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An analysis of parasitic current generation in
volume of fluid simulations
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Abstract

Parasitic currents are unphysical currents generated when using
implementations of the Continuum Surface Force technique to model
surface tension forces in multi-phase Computational Fluid Dynamics
problems. We derive and validate a correlation for the magnitudes
of these currents as a function of the physical and numerical param-
eters used in a given simulation. We find that these currents may be
limited by both the inertial and viscous terms in the Navier–Stokes
equations, and as observed by previous researchers, that they do not
decrease in magnitude with increased mesh refinement nor decreased
computational time step.
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1 Introduction

Since its development over one decade ago, the Continuum Surface Force
(csf) method has arguably become the pre-eminent tool used to model sur-
face tension effects in Eulerian based Computational Fluid Dynamics (cfd)
codes [8]. The csf model simulates the discrete stress change that occurs at
an interface due to capillary effects by a body force which acts throughout a
small but finite fluid region surrounding the interface. The magnitude and
direction of the force are chosen so that in the limit of this region becoming
infinitely small, the correct capillary induced stress change at the interface
is recovered.

Although the csf model has been successfully employed to model a large
variety of flow problems involving interfaces using various cfd methods (for
example, level-set, Volume of Fluid), its ability to model flows which are
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dominated by surface tension effects is limited by the existence of so-called
‘parasitic’ currents. Parasitic currents are unphysical currents generated in
fluid regions adjacent to an interface by local variations in the csf body force.
Their magnitude generally increases with increasing capillary strength, and
may become so large as to affect the prediction of flow field velocities, or in
more extreme circumstances, cause complete breakup of an interface.

Although the presence of parasitic currents has been widely observed by
researchers since the conception of the csf method [2], to date there has
been little quantitative analysis of their magnitude. Lafaurie et al. [4], who
coined the term ‘parasitic’, suggested that the dimensionless magnitude of
these currents scaled with the inverse of the capillary number and supported
this observation with a small series of numerical experiments. They noted
however that there was also some dependence of the current magnitude on the
Reynolds number as currents tended to become stronger and exhibit greater
fluctuations as the Reynolds number of the system was increased. Later,
Scardovelli & Zaleski [8] proposed that the large currents observed by some
researchers during high Reynolds and low Weber number computations may
occur because of the dominance of surface tension relative to inertial forces,
but this effect was not quantified. As we shall see however, all of these
observations are consistent with the results of this study. Note that amongst
others, Renardy & Renardy [6], Meier, Yadigaroglu & Smith [5] and Jamet,
Torres & Brackbill [3] all presented variations on the csf technique aimed at
reducing the magnitudes of parasitic currents.

Our purpose is to determine a correlation for the maximum parasitic cur-
rent magnitude as a function of the physical and numerical parameters used in
a simulation. This is achieved by performing an order of magnitude analysis
on the discretised Navier–Stokes equations with the csf force included. The
correlation is validated by comparing predicted velocity magnitudes against
those obtained from a variety of numerical experiments, performed using the
Volume of Fluid (vof) algorithm due to Rudman [7].
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2 The CSF method

In this section we briefly review the csf method. Details of the particular
numerical implementation of this method used in this study can be found
in [7].

The Navier–Stokes momentum equation for incompressible Newtonian
flow of two immiscible liquids with body forces neglected is

∂ρu

∂t
+∇ · ρuu = −∇p+

1

We
κsn̂sδ(x−xs)+

1

Re
∇ ·µ[∇u +(∇u)T] . (1)

This non-dimensional equation has velocity non-dimensionalised by v̄, length
by x̄, density by the continuous phase density ρ̄c, viscosity by the continuous
phase viscosity µ̄c, pressure by ρ̄cv̄

2 and time by x̄/v̄. Note that variables
having over-bars (for example, x̄) have dimensions. In this study we refer
to one immiscible fluid as the ‘continuous’ phase and the other immiscible
fluid as the ‘disperse’ phase. These terms have been adopted for reasons of
convention only — under the csf method both fluids are treated identically
and can be interchanged.

Dimensionless groups relevant to the problem are the Reynolds number
(Re), the Weber number (We) and the capillary number (Ca). The capil-
lary number represents the ratio of viscous to surface tension forces. These
numbers are defined using continuous phase properties as

Re =
ρ̄cv̄x̄

µ̄c

, We =
ρ̄cv̄

2x̄

σ̄
and Ca =

We

Re
=

v̄µ̄c

σ̄
, (2)

respectively.

The momentum equation given in (1) is conventional except for the second
term on the right hand side. This term represents a surface tension induced
stress jump which acts along any disperse-continuous phase interface. As we
consider only systems for which the surface tension (σ̄) is uniform, this force
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is everywhere directed normal to the interface. The direction of this force
is n̂s, a unit vector which is defined only on the disperse-continuous phase
interface and is directed normal to this interface and into the disperse phase.
Other variables in the surface tension term include κs, the signed magnitude
of curvature of the interface, δ(x − xs), the Dirac delta function, and xs,
which specifies the location of the interface. The subscript s here signifies
that these variables are associated with a surface (the disperse-continuous
phase interface).

The surface tension term in equation (1) is problematic to implement in a
fixed or Eulerian mesh numerical scheme (especially in three dimensions) as it
is non-zero only on a surface, rather than acting continuously over a volume as
the other terms in the momentum equation do. The csf technique alleviates
this problem by replacing the surface force in equation (1) by a volume force
which acts over a small region surrounding any disperse-continuous phase
interface. Specifically under the csf method the surface tension term in
equation (1) is replaced by

1

We

ρ

〈ρ〉
κvnv . (3)

The normal in (3) is defined in terms of a continuous scalar field c as nv =
∇c/(cd−cc) and the curvature is defined in terms of the new interface normal
as κv = −∇ · n̂v where n̂v = nv/|nv| . Thus, both the normal vector and
curvature used in equation (3) are now defined consistently throughout the
fluid volume rather than just on a surface. In the present implementation, c is
taken to be the vof function φ (that is, the volume fraction of the disperse
phase) so that (cd−cc) = 1 and nv = ∇φ . As φ is constant within each fluid
phase, the normal nv, and thus the surface force, is non-zero only within a
small region surrounding any disperse-continuous phase interface.

The surface force defined in equation (3) includes a density correction
suggested by Brackbill, Kothe & Zemach [2] for modeling systems where the
phases have unequal densities. Here ρ = φ(ρd − 1) + 1 is the local non-
dimensional density and 〈ρ〉 = (1 + ρd)/2 is the average non-dimensional
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density of the two phases. Including these two variables in (3) has the effect
of weighting the surface tension force towards regions of higher density, thus
tending to produce more uniform fluid accelerations across the width of the
disperse-continuous phase interface region.

3 The origin of parasitic currents

To illustrate how parasitic currents develop, we consider the forces that act
on a two-dimensional planar droplet suspended in a continuous phase, all
within a zero gravity environment.

Physically, once equilibrium is established in such a system the droplet
would assume the shape of a circle and all fluid velocities would be zero.
Referring back to the momentum equation (1) we see that all terms involving
velocities in this system would be zero, the curvature around the interface
of the droplet would be uniform, the interface normal would be directed
everywhere in the radial direction, and the non-dimensional pressure would
be uniform within and outside the droplet but undergo a step change of
magnitude 1/(aWe) across the interface. Here a is the non-dimensional radius
of the droplet.

We now consider the same droplet, but in terms of an ‘ideal’ vof method.
Under the vof method, the location of the disperse phase is determined
by the scalar volume fraction φ. Employing a two-dimensional cylindrical
coordinate system (r, θ), under this ideal numerical method φ would be a
function of r only, and would be equal to one for r � a, zero for r � a, and
would vary monotonically between these two values over the interface region
where r ≈ a . Using the definitions given in the previous section, n̂v would be
a unit vector defined within the interface region pointing inwards in the radial
direction, κv = 1/r a function of r only, and the density, which is a function
of φ, also a function of r only. Thus, the entire surface volume interface
force given by equation (3) would be a vector directed in the radial direction,
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with a magnitude that is a function of r only. Such a force is irrotational
and so can be represented as the gradient of a scalar field. Referring back to
the momentum equation (1) but with the volume surface tension force now
substituted for the surface based force, we see that the long time for solution
for this system under this ideal vof method would be for the surface tension
force to be precisely balanced by the pressure gradient term, with all velocity
dependent terms, and thus velocities, being zero.

A real vof numerical implementation of this system differs from this ideal
implementation in that φ, which when discretised represents the volume frac-
tion integrated over the dimensions of a computational mesh cell, varies by a
small amount in the θ direction as well as in the r direction. This results in n̂v

being not precisely directed in the radial direction, κv varying slightly in the
θ direction as well as the r direction, ρ also having θ direction variations, and
the complete interface volume force given by equation (3) having an ‘erro-
neous’ rotational component. Referring again to the momentum equation (1)
but with the volume force again replacing the surface based surface tension
force, see that the ‘erroneous’ rotational component of the surface tension
force cannot be balanced by the irrotational pressure gradient term, so must
instead be balanced by one or more of the three other velocity dependent
terms. As these velocity terms (inertial transient, inertial advection and vis-
cous) all require non-zero velocities if they themselves are to be non-zero,
spurious currents develop.

4 Parasitic current correlation

To develop a correlation for the magnitude of these currents, we employ
the conservative assumption that the erroneous rotational component of the
surface tension force is balanced by one of the velocity dependent terms in the
momentum equation; the specific velocity term being the one which balances
the surface tension error with the lowest current magnitudes.
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Consider first a balance between the viscous and surface tension terms.
By equating the order of these we find

O
(

1

We

ρ

〈ρ〉
κvnv

)
= O

(
1

Re
∇ · µ[∇uP + (∇uP)T]

)
, (4)

where uP represents the parasitic velocity field. From the definitions pre-
sented in Section 2, κv is calculated as the divergence of a unit vector. In the
numerical implementation, this divergence is approximated as the difference
of an order one quantity over a mesh dimension of length h. Thus, we would
expect the maximum magnitude of error in κv to scale as 1/h. Similarly,
nv is defined as the gradient of the order one quantity φ. We would therefore
expect the maximum error in this normal magnitude to also scale as 1/h.

On the right hand side of equation (4), we have the divergence and gradi-
ent of the parasitic current velocity field. Parasitic currents are observed to
circulate over length scales of similar magnitude to the finite interface region
width, a dimension which is kept proportional to the mesh dimension h in
this study. Thus, we would expect the viscous term to scale as µUP/(Re h2)
where UP is a measure of the parasitic current magnitude. Employing these
assumptions in equation (4) we find for the parasitic current magnitude

UP ∝
Re

We

ρ

〈ρ〉
1

µ
. (5)

The local viscosity µ is defined in a similar fashion to ρ as a function
of φ. However, in the numerical discretisation of the momentum equation,
ρ and µ are not evaluated at the same position so that near the interface the
ratio ρ/µ can vary widely from location to location. Thus, the maximum
parasitic velocities derived from a balance between the surface tension and
viscous terms will scale as UV, where

UV =
2 max(ρd, 1)

Ca(1 + ρd) min(µd, 1)
(6)
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and Ca is the capillary number defined in Section 2.

We now turn our attention to the inertial advection term. Equating the
order of magnitude of this term with that of the surface tension term we find

O
(

1

We

ρ

〈ρ〉
κvnv

)
= O (∇ · ρuPuP) , (7)

where uP again represents the generated parasitic current velocity field. On
the left of this equation, we can employ the same scaling assumptions as
used above for the magnitudes of error in the normal and curvature variables.
On the right, we again note that observed parasitic currents circulate over
dimensions that scale with the mesh size h, so that the entire advection term
scales as ρU2

P/h. Again UP is a measure of the parasitic current magnitude.

In the numerical discretisation of the momentum equation (1), the density
used in the surface tension volume force term and that used in the inertial ad-
vection term are evaluated at slightly different locations. This would suggest
that the densities on the right and left of equation (7) cannot be canceled.
However, as the density used in the advection term is calculated from adja-
cent mass cell centred values, this is a reasonable assumption and one which is
supported by the numerical experiments presented later. Thus, we find that
a balance between the inertial advection and surface tension terms leads to
the maximum parasitic current magnitude scaling as UA, where

UA =

√
2

We(1 + ρd)h
. (8)

Finally we consider a balance between the inertial transient and surface
tension terms. Equating these terms in an order of magnitude sense we find

O
(

1

We

ρ

〈ρ〉
κvnv

)
= O

(
∂ρuP

∂t

)
. (9)

On the left of this equation we can employ the same scalings as used previ-
ously. On the right, the inertial transient term will scale as UPρ/t where t is
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the maximum time that any particular mesh cell has contained an interface
region. If the interface regions are stationary (as in the numerical experi-
ments presented next) t is simply the time elapsed since the beginning of the
test. Since the density used in the inertial transient term is evaluated at the
same location as the density in the surface tension term, we can cancel them
from both sides of equation (9) to find that a balance between the transient
inertial and surface tension terms gives parasitic currents that scale as UT,
where

UT =
2t

We(1 + ρd)h2
. (10)

Using our conservative assumption that in a given problem the erroneous
surface tension force will be limited by the velocity term which produces
the smallest parasitic current magnitude, we can combine equations (6), (8)
and (10) to form a single correlation for the maximum parasitic current
magnitude,

UP = min(aTUT, aAUA, aVUV) , (11)

where aT, aA and aV are constants specific to the particular numerical im-
plementation of the csf technique.

5 Numerical experiments

We now present results of numerical experiments performed using the Rud-
man [7] implementation of the csf technique in which we measure maximum
parasitic current magnitudes as a function of various physical and numerical
parameters. The purpose of these experiments is to validate the correla-
tion developed in the previous section, and at the same time, estimate the
magnitude of the constants aT, aA and aV valid for this particular csf im-
plementation.

The model problem we chose is that of a two dimensional planar droplet,
of radius 1/2, centred at the point (1, 1) and in a total domain of size 2× 2 .
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Table 1: Physical and numerical parameters varied in the numerical exper-
iments and the ranges over which they were varied.

Parameter Range
t 1 → 10
h 1/8 → 1/256

We 10−6 → 104

Ca 10−5 → 104

ρd 10−4 → 104

µd 10−4 → 104

Computational boundaries were modeled as non-slip and the domain was
discretised using a uniform, square mesh. A kernel radius of 3.5 fine mesh
cell dimensions was used when calculating nv and κv [7]. Note that as no
body force acts on this droplet, its equilibrium position should be the same
as its initial position and all velocities should be zero.

Table 1 shows the parameters that are varied in the numerical experi-
ments. The cell dimension h here is taken to be the side length of the coarse
momentum and mass cells. Note that in total over 170 numerical experi-
ments were performed, and the magnitude of currents measured in the tests
was found to vary over 8 orders of magnitude. Multiple results at different
times were taken for some tests to validate the form of the transient inertial
term in equation (11).

To determine the constants in equation (11), we calculated the difference
between the current magnitude predicted by the correlation and that mea-
sured experimentally for each test, averaged these differences over all tests
to find an average error, and using a regression analysis, found values of aT,
aA and aV which minimised this error. A comparison of the resulting corre-
lation and experimental values is shown in Figure 1, along with the values
found for the constants. As shown, the correlation predicts the order of mag-
nitude of the parasitic currents accurately as they vary from less than 10−7
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Figure 1: Parasitic current magnitudes predicted by the correlation (UP)
plotted against those measured in the numerical experiments (UP,experimental).
The values of aT, aA and aV found from the regression analysis and used to
determine UP are listed. The particular term of the correlation that limited
the current magnitude is indicated by the symbol type.
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to greater than 101.

6 Discussion

A significant conclusion that can be drawn from the results of Figure 1 is
that parasitic currents can be limited by the inertial terms in the Navier–
Stokes equations as well as by the viscous term. Currents will generally only
be limited by the transient inertial term (aTUT) if the disperse phase field
continuously evolves with time. If the disperse phase field remains stationary
then t will eventually become large and the inertial advection or viscous terms
will take over limiting the maximum current magnitude.

Currents limited by the inertial advection term (aAUA) are interesting as
they decrease as the Weber number of the simulation increases, but increase
as h is decreased. This latter observation shows that as the mesh is refined,
the magnitude of generated currents actually increases. This increase will
eventually stop with decreasing h; however, as the current magnitude limited
by the viscous term is independent of mesh size so that eventually aAUA >
aVUV and the viscous term will begin to limit the current magnitude. Note
that the computational time step does not affect the current magnitude.

Previous investigators have stated that parasitic current magnitudes gen-
erally scale as 1/Ca. If the viscosities and densities of the phases are equal,
and We is low so that inertial effects are not relevant, then the parasitic
currents become limited by the viscous term and equation (11) reduces to
UP = aV/Ca . This is the same relationship given by Lafaurie [4], who had
an equivalent aV of approximately 1 × 10−2 for their surface tension imple-
mentation. The lower value of aV = 6.4 × 10−4 determined in this study
indicates the increased accuracy of the Rudman csf implementation over
Lafaurie et al.’s earlier method. Brackbill, Kothe & Zemach [1] proposed
an alternative csf method in which the surface tension force is decomposed
into irrotational and rotational fields. They report a value of aV ≈ 6× 10−4
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Figure 2: Parasitic currents calculated at t = 4 for a planar two dimensional
droplet. The Weber and capillary numbers have been chosen so that UP is the
same for both frames, however in Frame 2(a) UP is limited by the viscous term
while in Frame 2(b) it is limited by the inertial advection term. h = 1/16
and ρd = µd = 1 in both cases. The contours are lines of constant volume
fraction φ.
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which is almost the same as the value determined here.

Figure 2 shows example velocity fields calculated for the model planar
drop problem: In one case the currents are limited by the viscous term
(Frame 2(a)) while in the other they are limited by the inertial advection term
(Frame 2(b)). The Reynolds and Weber numbers in these cases were chosen
so that UP was equal in each. The velocity vectors for the viscous limited
case were found to be quite time independent throughout the computation,
and as shown, were largest near the interface between the two phases. In the
viscous limited case the droplet remained stationary. In the inertially limited
case the parasitic currents tended to spread across the entire computational
domain, eventually moving the droplet away from the centre and along a
relatively random trajectory. While the form of the velocity field changed
with time in the inertia limited case, the maximum velocity magnitudes
remained constant. This is because the ‘erroneous’ csf force acts on the
velocity field in directions which are independent of the velocity direction:
While the force may increase parasitic currents at one location, at another
it may oppose them.

While parasitic current generation may be small if the disperse phase field
changes continuously with time (as is the case in many practical problems),
or may be confined to only small regions of a computational domain, the
developed correlation shows that current generation can be large for many
physically relevant systems. What implications these currents have on the
accuracy of other simulation results, such as droplet shapes, drag coefficients
and pressure fields, has not been analysed. The csf method has been used to
accurately predict droplet shapes and terminal rise/fall velocities in regimes
where parasitic currents are seen to be significant. However, in some situ-
ations the presence of parasitic currents is known to invalidate simulation
results, particularly when breakup of the disperse-continuous phase interface
results. For these reasons, more research is required to assess the effect that
parasitic currents have on simulation accuracy, particularly with regard to
disperse phase interface geometry and stress fields.
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7 Conclusions

A correlation describing the magnitudes of parasitic currents that develop
during simulations using the csf surface tension technique has been derived.
This correlation has been validated using a series of numerical experiments
performed using a vof algorithm. The correlation shows that when a system
is inertia dominated, the magnitude of generated currents can increase with
increasing mesh refinement. When a system is viscosity dominated, the cur-
rents scale with the inverse of the capillary number as has previously been
reported. Current magnitudes are not affected by the computational time
step. Future work will assess what implications the presence of parasitic cur-
rents has on the accuracy of csf simulations beyond simply inaccuracies in
the observed velocity field.

Acknowledgment: This research was supported by the Australian Re-
search Council Linkage Grants Scheme.
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