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Abstract

This paper introduces a new method of analysis for Delta-Sigma Modulators based

on modeling the nonlinear quantizer with a linerized gain, obtained by minimizing a

mean-square-error criterion[7] , followed by an additive noise source representing distor­

tion components. In the paper, input-signal amplitude dependencies of Delta-Sigma

Modulator stability and signal to noise ratio are analyzed. It is shown that due to the

nonlinearity of the quantizer, the signal-to-noise ratio of the modulator may decrease as

the input amplitude increases prior to saturation. Also, a stable third-order Delta-Sigma

Modulator may become unstable by increasing the input amplitude beyond a certain

threshold. Both of these phenomenon are explained by the nonlinear analysis of this

paper. The analysis is carried out for both DC and sinusoidal excitations.
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1.1 Introduction

Recently, Delta-Sigma Modulation has been receiving increased attention as an alternative

to co~ventlonal ~D converters [1,2,3,9]. Delta-Sigma is one of a class of systems which use over­
samphng and l-bit quantization to achieve high resolution AiD conversion at a lower rate. Over­

sampling is attractive for many systems in that the analog anti-alias filtering requirements are

rel.axed. In addition, Delta-Sigma Modulators can generally be implemented with few precision cir­
CUltS.

A scanning of the literature on Delta-Sigma Modulation reveals a lack of comprehensive ana­
l~ses of the modulator which fully account for the nonlinearity of the system. An exception is the
fundamental work presented in [4] which clearly illustrates the influence of nonlinear phenomenon

on circuit behavior for first order modulators and DC inputs. Thus, very few analytical design

aids" which predict nonlinear behavior, can be found for Delta-Sigma Modulation. Many research­
ers have observed experimental phenomenon for which, to date, no analytical explanations exists.
Some examples include: the instability of high-order modulators as the input signal amplitude is
increased, the actual decline of signal-to-noise ratio as the input amplitude is increased prior to

saturation ( see the experimental results of [5] and [12]), and the observation reported in [5J in

which very high internal signal variances are encountered for large input amplitudes.

In this paper, higher-order Delta-Sigma Modulators are analyzed. These modulators are pre­
ferred because of their superior noise performance and relative freedom from harmonic quantiza­
tion effects such as noise thresholding [4,5]. These higher-order systems can be unstable for certain
values of the loop parameters and, in the case of third-order Delta-Sigma Modulators, for certain

ranges of the input signal.

This paper introduces a new method of analysis for Delta-Sigma modulators based on model­

ing the nonlinear quantizer with a linearized gain obtained by minimizing a mean-square-error cri­
terion[7]. This method has been used to derive regions of stability for higher-order modulators,
including both parameter and signal dependencies. In addition, the method can be used to obtain

more accurate solutions for quantization noise spectra and signal-to-noise ratios for several classes of

input signals. In this paper, we first consider the case where the input signal is a DC amplitude.

The approach is then extended to sinusoidal signals.

1.2 Background on Methodology

The quasilinear method for modeling the nonlinearity in nonlinear feedback systems was first

introduced by Booton [13J. This technique, known as the describing function method, has been
widely used and analyzed [7]. This method, however, is based on neglecting distortion components

produced by the nonlinearity. The assumption here is that these components are filtered as they are

fed back to the nonlinearity input. While this assumption yields adequate results in many non­

linear feedback systems, it will be shown that it is inappropriate for the analysis of Delta-Sigma

Modulators.

The method for modeling the nonlinearity presented in this paper is thus distinguished from

the describing function technique in that the distortion components produced by the n.onlinear~ty
are not neglected. This paper will show that the distortion ~ o m p o n e n t s affect the dynamic ~ e h a v l o r
of the modulator dramatically. This includes instability of higher-order modulators and the mcrease

in baseband noise as the input signal amplitude is increased.

In [8], Smith reviewed the different a p p r o a c h ~ s for includi~g the disto~tion .components ~ n
the modeling of the nonlinearity. One method c o n s l s t e ~ of mod~hng .the nonhneanty by a quasil­

inear gain followed by an additive noise source representmg the distortion components produced ?y
the nonlinear element. For example, using this model West et. al. [6] were able to predict
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baseband distortion in a nonlinear feedback system. Since the modulator response is now seen to

consist of both a signal related to the input to the modulator and random distortion components,

the response of the nonlinearity to multiple inputs must be considered. To this end, the method of

multiple linearized gains lor multiple inputs has been used. This technique has been extensively stu­

died in [7]. Using this method, a nonlinear feedback system can be represented as two interlocked

linear systems.

In this paper ~ unlike the work in [7] where the multiple inputs are applied externally, the ran­

dom component is produced internally by the nonlinearity in the modulator. Smith has presented

experimental results which show that under certain conditions the random distortion components

appearing at the nonlinearity input may have a Gaussian probability density function (pdt). In the

present work, this observation is exploited for the case of higher-order modulators. Thus, the non­

linearity is modeled as two linearized gains, one for the input signal to the system and one for the

random distortion components which are assumed to have a Gaussian pdf. The nonlinear system is

then analyzed as two interlocked linear systems.

In this paper, with the nonlinear modeling approach outlined above as a basis, a novel

approach for analyzing Delta-Sigma Modulators is introduced. Using this approach, closed form

analytical expressions are obtained which relate, for example, the additive quantization noise to the

input-signal amplitude. Similarly, expressions are derived which relate the ratio of the amplitude of

the signal component to the random noise component at the nonlinearity input to the input signal

amplitude. Such expressions have not been derived before. Using these expressions, it is then pos­

sible to compute the value of the linearized gains as a function of input amplitude by solving a set

of simultaneous nonlinear and integral equations. From the gains, the signal-to-noise ratio of the

modulator and other system parameters including the variance and magnitude of various signals

within the modulator can be calculated.

2.Delta-Sigma Modulation

A simple representation of a first-order Delta-Sigma Modulator is shown in Fig. 1. This cir­

cuit can be implemented with a differential integrator, a comparator, and a flip-flop or sample­

and-hold amplifier. The output of this system is a bit stream whose pulse density is proportional to

the applied input signal amplitude. (A more conventional digital representation of the input signal

can be obtained by decimation and baseband filtering of the pulse stream.) In previous work

[4,5,3], this system has been modeled by replacing the nonlinear element with a unity-gain linear

element followed by an additive noise process. This simple model has proven to be inadequate for

the accurate analysis of higher-order modulator stability since it does not reflect the dependence of

the nonlinear system on the input signal to the nonlinearity.

A second-order double-loop modulator is shown in Fig. 20 In order to analyze the modulator,

fictitious sample-and-hold circuits are inserted into the circuit as shown in Fig. 3. It is possible now

to obtain a z-domain block diagram of the second order modulator as shown in Fig, 4. Since the

sample-and-hold circuit and the integrator in the inner loop are cascaded with no sampler in

between, they must be combined prior to obtaining the z-Transform. Thus,

[
-TJs I [I THz{z) = Z 1-e 1.. = (1-z-1)Z _1 = _$_

S S s2 z -1

The z-Transform of a simple integrator becomes,

H 1(Z) = z (2.2)
z-l

It can be shown that any continuous-time or multi-loop system can be represented in the z-domain
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as shown in Fig. 5, with the appropriate choice of the loop filters Hi (z ) and H (2). Thez-domain

representation, however, is an approximation to the actual behavior of the continuous system. For
a second-order loop we have,

(2.3)

and,

(2.4)

3.Modeling of the Nonlinear Quantizer

3.1 DC Input

Consider the random signal z(t) with mean value mx and zero mean random component y(t).

z(t) = mx + y(t) (3.1)

Consider the nonlinear mapping of z (t) into u (t),

u(t) = N(y(t),mx ) (3.2)

With reference to Fig. 6, we associate the linearized gain Ky with the zero mean random

component y(t) and K; with the DC mean value or offset of the signal z(t). In Fig. 6, x(t) is a

DC signal equal to mx in this case. The identification problem is to determine Kx and Ky such

that the mean square error in modeling the nonlinear element using the linearized gains is minim­

ized. Thus we must minimize,

a; = E{e 2(t)}=E{[u(t)-Kyy(t)-Kxmx f } (3.3)

Taking the partial derivatives and setting them to zero we obtain,

acr 2
_e = -2E{u(t)y(t)}+2KyE{y2(t)} = 0 (3.4)

-«
aa 2

aK
e

= 2Kxm/-2mxE{u(t)} = 0 (3.5)
x

which yield,

K = E {u(t)y {tH
y E {y2(t)}

K = E{u (t )}
x m

x

In terms of the probability density function of y(t) the results are
00

Ky = ~ f yN(y +mx)p(y )dy
cry -00

(3.6)

(3.7)

(3.8)
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00

«, = _1_ f N (y +mx ) p (y )dy
mx -00

An important consequence of using the above linear gains is that the error, e(t), becomes

uncorrelated with y(t).

E{y(t)e(t)} = E{y(t)u(t)}-K.vE{y2(t)}-KxmxE{y(t)} = 0 (3010)

In the application of the above modeling technique to the field of nonlinear control, the error

e (t) is usually neglected. This is based on the assumption that the error is filtered by the plant

after feedback and forms a negligible part of the input signal to the nonlinearity [7]. For this rea­

son .. y(t) is usually assumed to be dependent only on the input to the control system. In Delta­

Sigma Modulation, however, the nonlinearity introduces spectral components which cover a wide

bandwidth, including the baseband. In this case, the error, e(t), represents the noise due to quanti­

zation which forms a major component of the modulator pulse stream. Furthermore, in many cases

in nonlinear control, the output of the nonlinearity is the input to the plant. Hence, it is substan­

tially filtered before feedback to the nonlinearity input. In contrast, the output of the nonlinear

quantizer is the desired modulated pulse stream in Delta-Sigma Modulation which is is directly fed

back and subtracted from the input signal. For this reason, we must include the error term e(t) in

the modeling of the nonlinearity. We will show that the quantization noise has a major impact on

stability for high order modulators.

In this paper we will assume that e(t) has a white spectrum. The nonlinearity, in particular a

one-bit quantizer, produces harmonics of the input signal across the spectrum of interest including

base-band, Therefore, this assumption seems partly justified [8J. Thus we replace the nonlinear

quantizer in the modulator by the two linearized gains followed by an additive noise source

representing the error. This is illustrated in Fig. 7 and Fig. 8, where we have separated the

response due to the zero mean random component and the DC response. We are assuming that the

input to the modulator is a DC level equal to mx ' From the Figures, we have for the steady state

DC response,

m =e

Hi(l)H(l)
-----m
l+H(l)Kx x

and for the response to the random noise component,

E (z) = N(z) H(z)
n 1+ H(z )Kn

(3.11)

(3.12)

(3.13)

If we assume that n(k) is white with variance a; then,

0'2 = 0'; j IH{e
jW

)12

e 21T-
1T

l + Kn[H(ejW) + H*(e jW)] + Kn2IH(ejW)12dw

In most applications of Delta-Sigma Modulation the forward path includes an integrator. Therefore,
H (1)--.00 and,

Hi(l)
me -- K Inx (3.14)

x

Although we make no assumptions on the probability density distribution of the noise n (k),
the signal into the nonlinearity due to the noise, en(k), is a twice or triple integrated version of

the noise n (k) for second and third-order loops 0 Since integration of a random variable tends to
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make its distrib~tion approach a Gaussian distribution, we will assume a Gaussian distribution for

en (r ), Substantial errors may result if this assumption is not true [8]. The linearized gains can be
calculated based on (3.7) and (3.8) with a Gaussian distribution assumed for p(y).

K = 2il lcr;

n (1e\/2;e
(3.15)

(3.16)

(3.17)

Ll me«, = -erf( v;)
me «, 2

In the above . e ~ r e s s i o n s , t ~ e nonlinearity is assumed to be a one-bit quantizer with an output of
+/- Ll. Substituting for K, In (3.13) we obtain,

me me
me = mx-erf( v;)

Ll u 2e

where we have assumed Hi (1)....1 if an integrator is used. Thus,

(3.18)

Define,

Then,

(3.19)

The above results show that p is independent of the loop gains and is directly related to the DC

input amplitude mx . From Fig. 7 and Fig. 8, the Delta-Sigma pulse stream can be written .as,

p(k) = e(k)Kn + n(k) + m.K, (3.19)

Now, since p(k) fluctuates between the two levels -~ and ~, its power is constant and equal to
~2. Hence,

E{p2(k)} = E{e 2(k )}Kn
2 + (1; + me

2K} = il 2 (3.20)

where we have used the fact that the crosscorrelation between e(k) and n(k) is zero since we are

using the linearized minimum mean square error gains. From (3.20) we can derive the expression

for the variance of the modeled additive noise as a function of input DC amplitude,

m 2 2 -2[erf-'(~)F
(12 = ~2[1 - _x - -e 1.\] (3.21)

n ~2 1T

This expression shows that the noise variance depends only on the input DC level and is

independent of the loop gains. When mx-il , we have (1;-0.

We now examine the dependence of the gain K; on the input DC amplitude. From (3.18)

we observe that as Inx approaches ~ , p becomes very large. Based on (3.14), Kn decreases

exponentially with p2. Hence, K; will decrease with increasing amplitude ( although (1e -0 as



mx -.6., the exponential term in (3.14) decreases at a faster rate). As the gain Kn decreases with

amplitude the noise shaping of the Delta-Sigma Modulator changes. The implications of this non­
linear phenomenon on stability and signal to noise ratio will be examined later.

In order to test the theoretical results derived above, a second-order double-loop digital
Delta-Sigma Modulator was simulated with a DC input The mean value me and the variance a;"
of the zero-mean random component en(k) at the input to the nonlinearity were obtained after

1024 iterations. Also" the linear gains K; and Kn were calculated from the simulation using time

averages based on (3.6) and (3.7). From the computed gains, the additive noise, n(k), was

obtained from the simulation by subtracting the quantizer output from en(k )Kn + meKx . The loop
gains were" al =1.0 and a2= 1.0. The quantizer step size was d = 1.0. In Fig. 9, the simulated

and calculated value of p, based on evaluating (3.18) as a function of DC amplitude m ,are plot­

ted. In Fig. 10, the simulated and calculated value of the additive noise variance, (J'1-, based on

expression (3.25), are plotted. In both cases the theoretical results agree closely with the simulation

results.

3.2 Sinusoidal Input and Nonlinearity Modeling

Consider the case where the input to the nonlinear quantizer consists of a sinusoid, x(t), and a

Gaussian signal, y(t). Based on the previous discussion, we can associate the linear gains Kx and

Ky with the sinusoidal and Gaussian inputs. See Fig. 6. Minimizing the mean square error

between the linearized system and the actual nonlinearity, the following linearized gains are
obtained.

where,

00 00

s, = ~ f f xN(x+y)p(y)q(x)dxdy
a x -00-00

oa 00

Ky = ~ f f yN(x+y)p(y)q(x)dxdy
ay -C(J-OC)

(3.22)

(3.23)

(3.24)

is the probability density function (pdf) of the sinusoid with amplitude ax' and

_L

p (y) = 2 e 2a; (3.25)
uY;y

is the pdf of the Gaussian input y(t). The linear gains described by the equations above have been

solved for the case of an ideal relay, which is equivalent to a one-bit quantizer, by Atherton [7Jo
The results follow,

(3.26)
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K, = (~)2(~)M(Yz,2,-p2)
1T O"y

7

(3.27)

ax
P = (3.28)

'\/2(J"y

is the square root of the ratio of the variance of the sinusoidal component to the Gaussian com­

ponent at the nonlinearity input. The functions M(a,'Y,.x) are the Confluent Hypergeometric
Functions [10]:

(3.29)

By replacing the nonlinear quantizer by the linearized gains followed by an additive noise

source, rut), the Delta-Sigma Modulator can be separated into two interlocked linear systems as

illustrated in Fig. 7 and 8. In one system, the input forcing function is the sinusoid x(k). In the

other system, the forcing function is the additive noise source n(k) produced by quantization.

From Fig. 7" we have"

=
Hi(z)H(z)

l+KxH(z)

(3.30)

If integrators are used in the modulator, then in the base-band region and assuming that the fre­

quency of x(k) is small,

It follows that,

1 ;= -(1-

K 2 x
x

(3.31)

(3.32)

a 2
2 x

where, for a sinusoid, (J"x = 2

As in the previous section, we assume that n(k) is white. We also assume that the input to

the nonlinearity due to the noise source n(k) , en(k), is Gaussian. From Fig. 8,

(J"; 'IT IH(e j W)12

(12 - - f - dw (3.33)
en - 2'Tr -'IT 11 + K

n
H (e j W)12

The power at the output of the Delta-Sigma Modulator is constant for a single bit quantizer.

Hence,

{ '( .} 2 K 2 2 + K 2 2 - d 2
E p - k) = (1n + x a ex n a en -

Substituting for the linearized gains and solving for the additive noise variance,

(J"2 = A2p _ ~p2M2(%,2,-p2) - ~M2(Yz,1,-p2)]
n ~ 1T

(3.34)

(3.35)
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Now, from (3.32) and (3.27),

., a} 2 tJ.
2

2( 2)
K.( = 2 = ---z-M %,2,-p

IT ex rr o en

Hence, the ratio p can be obtained as a function of the input sinusoid amplitude, ax. This is

done by solving the following nonlinear equation for p,

Using this expression, the additive noise variance can be found as a function of input-sinusoid

amplitude from (3.35),

a
2

2
(72 = a2[ l __o_l' - -M2(lh , 1, - p2)]

n 2~2 1T'

An analysis of the above results shows that the gains K; and K, decrease as the input amplitude of

the sinusoid increases.

Fig. 11 shows the calculated value of p obtained by solving (3.37) using the Newton.. Raphson

technique plotted as a function of input sinusoid amplitude ax with Ll=1. In the same Figure, the

additive noise variance (J"; is also plotted. Note that the additive noise variance remains almost

constant, decreasing only slightly, and its value is close to that obtained if we assume that the noise

is unformally distributed (Le. tJ.2 ). However, the magnitude of p is seen to increase as ax
3

approaches ~ 0 This implies that the variance of the input-signal-related component at the quantizer

input becomes very large. This will be examined in the next section.

A few words are in order about the Confluent Hypergeometric Functions. First of all, we

note that

_ x
2

2

M(lh,1,-x 2) = e 2 Io(x
2

)

where lo(x ) is the modified Bessel function of zero order. Furthermore,

nih

M(lh,1'h,-x
2

) = 2x erf(x)

This function is encountered for DC inputs. However, such nice closed form solutions do not exist

for the case M (lh,2,- .x2
) . We note, however, that [10]

M(o.;y,z) = fey) (-z)-a[1 + D(lzl-I)] (3.42)
r ( ~ - { X )

when Real (z) <0. I'(n ) is the well known Gamma Function. Using the above expression, we

obtain the following approximations as x becomes large,

M ( ~ , 1 , - _ { 2 ) ~
1

1T%.t
(3.43)

M (%,2, - x 2
) ~

2

7r~.x
(3044)
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~

M(Ih,11h,-_t2) :::::: ~
2x

Equation (3.44) is consistent with the exact relationship (3.41) as x becomes large.

(3.45)

(4.1)
1

---=

4. Noise Spectra and Signal to Noise Ratio

In this secti?n we will .analy~e the effects of input-signal amplitude on the shaping of the noise
spectr~ and the signal-to-noise ratio of the Delta-Sigma Modulator. The noise transfer function can
be wntten from the block diagram in Fig. 8 as,

Pn (z)
NTF(z) =

N(z)

For the second order loop in Fig. 4.,

(4.4)

(4.3)

Pn(z) = N(z) _ (l-z-I)Z
(l-z 1)2 + a zKn[(1-z-I)+atlz-

1 (4.2)

T h ~ s p e ~ t r a of the noise can be obtained from (4.2) by noting that we have assumed n(k) to be a
white noise process. Thus,

2

N (e jwT')N* (e ica, ) = an
t,

Hence, the expression for the noise spectra becomes,

Snn(f) = Pn(ejwT')P;(ejwT,)

16a;Sin
4

( Tif:)
=

Clearly, the shaping of the noise spectra depends on the gain Kn . As the input signal amplitude

increases, K; decreases and the noise moves in-band. This is shown in Fig. 12 and Fig. 13 where

the noise spectra based on (4.4) are plotted for K; large and small, This nonlinear phenomenon,

predicted theoretically above, is also observed in actual simulations. In Fig. 14, the amplitude

spectrum of the Delta-Sigma Modulator pulse stream, obtained by digital simulation of a second­

order system, which high lights the baseband region is shown. The sampling rate was 1.024 MHz.

The spectrum was obtained using a 4096 point FFT and only the first 160 points are shown. The

input signal consisted of a 5 KHz tone with an amplitude of 0.13. Again, ~ =1.0. Notice that the

in-band noise is very small. However, in Fig. 15, where the amplitude is increased to 0.93, the in­

band noise increases due to the shaping of the noise spectra as the gain K Il decreases.

The above result implies that the signal-to-noise ratio of the Delta-Sigma Modulator is not a

linear function of the variance of the input signal. This result cannot be obtained by the simple

model used for the quantization process in [5] and [9J.

To obtain an approximate expression for the signal-to-noise ratio, we note that within the

base-band f« t ; Thus,



(4.6)

(4.5)

SNR DC =

10

16a;Sin
4
(-rr t )

s.; (f) :::::: araiK
n
Z

The in-band noise is calculated by integrating (4.5) over the base-band,

lIB 1671"4(1; fB)5
a;B = Sn(f)df:::::: [5 K f (-/

o ClICl2 n S

Therefore, the signal-to-noise ratio becomes,

a} 5<T}af[azKn (ax)f I, 5
SNR = - ;:::: (-) (4.10)

a;B 16-rr
4
a ; (a x ) l e

In the above expression the dependence of the gain K; and the additive noise variance a; on the

input signal variance (J'.; has been indicated.

Exact Numerical Calculation of Signal to Noise Ratio

Based on the analytical results presented in section 3, we can compute the signal-to-noise ratio

as a function of input-signal amplitude for both DC and sinusoidal inputs. For DC inputs, equa­

tions (3.13), (3.15), (3.19) and (3.21) represent coupled, nonlinear and integral equations. The

numerical solution of these simultaneous equations, given a DC input amplitude mx ' yield the

linearized gain 'I Kn , and (J";. Once K; and (1; are known, then the noise spectra Snn (f) can be

numerically integrated over the baseband to yield the in-band noise component (J';8. The SNR is

then defined as the ratio,

In 2
x

2
crnB

For sinusoidal inputs, the coupled, nonlinear and integral equations, (3.37), (3.38), (3.33) and

(3.26) must be solved. In this case the SNR is defined as,

a
2

SNR = _X_ (4.13)
2(J";B

Figure 16 shows the calculated SNR of second and third-order modulators plotted against the

DC amplitude. The sampling rate was 1.024 Mhz and the baseband bandwidth was 4 kHz.
Notice that the SNR increases and then decreases as the input amplitude approaches to within 10

dB of the saturation point ( mx = a). This theoretical result, which has been observed experi­

mentally in [5J and [12], is caused by the decrease of the gain K; as the amplitude is increased.

The decrease in K; in turn modifies the spectral noise shaping of the modulator causing the noise

to move in-band. The SNR decreases although based on (3.21) the additive noise variance

decreases with increasing amplitude!

Another observation concerning Fig. 16 is that the gain in SNR by using a third..order loop is

not substantial in this case. However, if the sampling rate is doubled a significant advantage can

be gained by using a third-order loop over a second-order loop as demonstrated in Fig. 17. The

reason for this is that for a third-order loop although the baseband noise is smaller than for a

second-order loop the noise increases at a larger rate as the baseband bandwidth is increased. In

Fig. 18 the calculated signal-to-noise ratio of a second and third-order modulator, with a fixed

input amplitude, are shown as a function of the oversampling ratio f s
. From the Figure, we

.rb
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observe that a third-order modulator loses its SNR advantage over a second order modulator as the
oversampling ratio is decreased.

The SNR of a second order modulator with a sinusoidal input is shown in Fig.19 as a func­

tion of input amplitude ax. The sampling rate was Is =1.024MHz and the baseband bandwidth

was f b = 4 kHz. Again the SNR reaches a maximum and then declines as the sinusoid amplitude

increases.

As was pointed out in section 3, the linear gain K; decreases as the input amplitude

increases. This is shown in Fig. 20 where the calculated gain is plotted against input amplitude for

a sinusoidal signal. Interestingly, the variance of the random noise at the quantizer input actually

increases as the amplitude increases. The calculated value of this variance, (J' '1, is plotted in Fig.

21. Note that (J''1 increases well beyond its value at low amplitudes where it constitutes the major

component of the quantizer input. Also, the variance of the sinusoidal component at the quantizer

input also increases, surpassing the noise variance (J''1. This is also shown in Fig. 21. This analyti­

cal observation, which has been observed in experimental circuits in [5], has important conse­

quences on the design of actual circuits where the dynamic range of signals is limited. An impor­

tant contribution of the present analytical results is that proper design considerations, accounting

for the large variances, can be made when actual circuits are implemented.

5. Stability Analysis

One of the major problems associated with higher-order Delta-Sigma Modulators is their sta­

bility. In this section we present a stability analysis of the second and third-order modulators.

Expressions are derived which give bounds on the loop gains for stable operation. Furthermore, we
show that a stable third-order modulator will become unstable as the input-signal amplitude is

increased beyond a certain threshold.

5.1 Double Loop System

The transfer function of the double loop Delta-Sigma Modulator, between the input .r (k )

and output Px(k) is,

T(z) = 1+a2KH2(z)[1+a I H I(z)]

where K is the Linearized gain. The denominator of (5.1) is common for the input signal and noise

transfer functions except that the appropriate gain must ?e s u ~ s t i t u t e d . ~ s the . a . m p l i t u d ~ .of the

input signal increases, the linearized gains decrease. In this .section we d~nve stability CO?dItlOnS as

a function of loop parameters, al and a2' and as a function of the gam K. To obtain the fre­

quency response we substitute z = e ]wTs , in (5.1). The denominator can then be written as,

D(jwT
s

) = 1 + KGH(e
j wTs

) (5.2)

where, if ideal integrators are used,

In order to determine the relationship between al ' a2> and K for a stable system, we set the
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imaginary part of GH (ewTJ
) to zero and its real part equal to ~1 . Thus,

sin(wTs ) = 0 (503)

Hence, the frequency of oscillation of the limit cycle just at the point of instability is,

f = Is 12 (504)

Also, cos(wTs ) = -1 for 1 = Is/2. Hence,

Ci?K

~ ( C t l + 2) = 1

Therefore, when the above condition is met the circuit will produce a sustained oscillation at a fre­

quency half of the sampling rate. For stability,

f1.2K
-4-(cx 1 + 2) < 1 (5.6)

From this expression, it is clear that if al is chosen such that the system is stable, decreasing K

does not cause instability. Thus the system will remain stable for increasing input-signal amplitude.

This is verified by the Nyquist plot for the second-order system in Fig. 22 (Ctl=O.5 Ct2=lo0)0
This is not the case for the third-order system as will be shown below. Since increasing ClZ directly

increases the variance of the signal to the quantizer, K will decrease accordingly. Therefore, the

only degree of freedom is the choice of (Xl. To increase the signal-to-noise ratio, at must be

increased. This leads to instability based on the expression above, where at<2 must be satisfied

assuming that Ct2K ~ 1.

5u2 Third Order System

The transfer function for the third-order system is,

K (X3(X2(XI H IH zH3(z)

T(z) = (5 7)1+ KCt3H3(Z) [1 + Ct2H2(Z)[1 + Ct1H1(Z)]]] ·

Proceeding as in the second order case we obtain two solutions for the third-order system. The first

solution is given by,

K 0.3
-8-[4 + 2Cl2+ ClICl2]< 1 (5.8)

with a corresponding frequency of oscillation of f = Is/2. From this expression, a stable third­

order system can be designed by proper choice of at and a2. There are two degrees of freedom

since changing u3 causes K to adjust accordingly. For stability, (X2 must be small.

The frequency of oscillation for the second solution is determined by the following equation,

. 2 wTs (Xl(X2
sin (-2-) = -4- (5.9)

Setting the real part of GH (e wTJ
) equal to -1 we obtain,

K



(5.10)

(5.11)
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Ka3 . 3 «r, «r, «r,
«r, [4sm (-2-)+ 2cx2sin(- Z- ) + <lICl2sin( - - )]< 1

8sin3( - - ) 2
2

wT
Substituting for sin(T) from (5.9) we obtain,

Q.3K [1 + _IlsI
al

A Nyquist plot for th~ thi~d-orde~ system is shown in Fig. 23 (al=0.I,a2=0.I,a3=1.0). We
observe that, as the hneanzed gain K decreases, we approach the second solution given by (5.9)
~d (5:10). If K decreases further, the third-order system will become unstable. In other words,

Increasing the amplitude of the input signal to a stable third-order Delta-Sigma modulator will

cause the ~odulator to become unstable. There is an amplitude region, however, for which the
modulator IS stable.

From ~5.11) notice that al determines the range for which decreasing K causes instability. If

a ~mall ~1 is cho~~, then the allowable amplitude range is increased at the expense of signal-to­
noise ratio. Surprisingly, (X2 only effects the frequency of oscillation. Hence, a large value can be

used for (l2 to increase SNR provided that (5.8) is satisfied for stability.

At this point an interesting question arises. Which linearized gains, K or K,. cause instabil-

· . tho d d · K:ity in a If -or er system? To answer this question we evaluate the ratio - as mx-.Il. Thus for
Kx

a DC signal..
K 2 _p2

Ii n li e --0m- = m-p
m . r - ~ K x m . r - ~ 1 r ~ erf(p)

(5.12)

since p--oo as mx -.£l.

Hence, K; is smaller than K
x

. Thus the distortion components will cause the modulator to go

unstable. This supports the notion that the distortion components due to the quantizer must be

included in the analysis of the modulator using linearized gains.

6. Conclusions

A new method of analysis for Delta-Sigma Modulators based on modeling the non­

linear quantizer with minimum-mean-square error linearized gains followed by an additive

noise source representing distortion components is described. Closed form expressions have

been derived which relate the quantizer additive noise variance to the input-signal ampli­

tude. The effects of increasing input-signal amplitude on the shaping of the noise spectra

and signal-to-noise ratio have been presented. The signal-to-noise ratio of the modulator

is calculated directly as a function of input-signal amplitude using analytical methods. The

analysis is carried out for both DC and sinusoidal excitations.

Moreover, regions of stability for second and third-order loops have been obtained,

including bounds on the loop gains for stable operation. It is shown that the stability of

third-order modulators is input-signal amplitude dependent.
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Figure Captions

Fig. 1. First Order Delta-Sigma Modulator

Fig. 2. Second Order Delta-Sigma Modulator

Fig. 3. Second Order Modulator with Fictitious Sample and Holds

Fig. 4. Z-domain Second Order Modulator

Fig. 5. Block Diagram of Z-Domain Delta-Sigma Modulator

Fig. 6. Minimum Mean Square Error Linearized Gain Modeling of Nonlinearity

Fig. 7. Equivalent Linearized System for DC and Sinusoidal Input

Fig. 8. Equivalent System for Quantization Noise

mx
Fig. 9. Calculated and Simulated Values of p = .... ;;:::­

v2ae

Fig. 10. Calculated and Simulated Additive Noise Variance £1;

Fig. 11. Calculated Additive Noise Variance, £1;, and p Sinusoidal Input

Fig. 12. Calculated Noise Spectrum, K; =1.0

Fig. 13. Calculated Noise Spectrum, «, = 0.1

Fig. 14. Simulated Amplitude Spectrum, ax = 0.13

Fig. 15. Simulated Amplitude Spectrum ax =0.93

Fig. 16. Calculated SNR for 2nd and 3
rd

Order Modulator, ~ : =256

Fig. 17. Calculated SNR for 2nd and 3
rd

Order Modulator, ~ : =512

Fig. 18. SNR Dependence on ~: 2
nd

and 3
rd

Order Modulator

Fig. 19. Calculated SNR, Sinusoidal Input 2
nd

Order Modulator



Fig. 20. Calculated Linearized Gain, Kn , Sinusoidal Input 2nd Order Modulator

Fig. 21. Calculated Variances at Quantizer Input, 2nd Order Sinusoidal Input

Fig& 22 Nyquist Plot 2nd Order Modulator ( (Xl =0.5, Cl2= 1.0)

Fig. 23 Nyquist Plot 3rd Order Modulator ( Ctl =0.1,0.2=0.1, (l3= 1.0)
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