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Abstract

The goal of this article is to explain how several single image defogging methods work using a color ellipsoid

framework. The foundation of the framework is the atmospheric dichromatic model which is analogous to the

reflectance dichromatic model. A key step in single image defogging is the ability to estimate relative depth.

Therefore, properties of the color ellipsoids are tied to depth cues within an image. This framework is then extended

using a Gaussian mixture model to account for multiple mixtures which gives intuition in more complex observation

windows, such as observations at depth discontinuities which is a common problem in single image defogging. A few

single image defogging methods are analyzed within this framework and surprisingly tied together with a common

approach in using a dark prior. A new single image defogging method based on the color ellipsoid framework is

introduced and compared to existing methods.

1 Introduction
The phrase single image defogging is used to describe

any method that removes atmospheric scattering

(e.g., fog) from a single image. In general, the act of

removing fog from an image increases the contrast. Thus,

single image defogging is a special subset of contrast

restoration techniques.

In this article, we refer to fog as the homogeneous

scattering medium made up of molecules large enough

to equally scatter all wavelengths as described in [1].

Thus, the fog we are referring to is evenly distributed and

colorless.

The process of removing fog from an image (defogging)

requires the knowledge on physical characteristics of the

scene. One of these characteristics is the depth of the

scene. This depth is measured from the camera sensor to

the objects in the scene. If scene depth is known, then

the problem of removing fog becomes much easier. Ide-

ally, given a single image, two images are obtained: a scene

depth image and a contrast restored image.

The essential problem that must be solved in most sin-

gle image defogging methods is scene depth estimation.

*Correspondence: k1gibson@ucsd.edu
1Department of Electrical and Computer Engineering, University of California,

San Diego,9500 Gilman Dr., La Jolla, CA 92093, USA
2Space and Naval Warfare Systems Center Pacific, 53560 Hull St., San Diego,

CA 92152, USA

This is equivalent to converting a two-dimensional image

to a three-dimensional image with only one image as the

input. The approach to estimating the scene depth for

the purpose of defogging is not trivial and requires prior

knowledge such as depth cues from fog or atmospheric

scattering.

The concept of depth from scattering is not new. It has

been used by artists to convey depth to a viewer in their

paintings as early as the renaissance [2]. Themathematical

model of light propagating through a scattering medium

and dependence on distance can be traced back to Beer-

Lambert-Bouguer, then Koschmieder [3], Middleton [4],

Duntley [5] and thenMcCartney [6]. The light attenuation

is characterized as an exponential decaying term,

ti(λ) = e−βi(λ)di , (1)

where at pixel location i, the transmission ti is a function

of the scattering βi(λ) and distance di. The term λ is the

specific wavelength.

Even though depth from scattering is a well-known phe-

nomenon, single image defogging is relatively new, and a

growing number of methods exist. The first methods try-

ing to achieve single image defogging were presented by

Tan [7] and Fattal [8]. Both authors introduced unique

methods that remove fog from a single image by inferring

the transmission image or map. Soon afterwards, another

unique method called the dark channel prior (DCP) by He

et al. [9] supported the ability to infer a raw estimate of t
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using a single image with fog present. The DCP method

has also influenced many more single image defogging

methods (see [10-16]). Within the same time frame, Tarel

and Hautière [17] introduced a fast single image defogging

method that also estimates the transmission map.

In this article we address the question: Can existing sin-

gle image defogging methods be unified with a common

model? One key message is the existing methods estimate

the transmission with a common prototype

t̂ = 1 − wθ , (2)

where w is a scaling term, and θ is a ‘dark prior’. The

DCP method by He et al. [9] was the first to explicitly use

(2); however, we demonstrate that this is the prototype

used also by other methods regardless of their approach.

We find that the dark prior is dependent on properties

from the proposed color ellipsoid framework. The follow-

ing single image defogging methods are analyzed within

the framework: Fattal [8], He et al. [9], Tarel and Hautière

[17], and Gibson et al. [16].

The second key message in this article is that a new sin-

gle image defogging method is proposed. This method is

developed using a lemma from the color ellipsoid frame-

work and also estimates the transmission with the same

prototype in (2).

There are eight sections in this article including this

section. Section 2 presents a detailed description of the

atmospheric dichromatic model. Section 3 introduces the

color ellipsoid framework. The framework is analyzed

when fog is present, and our new defogging method is

introduced in Section 4. We then unify four different sin-

gle image defogging methods using the color ellipsoid

model in Section 6. The discussion and conclusion are

provided in Sections 7 and 8, respectively.

2 Atmospheric dichromaticmodel
For each color λ at pixel location i, the dichromatic atmo-

spheric scattering model [18],

x̃i(λ) = ti(λ)xi(λ) + (1 − ti(λ))a(λ), (3)

is commonly used in single image defogging methods for

characterizing the intensity of a foggy pixel.

In comparison to the dichromatic reflectance model

[19], the diffuse and specular surface reflections are

analogous to the direct transmission, ti(λ)xi(λ), and

atmospheric veiling, (1 − ti(λ))a(λ), respectively. The

atmospheric scattering causes the apparent radiance to

have two chromatic artifacts caused by particles in the

air that both attenuate direct transmission and add light

induced by a diffuse light source.

For obtaining a defogged image, the goal is to estimate

the p-channel color image (x(0), x(1), . . . , x(p − 1))T =

x ∈ R
p using the dichromatic model (3). For most cases,

p = 3 for color images. However, the problem with (3)

is that it is under-constrained with one equation and four

unknowns for each color channel. Note that there are two

unknowns contained within the transmission, t(λ), in (1).

The first unknown is the desired defogged image

x. The second unknown variable is the airlight color,

(a(0), . . . , a(p−1))T = a ∈ R
p. This is the color and inten-

sity observed from a target when the distance is infinite.

A good example is the color of the horizon on a foggy or

hazy day.

The third and fourth unknowns are from the transmis-

sion introduced in (1). The transmission, ti(λ) ∈ R, is

the exponentially decaying function based on scattering,

βi(λ), and distance di.

The scattering βi(λ) is itself a function of particle size

and wavelength. For foggy days, the scattering is color

independent. On clear days with very little fog, the scatter-

ing coefficient becomes more dependent on wavelength.

In [18], the scattering is assumed to be the same for

all wavelengths and also homogeneous for scenes with

thick fog down to dense haze [4]. In this article, we make

the same assumption that βi(λ) = β for scenes with at

least dense haze present, therefore ti(λ) = ti ∀ λ. The

atmospheric dichromatic model is simplified to:

x̃i = tixi + (1 − ti)a, (4)

bringing the unknown count down to a total of two for

gray scale or four for red-green-blue (RGB) color exclud-

ing estimating x. The transmission t is the first unknown

and airlight a is the second unknown for gray scale. For

color (p = 3), transmission t is one unknown and airlight

a has three unknowns.

The single image defogging problem is composed of

two estimations using only the input image x̃: the first is

to estimate the airlight a and the second to estimate the

transmission t.

There exists several methods for estimating a [7,9,18].

In this article, we will assume that the airlight has been

estimated accurately in order to focus the analysis on

how transmission is estimated (with possible need for

refinement). Therefore, the key problem in single image

defogging is estimating transmission given a foggy image.

3 Color ellipsoid frameworkwithout fog
The general color ellipsoid model and its application to

single image defogging was introduced by Gibson and

Nguyen in [20] and [21]. This work will be reproduced

here to facilitate the development of additional properties

of the model in this article.

The motivation for approximating a color cluster with

an ellipsoid is attributed to the color line model in [22]

which is heavily dependent on the work from [23]. The

color line model exploits the complex structure of RGB

histograms in natural images. This line is actually an

approximation of an elongated cluster where Omer and
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Werman [22] model the cluster with a skeleton and a 2D

Gaussian neighborhood. Likewise, truncated cylinders are

used in [23].

We continue the thought presented by Omer and Wer-

man [22] that subsets of these clusters are ellipsoidal in

shape. We accomplish this by instead generating an RGB

histogramusing color pixels sampled from a small window

within the image.

Let us begin with modeling the observed apparent

radiance at window �i with pixel location i as a three-

dimensional random variable Xi,

Xi = {x | x ∈ �i} . (5)

Assume that the observed data within the sample window

exhibits a normal density,

pXi(x) ∼ N (μi,�i), (6)

with μi ∈ R3 and �i ∈ S
3
++. The covariance matrix is

decomposed as

�i = UT
i DiUi (7)

with the eigenvalues in Di = diag(σ 2
i,1, . . . , σ

2
i,3) are sorted

in decreasing order.

Given color pixels within window �i, we will define the

color ellipsoid as

Ec (μi,�i) =
{

x | (x − μi)
T�

−1
i (x − μi) ≤ 1

}

, (8)

parameterized by the sample mean μi and sample covari-

ance �i. We will drop the parameters for clarity so that

Ec (μi,�i) = Ec.

It is common to assume that the distribution of the

color values sampled within �i is normally distributed or

can be modeled with an ellipsoid. The distribution for

the tristimulus values of color textures was assumed to

be normally distributed by Tan [24]. Even though Devaux

et al. [25] do not state that the sample points are normally

distributed, they model the color textures with a three-

dimensional ellipsoid using the Karhunen-Loeve trans-

form. Kuo and Chang [26] sample the entire image and

characterize the distribution as a mixture of Gaussians

with K clusters.

In Figure 1, we illustrate the concept of approximating

the cluster of points from a sample window �i. We have

a clear day image with two sample windows located on a

tree trunk and dirt road. The color points are plotted in

Figure 1b. The densities from the data points are then esti-

mated and plotted using two-dimensional histograms for

each color plane: red-green, green-blue, and red-blue. The

higher the frequency, the darker red the density points

become.

In Figure 1c, we approximated color ellipsoids to each

cluster using principal component analysis, where the

sample mean and sample covariances were used. In

Figure 1b,c, the upper cluster is from the road and the

lower cluster is from the tree trunk. Approximating the

RGB clusters with an ellipsoidal shape does well in char-

acterizing the three-dimensional density of the cluster of

points.

4 Color ellipsoid framework with fog
4.1 General properties

We derive in this section the constraints for color ellip-

soids when fog is present. We first simplify the derivation

by assuming that the surface of the radiant object within

the sample window is flat with respect to the observation

(a)

0 0.2 0.4 0.6 0.8 1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Red
Green

B
lu

e

(b)

0 0.2 0.4 0.6 0.8 1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Red
Green

B
lu

e

(c)

Figure 1 Color ellipsoids in clear natural scene. (a) Clear day scene with a sample window over the tree trunk (white rectangle) and a window

over the road (black rectangle). (b) RGB histogram plot of points from the two windows with their densities projected on each color plane. (c) The

same RGB histogram plot only with the ellipsoid approximations for each region of interest (ROI). The green ellipsoid is from the tree trunk, and the

red ellipsoid is from the dirt road.
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angle so that the transmission ti is the same within �i

(ti = t).

If the apparent radiance of the same surface is subjected

to fog, then it can be shown using (4) and (6) that the

observed foggy patch is also normally distributed with

attenuated variance and translated mean,

pX̃i
(x̃) ∼ N (μ̃i, �̃i), (9)

with μ̃i = tμi + (1 − t)a, (10)

and �̃i = t2�i. (11)

Note that the transmission is the same within the patch

because it is assumed that the depth is flat.

The RGB histogram of the surface and a foggy version of

the surface should exhibit two main differences. The first

is that the RGB cluster will translate along the convex set

between μi and a according to (10). Second, with 0 ≤ ti ≤

1, the size of the cluster will become smaller when fog is

present according to (11). In this article, we present the

following new lemmas.

Lemma 1. The transmission t of any scene with fog in the

atmosphere β > 0 has the inequality

0 ≤ t < 1. (12)

Proof. Let β > 0 since the scene is viewedwithin the fog.

Then, t = e−βd = 1 holds if and only if d = 0. However

in real world images, the distance to the camera is never

zero (d > 0), therefore 0 ≤ t < 1.

Lemma 2. Define the clear day color ellipsoid as

Ec =
{

x | (x − μi)
T�

−1
i (x − μi) ≤ 1

}

,

and the foggy day color ellipsoid as

Ẽc =
{

x | (x − μ̃i)
T �̃

−1
i (x − μ̃i) ≤ 1

}

.

If the parameters μ and μ̃ are formed according to (10),

and ||μ||2, ||μ̃||2, ||a||2 ∈ R>0, then the centroid of Ec is

closer to the origin than the centroid of Ẽc.

Proof. Let us begin with a reasonable assumption that

the airlight is the brightest color in the image,

||a||2 >= ||μ||2 . (13)

The centroid of the foggy day color ellipsoid μ̃ is within

the convex set in (10) such that when t = 0, μ = a, and

when t = 1, μ = x. Similarly,

||μ||2 ≤ ||μ̃||2 ≤ ||a||2 . (14)

However, Lemma 1 strictly excludes the point μ̃ = μ;

therefore

||μ||2 < ||μ̃||2. (15)

Lemma 3. The volume of the color ellipsoid Ec is larger

than the foggy color ellipsoid Ẽc.

Proof. Using (11) and denoting det as the determinant,

the ellipsoid volumes are

det �̃ = det t2�. (16)

Given Lemma 1, 0 ≤ t < 1, we then have the relationship

det �̃ < det�. (17)

Figure 2 Color ellipsoids in foggy natural scene. (a to c) Images of the tree branch in the fog at three different distances with sample windows

overlaid on the same branch in each image. (d) RGB histogram of each sample set.
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We demonstrate Lemmas 2 and 3 with a real-world

foggy day image set. In Figure 2, there are three images of

the same tree on a foggy day at three different distances.

A sample window �i is located on the same tree branch

in each image. For each �i, the densities are plotted in

Figure 2d. Note that the densities are ellipsoidal in shape.

Also, for the tree branch positioned closer to the cam-

era, the ellipsoid is larger in size and positioned closer

to the RGB cube origin (�3). For the tree branch posi-

tioned farthest away (�1), the ellipsoid is smaller in size

and positioned farther away from the RGB origin.

4.2 Color ellipsoidmodel with depth discontinuity

We have assumed in the previous section that the trans-

mission within a sample window is constant. However,

this is not always true. For example, the sample window

may be centered on a depth discontinuity (e.g., edge of a

building).

If depth discontinuities are not accounted for in trans-

mission estimation, then undesired artifacts will be

present in the contrast restored image. These artifacts are

discussed in more detail in [9,16,17]. In summary, these

artifacts appear to look like a halo at a depth edge.

To account for the possibility that the sample window

is over a depth discontinuity, we characterize the pixels

observed within � as a Gaussian mixture model [27]. The

sample window may cover K different types of objects.

This yields K clusters in the RGB histogram.

Let the gth random mixture variable at pixel location i

be the summation of disjoint sub-windows of �i,

X̃i,g =
{

x̃ | x̃ ∈ �i,g

}

with �i =

K
⋂

g=1

�i,g ,

and �i,h ∩ �i,j = ∅, ∀ h �= j,

and the total mixture distribution become

pX̃i
(x̃|�K ) =

K
∑

g=1

πi,gpX̃i,g
(x̃|μ̃i,g , 	̃i,g). (18)

The parameter vector �K = (μ̃1, . . . , μ̃K , �̃1, . . . , �̃K )

is a culmination of the K Gaussian mean and covariance

parameters defined by Equations 10 and 11, respectively.

The mixture weight πi,g is |�i,g |/|�i| with
∑K

g=1 πi,g = 1.

An example of the presence of multiple mixtures within

� is shown in Figure 3. The sample window is centered on

a region with leaves close to the camera and leaves on a

tree branch farther away. Even though the plot of the color

pixels appear to be one elongated cluster, the existence

of two mixtures is evident in the density plots with two

distinct dark red regions on each color plane in Figure 3b.

Similar to the example in Figure 3, let the sample

window be small enough to only contain two mixtures

(K = 2). Denoting the mixtures with subscripts 1 and 2,

and using (10) and (11), the overall sample mean is

μ̃ = π1t1(μ1 − a) + π2t2(μ2 − a) + a, (19)

which is the weighted average between the two mixtures.

The sample covariance,

�̃ = π1t
2
1�̃1 + π2t

2
2�̃2 + π1π2(μ̃1 − μ̃2)(μ̃1 − μ̃2)

T (20)

= π1t
2
1�1 + π2t

2
2�2

+ π1π2

{

t21(μ1 − a)(μ1 − a)T+ t22(μ2 − a)(μ2 − a)T

− t1t2(μ1 − a)(μ2 − a)T − t1t2(μ2 − a)(μ1 − a)T
}

,

(21)

has a shape influenced by the mixture weights.

Let us simplify even more by assuming that � is at an

extreme depth discontinuity where one of the depths is at
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Figure 3 Example of color ellipsoid with depth discontinuity. (a) Foggy image with ROI centered at a depth discontinuity. (b) RGB histogram of

the ROI. Note the presence of two density mixtures.
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infinity or t = 0. With t1 > t2 = 0, the sample mean and

covariance become

μ̃ = π1t1(μ1 − a) + a (22)

and �̃ = π1t
2
1	1 + π1(1 − π1)t

2
1(μ1 − a)(μ1 − a)T ,

(23)

respectively. Instead of the transmission influencing the

position μ̃ of the ellipsoid, the mixture weight also has

influence on the sample mean. Therefore, the problem

of ambiguity exists because of the combination of the

mixture weight and transmission π1t1. In order to use

the sample mean to estimate the transmission value, the

mixture weight must be considered.

5 Proposed ellipsoid priormethod
Part of our key message in unifying existing defogging

methods is that the transmission can be estimated using

parameters from Ẽc. As an introduction to this unification,

we will use Lemma 2 to derive a new unique dark prior.

The principal question to address is how can we infer

transmission given the observed color ellipsoid Ẽc. Sup-

pose we use only Lemma 2 to create a cost function such

that ||μ̃||2 > ||μ||2. A cost function J(t̂) can be created in

order to minimize the defogged centroid magnitude μ̂,

J
(

t̂
)

=
∣

∣

∣

∣μ̂
∣

∣

∣

∣

2

2
=

∣

∣

∣

∣

∣

∣

∣

∣

μ̃ − a

t̂
+ a

∣

∣

∣

∣

∣

∣

∣

∣

2

2

, (24)

where the defogged estimate is

μ̂ =
μ̃ − a

t̂
+ a. (25)

Minimizing J(t̂) is simply trying to make the image darker

on average. The cost function J(t̂) is minimized when

t̂C = 1 −
aT μ̃ − ||μ̃||22

||a||22 − aT μ̃
= 1 − θC . (26)

Similar to the nomenclature in [9], let the centroid prior,

θC , be the dark prior using Lemma 2.

The transmission estimate must account for depth dis-

continuities. One method to acquire the sample mean

with respect to the mixture weights is to use the median

operator. The median operator is used for this purpose

by Gibson et al. [16] and Tarel and Hautière [17]. In the

same fashion, the centroid prior, θC (26), can be modified

to use the median operator so that depth discontinuities

can be considered. We include the median operator when

acquiring the centroid of the ellipsoid with

θC,m,i =
aT μ̃m,i −

∣

∣

∣

∣μ̃m,i

∣

∣

∣

∣

2

2

||a||22 − aT μ̃m,i

, (27)

μ̃m,i(c) = medj∈�i x̃j(c), ∀c, (28)

where c is the color channel.

An example of the improvement when using the median

operator is in Figure 4. The tree in the foreground poses a

dramatic depth discontinuity and is evident with the halo

around the edge in Figure 4b. The halo is diminished using

the median operator in Figure 4c. From this point on, we

drop the subscripts m and i (θC,m,i = θC) for clarity but

still imply the median operator is used.

The defogged image, x̂, is then estimated with

x̂ =
x̃ − a

max(t̂, t0)
+ a, (29)

with t0 set to a low value for numerical conditioning

(t0 = 0.001) (see the work by [9] for the recovery method

and [17] for additional gamma corrections). For gener-

ating the defogged image using the centroid prior, x̂C , a

gamma value of 1/2 was used for the examples in this

article, e.g., x̂
1/2
C . The complete algorithm for the ellipsoid

prior defogging method is in Algorithm 5.

(a) (b) (c)

Figure 4 Example of the halo effect. (a) Original image. (b) Enhanced image using centroid prior with simple averaging. (c) Enhancement of x̃

using centroid prior with median operator. Note the halo around the tree in the foreground in (b) is not present in (c).
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Algorithm 1 The ellipsoid prior defogging algorithm.

Given a foggy image x̃, a sample window �, and numeri-

cal conditioning value t0, compute the transmission t̂C and

defogged image x̂.

In Figure 5, we compare existing single image defog-

ging methods with the centroid prior using a house image

provided by Fattal [8]. The defogged image using t̂C has

richer color because the cost function, J(t̂), tries to min-

imize the magnitude of μ̂ while being constrained to the

atmospheric dichromatic model.

The transmission estimate in (26) is of the same proto-

type form in (2). Deriving a transmission estimate based

on Lemma 2 results in creating a centroid prior that is a

function of the ellipsoid parameters. In Section 6, we will

show that other single image defogging methods also use

the prototype in (2) where a dark prior is used.Wewill also

show that the dark prior is a function of the color ellipsoid

properties.

6 Unification of single image defoggingmethods
The color ellipsoid framework will now be used to ana-

lyze how four single image defogging methods (Fattal [8],

He [9], Gibson [16], and Tarel [17]) estimate the transmis-

sion using properties of the color ellipsoids.

6.1 Dark channel prior

In [20], the dark channel prior (DCP) method [9] was

explained using a minimum volume ellipsoid which we

will reproduce here for completeness.

In order to estimate the transmission, the DCP was used

which is a statistical operator,

θD,i = min
j∈�i

(

min
c∈{r,g,b}

x̃j(c)

a(c)

)

. (30)

The transmission t̂D,i was then estimated by a linear oper-

ation on the prior,

t̂D,i = 1 − wθD,i, (31)

with w = 0.95 for most scenes. This DCP transmission

estimate in (31) is of the same form as (2).

It was observed by He et al. [9] through an experiment

that the DCP of non-foggy outdoor natural scenes had

90% of the pixels below a tenth of the maximum possi-

ble value, hence the dark nomenclature in DCP. The t̂D
is constructed in such a way that it assumes there is a

pixel within the sample region centered at i that originally

was black. This is a strong assumption, and there must be

more to why this initial estimate works.

He et al. [9] stated that ‘the intensity of the dark chan-

nel is a rough approximation of the thickness of the fog.’

This can be understood when the DCP is considered as

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Figure 5 Example of single image defogging methods. (a) Original house image from [8], x̃. (b to f) Defogged images using Lemma 2, He et al.

[9], Fattal [8], Tarel and Hautière [17], and Gibson and Nguyen [21], respectively. (g to k) Transmission estimates used for the above defogged images.
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an approximation of a minimum distance measure to the

Löwner-John ellipsoid [20] either from the R-G, G-B, or

R-B planes,

θD,i ≃

⎧

⎨

⎩

argminc,z
∣

∣

∣

∣zc − y
∣

∣

∣

∣

2
,

subject to zTc ec = 0,

and yTA−1y = 1,

(32)

with equivalence when zc ∈ �i since a point from the set

�i is selected instead of the estimated shell of the ellipsoid.

The unit vector ec represents the normal to one of

the three color planes within the RGB cube. The matrix

parameter A is from the Löwner-John ellipsoid, or min-

imum volume ellipsoid, that encapsulates the cluster

from �i,

minimize log detA−1
i

subject to supx∈�i
||Aix + bi||2 ≤ 1.

(33)

An illustration of the relationship between the DCP and

the minimum volume ellipsoid is in Figure 6. The example

is on the R-G plane and demonstrates how the DCP mea-

sures the minimum distance from either the red or green

axis which is dependent on the position, size, and orien-

tation of the ellipsoid. What was not addressed in [20]

was that the DCP is able to estimate transmission (with

the need for refinements) because it utilizes Lemma 2 and

Lemma 3.

However, the DCP is not a function of the mixture

weights such that depth discontinuities are accounted for.

This results in halo artifacts when trying to recover a

defogged image as discussed in Section 4.2. In [9], a soft

matting algorithm by Levin et al. [28] was applied to t̂D
to refine the transmission image, t̂DS. The alpha matting

Figure 6 DCP and color ellipsoid relationship. Graphical example

of the relationship between the DCP and the minimum distance to

three different minimum volume ellipsoids on the red-green plane.

of an image at pixel i is a function of foreground and

background mixtures,

xi = αixF + (1 − αi)xB. (34)

Being similar with the atmospheric dichromatic model

(4) and the alpha matting (34), the transmission can be

treated as an alpha matting [9],

x̂i = tix̂F + (1 − ti)x̂B. (35)

The transmission vector t̂D (canonically stacked by

columns) is smoothed into t̂DS by minimizing the cost

function

J(t̂DS) = t̂TDSLt̂DS + λ(t̂DS − tD)T (t̂DS − t̂D). (36)

The right hand side of (36) was chosen by He et al. [9] to

regularize the matting based on the DCP and to enforce

smoothing weighted by λ.

The derivation of the Laplacian matrix, L, by Levin

et al. [28] is also based on the color line model and hence

a function of the color ellipsoid properties. The Laplacian

matrix is [28]

L = D − W, (37)

withW (i, j) =
∑

k|(i,j)∈�k

1

|�k |
(1 + (x̃i − μ̃k)

T

×

(

�̃k +
ǫ

|�k |
I3×3

)−1

(x̃j − μ̃k)), (38)

and D and I3×3 being diagonal identity matrices. The

Laplacianmatting matrix in (38) is influenced by the prop-

erties of the color ellipsoid (μk and�k) within the window

�k . The ability of preserving depth discontinuity edges is

afforded by the affinity matrix, W, which is effective in

preserving edges and discontinuities because of its locally

adaptive nature [28].

The DCP method estimates the transmission with the

prototype in (2), just like the centroid prior. Additionally,

the properties of the color ellipsoids play a key role in

the DCP for initial estimation and Laplacian matting for

refinement.

6.2 Fattal prior

The single image defogging method by Fattal [8] is a

uniquemethod that at first does not appear to be using the

prototype in (2). However, we show that Fattal’s method

does indeed indirectly develop a dark prior and estimates

the transmission with the same prototype in (2).

Fattal developed a way to create a raw estimate of the

transmission and then employed a refinement step to

improve the transmission estimate. We will first investi-

gate how the raw transmission estimate is constructed.



Gibson and Nguyen EURASIP Journal on Image and Video Processing 2013, 2013:37 Page 9 of 14

http://jivp.eurasipjournals.com/content/2013/1/37

Fattal [8] split the observed color xi into a shade li and

albedo ri product,

x̃i = tiliri + (1 − ti)a, (39)

with xi = liri. The observationmade by Fattal was that the

sample covariance of the shading and transmission should

be statistically uncorrelated over a patch �,

C�(l, t) = E�[ (l − E�[ l] )(t − E�[ t] )]= 0, (40)

when the albedo r is constant.

The airlight vector is used to create a subspace so that

the observed color pixel is split into two components. The

first is the color projected onto the airlight vector

x̃a,i = 〈x̃i, a〉 /||a||, (41)

and the second is the residual which is the observed color

pixel projected on the color vector perpendicular to a (a⊥)

x̃a⊥,i =

√

||x̃||2 − x̃2a =
〈

x̃i, a
⊥
〉

/||a||, (42)

with ||a|| = ||a⊥|| and
〈

a, a⊥
〉

= 0.

Using the statistically uncorrelated relationship in (40)

and assuming the albedo r is constant, Fattal constructs

the raw transmission estimate as (dropping i for clarity)

t̂F = 1 −

(

x̃a − ηx̃a⊥

||a||

)

, (43)

with η =
〈r, a〉

||ra⊥ ||||a||
(44)

The term ||ra⊥ || is the residual albedo projected onto a⊥.

The estimate t̂F also uses the prototype in (2) to estimate

the transmission. Looking at the right hand side of the raw

transmission (43) (reintroducing subscript i),

t̂F ,i = 1 − θF ,i (45)

with θF ,i =
1

||a||
(x̃a,i − ηix̃a⊥,i), (46)

we see yet another prior, the Fattal prior θF . The Fattal

prior should behave similar to the DCP (θD) and centroid

prior (θC) since it is also used to estimate the transmission.

The term θF should match the intuition that it becomes

darker (close to zero) when radiant objects are closer to

the camera when fog is present.

The Fattal prior utilizes Lemma 2. Note that in (4) as

the transmission increases, t → 1, the foggy pixel moves

farther away from the airlight vector, a, while staying on

the convex set a− x̃. This causes more energy to go to the

residual, xa⊥ , and less to xa. Therefore, according to (46),

the Fattal prior decreases or becomes darker, θF → 0, as

the transmission increases regardless of the value of η.

The Fattal prior also utilizes Lemma 3. To observe this,

we analyze the weight factor, η, in (46) which is a measure

of ambiguity. It increases as the albedo color becomes par-

allel with the airlight or becomes more ambiguous. A low

η value means that it is not known whether the pixel is

covered by fog or if it is truly the same color as the airlight,

but not covered by fog.

The albedo is not known; therefore, the ambiguity

weighting is measured by sampling values within a win-

dow � such that the decorrelation in (40) is satisfied,

η =
C�(x̃a, h)

C�(x̃a⊥ , h)
. (47)

Since η is measured using a sample region �, we employ

the color ellipsoid framework to show that the θF is depen-

dent on the color ellipsoid.

In order to find more intuition of η and its relation-

ship with the color ellipsoid, let the distribution of x̃ from

patch � be Gaussian with centroid μ. Dropping � and i

for clarity, η becomes

η =
E[ x̃ah]−E[ x̃a] E[ h]

E[ x̃a⊥h]−E[ x̃a⊥ ] E[ h]
,

=

(

||a||E

[

||a||x̃a − x̃2a
x̃a⊥

]

− μ̃aμh

)

/(||a||2 − μa − μa⊥μh), (48)

where μ̃a is the centroid of the color ellipsoid projected

onto the airlight vector, and μh is the local average of h,

h =
||a|| − x̃a

x̃a⊥

. (49)

We can rearrange (48) by approximating with Jensen’s

inequality (f (E[X] ) ≤ E[ f (X)]). The ambiguity weight

factor η (48) has a lower bound expressed as

η = k1

(

||a||E

[

||a||x̃a − x̃2a
x̃a⊥

]

− μ̃aμh

)

≥ k1

(

||a||
||a||μ̃a − E[ x̃2a]

μ̃a⊥

− μ̃aμh

)

, (50)

with

k1 = 1/(||a||2 − μa − μa⊥μh). (51)

Let the variance of the observed colors projected onto the

airlight vector (41) be

σ 2
a = E

[

x̃2a
]

− μ̃2
a. (52)

Using (52) in (50), the inequality becomes

η ≥ k2

(

||a||μ̃a − σ 2
a − μ̃2

a

μ̃a⊥

−
μ̃aμh

||a||

)

, (53)

with k2 = ||a||k1. To view the influence of the color

ellipsoid shape, we simplify (53) into

η ≥ k2
(

k3 − σ 2
a

)

, (54)

with k3 = −
μ̃2
a

μ̃⊥
a

+

(

||a||

μ̃⊥
a

−
μ̃h

||a||

)

μ̃a (55)

As η increases, the transmission estimate has an

increasing influence from the residual color x̃a⊥ . The
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variance along the airlight vector is the color ellipsoid

projected onto the airlight vector,

σa = aT �̃a. (56)

The shape of the color ellipsoid is utilized to influence

the ambiguity weight η. For example, consider the two

ellipsoids in Figure 7, labeled E1 and E2. The ellipsoids are

positioned such that they both have the same μ̃a. How-

ever, their orientation and shape are different. E1 has a

very small variance projected onto a, σa,1, compared to

the variance for E2, σa,2. The η term for E1 is increased

which effectively increases the transmission estimate. On

the contrary, ellipsoid E2 has a very large variance pro-

jected onto a which produces a lower η value. Due to

the shape and orientations, the transmission estimate for

the color ellipsoid E1 is higher compared to the transmis-

sion estimated for the color ellipsoid E1. We then have the

relationship t2 < t1 for the example in Figure 7.

The raw transmission estimate, t̂F , is not complete

because several pixels are ignored due to potential division

by zero in Equation 47. Since the mixture weights π are

not considered, depth discontinuities are not accounted

for and will produce incorrect estimations. As a refine-

ment step, Fattal uses a Gauss-Markov random field

model by maximizing

P(tFS) =
∏

i∈G

exp−
(tFS,i − tF ,i)

2

σ 2
t,i

∏

∀i,j∈�i

exp−
(tFS,i − tFS,j)

2

(x̃a,i − x̃a,j)2
/σ 2

s , (57)

Figure 7 Geometric interpretation of Equation 46. The figure

contains two ellipsoids E1 and E2 with centroids μ̃1 and μ̃2,

respectively. The projection of the centroids onto the airlight vector a

are the same for both ellipsoids.

where t̂FS is the refinement of t̂F , and G are the pixels

in t̂F that are good. The transmission variance σt is dis-

cussed in detail in [8] and is measured based on the noise

in the image. The smoothing is controlled by the variance

value σ 2
s .

The statistical prior on the right hand side of (57) not

only enforces smoothness but also that the variation in the

edges in transmission matches the edges in the original

image projected onto airlight. Therefore, if there is a depth

discontinuity, the variation will be large in (x̃a,i − x̃a,j)
2

enforcing t̂FS to preserve depth discontinuity edges.

6.3 Tarel prior

In this section, we will explore the single image fog

removal method presented by Tarel and Hautière [17] and

relate their intuition with the properties of the color ellip-

soids for foggy images. For this analysis, we will make

the same assumption that Tarel makes where the foggy

image, x̂, has been white balanced such that the airlight

component is pure white, a = (1, 1, 1)T .

Instead of directly estimating the transmission, Tarel

and Hautière [17] chose to infer the atmospheric veiling,

θT ,i = (1 − t̂T ,i)as, (58)

(with as = 1) which is a linear function of the transmis-

sion. Similar to the DCP, we call this term, θT , the Tarel

prior. We show that this prior is also dependent on the

color ellipsoid properties.

Tarel first employs an ‘image of whiteness,’

wi = min
c∈r,g,b

x̃i(c). (59)

The intuition in using the image whiteness is similar to

the first step used in He’s method to obtain the DCP (30).

The set of values wi within �i are the minimum distances

from the points in the RGB cluster to either the R-G,

G-B, or R-B planes. The atmospheric veiling is estimated

by measuring the local average of w, μw, and subtracting

it from the local standard deviation of w, σw.

6.3.1 Analysis withoutmedian operator

For calculating local averages, Tarel does account for

depth discontinuities using a median operator. First, let us

consider the simple form to see how the Tarel prior uses

the color ellipsoid properties. Tarel uses the local mean

and standard deviation of the image of whiteness within

the patch �i,

θT ,i = μw,i − σw,i. (60)

As we have done in previous sections, we will again

assume that the transmission within the patch � is
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constant. The local mean at �i, E�i [w], can then be

expanded using (4),

μw,i = E�i [w]= E�i

[

min
c∈r,g,b

x̃i(c)

]

(61)

= t

(

E�i

[

min
c∈r,g,b

xi(c)

]

− 1

)

+ 1, (62)

where we assume just as Tarel does that the airlight is pure

white with a magnitude 1 for each color channel. If the

color in the patch is pure white,μw,i becomes 1, hence the

name image of whiteness. Moreover, if the color within

�i at least has one color component that is zero, then the

local mean is only dependent on the atmospheric veiling,

μw,i = 1 − t.

Suppose the original cluster of points (no fog) had a local

average of μi. Depending on the orientation of the color

cluster, we may approximate the scalar μw by taking the

minimum component of the color ellipsoid centroid,

μw,i ≈ min
c∈r,g,b

μ̃i(c), (63)

where μ̂i is the foggy centroid of the color cluster defined

in (10). This approximation is illustrated in Figure 8.

Using the approximation with (63), it can be shown

that θT is dependent on the position and shape of the

color ellipsoid. There are four different clusters in Figure 8

that exist from different sample patches, where three of

the clusters have the true μw,i indicated with them. One

can see that these local averages of the image whiteness

for each cluster are essentially the minimum component

value for the cluster centroid given that the orientation of

Figure 8 Tarel prior and color ellipsoid relationship. Graphical

example of the relationship between the image whiteness and color

ellipsoids on the red-green plane. Examples of ellipsoid positions and

orientations that are well approximated with measuring the

minimum color component of the respective centroid are the

clusters with dark ellipses. The dashed blue ellipse is an example of a

cluster orientation where the approximation is not valid.

the cluster is aligned to the gray color line. Assuming that

the orientation is along the gray color line is not too strong

of an assumption since the image itself has been white-

balanced and the dominant orientation is also along the

gray color line due to shading or airlight influence. The

fourth cluster, indicated with a dashed blue ellipse, is an

example where this approximation is not valid due to the

position and orientation of the cluster points.

Up to this point, the Tarel prior θT is not a function of

the mixture weights within the sample patch �i and thus

will cause undesirable halo artifacts when removing fog

from the image.

6.3.2 Analysis withmedian operator

To account for estimating properly near depth discontinu-

ities, Tarel and Hautière [17] chose the median operator

because of its edge-preserving properties in order to esti-

mate the atmospheric veiling

θT ,i = medj∈�iwj − medj∈�i

∣

∣wj − medk∈�iwk

∣

∣ . (64)

The sample patch �i is chosen to be large (41 × 41) to

enforce θT to be smooth. Likewise, since the median oper-

ator works well with edge preservation [17], the edges are

considered limiting halo artifacts from being present.

We will show how the Gaussian mixture weights, πg ,

presented in Section 4.2 are considered in the Tarel prior

estimate θT (64). Let us assume that the occlusion bound-

ary parameters from the mixture model in Section 4.2 are

deterministic but unknown and apply the min operator to

each and define the values for foreground (mixture 1) as

wi,1 = min
c∈r,g,b

(

ti,1μi,1(c) + (1 − ti,1)a(c)
)

, (65)

and background (mixture 2)

wi,2 = min
c∈r,g,b

a(c) (66)

with the foreground image of whiteness being strictly less

than the foreground image of whitenesswi,1 < wi,2. When

two distinct mixtures exist due to a depth discontinuity,

θT can be simplified to

θT ,i =

{

wi,1, for πi,1 > πi,2

wi,2, otherwise,
(67)

with |�i| odd. In addition to θT being dependent on the

size and position of the color ellipsoid from the sample

patch�i, we also show in (67) that themixture weights are

employed by Tarel to infer the atmospheric veiling.

A variation on the DCP was presented in [16], called the

median DCP (MDCP),

θM,i = med
j∈�i

(

min
c∈{r,g,b}

x̃j

a(c)

)

. (68)
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Table 1 Summary of dark prior methods

Name Dark prior Estimate Refinement step

Centroid Prior θC

(

aT μ̃ − ||μ̃||22

)

/
(

||a||22 − aT μ̃
)

Median operator to estimate μ̃

DCP θD minj∈�i

(

minc∈{r,g,b}
x̃j(c)

a(c)

)

Spectral matting

Fattal prior θF
1

||a||
(x̃a,i − ηi x̃a⊥ ,i) Gauss-Markov random field

model

Tarel prior θT medj∈�iwj − medj∈�i

∣

∣wj − medk∈�i
wj

∣

∣ None

MDCP θM medj∈�i

(

minc∈{r,g,b}
x̃j(c)

a(c)

)

None

Results from analyzing the single image defogging methods within the color ellipsoid framework are summarized in this table. Each method uses a dark prior, and

some employ an extra refinement step with respect to depth discontinuities.

This is essentially a hybrid of both the DCP θD and the

Tarel prior θT because of the use of the median oper-

ator. In the same fashion as the previous analysis for

the DCP and Tarel priors, the MDCP is also a func-

tion of the color ellipsoid properties. It also accounts for

depth discontinuities by being dependent on the mixture

weights πg .

7 Discussion
We have found that we can unify single image defog-

ging methods. The unification is that all of these single

image defogging methods use the prototype in (2) to esti-

mate transmission using a dark prior. Additionally, each

of these dark priors use properties of the color ellipsoids

with respect to Lemmas 2 and 3.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

(l) (m) (n) (o) (p) (q)

(r) (s) (t) (u) (v)

Figure 9 Additional examples of single image defogging methods. (a) Original house image from [8], x̃. (b to f) Defogged images using

Lemma 2, He et al. [9], Fattal [8], Tarel and Hautière [17], and Gibson and Nguyen [21], respectively. (g to k) Transmission estimates used for the

above defogged images. Similarly, (l) is a original foggy image of pumpkins [8]. (m to q) Defog results. (r to v) Transmission estimates.
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We summarize the unification of the single image defog-

ging methods in Table 1 by providing the equation used

to measure the dark prior. The refinement step taken by

each single image defogging method is also provided in

Table 1.

We have discovered that the color ellipsoid frame-

work effectively exposes how the single image defogging

methods estimate the transmission when the atmospheric

dichromatic model is used mathematically and empiri-

cally. Another discovery was that a new dark priormethod

was created using Lemma 2. A cost function was designed

to minimize the average centroid position while stay-

ing within the atmospheric dichromatic model. The color

ellipsoid framework was the key in the development of

this new method. More results can be seen in Figure 9.

8 Conclusion
The development of the color ellipsoid framework is a

contribution to the field of work in single image defogging

because it brings a richer understanding to the problem

of estimating the transmission. This article provides the

tools necessary to clearly understand how transmission is

estimated from a single foggy day image. We have intro-

duced a new method that is visually more aggressive in

removing fog which affords an image that is richer in color.

Future work will include the color ellipsoid framework

in the development of a contrast enhancement metric.

Additionally, the ambiguity problem when estimating the

transmission will be addressed using the orientation of the

color ellipsoid to develop a more accurate transmission

mapping with respect to the depth of the scene.

We present a new way to model single image defog-

ging methods using a color ellipsoid framework. Our

discoveries are as follows:

• We have discovered how depth cues from fog can be

inferred using the color ellipsoid framework.

• We unify single image defogging methods using the

color ellipsoid framework.

• A Gaussian mixture model is crucial to represent

depth discontinuities which is a common issue in

removing fog in natural scenes.

• We discover that the ambiguity in measuring depth

from fog is associated with the color ellipsoid

orientation and shape.

• A new defogging method is presented which is

effective in contrast enhancement and based on the

color ellipsoid properties.

This article is a contribution to the image processing

community by providing strong intuition in single image

defogging, particularly estimating depth from fog. This

is useful in contrast enhancement, surveillance, tracking,

and robotic applications.

Competing interests

Both authors declare that they have no competing interests.

Acknowledgments

This work is supported in part by the Space and Naval Warfare Systems Center

Pacific (SSC Pacific) and by NSF under grant CCF-1065305.

Received: 7 January 2012 Accepted: 24 May 2013

Published: 1 July 2013

References

1. SG Narasimhan, SK Nayar, Contrast restoration of weather degraded

images. IEEE Trans. Pattern. Anal. Mach. Intell. 25(6), 713–724 (2003)

2. D Summers, Contrapposto: style and meaning in renaissance art. Art Bull.

59(3), 336–361 (1977)

3. H Koschmieder, Luftlicht und Sichtweite. Naturwissenschaften 26(32),

521–528 (1938)

4. WEK Middleton, Vision Through the Atmosphere (University of Toronto

Press, Ontario, 1952)

5. SQ Duntley, AR Boileau, RW Preisendorfer, Image transmission by the

troposphere I. JOSA 47(6), 499–506 (1957)

6. EJ McCartney, Optics of the Atmosphere: Scattering by Molecules and

Particles (Wiley, New York, 1976), p. 421

7. RT Tan, in IEEE Conference on Computer Vision and Pattern Recognition.

Visibility in bad weather from a single image, 2008 (IEEE Piscataway,

2008), pp. 1–8

8. R Fattal, Single image dehazing. ACM Trans. Graph. 27, 72 (2008)

9. K He, J Sun, X Tang, in IEEE Conference on Computer Vision and Pattern

Recognition. Single image haze removal using dark channel prior, 2009

(IEEE Piscataway, 2009), pp. 1956–1963

10. L Kratz, K Nishino, in IEEE 12th International Conference on Computer Vision.

Factorizing scene albedo and depth from a single foggy image, 2009

(IEEE Piscataway, 2009), pp. 1701–1708

11. F Fang, F Li, X Yang, C Shen, G Zhang, in International Conference on Image

Analysis and Signal Processing (IASP). Single image dehazing and denoising

with variational method, 2010 (IEEE Piscataway, 2010), pp. 219–222

12. L Chao, M Wang, Removal of water scattering. IEEE Comput. Eng. Technol.

(ICCET) 2, V2—35 (2010)

13. I Yoon, J Jeon, J Lee, J Paik, in International SoC Design Conference (ISOCC).

Weighted image defogging method using statistical RGB channel feature

extraction, 2010 (IEEE Piscataway, 2010), pp. 34–35

14. J Yu, C Xiao, D Li, in IEEE International Conference on Signal Processing

(ICSP’10). Physics-based fast single image fog removal (IEEE Piscataway,

2010), pp. 1048–1052

15. C Zou, J Chen, in 11th ACIS International Conference on Software

Engineering, Artificial Intelligence Networking and Parallel/Distributed

Computing (SNPD 2010). Recovering depth from a single image using dark

channel prior (IEEE Piscataway, 2010), pp. 93–96

16. KB Gibson, DT Vo, TQ Nguyen, An investigation of dehazing effects on

image and video coding. IEEE Trans. Image Process. 21(2), 662–673 (2012)

17. JP Tarel, N Hautière, in IEEE 12th International Conference on Computer

Vision. Fast visibility restoration from a single color or gray level image,

2009 (IEEE Piscataway, 2009), pp. 2201–2208

18. SG Narasimhan, SK Nayar, Vision and the atmosphere. Int. J. Comput. Vis.

48(3), 233–254 (2002)

19. SA Shafer, Using color to separate reflection components. Color Res. Appl.

10(4), 210–218 (1985)

20. KB Gibson, TQ Nguyen, in IEEE International Conference on Acoustics,

Speech and Signal Processing, 2011 (ICASSP). On the effectiveness of the

dark channel prior for single image dehazing by approximating with

minimum volume ellipsoids (IEEE Piscataway, 2011), pp. 1253–1256

21. KB Gibson, TQ Nguyen, in 18th IEEE International Conference on Image

Processing (ICIP). Hazy image modeling using color ellipsoids, 2011 (IEEE

Piscataway, 2011), pp. 1861–1864

22. I Omer, M Werman, Color lines: image specific color representation. Proc.

2004 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2, II–946

(2004)

23. GJ Klinker, SA Shafer, T Kanade, A physical approach to color image

understanding. Int. J. Comput. Vis. 4, 7–38 (1990)

24. T Tan, J Kittler, Colour texture analysis using colour histogram. IEEE Proc.

Vis., Image Signal Process. 141, 403–412 (1994)



Gibson and Nguyen EURASIP Journal on Image and Video Processing 2013, 2013:37 Page 14 of 14

http://jivp.eurasipjournals.com/content/2013/1/37

25. J Devaux, P Gouton, F Truchetet, Karhunen-Loeve transform applied to

region-based segmentation of color aerial images. Opt. Eng. 40(7),

1302–1308 (2001)

26. WJ Kuo, RF Chang, Approximating the statistical distribution of color

histogram for content-based image retrieval. Proc. 2000 IEEE Int. Conf.

Acoustics, Speech, Signal Process. ICASSP’00. 6, 2007–2010 (2000)

27. S Dharanipragada, K Visweswariah, Gaussian mixture models with

covariances or precisions in shared multiple subspaces. Audio, Speech,

Lang. Proc. IEEE Trans. 14(4), 1255–1266 (2006)

28. A Levin, D Lischinski, Y Weiss, A closed-form solution to natural image

matting. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 228–242 (2008)

doi:10.1186/1687-5281-2013-37
Cite this article as: Gibson and Nguyen: An analysis of single image defog-
ging methods using a color ellipsoid framework. EURASIP Journal on Image
and Video Processing 2013 2013:37.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Introduction
	Atmospheric dichromatic model
	Color ellipsoid framework without fog
	Color ellipsoid framework with fog
	General properties
	Color ellipsoid model with depth discontinuity

	Proposed ellipsoid prior method
	Unification of single image defogging methods
	Dark channel prior
	Fattal prior
	Tarel prior
	Analysis without median operator
	Analysis with median operator


	Discussion
	Conclusion
	Competing interests
	Acknowledgments
	References

