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Abstract The flux reconstruction (FR) approach offers an efficient route to high-order accu-

racy on unstructured grids. In this work we study the effect of solution point placement on the

stability and accuracy of FR schemes on tetrahedral grids. To accomplish this we generate a

large number of solution point candidates that satisfy various criteria at polynomial orders

℘ = 3, 4, 5. We then proceed to assess their properties by using them to solve the non-linear

Euler equations on both structured and unstructured meshes. The results demonstrate that

the location of the solution points is important in terms of both the stability and accuracy.

Across a range of cases it is possible to outperform the solution points of Shunn and Ham

for specific problems. However, there appears to be a degree of problem-dependence with

regards to the optimal point set, and hence overall it is concluded that the Shunn and Ham

points offer a good compromise in terms of practical utility.

Keywords Flux reconstruction · High-order methods · Discontinuous galerkin

1 Introduction

Theoretical studies and numerical experiments suggest that unstructured high-order methods

can provide solutions to otherwise intractable fluid flow problems within the vicinity of

complex geometries. In 2007 Huynh proposed the flux reconstruction (FR) approach [1], a

unifying framework for high-order schemes that encompasses several existing methods while

simultaneously admitting an efficient implementation. Using FR it is possible to recover nodal

discontinuous Galerkin (DG) methods of the type described by Hesthaven and Warburton

[2], and the spectral difference schemes, original proposed by Kopriva and Kolias [3] and
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later popularised by Sun et al. [4]. Unlike traditional DG methods, which are based on a

weak formulation, and hence require integration, the FR approach is based on the differential

form of the governing system. As a consequence, implementations of FR forego having to

perform numerical quadrature within each element. This not only reduces complexity, but

can also lead to decreased computational cost.

One problem with the FR approach is that for a non-linear flux function aliasing driven

instabilities may develop. The severity of these instabilities depends upon the degree to which

the flux is under-resolved within each element. For large scale-resolving flow simulations it

is often the case that features are under-resolved due to resource constraints or modelling

approaches. For example when undertaking an implicit large-eddy simulation of a turbulent

flow the numerics do not resolve all of the physical scales of the problem. Hence, there is a

degree of underesolution. Given that there is an increasing desire amongst practitioners to

undertake such scale-resolving simulations in an industrial context it is important to address

these aliasing phenomena effectively.

It has been demonstrated, both theoretically [5] and empirically [6–8] that the degree

of aliasing driven instabilities depends upon the location of the solution points inside each

element. Specifically, it has been found that placing points at the abscissa of strong Gaussian

quadrature rules has a positive impact on their performance.

In this paper we will assess the performance of a variety of symmetric quadrature rules

when used as solution points inside of tetrahedra. In Sect. 2 we outline the requirements that

a set of points must satisfy in order to be used as solution points. Empirical and theoretical

motivations for wanting solution points to be at the abscissa of quadrature rules is also

presented. Our candidate point sets at polynomial orders ℘ = 3, 4, 5 are presented in Sect. 3.

Two numerical test cases, both based around solving the non-linear Euler equations, are

introduced in Sect. 4. These test cases are then used to evaluate the performance of the

candidate points with the results being presented in Sect. 5. Numerical stability across the

two test cases is assessed in Sect. 6. Finally, in Sect. 7, conclusions are drawn.

2 Solution Point Requirements

Hesthaven and Warburton [2] identify three key criteria that solution point sets for nodal

DG must satisfy. The first is that the points define a well conditioned nodal basis. This

property ensures any nodal expansions based on the points will be well suited to the task

of polynomial interpolation. The second is that the points be arranged symmetrically inside

of each element. This eliminates any potential for the solution to be biased towards one

region of an element depending on the global-to-local mapping. The third requirement is that

the number of solution points must be equivalent to the rank of the polynomial basis used

to represent the solution. For tetrahedra this fixes the number of points to be a tetrahedral

number given by

Np = (℘ + 1)(℘ + 2)(℘ + 3)/6, (1)

where ℘ is the polynomial order.

In FR and nodal DG solution points are not just used for representing the discontinuous

solution within each element; they are also used to construct a polynomial representation

of the flux. However, should the flux function be non-linear then the construction of this

polynomial gives rise to an implicit collocation projection from the space of the flux, which

may be non-polynomial, into the space of the solution. The development of aliasing driven

instabilities is closely related to how this projected polynomial compares to the L2 optimal
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Fig. 1 The reference

tetrahedron T

(−1, −1, −1)

(1, −1, −1)

(−1, −1, 1)

(−1, 1, −1)

polynomial obtained via a full L2 projection of the flux [5]. The differences between these

two polynomials in both FR and nodal DG can be significant [2] and hence have a significant

impact on the non-linear stability of these schemes.

Hence, an additional fourth requirement for solution points is that they also minimise the

L2 error arising from performing a collocation projection of non-linear functionals.

2.1 Polynomial Interpolation and Unisolvency

Consider an arbitrary scalar function u(r) on the reference tetrahedron T as shown in Fig. 1.

By expanding this function in terms of a nodal basis set we can construct an interpolating

polynomial

uδ(r) =

Np
∑

i

u(ri )ℓi (r), (2)

where uδ(r) ≈ u(r), {ri } are a set of solution points, and {ℓi (r)} is a nodal basis set with the

property that ℓi (r j ) = δi j with δi j being the Kronecker delta. Starting with an orthonormal

polynomial basis set {ψi (r)} on T such that
∫

T
ψi (r)ψ j (r) d3r = δi j we can construct a

nodal basis set by first computing the elements of the generalised Vandermonde matrix

Vi j = ψi (r j ), (3)

and then taking

ℓi (r) =

Np
∑

k

V
−1
ik ψk(r), (4)

where V
−1 denotes the matrix inverse of V , hence

ℓi (r j ) =

Np
∑

k

V
−1
ik ψk(r j ) =

Np
∑

k

V
−1
ik Vk j = δi j , (5)

as required. We note here that in constructing the nodal basis set we have required the

generalised Vandermonde matrix to be invertible, which is the case if det V �= 0.

A necessary, but not sufficient, condition for this is that all of the points must be distinct.

However, it is known that in two and three dimensions only certain sets of distinct points give

rise to a invertible Vandermonde matrix; a requirement which is termed unisolvency [9,10].

To illustrate this take {ri } to be a set of distinct points with a non-singular Vandermonde

matrix and consider arbitrarily relabelling a pair of points. The effect of this relabelling is to

interchange two columns in the Vandermonde matrix. From the properties of the determinant
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Fig. 2 Origins of

non-unisolvency in multiple

dimensions as illustrated on a

triangle

this will cause the sign of the determinant to flip. If this interchange is performed continuously,

with the two points following different non-intersecting paths as shown in Fig. 2, it is evident

from the intermediate value theorem that there must be an intermediate arrangement where

the determinant is zero. Hence, while the points are all distinct they can not be used to

construct a nodal basis set.

2.2 Quadrature Rules

In 2011 Castonguay et al. [6] used the FR approach to solve the Euler equations on triangular

grids. As a starting point they employed the α-optimised points of Hesthaven and Warburton

[2] as the set of solution points. These points are constructed with the goal of minimising the

Lebesgue constant which serves as a quantification of how good a set of points are for the

purposes of polynomial interpolation. However, while evaluating the performance of these

points on a isentropic Euler vortex test problem the reference point set poor performance, in

terms of both accuracy and stability, was observed. Noting this, and motivated by the results

of Jameson et al. [5], the authors proceeded to use the abscissa of the (mildly asymmetric)

quadrature rules presented in [11] as the solution points. This change gave rise to a marked

improvement in both stability and accuracy. These results were subsequently confirmed by

Witherden and Vincent [8] in 2014 who analysed the performance triangular quadrature

rules when used as solution points. Inside of tetrahedra Williams [7] compared the three

dimensional α-optimised points against the tetrahedral quadrature rules of Shunn and Ham

[12]. Once again the quadrature points were found to greatly outperform the α-optimised

points with regards to both stability and accuracy. A visual comparison of the third order

α-optimised and Shunn–Ham points can be seen in Fig. 3. A major difference between the

Fig. 3 Visual comparison of the third order α-optimised and Shunn–Ham point sets inside of the reference

tetrahedron. a α-Optimised. b Shunn–Ham
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two sets is that the α-optimised points are constrained to have points along the edges of the

tetrahedron. The effect of this is clearly visible in the figure.

These results contribute to a strong body of empirical evidence suggesting that solution

points should be taken to be the abscissa of quadrature rules. In the context of numerical

integration quadrature rules are defined based on their ability to integrate polynomial func-

tions up to a given degree inside of a domain T . Specifically, an Np point quadrature rule of

strength ϕ is capable of exactly integrating any polynomial function p(x) ∈ T of maximal

degree ϕ as

∫

T

p(x) d3x =

Np
∑

i

ωi p(xi ), (6)

where {xi } are the abscissa of the rule and {ωi } the associated quadrature weights. Generating

such rules however, especially those with a prescribed number of points, is non-trivial.

3 Candidate Point Sets

A popular approach for identifying quadrature rules inside of two- and three-dimensional

domains is based around expressing Eq. 6 as a system of non-linear equations. Given a suitable

set of polynomials {pi (x)} ∈ T it is possible to analytically evaluate the integrals on the left

hand side of Eq. 6. This can then be approached as a least squares optimisation problem

which is non-linear with respect to the abscissa and linear with respect to the weights. By

seeding the non-linear least squares problem with a random initial condition it is capable of

identifying a large number of distinct quadrature rules.

Polyquad [13] is a software package which employs the Levenberg–Marquardt algorithm

to identify fully symmetric quadrature rules of strength ϕ which a prescribed number of

points inside of a variety of domains, including tetrahedra. Using Polyquad v1.0.0 a large

number of symmetric quadrature rules with a tetrahedral number of points were gener-

ated. At each order Polyquad was run for 20 min on an Intel Core i7-4820K CPU. By

design Polyquad ensures that for all points xi ∈ T . Although Polyquad does perform

some degree of rule deduplication an additional post-processing step was added which

required that no two rules had the same set of quadrature weights given a tolerance of

±1 %. Finally, the remaining unique rules were checked for unisolvency by computing the

determinant of the Vandermonde matrix. A summary of the final set of rules can be seen in

Table 1.

We note here that our candidate point sets have the same quadrature strengths as those of

Shunn and Ham [12].

Table 1 Number of rules Nr

identified by Polyquad at each

polynomial order ℘ along with

the point counts Np and the

associated quadrature strengths ϕ

℘ 3 4 5

ϕ 5 6 8

Np 20 35 56

Nr 270 281 48

Nr (det V �= 0) 193 275 25
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4 Numerical Experiments

4.1 Euler Equations

The three dimensional Euler equations govern the flow of an inviscid compressible fluid.

They are both time-dependent and non-linear. Expressed in conservative form they read

∂u

∂t
+ ∇ · f = 0, (7)

where

u =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ρ

ρvx

ρvy

ρvz

E

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

, f =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ρvx ρvy ρvz

ρv2
x + p ρvyvx ρvzvx

ρvxvy ρv2
y + p ρvzvy

ρvxvz ρvyvz ρv2
z + p

vx (E + p) vy(E + p) vz(E + p)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

. (8)

Here ρ is the mass density of the fluid, v = (vx , vy, vz)
T is the fluid velocity vector, E is the

total energy per unit volume, and p is the pressure. For a perfect gas the pressure and total

energy are related by

E =
p

γ − 1
+

1

2
ρv · v, (9)

with γ ≃ 1.4. To solve such a system using the FR approach it is necessary to chose both a

time integration scheme and an approximate Riemann solver to evaluate the normal fluxes

at element interfaces.

4.2 Test Cases

For the purposes of evaluating the performance of our point sets two test cases with analytical

solutions are considered.

Manufactured Sinusoidal Solution Through the introduction of a source term it is possible

for the non-linear Euler equations to admit a sinusoidal solution. Specifically, by taking

S =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(3k − ω) cos θ

(3k + 2(γ − 1)ak − 3k(γ − 1)/2 − ω) cos θ + k(γ − 1) sin 2θ

(3k + 2(γ − 1)ak − 3k(γ − 1)/2 − ω) cos θ + k(γ − 1) sin 2θ

(3k + 2(γ − 1)ak − 3k(γ − 1)/2 − ω) cos θ + k(γ − 1) sin 2θ

(6kaγ − 9k(γ − 1)/2 − 2ωa) cos θ + (3γ k − ω) sin 2θ

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

. (10)

where θ = k(x + y + z) − ωt with k = π , ω = π and a = 3, and adding this to the right

hand side of Eq. 7 leads to a system that admits solutions of the form

u =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

sin θ + a

sin θ + a

sin θ + a

sin θ + a

(sin θ + a)2

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

. (11)

For this test case the computational domain is taken to be � = [−1, 1]3 with fully

periodic boundary conditions. Structured tetrahedral meshes were generated on this domain

by taking a structured hexahedral mesh with N 3 elements and splitting each hexahedron into

six tetrahedra for a total element count of NE = 6N 3. For the purposes of our experiments
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Fig. 4 Cutaway of the N = 5

structured mesh with 750

tetrahedra used for the

manufactured sinusoidal solution

test case

Table 2 Meshes employed for

solution point evaluation at each

polynomial order for the

manufactured sinusoidal solution

test case

℘ Meshes

N = 4 N = 5 N = 6 N = 8 N = 12 N = 16

3 ⋆ ⋆ ⋆ ⋆

4 ⋆ ⋆ ⋆ ⋆

5 ⋆ ⋆ ⋆ ⋆

six meshes with N = 4, 5, 6, 8, 12, 16 were employed. A cutaway of the N = 5 mesh can be

seen in Fig. 4. With these we can introduce a characteristic spacing for mesh N at polynomial

order ℘ as

h3 =
|�|

Np NE

, (12)

where |�| is the volume of the domain.

The meshes employed at each order are listed in Table 2. As discussed previously, here we

are most interested in the performance of point sets for under-resolved simulations, which are

often encountered in practice. The coarsest grids utilised for each ℘ were chosen to achieve

absolute errors in the range of 10−1–100. This is comparable to the magnitude of the solution,

see Eq. 11, and thus can be considered significantly under-resolved. For each ℘ three further

successively finer grids were used to give a total of four grids per ℘ in total.

Isentropic Euler Vortex Following [6,7,14] we also consider the propagation of an isentropic

Euler vortex in a free-stream. The initial conditions for this numerical experiment, in primitive

form, are given by

ρ(x, y, z, t = 0) =

{

1 −
S2 M2(γ − 1) exp 2 f

8π2

}

1
γ−1

, (13)

vx (x, y, z, t = 0) =
Sy exp f

2π R
, (14)

vy(x, y, z, t = 0) = 1 −
Sx exp f

2π R
, (15)

vz(x, y, z, t = 0) = 0, (16)

p(x, y, z, t = 0) =
ργ

γ M2
, (17)

where f = (1 − x2 − y2)/2R2, S is the strength of the vortex, M is the free-stream Mach

number and R is the radius of the vortex. These conditions give rise to a vortex that is
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Fig. 5 Cutaway of one of the

unstructured meshes with 837

tetrahedra used for the isentropic

Euler vortex case

translating in the y-direction with a velocity of one. In a domain � = [−10, 10]×[−10, 10]×

[−2.5, 2.5] we chose to take S = 13.5, M = 0.4, and R = 1.5. To complete the system

we will apply periodic boundary conditions in the y- and z-directions and a characteristic

boundary conditions in the x-direction. These conditions, however, result in the modelling

of an infinite grid of coupled vortices [14]. The impact of this is mitigated by the observation

that the exponentially-decaying vortex has a radius which is far smaller than the extent of

the domain. Neglecting these effects the analytic solution of the system at a time t is simply

a translation of the initial conditions.

A series of four unstructured tetrahedral meshes were generated with NE = 837, 2165,

5076, 9571 elements, respectively. A cutaway of the coarsest NE = 837 mesh can be seen

in Fig. 5. All four grids were employed at each of the three polynomial orders.

4.3 Error Estimation

Given that the analytic solution is available for both test cases an L2 error can be defined as

σ(t)2 =

∫

�

[

Qδ(x, t) − Q(x, t)
]2

d3x

=

NE
∑

i

∫

T

[

Qδ
i (x̃, t) − Q(Mi (x̃), t)

]2
Ji (x̃) d3x̃

≈

NE
∑

i

∑

j

[

Qδ
i (x̃ j , t) − Q(Mi (x̃ j ), t)

]2
Ji (x̃ j )w j ,

(18)

where Qδ(x, t) is a numerical quantity, Q(x, t) is the associated analytical quantity, and

Mi (x̃) is a local-to-global coordinate mapping inside of element i with Ji (x̃) being the

associated Jacobian determinant. In the third step each integral has been approximated by

using a quadrature rule with abscissa {x̃ j } and weights {w j }. So long as the rule used—which

need not be symmetric or consist of a tetrahedral number of points—is of adequate strength

then this will be a very accurate approximation of the true L2 error. For the purposes of our

experiments a 59-point rule of quadrature strength 9 was employed. To assess the error for

the manufactured sinusoidal solution test case the quantity was taken to be the energy E(x, t)

whereas for the isentropic Euler vortex test case the density ρ(x, t) was chosen.

Denote the set of errors for rule i at polynomial order ℘ as {σ
(℘)

i j } where j runs over the

four meshes employed at this polynomial order for the test case in question. Point sets where

one or more of the simulations diverged are considered to have an infinite error. Taking the

geometric mean of these numbers we find

〈

σ
(℘)

i

〉

=

( 4
∏

j

σ
(℘)

i j

)1/4

, (19)
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(a)

(b)

Fig. 6 Performance of the top 18 candidate rule sets at order ℘ = 3 for the manufactured sinusoidal solution

test case compared against the Shunn–Ham points. The top-ranked point set is shown in blue with diamond

markers while the Shunn–Ham points are in green with round markers. a Absolute error. b Error relative to

the Shunn–Ham points (Color figure online)

which gives us an overall error we can rank. The use of the geometric, as opposed to the

arithmetic, mean allows us to account for the fact that magnitude of the absolute error varies

greatly across the four grids. A key property of the geometric mean is that

〈

σ
(℘)

i

σ
(℘)

j

〉

=
〈σ

(℘)

i 〉

〈σ
(℘)

j 〉
, (20)

which permits us to examine the overall relative performance of our points.

4.4 Other Details

To completely define the proposed numerical experiment it is also necessary to specify the

time marching algorithm, the correction functions, the approximate Riemann solver, and the

choice of flux points along each edge. In this study a TVD-RK3 scheme of Gottlieb [15] is

chosen for time marching. When performing the simulations it is important that the time step

�t is chosen such that the temporal error is negligible when compared to the spatial error.

Correction functions were chosen to recover the nodal DG scheme described in Hesthaven
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(a)

(b)

Fig. 7 Performance of the top 18 candidate rule sets at order ℘ = 4 for the manufactured sinusoidal solution

test case compared against the Shunn–Ham points. The top-ranked point set is shown in blue with diamond

markers while the Shunn–Ham points are in green with round markers. a Absolute error. b Error relative to

the Shunn–Ham points (Color figure online)

and Warburton [2]. For computing the numerical fluxes at element interfaces a Rusanov type

Riemann solver, as presented in Sun et al. [4], is employed. Finally, on the faces of the

tetrahedra the flux points are taken to be the Williams Shunn points of [16].

5 Results

For each polynomial order all derived point sets were used to solve the test problem define

in Sect. 4 with a modified version of the PyFR solver v0.2.3 [17]. Differences between the

reference version of PyFR v0.2.3 and the one employed here can be found in the electronic

supplementary material.

5.1 Manufactured Sinusoidal Solution

All simulations were initialised with the analytic solution at t = 0 and run up until t = 100

with a �t = 5 × 10−4 at which point L2 errors of energy were computed in accordance with

Eq. 18. At each order the top 18 rules were compared and contrasted against the Shunn–Ham
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(a)

(b)

Fig. 8 Performance of the top 16 candidate rule sets at order ℘ = 5 for the manufactured sinusoidal solution

test case compared against the Shunn–Ham points. The top-ranked point set is shown in blue with diamond

markers while the Shunn–Ham points are in green with round markers. a Absolute error. b Error relative to

the Shunn–Ham points (Color figure online)

points. Plots showing the absolute and relative errors, as a function of the characteristic mesh

spacing, can be seen in Figs. 6, 7, and 8. Looking at the plots it is evident that when ℘ = 3

all of our new point sets represent an improvement over the reference set of Shunn–Ham.

The top-ranked point set has an overall error which is 72.7 % of the Shunn–Ham points.

When the order is increased to ℘ = 4 the results, shown in Fig. 7, are more varied. Although

little improvement is observed on the finer meshes where N = 12, 8, 6, the majority of our

points can be seen to outperform the Shunn–Ham points on the coarsest N = 5 mesh. The

top ranked point set here has an overall error which is 90.5 % that of the reference set. The

results at ℘ = 5 can be seen in Fig. 8. Improvements are observed on all four grids with the

top-ranked point set having a relative error which is 64.4 % that of the Shunn–Ham points.

As in the case of ℘ = 3 the top-ranked point set is found to outperform the Shunn–Ham

points on all of the grids.

5.2 Isentropic Euler vortex

All simulations were initialised with the analytic solution at t = 0 and run up until

t = 20 with a �t = 3 × 10−4 at which point L2 errors of density were computed in
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(a)

(b)

Fig. 9 Performance of the top 18 candidate rule sets at order ℘ = 3 for the isentropic Euler vortex test

case compared against the Shunn–Ham points. The top-ranked point set is shown in magenta with diamond

markers while the Shunn–Ham points are in green with round markers. a Absolute error. b Error relative to

the Shunn–Ham points (Color figure online)

accordance with Eq. 18. As with the manufactured sinusoidal solution test case at each

order the top 18 rules were compared and contrasted against the Shunn–Ham points. Plots

showing the absolute and relative errors, as a function of the characteristic mesh spac-

ing, can be seen in Figs. 9, 10, and 11. Looking at the plots it is evident that when

℘ = 3 all of our new point sets represent an improvement over the reference set of

Shunn–Ham in all but the most under-resolved grid. The top-ranked point set has an

overall error which is 78.1 % of the Shunn–Ham points. When the order is increased

to ℘ = 4 the results, shown in Fig. 7, are more varied. The majority of rules can be

seen to under-perform the Shunn–Ham points with the best overall rule having an over-

all error which is 1.01 times that of the Shunn–Ham points. The results at ℘ = 5 can

be seen in Fig 8. Here we note that only five of the generated point sets successfully ran

to completion on all four of the grids. However, of these five point sets the majority are

observed to outperform the Shunn–Ham points, especially on the coarser grids. The top-

ranked point set is found to have an overall error which is 68.1 % that of the Shunn–Ham

points.
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(a)

(b)

Fig. 10 Performance of the top 18 candidate rule sets at order ℘ = 4 for the isentropic Euler vortex test

case compared against the Shunn–Ham points. The top-ranked point set is shown in magenta with diamond

markers while the Shunn–Ham points are in green with round markers. a Absolute error. b Error relative to

the Shunn–Ham points (Color figure online)

5.3 Comparisons

A cross comparison between the top-ranked point sets for each of the two test cases can be

seen in Table 3. For both ℘ = 3 and ℘ = 4 the top-ranked point set is different between

the two test cases. However, at ℘ = 3 it is observed that the top-ranked Euler vortex point

set represents an improvement over the Shunn–Ham points on both of the test cases. In the

case of ℘ = 5 the top-ranked set is identical for both cases with a similar overall reduction

in error being observed for both of the problems.

At each polynomial order the top ranked point set is provided as electronic supplementary

material.

6 Stability

In order to assess the stability of various point sets it is interesting to tabulate the number of

rules that diverged in either one, or both, of the two test cases. This can be seen in Table 4.
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(a)

(b)

Fig. 11 Performance of the top 5 candidate rule sets at order ℘ = 5 for the isentropic Euler vortex test

case compared against the Shunn–Ham points. The top-ranked point set is shown in magenta with diamond

markers while the Shunn–Ham points are in green with round markers. a Absolute error. b Error relative to

the Shunn–Ham points (Color figure online)

Table 3 Errors, normalised

against the Shunn–Ham points,

for the top-ranked point sets

Case M refers to the

manufactured sinusoidal solution

and case V to the isentropic Euler

vortex. In the case of ℘ = 5 the

top-ranked set is identical for

both cases

Order Set Error

M V

℘ = 3 Top M 0.73 1.22

Top V 0.88 0.78

℘ = 4 Top M 0.90 1.10

Top V 0.97 1.01

℘ = 5 Top M 0.64 0.68

Top V 0.64 0.68

A rule is counted as having diverged if it diverges on any of the four grids. Looking at the

table it is evident that fewer points successfully complete the isentropic Euler vortex test case

compared with the manufactured sinusoidal solution test case as indicated by large counts in

the second row of the table.
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Table 4 Number of rules that

completed and diverged for each

of the test cases

⋆= finished ∅= diverged

Case M refers to the

manufactured sinusoidal solution

and case V to the isentropic Euler

vortex

Case Order

M V ℘ = 3 ℘ = 4 ℘ = 5

⋆ ⋆ 180 50 5

⋆ ∅ 12 176 11

∅ ⋆ 0 1 0

∅ ∅ 1 48 9

7 Conclusion

In this paper we have investigated how solution point placement contributes towards the

accuracy and stability of FR schemes on tetrahedral elements. The performance of these

points has been assessed with two test cases at three different polynomial orders on both

structured and unstructured grids.

At all three orders of accuracy the top-ranked point set is observed to differ between the

two test cases. This suggests that, for a given polynomial order, there is no set of solution

points that are universally optimal across both test cases.

For the manufactured sinusoidal solution test case when ℘ = 3, 5 we have identified

point sets which outperforms the equivalent Shunn–Ham points on all four grids. At order

℘ = 4 a point set has been identified which outperform the Shunn–Ham points on three out

of the four grids. For the isentropic Euler vortex case when ℘ = 5 the top-ranked point set

outperforms the equivalent Shunn–Ham points on all four grids. At order ℘ = 3 the top-

ranked rule outperforms the Shunn–Ham points on three out of the four grids for an overall

improvement across all four grids. At order ℘ = 4 the top-ranked point set only outperforms

the Shunn–Ham points on two out of the four grids with no overall improvement.

From this we conclude that while it is indeed possible to outperform the solution points of

Shunn–Ham it is not possible to do so consistently. As such the Shunn–Ham points should

be considered a good compromise in terms of practical utility when using FR schemes on

both structured and unstructured tetrahedral grids.
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