are one flit, the area usage

of HM and HM-Buf is equal. The buffers in the hyperedges do not require any more

area, since they are constructed by DFFs and they use the unused DFFs in the 3x3

routers.

As seen in figures 6.10a and 6.10b, the 2D Hypermesh outperforms the 2D BHC

and GHC in terms of LEs and EM blocks with significant margin. Under equal

bisection bandwidth, the area usage in terms of LEs of the 2D Hypermesh with 256

nodes is 30% of the area of the GHC and 50% of the area of the BHC. Under equal

bisection bandwidth, the area usage (in terms of EM blocks) of the 2D Hypermesh

with 256 nodes is 38% of the area of the GHC and 33% of the area of the BHC.
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Energy Per Algorithm

In this sub-section the NoCs are evaluated based on their energy consumption. Two

parallel algorithms are explored; (1) the Bitonic sorting algorithm, and (2) the FFT

algorithm.

The completion time of an NoC (expressed in terms of ns) given an algorithm is

expressed by:

TAlgorithm = EXAlgorithm × TClock (6.25)

where TClock is the minimum clock period (1/Fmax) that a network achieves, and

where EXAlgorithm is the execution time (in terms of clock cycles) to perform the

given algorithm. The EXAlgorithm (in terms of clock cycles) is given by:

EXAlgorithm = TP ×NPerm + TC ×NPerm (6.26)

where TP is the average network latency for a packet, and where NPerm is the number

of packet transmissions in a given algorithm. For example in the FFT algorithm

NPerm = log2 N + 1, and in the Bitonic sorting algorithm NPerm = log2 N.(log2 N +

1)/2. Referring to Eq. 6.26, TC is the average time taken to perform a computation

by a PE.

Let’s suppose that a packet has m flits and a flit size is equal to the datapath

width. The network latency of a packet in a wormhole-switched NoC with H hops is

given by [54]:

TP = H × (TRouting + TXbar + TLink) + (m− 1)× (TXbar + TLink) + Bl (6.27)
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where TRouting, TXbar, and TLink are the delay for the routing, crossbar switch, and

link traversal respectively. Referring to Eq. 6.27, the term Bl is the average blocking

time seen by a header flit [54]. In low traffic using very long length packets, the

contribution of the mean blocking time Bl to the network latency of a packet is

negligible and it can be ignored [54].

The energy consumption of a topology given an algorithm is expressed by:

EAlgorithm = PAlgorithm × TAlgorithm (6.28)

where the PAlgorithm and TAlgorithm are the average power consumption and completion

time of the topology using the algorithm respectively.

Figure 6.12a and 6.12b show the energy consumption of the 2D Hypermesh (im-

plemented with unbuffered hyperedges), BHC, and GHC under the Bitonic sorting

algorithm and FFT algorithm (with equal bisection bandwidth). All these three

topologies can implement all the butterfly permutations in Bitonic and FFT algo-

rithms without conflict. In both algorithms each network has 256 nodes and each

packet is 10 Kbits. Input buffers are DFFs and have a capacity of 4 flits. The flit in-

jection rate is 0.25 flit per node per clock cycle. Today, the performance of most digital

systems is limited by their communication rather than computation [13]. Therefore,

in our analysis we assume that the computation time TC is negligible compared to

the network latency for a packet and TC ≈ 0 ns. In our analysis, the routing delay

(TRouting) is 3 clock cycles. Once the routing is completed, the delay in forwarding a

flit is 1 clock cycle per flit.

Figure 6.11a and 6.11b show the completion time of the algorithms (TAlgorithm)

on the 2D Hypermesh, BHC, and GHC with 256 nodes. As seen in figures 6.11a and
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(a) (b)

Figure 6.11: Completion time of the topologies with 256 nodes under a) Bitonic
sorting algorithm b) FFT algorithm (under equal bisection bandwidth, Switch=S1
(B&S1), Pkt size=10Kbits)
.

(a) (b)

Figure 6.12: Energy analysis of the NoCs with 256 nodes under a) Bitonic sorting
algorithm b) FFT algorithm (under equal bisection bandwidth, Switch=S1 (B&S1),
Pkt size=10Kbits)
.

6.11b, the 2D Hypermesh and BHC have the lowest completion times under FFT and

Bitonic algorithm. The completion time of the 2D BHC under the Bitonic sorting

algorithm and FFT algorithm is approximately equal to the 2D Hypermesh since the

interconnection network in the BHC is perfect for the butterfly permutations in the

Bitonic sorting algorithm and FFT algorithm. However the performance of BHC is

degraded significantly if the algorithm changes. In addition, the Fmax of 2D BHC is

approximately equal to the Fmax of 2D Hypermesh.
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Referring to figure 6.12a and 6.12b, under the FFT algorithm the 2D Hypermesh

uses 32% of the energy that the 2D GHC uses and approximately equal to the energy

that the 2D BHC uses. Under Bitonic sorting algorithm, the 2D Hypermesh uses

32% of the energy that the 2D GHC uses and 125% of the energy that the 2D BHC

consumes. The 2D BHC consumes lower energy under the Bitonic algorithm as the

inter-router links in the BHC are perfect for the butterfly permutations in the Bitonic

sorting algorithm and FFT algorithm.

Energy-Area Product

The most important design metrics in NoC domain are area, power and delay (la-

tency). NoC architectures are supposed to offer high performance while the area and

power budgets are limited. Therefore, NoCs should be designed under very tight area

and power budgets while considering performance as well. One of the useful met-

rics to evaluate the NoCs is energy-area product, which reflects both the cost metrics

(Power and Area) and a performance metric (latency) of NoCs.

Figure 6.13a and 6.13b show the energy-area product of the topologies under the

Bitonic sorting algorithm and FFT algorithm respectively (with equal bisection band-

width). As seen in these figures, the 2D Hypermesh (implemented with unbuffered

hyperedges) outperforms all the topologies in terms of energy-area product with a

significant margin. The energy-area product of 2D Hyperemsh with 256 nodes under

Bitonic sorting algorithm is 13% of 2D GHC, and 53% of 2D BHC. The energy-area

product of the 2D Hyperemsh under the FFT algorithm is 13% of the 2D GHC, and

45% of the 2D BHC.
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(a) (b)

Figure 6.13: Energy-Area product of the NoCs with 256 nodes under a) Bitonic
sorting algorithm b) FFT algorithm (under equal bisection bandwidth, Switch=S1
(B&S1), Pkt size=10Kbits)
.

6.7 Conclusions

Analytic models for the area, delay and power of 2D Hypermesh and GHC NoCs

realized in the Altera Family of FPGAs, have been developed. The analytic models

are accurate, have a theoretical basis and allow for the early design-space exploration

of different NoC topologies, and for early design optimization. The analysis indicates

that under the equal bisection bandwidth model, the 2D Hypermesh NoC will gener-

ally have considerably lower energy-area product compared to the graph-based NoCs

including the 2D BHC and GHC, primarily due to the elimination of many buffers

and large routers used in the NoCs. For example, the energy-area product of the 2D

Hyperemsh under the FFT algorithm is 13% of the 2D GHC, and 45% of the 2D BHC.

This conclusion indicates that the Hypermesh NoC topology offers considerable ben-

efits over conventional graph-based NoCs. The CRAY TITAN supercomputer uses

a 3D Hypermesh type of interconnection network. This chapter shows that the 2D

Hypermesh is also very attractive in an NoC/SoC environment.
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Chapter 7

Conclusion

FPGAs are considered as suitable platforms to accommodate System on Chip. As

FPGAs capacity and capability grow, they can be increasingly used to build a wider

range of SoCs. Advantages such as the increasing logic density with higher operating

frequencies and a wide range of functional and memory blocks enable FPGAs to be

a suitable replacement of ASICs in several high performance applications. NoCs can

overcome the limitations of traditional bus-based and point-to-point on-chip commu-

nications used in SoCs. FPGA-based NoCs is a new field of research that takes the

advantage of both FPGAs and NoCs characteristics. Therefore, exploration of the

NoCs in FPGA needs more research in order to offer more efficient solutions for future

designs. One of the methods to explore NoC designs in FPGAs is analytic models.

This thesis tries to analytically explore the design space of FPGA-based NoCs.

In conclusion, we review the primary findings of this thesis.
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7.1 Thesis Contributions

1. In this thesis, analytic models for basic components of routers and seven worm-

hole switched router designs in FPGA technology have been proposed. The

analytic models are compared to extensive simulations and shown to be very

accurate which normally are within 5-10% of error margin. These switches are

compared in terms of area per throughput and power per throughput to choose

the best switch for different applications. It is shown that Demux-Mux switch

design has the lowest power per throughput, while Broadcast-and-Select designs

offer the lowest area per throughput.

2. Based on the router analytic models, analytic models for 5 NoC topologies

realized in FPGA technology have been proposed. These topologies are the 2D

Mesh, the 2D Torus, the Binary Hypercube, the Generalized Hyperchube, and

the hypergraph Hypermesh. The analytic models show an excellent agreement

with simulation results, typically within 5-10% of error margin.

3. Analytic models for 3 traffic patterns are proposed, including the Random Uni-

form, the traffic pattern in the Bitonic Sorting algorithm, and the traffic pattern

in the Cooley-Tukey FFT algorithm. These models are used to estimate and

evaluate energy and power consumption of different topologies under these traf-

fic patterns.

4. Novel analytic power models for wormhole-switched NoCs are proposed. The

NoC analytic power models are compared to experimental results and shown to

be within 8-12% error margin. The power model can be used for any specific

algorithm, using the expected distance and number of hops traversed by a packet
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in the algorithm.

5. Input buffers are one of the most important components in NoCs. In FPGAs,

buffers can be constructed by either SRAM Embedded Memory blocks or DFFs.

It has been observed that the use of Embedded Memory blocks as buffers sig-

nificantly decreases the area used in the routers and NoCs compared to DFFs.

However it minimizes the maximum allowable frequency due to the fix place-

ment of the blocks in the FPGA die. Our analysis indicates that Embedded

Memory blocks are more power efficient than DFFs when NoCs use multiple

virtual channels per physical channel.

6. Conventional hyperedge designs use the Broadcast-and-Select switch design.

To improve the performance of Hypermeshes, two new hyperedge designs are

proposed, which are explained in Appendix C. The Hypermesh using the new

hyperedge designs outperforms all Hypercubes significantly.

7. Our analysis indicates that under the equivalent bisection bandwidth, high-

degree hypercubes and Hypermeshes consume much less power than the 2D

Torus and Mesh. This is primarily due to the fact that packets traverse fewer

routers which significantly lowers the required power. Moreover under equal

bisection bandwidth, the 2D Hypermesh NoC uses the lowest area and energy

and outperforms the other topologies.

8. The energy-area product is proposed as a proxy for comparison between topolo-

gies, which reflects both the cost and performance metrics in the NoC domain.

The NoCs are evaluated by their energy-area products and the 2D Hypermesh

NoC has the lowest energy-area products.
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9. Our analytic models and extensive experimental results show that the current

FPGAs allow the development of reasonably large Single Instruction stream

Multiple Data stream parallel processing architectures and that the Hypermesh

NoC topology offers considerable benefits over conventional graph-based NoCs.

7.2 Future work

As the early design exploration and evaluation of NoCs are very important, evaluation

through the analytic models will continue to present opportunities and challenges for

the researches. In this thesis, we have explored different designs for the routers and

topologies in the NoC domain. Our research will be extended in 2 directions:

1. 3D ASICs : The 3 dimensional (3D) Integrated Circuits (ICs) have better per-

formance and package density as compared to traditional 2D ICs. Moreover,

combining the advantages of 3D ICs and NoCs provides significant gains in

power, area, and performance of 3D NoCs. The analytic models proposed in

this thesis are very accurate and have theoretical basis. These analytic models

will be extended to support the 3D deep-submicron ASIC technology.

2. 3D FPGAs : The next generation of FPGAs will use 3D technologies and tri-gate

sub-micron technologies. Recently, Altera announced a new family of FPGAs

based on Intel 14 nm Tri-Gate process technology, providing designers with

upto a 10X increase in programmable gates [25]. Xilinx also announced a new

3D FPGA (Virtex-7 HT) with 6.8 billion transistors, providing designers with

access to 2 million logic cells [28]. These evolutions allow the designers to

accommodate more complex SoCs and NoCs to be realized in FPGAs. To
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explore the NoC designs in the new generation of FPGAs, analytic models for

power, area, and delay are required. Therefore, the analytic models in this

thesis will be extended to support the 3D FPGAs.
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Appendix A

Pseudo Random Walk Simulator

The following shows how the pseudo random walk simulator works. As stated in

chapter 3, the pseudo random walk simulator guarantees that every link is 100%

loaded (maximum load for NoCs). Therefore, packets should traverse all the links.

In this simulator, the following constraints are made:

1. Flit injection rate is 1 flit per node per clock cycle.

2. Each packet has 32 flits.

3. Crossbar Switches works with 100% throughput. In other words, in a NxN

crossbar switch, there are always N outputs.

4. There are no packet blocking at the intermediate routers due to the link con-

tention. Packets don’t use the same links.

5. The arbitration signals are chosen from predefined states and these states are

identical for all the switches. The selected state applies to all the switches.

6. All the Muxes and Demuxes in a switch use the same arbitration signals (states).
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Figure A.1: Interconnections of a 5x5 B&S Crossbar Switch

7. The arbitration signals (states) change every 32 clock cycles.

The 2D Torus, GHC, and Mesh are selected to illustrate how this simulator works.

For ease of understanding, the crossbar switch are Broadcast-and-Select (B&S).

A.0.1 2D Torus

Figure A.1 shows the interconnections in a 5x5 B&S crossbar switch in a 2D Torus.

Usually in a 5x5 B&S crossbar switch, 5-to-1 Muxes are required. However a packet

coming from a port will not exit from the same port. Therefore, instead of using

5-to-1 Muxes, 4-to-1 Muxes are used. The wiring pattern in figure A.1 is the same

for every router. To force the crossbar switch works with 100% load all the selectors

of Muxes are derived by identical signals.

Figure A.2 shows a 2D Torus with 16 nodes. In this figure every link is assigned

a number. Let assume that a link connected to a router denotes 2 unidirectional

links in opposite directions (one for the input port and one for the output port). The

number shown on the link indicates the port number in the associated router. For

example, if the number shown on a link is 1, it means that the link is connected to
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Figure A.2: Numbering of links in 2D Torus with 16 nodes

the port number 1 in the routers. In all the routers in the network, the injector and

extractor channel is port 0.

As seen in figureA.2, a link connecting 2 routers has only one number. This pattern

of link numbering ensures that for every packet, output (input) port of current router

and input (output) port of the next router have the same number. In other words,

a packet leaving output port A of the current router enters into input port A of the

next router. In figure A.1 assume that the output port of a switch is the input port of

the next switch. Now it is seen that the interconnections in the switch is in a circular

sequence. Starting with input port ‘0’, the following states take place in the routers:
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1. State 1: Selectors of Muxes=‘00’: 0→1→2→3→4→0

2. State 2: Selectors of Muxes=‘01’: 0→2→4→1→3→0

3. State 3: Selectors of Muxes=‘10’: 0→3→1→4→2→0

4. State 4: Selectors of Muxes=‘11’: 0→4→3→2→1→0

As a result, using any arbitration value (state) for the crossbar switches, a gener-

ated packet from any node traverses 4 hops. (Note the arbitration value (state) for

all routers is identical.)

In a 2D Torus with N nodes, there are 4N links. Since in the pseudo random

walk simulator for the 2D Torus each packet traverses 4 different links, in a 2D Torus

with N nodes, all the 4N links are traversed by the packets. Figures A.3 and A.4

show an example for a 2D Torus with 16 nodes which all the switches are in the

state 1 (the selectors of Muxes are ‘00’). Note that in these figures each edge denotes

2 unidirectional links in opposite directions. As seen in these figures, each packet

traverses 4 different links, and consequently all the links are 100% loaded.

A.0.2 2D GHC

Let’s examine another example, a 2D GHC with 16 nodes as shown in figure A.5, and

note the pattern of the link numbering. In a link connecting 2 routers, the output

(input) port of a router and input (output) port of the second router have the same

number. For example in node ‘0’, link 3 connects the input (output) port 3 of router

‘0’ to output (input) port 3 of router ‘2’. In a 2D GHC with 16 nodes each router has

7 ports. The interconnections in a 7x7 router is shown in figure A.6. These router

are constructed by seven 6-to-1 Muxes. Let’s assume that the output port of switch
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Figure A.3: A 2D Torus with 16 nodes in the state 1 (Packets 0 to 11) (Every packet
traverses 4 edges and evey directed edge is used once in a every clock cycle)
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Figure A.4: A 2D Torus with 16 nodes in the state 1 (Packets 12 to 15) (Every packet
traverses 4 edges and evey directed edge is used once in a every clock cycle)
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Figure A.5: Numbering of links in 2D GHC with 16 nodes

Figure A.6: Interconnections of a 7x7 B&S Crossbar Switch
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is the input port of next switch. Starting with input port ‘0’, the following states

occur in the routers:

1. State 1: Selectors of Muxes=‘000’: 0→1→2→3→4→5→6→0

2. State 2: Selectors of Muxes=‘001’: 0→2→4→6→1→3→5→0

3. State 3: Selectors of Muxes=‘010’: 0→3→6→2→5→1→4→0

4. State 4: Selectors of Muxes=‘011’: 0→4→1→5→2→6→3→0

5. State 5: Selectors of Muxes=‘100’: 0→5→3→1→6→4→2→0

6. State 6: Selectors of Muxes=‘101’: 0→6→5→4→3→2→1→0

It is seen that the interconnections in the figure A.6 is in a circular sequence. In

other words, a packet generated by an injection port 0 traverses all numbers (from 1

to 6) and then returns to port 0. Let’s assume that in figure A.5 node 0 generates a

packet. Depending on the arbitration signal, one of the 6 states happens and a packet

in each state traverses 6 hops (links).

Figures A.7 and A.8 show an example for a 2D GHC with 16 nodes which all

the switches are in the state 1 (the selectors of Muxes are ‘000’). Note that in these

figures each edge denotes 2 unidirectional links in opposite directions. As seen in

these figures, each packet traverses 6 different links, and consequently all the links

are 100% loaded.

In total, when all 16 nodes generate packets, 6 × 16 = 96 different links are

traversed.

The number of links in a 2D GHC with N nodes is (2(
√
N −1))×N . The number

of links in a 2D GHC with 16 nodes is 6 × 16 = 96. Since the packets traverse 96
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Figure A.7: A 2D GHC with 16 nodes in the state 1 (Packets 0 to 11) (Every packet
traverses 6 edges and evey directed edge is used once in a every clock cycle)
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Figure A.8: A 2D GHC with 16 nodes in the state 1 (Packets 12 to 15) (Every packet
traverses 6 edges and evey directed edge is used once in a every clock cycle)

different links, all the links are 100% loaded.

A.0.3 2D Mesh

Figure A.9 shows a 2D Mesh with 16 nodes. As seen in this figure, every link is

assigned a number. In a 2D Mesh, crossbar switches have different sizes. The crossbar

switches in corners are 3x3, the switches in edges are 4x4, and the other switches are

5x5. Figures A.10a and A.10b show the interconnection in 4x4 and 3x3 B&S crossbar

switches. In the 2D Mesh, all the crossbar switches are derived by an identical

arbitration signal. Note that in the 4x4 crossbar switches where the Muxes are 3-to-

1, the arbitration signals (states) can be ‘00’, ‘01’, and ‘10’. When the arbitration

signal is ‘11’ the state of the 3-to-1 Muxes is the same as ‘10’. In the 3x3 crossbar
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Figure A.9: Numbering of links in a 2D Mesh with 16 nodes

switches where the Muxes are 2-to-1, the Muxes are derived by the least significant

bit (LSB) of the arbitration signals.

The following shows the number of different links traversed by packets, given

different arbitration signals (states):

1. State 1: Selectors of Muxes=‘00’: The total number of links traversed by 16

packets is 48.

2. State 2: Selectors of Muxes=‘01’: The total number of links traversed by 16

packets is 48.

3. State 3: Selectors of Muxes=‘10’: The total number of links traversed by 16

packets is 48.

4. State 4: Selectors of Muxes=‘11’: The total number of links traversed by 16
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(a) (b)

Figure A.10: Interconnections in (a) a 4x4 B&S Crossbar Switch, (b) a 3x3 B&S
Crossbar Switch.

packets is 48.

Using any arbitration signal (selectors of Muxes), 48 different links are traversed by

the packets. In a 2D Mesh with 16 nodes, there are 48 links. Therefore, all the links

are 100% loaded.
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Appendix B

PB Definition

In this section the blocking probability (PB) is defined. Let PB(i) be the blocking

probability at clock cycle i. The general definition of PB(i) at clock cycle i is given

by:

PB(i) =
NBlocked(i)

NUnBlocked(i) +NBlocked(i)
(B.1)

whereNBlocked(i) is the number of blocked flits at clock cycle i, and whereNUnBlocked(i)

is the number of header flits that they are not blocked at clock cycle i. Referring to

Eq. B.1, the dominator is the total number of flits generated by source nodes at time

i.

In the wormhole switching, the number of blocked flits at time i (NBlocked(i)) is

determined by the number of header flits that are blocked because their requested

output ports are busy. In the wormhole switching, the number of unblocked flits at

time i (NUnBlocked(i)) is determined by the number of flits injected at clock cycle i

which their header flits are not blocked at clock cycle i.
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Figure B.1: 2D Mesh with 16 nodes

When a network operates in steady-state, the blocking probability PB is defined

as the average of all PB(i) over a long period of time, and is given by:

PB =
NBlocked

NUnBlocked +NBlocked

(B.2)

where the NBlocked is the average of all NBlocked(i) over a long period of time, and

where the NUnBlocked is the average of all NUnBlocked(i) over a long period of time.

For better understanding, we will see the following example. Figure B.1 shows a

2D Mesh with 16 nodes.

Assume the following nodes generate 4 packets as shown in figure B.2:

1. Packet 0: Node 0 to node 3 (λF =1 flit per cc)

2. Packet 1: Node 1 to node 7 (λF =1 flit per cc)

3. Packet 2: Node 2 to node 11 (λF =1 flit per cc)
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Figure B.2: The 4 packets in the example

4. Packet 3: Node 3 to node 15 (λF =1 flit per cc)

Let assume that each packet has 32 flits and packets traverse the networks using the

wormhole switching. We assume that routing delay is 1 clock cycle. Once the routing

is completed, the delay in forwarding a flit is 1 clock cycle per flit. Therefore, a header

flit moves forward in 2 clock cycles and other flits move forward in 1 clock cycle. In

this example we ignore the delay of input buffers.

Figure B.3 shows the complete timing for the generated packets. The notation

A → B in figure B.3 denotes the input buffer of node B from the node A side. For

example 0 → 1 means the input buffer of router 1 which is connected to router 0.

Figure B.3 also shows the number of blocked flits at clock cycle i (NBlocked(i)). As
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Figure B.3: Complete timing of wormhole-switched 2D Mesh with 16 nodes for the 4
generated packets
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state earlier, a packet includes 32 flits. We use the packet format shown in figure 3.3

in Chapter 3, and explain it as follows:

1. HF denotes the header flit.

2. TF denotes the tail flit.

3. Fi, denotes the body flits, where i=1,...,30 is the assigned number of each body

flit in a packet.

At cc=0 four header flits are injected to their local routers. It takes 2 clock cycles

that these 4 header flits move forward to get to their next router as their requested

output port is not busy.

At cc=2 the 4 header flits are buffered in the next routers toward their destinations

(shown in figure B.4a). For example the header flit (HF ) of the packet 0 is buffered

at the router 1. The routing delay is one clock cycle to decode the requested output

port of the header flits. At cc=4 only the header flit of the packet 3 moves forward

to get to the next intermediate router and therefore the header flits of packet 0, 1,

and 2 are blocked (shown in figure B.4b) as the requested output ports are reserved

by other packets. For example the header flit of packet 0 is blocked by the header flit

of packet 1. Therefore, 3 out of 4 packets are blocked at cc=4 (PB(4) = 3/4).

Figure B.5a shows the state of the 2D Mesh at clock cycle 6. The PEs of the

blocked packets generate flits until all the buffers in their path are filled. As seen

in this figure, the header flit (HF ) of the packet 3 moves forward to its destination

(router 15). At cc=6, PB(6) = 3/4. From clock cycle 4 to 33 only the flits of packet

3 move forward and the flits of other 3 packets are blocked. Therefore, 3 out of 4

flits are blocked. Figure B.5b shows the state of the network at clock cycle 33. At
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(a) (b)

Figure B.4: State of the 2D Mesh (a) at CC 2, (b) at CC 4.

cc=33, the tail flit (TF ) of the packet 3 leaves the router 3 and the output port of

the router 3 is released. At the next clock cycle (cc=34) the header flit of the packet

2 is unblocked and can move forward (as shown in figure B.6b). Therefore, 2 out of

3 packets are blocked at cc=34 (PB(34) = 2/3).

Figures B.6b, B.7a, and B.7b show the states of the 2D Mesh at clock cycle 35,

37, and 39. At cc=39 the packet 3 is completely delivered. From clock cycle 34 to 61

only the flits of the packet 2 move forward and the flits of other 2 packets are blocked.

Therefore, at clock cycle 39 two out of three flits are blocked (PB(39) = 2/3). At

cc=61 the tail flit (TF) of the packet 2 leaves the router 2 and releases the output

port of the router 2. Now the requested output port of the packet 1 is available.

At cc=62 the header flit (HF) of the packet 1 moves forward to the next router (as

shown in figure B.8a). From clock cycle 62 to 90 only flits of packet 0 are blocked

and flits of packet 1 move toward to their destination. At cc=90 the tail flit (TF ) of
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(a) (b)

Figure B.5: State of the 2D Mesh (a) at CC 6, (b) at CC 33.

packet 1 departs the router 1 and releases the output port of the router 1. At cc=91

the header flit (HF) of packet 0 leaves the router 1 (as shown in figure B.8b) because

its requested output port is available.

From clock cycle 91 until end of delivery of the packet 0, no packet blocking occurs.

To conclude the example, we note that 4 packets are successfully delivered to their

destinations and each packet has 32 flits. Therefore the total number of delivered flits

(NUnBlocked) is 128.

There are some clock cycles during which the header flits are blocked and they

cannot move forward. According to figure B.3, the total time it takes to deliver all

the packets is 131 clock cycles. The number of the blocked flits at clock cycle i is

given by:

1. NBlocked(i) = 3, PB(i) = 3/4, 3 < i < 34
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(a) (b)

Figure B.6: State of the 2D Mesh (a) at CC 34, (b) at CC 35.

2. NBlocked(i) = 2, PB(i) = 2/3, 34 ≤ i < 62

3. NBlocked(i) = 1, PB(i) = 1/2, 62 ≤ i < 91

4. NBlocked(i) = 0, PB(i) = 0, 91 ≤ i ≤ 131

The total number of the blocked flits (NBlocked) in interval 0 to 131 clock cycle is

given by:

NBlocked = 30× 3 + 28× 2 + 29× 1 = 175 (B.3)

Let’s assume that the total number of generated flits is the sum of the successfully

delivered flits and the blocked flits. Referring to Eq. B.2, the PB in the 131 clock
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(a) (b)

Figure B.7: State of the 2D Mesh (a) at CC 37, (b) at CC 39.

cycles is given by:

PB =
NBlocked

NUnBlocked +NBlocked

=
175

175 + 128
=

175

303
= 0.577 (B.4)

As previously stated in chapter 5, the blocking probability PB can be defined as

the expected waiting time that a header flit waits in the blocking queues over the

packet latency, when its requested output links are busy. The network latency of a

packet in a wormhole-switched NoC with H hops is given by [54]:

TP = H × (TRouting + TXbar + TLink) + (m− 1)× (TXbar + TLink) + Bl (B.5)

where m is the average number of flits in a packet, and where TRouting, TXbar, and

TLink are the delay for the routing, crossbar switch, and link traversal respectively.
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(a) (b)

Figure B.8: State of the 2D Mesh (a) at CC 62, (b) at CC 91.

Referring to Eq. B.5, the term Bl is the average blocking time seen by a header flit

[54]. Without any blocking, each packet should have reached its destination in 37

clock cycles.

In our example, the TP of 4 packets is determined as the average network latency

of the 4 packets. According to figure B.3, TP of the 4 packets is given by:

TP =
39 + 70 + 101 + 131

4
= 85.25 (B.6)

According to the definition of Bl in Eq. B.5, the PB can be defined as the expected

waiting time that a header flit waits in the blocking queue over the packet latency,

when their requested output link is busy. Therefore, the PB is given by:

PB =
Bl

TP
=

85.25− 37

85.25
= 0.566 (B.7)
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where the result is approximately equal to the result in Eq. B.4.

In the 2D Mesh shown in figure B.1 there are 16 nodes. According to figure B.3,

the time it takes to deliver all the flits is 131 clock cycles. The average flit injection

rate per node per clock cycle to a network with N nodes (before blocking is considered)

is given by:

λF =
NUnBlocked +NBlocked

T
∗ 1

N
(B.8)

where T is the total time takes to deliver all the flits, where the numerator is the total

injection flit in the time interval T clock cycles, and where 1
N

is to take the average

injection rate of N nodes. The average flit injection rate per node per clock cycle for

the 2D Mesh with 16 nodes (in the example) is given by:

λF =
NUnBlocked +NBlocked

T
∗ 1

N
=

303

131
∗ 1

16
= 0.144 (B.9)

Referring to Eq. 5.8, the average effective rate of flits arrivals to the network per

node per clock cycle (λ′
F ) is given by:

λ′
F = λF ∗ (1− PB) = 0.144× (1− 0.577) = 0.061 (B.10)

which reflects the average effective rate of λF to the network.
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Appendix C

Evaluation of different hyperedge

designs in 2D Hypermesh NoCs

In chapter 6, the hyperedges are constructed by the B&S1 crossbar switches. Using

the B&S1 crossbar switches in the hyperedges has some advantages such as area-

efficiency. For small size Hypermesh NoCs using the B&S1 as the hyperedges is an

efficient design. However, as the size of the network increases the energy efficiency and

performance of the Hypermesh using the B&S1 hyperedges reduce. The performance

degradation is due to the long buses in the hyperedges.

C.1 Pipelined Hyperedges

To improve the performance of Hypermeshes, many hyperedge designs have been

explored. Two new hyperedge designs which are suitable the most are selected, and

are explained in the following sub-sections.
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C.1.1 HE2: The Special Pipelined Demux-Mux Switch (S-

PDM)

Figure C.1a illustrates a special pipelined Demux-Mux (S-PDM) switch design. The

S-PDM design consists of Demuxes that connect to the input ports, and Muxes that

connect to the output ports. When we say ‘Special’, we mean that the switch is

‘Externally Pipelined’, i.e., N pipeline latches (with W DFFs each) are inserted at

the input ports of Demuxes and N pipeline latches are at output ports of Muxes.

These latches are shown by the black squares in figure C.1a. In our experiments, the

most of DFFs in the existing LEs can be used, and only few new resources (LEs) are

needed, which they can be ignored. The total resource usage of a S-PDM switch (W

bits wide) uses the area models in Eq. 4.6 and Eq. 4.1, and is given by C.1.

AHE2(N,W ) = N.ADmux(1, N − 1,W ) +N.AMux(N − 1, 1,W ) (C.1)

The total power consumed by the S-PDM switch uses the power models in Eq.

4.5 and Eq.4.7 and is given by Eq. C.2:

PHE2(N,W ) = N.PDmux(1, N − 1,W ) +N.PMux(N − 1, 1,W )

+ W.2.N.PDFF + (N − 1).Pbus(L̄,W, Z) (C.2)

where L̄ is the average wire length in a bus between a Demux and Mux tree ≈
√

AHE2(N,W ) and Z = 1. The power of a DFF PDFF is given by PDFF = KDFF .fclk.fduty,

where KDFF represents the capacitance switched by one DFF per transition.

The delay of a S-PDM switch of size NxN is equal to the delay of a large Demux
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tree plus the delay of a large Mux tree and is given by Eq. C.3:

DHE2(N,W ) = DMux(N − 1, 1,W ) +DDmux(1, N − 1,W ) (C.3)

C.1.2 HE3: The Special Pipelined Broadcast-and-Select Switch

(S-B&S)

Figure C.1b illustrates a S-B&S switch design. When we say ‘Special’, we mean that

the switch is ‘Externally Pipelined’, i.e., in this switch, N pipeline DFFs are inserted

at the input port of the switch and N pipeline DFFs are inserted at the output ports

of the switch. These latches are shown by black squares and use the DFFs already

available in the LEs, and do not incur an additional cost. The total area of NxN

S-B&S switch is equal to the area of N Muxes, and is given by Eq. C.4.

AHE3(N,W ) = N.AMux(N − 1, 1,W ) (C.4)

The total power consumed uses the models Eq. 4.4 and Eq. 4.10 and is given by

Eq. C.5:

PHE3(N,W ) = N.PMux(N − 1, 1,W ) + 2.N.W.PDFF +N.PBus(L,W,N − 1) (C.5)

where the first term is the power consumed in N Muxes, where the second term is

the power consumed in the 2.N pipeline DFFs, and where the last term is the power

dissipated in the N broadcast buses. The length L is equal to N ∗
√
X, where X is

the average number of LEs in the Mux N-to-1.

The delay of S − B&S switch NxN is equal o the delay of a large Mux tree
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(a) (b)

Figure C.1: 2 pipelined hyperedges (a) Special B&S, (b) Special PDM (The special
switches are externally pipelined.)

(DMux(N, 1,W )) plus the delay of the broadcast bus of length L, and is given by Eq.

C.6:

DHE3(N,W ) = DMux(N, 1,W ) +Dbus(
√

AHE3(N,W )) (C.6)

C.2 Area and Delay Analysis of the Pipelined Hy-

permesh NoCs

C.2.1 Area

The total area of 2D Hypermesh with N nodes (with router degree = 3, datapath

width = W, with K VCs per edge, with area of the processor core = C LEs, with

concentration = M, and with the number of injector and extractor channels = Y) is

expressed by Eq. 6.1.
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C.2.2 Critical Path Delay

In the pipelined designs (S-PDM and S-B&S), the pipelined latches break the critical

path. The path with higher delay yields the critical path. When EM blocks are used

as input buffers, the delay of an Hypermesh using the pipelined hyperedge designs is

given by:

DHM−EM(N,W ) = DS2(3,W ) +DEM +Dbus((
√

AHM −
√

AHE)/2) (C.7)

where DS2(3,W ) is the delay of an 3x3 crossbar switch B&S1, and Dbus((
√
AHM −

√
AHE)/2) is the delay of longest wire connecting PEs to the hyperedge.

When DFF registers are used as input buffers, the delay of an Hypermesh using

the pipelined hyperedge designs is given by:

DHM−DFF (N,W ) = DSi(3,W ) +Dbus((
√

AHM −
√

AHE)/2) (C.8)

where DS2(3,W ) is the delay of an 3x3 crossbar switch B&S1, and Dbus((
√
AHM −

√
AHE)/2) is the delay of longest wire connecting PEs to the hyperedge.

C.3 Evaluation Methodology of the NoCs

In this sub-section (1) the NoCs are compared based on their power, area, and energy

consumption, and then, (2) the NoCs are evaluated by their energy-area product.

We assume that the crossbar switches are the B&S1 switch design. Three different

hyperedge designs are built by the switch designs in section C.1. The Hypermeshes

using the 3 hyperedge designs are compared to the GHC and BHC. In evaluation of
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NoCs, we assume that each PE uses 4K LEs.

Area

Area is one of the most important metrics in both NoCs and FPGAs domains. One of

the most important advantages of the Hypermesh topology is the area-efficiency while

offering high performance. Figure C.2a, C.2b, C.2c illustrate the area comparison of

the NoCs with 256 nodes under equal bisection bandwidth. The resource usages are

in terms of Logic Elements (LEs) and EM blocks. In figure C.2a and C.2b we assume

that the input buffers are EM blocks, while in figure C.2c the input buffers are DFF

registers (which are expressed in terms of LEs).

Most of studies in NoC domain concentrate to the buffers since the buffers are

one of the most power and area hungry component in the design. The Hypermesh

NoCs use fewer amount of buffers since the routers’ radix is constant and equal to 3.

For example for N=256 nodes and with equal bisection bandwidth, the Hypermesh

uses 33% of the EM blocks that the 2D BHC uses and 38% of the EM blocks that

the GHC needs.

As seen in figure C.2, the 2D Hypermesh using B&S switch designs outperform

the 2D BHC and GHC in terms of LEs and EM blocks with significant margin.

Table C.1 summarizes area comparison between different NoCs with 256 nodes

with different type of buffers under equal bisection bandwidth. As seen in table C.1,

the 2D BHC and GHC are compared to the 3 different Hypemeshes. The values

reported in this table are the percentages of the area that a 2D Hypermesh uses

while comparing to the 2D BHC and GHC. Under equal bisection bandwidth, the

area usage (in terms of LEs) of the 2D Hypermesh with 256 nodes using B&S switch
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(a) (b)

(c)

Figure C.2: Area analysis of the NoCs with 256 nodes a) in terms of LEs (using
EM block as input buffers) b) in terms of EM blocks c) in terms of LEs (using DFF
Register as input buffers) (With Equal Bisection Bandwidth, Switch=S1 (B&S1),
PE=4K LEs)
.

designs is 30% to 39% of the area that the GHC uses and 42% to 50% of the area

that the BHC uses.

Energy Per Algorithm

In this sub-section the NoCs are evaluated based on their energy consumption under

the Bitonic sorting algorithm and the FFT algorithm.

The completion time of an NoC (expressed in terms of ns) given an algorithm is

expressed by Eq. 6.25

Figure C.3 shows the completion time of the 2D Hypermeshes, BHC, and GHC
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Table C.1: Area comparison between 2D Hypemesh NoCs and the 2D BHC and GHC
with 256 nodes (under equal bisection bandwidth, Switch =B&S1, PE=4K LEs)

Topology HM B&S1 HM S-B&S2 HM S-PDM
Buffer LEs EM LEs EM LEs EM

GHC EM 30% 38% 30% 38% 70% 38%
BHC EM 50% 33% 50% 33% 120% 33%
GHC DFF 39% - 39% - 72% -
BHC DFF 42% - 42% - 77% -

(a) (b)

Figure C.3: Completion time of the topologies with 256 nodes under a) Bitonic sorting
algorithm b) FFT algorithm (under equal bisection bandwidth, Switch=S1 (B&S1),
PE=4K LEs)
.

with 256 nodes under the Bitonic sorting algorithm and FFT algorithm (with equal

bisection bandwidth). As seen in figure C.3, the 2D Hypermeshes outperform the 2D

BHC and GHC with significant margin. For example under FFT algorithm and using

EM blocks as input buffers, the 2D Hypermesh with 256 nodes needs 42-98% of the

time that the BHC needs to perform the FFT algorithm and 5-8% of the time that

the GHC needs to perform the FFT algorithm.

Figure C.4a and C.4b show the energy consumption of the 2D Hypermeshes, BHC,

and GHC with 256 nodes under the Bitonic sorting algorithm and FFT algorithm

(with equal bisection bandwidth).
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(a) (b)

Figure C.4: Energy analysis of the NoCs with 256 nodes under a) Bitonic sorting
algorithm b) FFT algorithm (under equal bisection bandwidth, Switch=S1 (B&S1),
PE=4K LEs)
.

As seen in figures C.4a and C.4b, the 2D Hypermesh using the S-PDM and S-B&S

hyperedge designs considerably consumes lower energy than 2D BHC and GHC. For

example under FFT algorithm, the 2D Hypermesh with 256 nodes using the S-PDM

hyperedge design consumes 59% of the energy that the BHC uses and 20% of the

energy that the GHC uses.

Energy-Area Product

Figures C.5a and C.5b show the energy-area product of the 2D Hypermeshes, BHC,

and GHC with 256 nodes under the Bitonic sorting algorithm and FFT algorithm

(with equal bisection bandwidth). As seen in figure C.5, the 2D Hypermeshes have

significantly lower energy-area product compared to the BHC and GHC.

Table C.2 summarizes the energy and energy-area product (E-A) comparison be-

tween different NoCs with 256 nodes under FFT and Bitonic sorting algorithms. As

seen in table C.2, the 2D BHC and GHC are compared to the 3 different Hypemeshes.
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(a) (b)

Figure C.5: Energy-Area product of the NoCs with 256 nodes under a) Bitonic sorting
algorithm b) FFT algorithm (under equal bisection bandwidth, Switch=S1 (B&S1),
PE=4K LEs)
.

The values reported in this table are the percentages of the energy and energy-area

product (E-A) that a 2D Hypermesh uses while comparing to the 2D BHC and GHC.

For example, a 2D Hypemesh using S-PDM hyperedge design consumes 18% of the

energy that the 2D GHC uses.

Referring to table C.2, the energy consumption of the 2D Hypermesh depends on

the hyperedge designs. In terms of energy, using S-PDM and S-B&S switches as the

hyperedges are more suitable. As seen in table C.2, the 2D Hyperemsh outperforms

the 2D GHC and BHC in terms of energy-area product with significant margin. The

energy-area product of the 2D Hyperemsh with 256 nodes is 9-18% of the 2D GHC,

and 29-67% of the 2D BHC.

Choosing the right switch design for the hyperedges depends on the design con-

straint. If the Hypermesh NoC is power-constrained, then using the S-PDM design

as the hyperedges is optimal. If the Hypermesh NoC is the area-constrained, then

using the B&S switch designs (HE1 and HE3) as the hyperedges are optimal, as they

consistently have the lower area. In terms of energy per algorithm, using the S-PDM
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Table C.2: Comparison of energy and energy-area product between 2D Hypemesh
NoCs and the 2D BHC and GHC under 2 parallel algorithms with 256 nodes (under
equal bisection bandwidth, PKT=10Kbits, Switch =B&S1, PE=4K LEs)

Topology HM B&S1 HM S-B&S2 HM S-PDM
Alg. Energy E-A Energy E-A Energy E-A

GHC FFT 41% 18% 24% 9% 20% 15%
BHC FFT 120% 55% 71% 29% 59% 47%
GHC Bitonic 38% 18% 23% 9% 20% 15%
BHC Bitonic 133% 67% 83% 35% 70% 56%

and S-B&S switch designs (HE2 and HE3) as the hyperedges are optimal.
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