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AN ANALYSIS OF RANDOM d-DIMENSIONAL QUAD TREES*

LUC DEVRDYEt AND LOUISE LAFDREST$

Abstract . It is shown that the depth of the last node inserted in a random quad tree constructed from
independent uniform [Q, 11d random vectors is in probability asymptotic to (2/d) log n, where log denotes
the natural logarithm. In addition, for d =2, exact values are obtained for all the moments of the depth of
the last node .
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1. Introduction. Various data structures have been proposed for retrieval on com-
posite keys (or associative retrieval) such as k-d trees (Bentley (1975)), multi-
dimensional trees (Rivest (1974) ; Orenstein (1982)) ; grids with variable-sized cells
(Tamminen (1981), (1982)); quad trees (Finkel and Bentley (1974)) ; k-d-b trees
(Robinson (1981)) ; quintary trees (Lee and Wong (1981)) ; and multipaging structures
(Merrett and Otoo (1981)) . A partial survey of these structures can be found in
Tamminen (1981) or Gonnet (1984) . In this paper, we analyze random quad trees .
These trees have been used with a great deal of success in computer graphics (see
Woodwark (1982) and the references found there) and image processing (Hunter and
Steiglitz (1979)) . Detailed discussions of some common operations on quad trees, and
possible improvements, can be found in Bentley, Stanat, and Williams (1977), and
Samet (1980). See also the survey article by Samet (1984) . The quad trees considered
here are known as point quad trees since they are used to store points. Many applications
require region quad trees for storing screenfuls of pixels . Random region quad trees
were analyzed for example by Puech and Yahia (1985) .

A quad tree is constructed as a binary search tree . When a key X; occupies a node,
it partitions the rectangle it belongs to orthogonally into 2 d parts (called quadrants),
and thus creates 2d new rectangles, each having X, as a vertex . We should note here
that the traversal of one node requires d comparisons . A random quad tree is constructed
by inserting X 1 ,' • • , X,,, independently and identically distributed uniform [0, 1] d
random vectors, in the standard manner into an initially empty quad tree . We will
look at D„, the depth of X„ after it is inserted into the tree, where, by convention, the
depth of the root is zero. The level L„ of a node is equal to its depth plus one . Other
important quantities are the average depth A„ _ (1/n) ~"=1 D; and the height
max,D;. The height is in probability asymptotic to (c/d) log n, where c=
4.31107 • • • is the unique solution greater than two of the equation c log (2e/c) =1
(Devroye (1987)) . However, unsuccessful search times are in most cases appropriately
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measured by D„, the depth of the last node added to the tree . Our main result is the
following .

THEOREM M1. D„/log n tends in probability to 2/d as n - co. Also, ED„ ~ EA„ --
(2/ d )log n as n -+oo .

Ford = 1, the quad tree reduces to the binary search tree, and the random quad
tree coincides with a binary search tree constructed from a random equiprobable
permutation. Its properties, including the law of large numbers given in Theorem M1,
have been obtained in a series of papers by Lynch (1965), Knuth (1973), Robson
(1979), Sedgewick (1983), Pittel (1984), Mahmoud and Pittel (1984), Brown and Shubert
(1984), Louchard (1987), and Devroye (1986), (1987), (1988) .

In § 3, we will derive large deviation inequalities for D,, . In effect, we will prove
the following theorem .

THEOREM M2. For every 8>0, there exist positive constants a, b such that

P C~ (2/d)logn -1
I> S

The extra material needed to prove this is presented in § 2 . In § 4, for the planar case
(d = 2), we obtain exact values for ED„ and Var (D„). Both are of the order of log n.
Chebyshev's inequality then gives

P ( (2/d)1og n

	

I > S) - log

which is weaker than the bound obtained in Theorem M2 . The exact expressions are
obtained by solving some recurrences . It should be noted that the mean was obtained
independently by Flajolet et al . (1988), based upon an analysis that involves computing
the generating function .

THEOREM M3. Assume that d =2. For n 2,

1 2
6 3n

and

4 _ 13
2

	

9n 9n2 6 ,

where

c an _
b.

and
n

(1/i 2 ) .

In § 2, we obtain auxiliary results that allow us to prove Theorems Ml and M2 .
This will be done by reducing the d -dimensional problem to d one-dimensional
problems for which we have ready solutions at hand . We consider the quad tree formed
by consecutive insertions of X 1 , • . • , X 41 , independently and identically distributed
uniform [O, 1]d random vectors . The depth D7 1 of Xn+1 is equal to the number of
times the rectangle in the quad tree partition containing Xn+ , gets "cut" by X 1 , , Xn
We start with the full rectangle [o, 11d . The process of cutting can be summarized by
a sequence of random variables (Tk , Zk ), k o, where Ta =o, Z0 = l . Tk is a time
counter, and Zk is the size of the rectangle containing X +1 after it has been cut
precisely k times . Given (Tk , Zk ), Xn+ , and X 1 ,' . • , XT., it is easy to see that Tk+1 Tk
is geometric with parameter Zk , i .e., it takes the value i with probability Zk (1- Zk )
for i } 1 . Furthermore, Zk+1 is distributed as the size of the rectangle containing X n+1
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after it has been cut precisely k + 1 times . Note that D„+t is equal to the maximal k
for which Tk n. Thus, we have

P(Dn+1= k ) = P(Tk ~ n )-
We will exploit this duality and offer a study of the properties of the wk's in § 2 .

2. Auxiliary results about spacings, records, and random cuts . Consider indepen-
dently and identically distributed uniform [o, 1] random variables U1 ,' ., U, and
let Sbe the size of the interval to which x, a fixed number from [o, 1], belongs .

LEMMA Si . For any x E [o, 1],
L

Snx = min (x, U1,.',U,,) + _ - max (x, U1
L

where = denotes equality in distribution . If x = U, and U,

	

U„ is an independently
and identically distributed uniform [o, 1] sequence, then SnU is distributed as the second
smallest of U, U 1 , • • • , Un .

Proof of Lemma S I . We verify the distributional equality in three cases, according
to the signs of min Ui - x and max Ui -- x. Consider first the case min Ui x and
max Ui x. Then, define

Jx-Vi i Ui C x,
1+x- Ui if Ui ~x,

= x - max Ui + min Ui -- x
is U,Cx

	

is U,~x

min V + 1-max V
is U, cx

	

is U; }x

= min V + 1-max V1 .

It is easy to verify the two other cases now. For example, if min Ui x, then
Snx = x +1- max V = min (min V, x) + 1-max V1 .

The second statement of the lemma follows from a property of uniform spacings (see,
e.g., Pyke (1965), (1972) for a survey), which states that the sum of any k spacings is
distributed as the sum of the first k spacings .

	

0
LEMMA 52. For t E (0, 1),

P(S„u<t)=1-(l+tn)(1-t)"~(tn)ZCZ+n(li r)
)

Also,

P(S> t)=(.1+tn)(1--t) '~ (l+tn) e-tn~e-urn}~f{z{'+r~~}

For to 1, the last upper bound is not greater than e" 4 .
Proof of Lemma S2 . Let Y be binomial (n +1, t) . Then, by Lemma S1,

P(S„~<t)=P(Y?2)=1-P(Y=0)-P(Y=1)

n+i\t0l('l_t! \n+l_ n i 1 t l( 1 _ tln\

	

I

=1-(1-t)"(1-t+(n+l)t)=1-(

	

t)"(l+tn) .
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Using log (1+ v) ? v - v Z/2, valid for v? 0, and log (1- v) ? -v/(1- v), valid for
0v<1, we see that

P(S„~ < t) ~ 1 -exp [tn (tn)2
to 1

	

(tn) Z

	

to
21-ti

The second part of the lemma follows from the first one and the inequality log (1+ v) --
v ~ -- v 2/ (2(1 + v)), valid for v0 .

	

0
Let U, U1 ,'',• U~ be independently and identically uniform [o, 1 ] random vari-

ables, and define [V1 , U] and [U, W ] as the spacings nearest to U after U, U 1 ,' • • , U1
have been considered, with the convent on that Vo =0, 'moo=1 . Let Nn be the number
of indices i for which (V , W) ~ (V, _, ` V_ 1 ), 1 i n. In Devroye (1985), it is shown
that ~1T,~ is distributed as the sum of n independent Bernoulli random variables V, i .e .,
N,~ = n= , V , where EV = 2/(i +1) . We will need to know more about the properties
of .PIE„ since N represents the number of times the spacing containing U is "cut" as
we process the US's. In particular, we need solid tail bounds. These can be obtained
by Chernoff's exponential bounding technique (Cherno#f (1952)) .

LEMMA S3. Define ACC = 2(Hn 1 --1) . For

P(Nk)~.exp

	

,(Jk_&2)
2k

and for k .t,

P(N„ ~ k) ~ exp' -'(p.-k)2)

Proof of Lemma S3 . By Jensen's inequality, for arbitrary A >0,

P(N„ ? k) - P / i > l Y ? k , ~ E exp' 1~

	

Y,• -1~k)

_„k fi (

	

2

	

2e''
1- . +

;_, `

	

r+l i+l

exp [-Ak+2(e" -1)(Hi+1-1)].
The exponent is minimal for eA = k/(2(H„+, -1)) . Resubstituting this value and using
the notation y = eA -1>0 gives the further upper bound

n+
exp[2(H~+1-1)(Y-(1+y) 1o8(1+Y))]~eXP [_21_1)Y2],
	 ~H

2(i+y)

where we used the fact that y -(1 +y) log (1+ y ) C -y 2/(2(1 + y ) ), which can be verified
by using Taylor's series expansion with remainder . The last upper bound coincides
with the first inequality in the statement of the lemma . To obtain the second inequality,
we pick another a > 0 and note that

2

	

2e-A1P(N„ ~ k) ~ e~kE(e-"N„) = e1	+	
1=1

	

, fi `

	

z+l i+l

exp [Ak -2(H„ + , -1)(1-

The upper bound is minimal for e -" = k/(2(H„+, -1)) . We define y =1- e -'', and
resubstitute these values to obtain the upper bound

exp [-2(H„ +1 -1)(Y + (1-Y) log (1 - Y))] ~ eXP [- (Ha ~ 1)Y2],

e

1
(tn)2(+ _2

1
n(1-t~ .



where once again we used. Taylor's series expansion with remainder . This concludes
the proof of Lemma S3 .

	

0
Lemma S3 shows very clearly that +T,~ is close to its expected value, 2(HI 1 -1) .

We are almost ready to get to the main lemma about uniform cuts . Consider an infinite
sequence of independently and identically distributed uniform [o, 1] random variables
U, U1 ,' • • , U,' • • , and let Zk be the size of the spacing to which U belongs after it
has been "cut" or "hit" k times by members of the sequence U1, U2 ,' • • . In notation
introduced above, Zk = W --- V where (V,, W,) is the kth pair not equal to its pre-
decessor. Interestingly, Zk , 5,,,j , and N are connected via the following inclusions of
events :

LEMMA S4. Let k > o and t e (o, 1 ) be fixed. Then, for any positive integer n,

[Zk<t]c[SflU<t]U[N<k],„

and

[Zkt]c[SflUtJU[Nflk] .~

	

~

	

~

Proof of Lemma S4. The proof is obvious .

	

D
We can now announce our main lemma for the uniform k-cuts Zk .
LEMMA S5. Fork ? 3 and 5>0, we have

P'
!
Zk <exp [_ k 2 1 (1+25)J

1
/ ~6exp[-S(k-1)]+exp [_ 82(k-1 ]2i+~) .

Also, if S E (0, 2), S ? 3/k, and k _> 2/(1 - 8), we have
1

	

z
PCZk ?exp C-2 (1-25)

J
) ~exp 2- /

I 4\ ' eksiz +(2e)SZ~cI-s) eXp ---

Proof of Lemma SS . From Lemmas S2, S3, and S4 we recall that for some n to
be picked further on,

P(Zk < t) ~P(S„u < t)+P(N„ <k)
\

	

2
<~rn)2 C2+ n ~ l i t~ /+eXp C-(x„+,-1)(1 2(Hn+ 1 -1

valid for k -1 ~ 2(H„+, -1). Consider a constant S E (0, 2), and define

n=l 2exp
1k-

1
(1+5) J~L

We note that

1
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n±11

	

n+2 1

	

n +2
--}

	

--dx=log
=21 ~ z x

	

2
k 2 (1+S) .
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This implies that k -1 ~ 2(H„+1 -1 ), as required . Using the fact that the function
(y - a)2/y is increasing for y > a' 0, that n' 2 (by definition), and that t ~ ? (by
assumption), we see that

/

	

\

	

z
P(Zk<t)~4t2exp[(.k-1)(1+S)J12+n ~ 11 t ~ /+exp C - 2(1+S)\

	

I

~6t2exp[(k-1)(1+S)]+exp _ 82(k -1 )
[ 2(1+8)
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We obtain the first half of the lemma by setting t = exp [((k -1)/2)(1 +2S)] . The
condition t ~ 1/2 is fulfilled when '(k -1)(1 +28) ? 2, which is certainly the case
whenever k' 3 .

Consider now the second half of the lemma . Assume that n is such that k >_
2(H +1 -1) . Assume that to ? 1 . From Lemmas S2, S3, and S4, we retain that

(1)

P(Zk > t)P(S"~ > t)+ P(N ? k)e -r"/4 +exp C

L. DEVROYE AND L. LAFOREST

_(k-2(H„+,-1))Z1
2k

n +

	

k(l -
-1 ~ log 2

'-1
? log (ek(l-s>~2) -log (2e) =	s~ -log (2e) .

2

	

2

We now choose S E (0, 1/2), and define

n =

	

_ 1 .

This value of n is at least one if k(1- S) >_ 2 . It is easy to verify that H„+, 1 ~ k(1- S)/2
so that the condition relating n and k is indeed satisfied . If we set y = k/(2(H„ + , -1))
(which, as we have seen, is at least equal to 1/(1-S)), then the inequality reads

P(Zk > t)~e 4 +exP [_(H +I _l)

	

„~Yyl)Z
J
~e a +exp -(H„+,-1) 1 SaS J

e+r"14+(2e)S2/'0_
~~ e _k&2/Z

where we noted that

For t - e'2 " 2 , we have to e 2 -2,ks/ so that the upper bound becomes

P(Zk > t) e1/2_(1/4}e~$12+ (2e)82/('--s}

Also, the condition to 1 is fulfilled if kS 3 .

	

0

3. A law of large numbers for quad trees . The purpose of this section is to prove
Theorem Ml .

THEOREM Ml . Dr/log n tends in probability to 2/d as n - ao . Also, ED" --- EA n ^~
(2/d)Iog n as n -+ co .

Recall the definition of Tk and Zk from the Introduction . We have

k) = P(T n)~ P(Tk - Tk_1 ~ n).

Observe that Zk = f =1 Zk (i), where the Zk(i )'s are independently and identically
distributed random variables distributed as the uniform k-cut dealt with in Lemma
S5. We choose a small positive constant S, and define q = exp (--(k --1)(l -28)/2) . Let
A be the event that max i Zk _ 1 (i ) q. By an obvious left tail bound for the geometric
distribution and Lemma S5, we have

P(Dn+1 k)P(A, Tk -- Tk__, n )+ P(A`)

nq d +d xP(Zk_,(1)> 9) .
nqd + d (e1/2_(1/4}

	

x,6/2 + (2e) 2S/(1-$} e(k--i 3s2~~

if $?3/(k-1) and k-12/(1-S). As k--~cX, the upper bound is nq d +0(1) . If We
now take

z
k-

	

dpi _3S) log n
,



then it is easy to verify that nq`' = 0(1) as well . Hence, P(D„+, ? k) = 0(1), proving
one half of the theorem (since S is arbitrary) . In fact, P(D„+, ~ k) = O(log-R n) for
any positive constant R.

The second half is proved similarly . Because we obtained exponential inequalities
in the lemmas of the previous section, we can actually get away with a very crude
bounding technique. Let A be the event min; Zk_,(i) ? q where q =
exp (((k -2)/2)(1 +25)), let k?3, and assume that S>0 is an arbitrary but small
constant. Then,

P(D„+,<k)=P(Tk>n)~PCU T-T, -L-'>-
j= Ij= 1 J

~kP' Tk-Tk_,>k)

k / P (A, Tk - Tk-, > k) +P(A`))

qd(1-qa)'-'+dxP(Zk-,(1)<R))
\i>n/k

~k(1-qd)("ik)-'+kd xP(Zk_,(1)<9)

~kexp C-Ck-1'

k

whenever k -* cc (by Lemma SS and our choice of q) . If we take

-2 [d(1+35) log fl] ,

it is a simple exercise to verify that nqd/k - cc, which then shows that P(D„+, < k)
= 0(1), as required. This concludes the proof of the weak convergence of D,, . This
trivially implies that

ED,, 2
iim infn-~ log n d

Also, for small 5>0, and arbitrary M > 1,

RANDOM QUAD TREES
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qdJ+o(1)

ED = J n P(D„ > t) dt
0

~1+(1235)

	

~

	

	 logn+MlognP'D„>l+ld(1235J ogn)
d--

+ nP(D„ > M log n)

2= l+d(1-35)

by the bounds obtained above . To conclude that ED„ -~- (2/d) log n, we need only
establish that P(D„ > M log n) = o(1/n) for some constant M . This follows by noting
that the bound (1) with q as chosen there and k = ~M log n J is o(1/ n ) whenever
M>max (2/52, 4/(d(1-25))) .

The statement about EA„ finally follows easily from the statement regarding
ED„ .

	

0

log n + 0(1)+ nP(D„ > M log n)



82$

	

L. DEVROYE AND L. LAFOREST

4. Some recurrences related to quad trees . In this section, we only consider the
case d =2. As above, we let Dn be the depth of the nth node in a tree of n nodes . We
also define

Pnf Q P(Dn = I),
and note that by convention P1,o =-1, i.e ., the root node is at depth zero. We begin with
the following recursion :

LEMMA RI . Let P't, I j 4, be the cardinailities of the four subtrees of the root of
a random quad tree in the plane . Then

n

when n 2. Also, for n ~` 2,
4

	

n-1

n(n-1) =o
where Pu--1 = o for 0 i C L

Proof of Lemma R1 . We note that P(N1+ Nz = i) =1 / n for 0 i < n. Given N1 +
N2 , N1 is again uniformly distributed on o,

	

, N1 - N2 . Thus,

P( N1 ~=

For the second part of the lemma, we use the fact that given the No's, the last node
ends up in the ith subtree with probability N;/ (n --1 ). Thus,

4 n--1

	

inn,1 _

	

~-~- P(N _" Pi, l -1 ,t'

	

j=1 i=o n ~" 1
from which we deduce our result by symmetry .

	

a
The basic recurrence of Lemma R1 can now be used to obtain recurrences for the

generating function and the moments of Dn . We define

n(t} = E(e"n)

and
~'4 n,rn = E(Dn ) =

LEMMA R2.

4e' n---1
c (t)

	

n =

	

i(H,, - H1)~b (t),n n--1}

and, for m >0,
4

	

n -1

	

'" m
I (Hn - Hi )n(n - I) 1=1

	

j=o j
where /Ln,o 1 .

Proof of Lemma R2. From Lemma Rl,
n-1

	

n-1

	

4

	

n--1
pn,j e'1

	

e r!		j (Hn - Hi)pi,i-1
1=1

	

1=1

	

n(n-1) •= r
4

	

n-1
i (Hn " H1 )

	

e' p,, 1 - 1
n(n - I) ;-1

	

1=1
4e' "-'

n(n -1) =1

n -1 1

	

In-1 1
i} =

	

P(N1+N2=j)_-j =i j+ 1

	

n j=j j+ 1

0~i~n--1,

!(HH, )n - .
n



This proves the first recurrence of the lemma . Let us now take f„ (t) _
i(H„-H;)¢;(t) . We have

4 r

d'n(t) =

	

.f~n n e 1) (t),

and thus

Thus,

	(
.~\ JL,0 1 , Jf ,)\Ol non-1)O , J / ; /rl tlHn - HilV~i ,) lo/f

4
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)(t~

	

~n er

	

\i/l).i~

	

f°~(
t)

n

	

.

which concludes the proof of the lemma.

	

0
From Lemma R2, we can conclude, with a little work, the following lemmas :
LEMMA R3.

In particular, i.t,o

and

(z)

where

(3)

'~- m
lu'

r

	

(

	

LT
l -I} m_1-J +

	

x`Hn - Hi)~i,m .
j=o J

	

n(n ---1) 1=1

--1,

4 n -1

4n---1

n(n--1)

	

i (Hn -- Hi
)~

i, 1 ,
t = 1

_

	

4

	

n--1

Pn,2 -2 I'n,l r' 1+

	

i(Hn -H)pi,2
n(n - I) 1=1

The recurrences in Lemma R3 are of the following general form :

4

	

n-1
i (H - Hi )xi ,

	

n
n(n

	

) i=i

x1 =O,

	

x2 =a2 .

1 2
f 3n

2,

829

LEMMA R4. The general solution of recurrences (2) and (3) is

n ~r=1 i 2 (i - 1)ai
xn - an+~

	

.2r

	

2r .

	

n}3.
j=33 `j-1) } `j - 2)

Proof of Lemma R4. The proof is omitted .

	

0
Lemmas R3 and R4 can now be combined to obtain the moments of D n . In

particular, we have
THEOREM RI . For n 2,
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and

Also,

where

Thus,

- -Var (D" )H~~n}+1H 5

	

4 13
n +

	

2
2

	

9n 9n 6
Proof of Theorem R1 . For Jtn,1 , we .note that a n =1, so that simply

2	
j -3 J (J - 1 ) (j-2)

1 " 3J 1
_ 1+-

3~=3j(j--1)

=1+1~ ~l +
3j-3\J j-1~

1

	

2
=l+1- Hn_1___+2(Hn
1_1)=H_!__

3

	

2

	

6 3n
From this, we see that in the computation of when we apply Lemma R4, a n can
be set equal to -1= 2Hn --- (4/3)((n + 1)/n) . From Lemmas R3 and R4, we then
conclude that

4n+1 +4 ~

	

b;
3 n

	

;=3 .1 (j-1) 2 (j

1

z

	

~~} H" 4Hn 7 77
/n,2

	

--

6 3n 9n 36

j- 1

bj -

	

i2(i -
i-1

.1

2(

	

I 2(1
i=1

4 a+l

3 i

-1)H;-j (j-1)H~ -- ~ i(i -1)

1)C2H;

3 -,
j(j-1)(J-2) (12(3j _1)H;-(33j+29)) .72

4 n+l 1

	

12(3j-1)H;-(33j+29)
µ„,z=2H„-3 n

+ 18 ;~

	

.1 ( .1 - 1)

=2H- 4
n+1 + 2

~ (4+-)_- .
2 H 1 ~ ~62 _ 291

3 n

	

3 ;=3 I .1 - 1' 18 ;=3

	

-1 3
4n+1 2 'Hj

	

" Hj_ 1 +1/j

	

1=2H-- ---

	

+-

	

+2

	

J --(33Hn
3 n

	

3 j=3 J

	

j=3 J - 1

	

18
11 19 2 " Hj

	

3

	

" -'H,

	

"

	

1H" -- + + --

	

--I--+2 -+2 .36 9n 3 j-1 j

	

4

	

j--2 j

	

j=3J(J _ 1)
53 19 2

	

" Hj 4 " -1 1

	

" 1
Hn -- + - -- (2 Hn + 2 )+ 2 -+-(	 ~-

36 9n 3

	

j= i j 3 j =2 J j=33
- 101 19 -4Hn

	

2

	

~2} 4

	

_ 1

	

-

	

1
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In this derivation, we needed the following identities, some of which can be found in
Knuth (1973, pp . 75-77) :

n
H1= (n + 1)H" - n,

i=1

•

	

n(n + 1) n(n 1
YHr

2 Hn -

•

	

2Hn(n+l)(2n+1)1
i=,~

	

6

	

36
Hn

"
i3R

	

H,,-
n2(n+l)2

	

n(nZ-1)(3n-2)
-,

	

4

	

48

~ . t-- (H~+H;~~})
err

	

2

Finally, Var (D,,) is obtained as

	

-
From Theorem R1, we conclude that ED„ = log n + y -- 6 + o(1) and Var (D") =

z log n + y/2 + ire/6 - + o(1), where y is Euler's constant . Chebyshev's inequality
now implies that D„ /log n -~ 1 in probability as n - co . The resulting upper bound for
P(D, /log n (1- E, 1 + E)) drops off as (1+ o (1)) (2 E 2 log n)' . The exponential bound-
ing method for the previous section yields better tail bonds, however .
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