
 Open access Proceedings Article DOI:10.1109/ICDE.2005.186

An Analysis of Spatio-Temporal Query Processing in Sensor Networks
— Source link

Alexandru Coman, Jörg Sander, Mario A. Nascimento

Institutions: University of Alberta

Published on: 05 Apr 2005 - International Conference on Data Engineering

Topics: Visual sensor network, Key distribution in wireless sensor networks, Mobile wireless sensor network and
Wireless sensor network

Related papers:

 TinyDB: an acquisitional query processing system for sensor networks

 Multi-query optimization for sensor networks

 Query processing in sensor networks

 The cougar approach to in-network query processing in sensor networks

 The design of an acquisitional query processor for sensor networks

Share this paper:

View more about this paper here: https://typeset.io/papers/an-analysis-of-spatio-temporal-query-processing-in-sensor-
dwfpx7kkx2

https://typeset.io/
https://www.doi.org/10.1109/ICDE.2005.186
https://typeset.io/papers/an-analysis-of-spatio-temporal-query-processing-in-sensor-dwfpx7kkx2
https://typeset.io/authors/alexandru-coman-2hp2fo1s80
https://typeset.io/authors/jorg-sander-18s1ld1nnh
https://typeset.io/authors/mario-a-nascimento-3xjsx9750x
https://typeset.io/institutions/university-of-alberta-3cwz3tfw
https://typeset.io/conferences/international-conference-on-data-engineering-12yajil8
https://typeset.io/topics/visual-sensor-network-2ac15m7e
https://typeset.io/topics/key-distribution-in-wireless-sensor-networks-2q0bta82
https://typeset.io/topics/mobile-wireless-sensor-network-2mnutgl7
https://typeset.io/topics/wireless-sensor-network-2eic5t0n
https://typeset.io/papers/tinydb-an-acquisitional-query-processing-system-for-sensor-2akih312yn
https://typeset.io/papers/multi-query-optimization-for-sensor-networks-mofqxo5fd9
https://typeset.io/papers/query-processing-in-sensor-networks-gjoxy53g7z
https://typeset.io/papers/the-cougar-approach-to-in-network-query-processing-in-sensor-kmnxv8ffm4
https://typeset.io/papers/the-design-of-an-acquisitional-query-processor-for-sensor-1l4ucm9sn5
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/an-analysis-of-spatio-temporal-query-processing-in-sensor-dwfpx7kkx2
https://twitter.com/intent/tweet?text=An%20Analysis%20of%20Spatio-Temporal%20Query%20Processing%20in%20Sensor%20Networks&url=https://typeset.io/papers/an-analysis-of-spatio-temporal-query-processing-in-sensor-dwfpx7kkx2
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/an-analysis-of-spatio-temporal-query-processing-in-sensor-dwfpx7kkx2
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/an-analysis-of-spatio-temporal-query-processing-in-sensor-dwfpx7kkx2
https://typeset.io/papers/an-analysis-of-spatio-temporal-query-processing-in-sensor-dwfpx7kkx2

An Analysis of Spatio-Temporal Query Processing in Sensor Networks

Alexandru Coman Jörg Sander Mario A. Nascimento

Department of Computing Science

University of Alberta, Edmonton, Canada

{acoman,joerg,mn}@cs.ualberta.ca

Abstract

Sensor networks are an emerging technology that pro-

vide new means to monitor and understand various phe-

nomena. Nodes in a sensor network typically have a limited

power supply, thus energy-efficient processing of the queries

over the network is a critical issue. We propose analytical

models to evaluate the performance of three methods for

processing historical spatio-temporal queries in sensor net-

works. The models allow us to better understand the trade-

offs of the investigated method, as well as to recommend the

most energy efficient one at query time.

1. Introduction

A sensor network is comprised of a set of sensor nodes

which can measure, store and process data and are able

to communicate wirelessly. Sensor networks are suitable

for many applications, including environmental monitoring,

traffic organization, warehouse management, and battlefield

surveillance. Sensor nodes are typically battery operated,

which highly constrains their life-span. Hence, energy effi-

cient data processing and networking protocols are required

for the long-term use of such devices. While the network

research community has studied energy efficient protocols

in the context of ad-hoc networks, the database community

has been confronted mostly with time and size constraints,

but rarely with energy limitations. Therefore, the ability to

apply traditional data processing techniques in sensor net-

works is limited, and different solutions must be found.

In [3], we presented techniques for energy-efficient pro-

cessing of historical spatio-temporal queries, HST(sw,tw).

The answer to a HST(sw,tw) query is formed by the mea-

surements of all sensors located in the area sw taken dur-

ing the time range tw. We studied this problem in a peer-to-

peer sensor network environment where each sensor is only

aware of the existence of the other sensors located within

its communication range, and the query can be initiated at

any sensor. We introduced a basic query processing algo-

rithm based on network flooding, and proposed two solu-

tions that minimize the number of nodes that must be con-

tacted during query processing.

An application where such a sensor network environ-

ment can be used is micro-climate monitoring in national

parks. The sensor nodes could be deployed from a plane

over a forest area. Upon activation, each node would start

observing periodically various physical phenomena, e.g.,

temperature and humidity. Park rangers patrolling through

the forest can access the network through any node in their

proximity using a laptop or PDA. For instance, when cer-

tain events such as small fires are observed, park rangers

could query the network, from about anywhere, for histori-

cal observations, which may help understanding what have

caused such events or learn about other areas that are threat-

ened by similar events.

In this paper we develop analytical models to measure

the query processing costs for the methods investigated only

via simulations in [3]. As sensor nodes spend most of their

energy for communication [1], we aim at modelling the

amount of energy consumed by nodes for communication

during query processing. The models allow us to better un-

derstand the trade-offs of the investigated methods, as well

as design better query processing solutions for various sen-

sor environments when the query window covers only a

subset of all sensor nodes. In addition, the models can be

used for recommending at query time the most energy effi-

cient query processing method.

The remainder of this paper is organized as follows. Sec-

tion 2 summarizes the methods proposed in [3]. The analyti-

cal models for these methods are developed in Section 3.

Section 4 presents the evaluation of the investigated meth-

ods based on the analytical model and discusses the the

trade-offs between them. Section 5 describes some of the

research related to ours and Section 6 concludes the paper.

2. HST query processing

We assume a network with fixed sensor nodes that have

equal roles in the functionality of the network. Due to the

wireless network characteristics, a sensor node can com-

municate directly only with the nodes located within its

wireless range, which form its neighborhood. A node can

send a message individually (unicast) to one of its neigh-

bors, or it can send it simultaneously to all of its neigh-

bors (broadcast), and it can communicate with nodes other

than its neighbors using a multi-hop routing protocol. Sen-

sors take measurements periodically, and the collected val-

ues are stored locally for future querying. Each measure-

ment has attached a timestamp corresponding to the time

of measurement and a sensor location, which gives spatio-

temporal properties to data.

A straightforward way to answer a HST(sw,tw) query,

called FullFlood, is contacting every network node. The

query originator node, which can be any node in the net-

work, broadcasts the query to its neighbors, which in turn

broadcast the query to their neighbors, and so on, until all

nodes have received the query. A consequence of broadcast-

ing is that each sensor node may receive the same query

several times. For each query, a node processes only the

first query message received, discarding subsequent mes-

sages. The query answers are returned only to the neighbor

the query was first received from. To all the other neighbors,

an empty answer is returned. When a query is received, the

node broadcasts the query, selects the locally stored data rel-

evant to the query (if any), waits for its neighbors’ answers

and merges them with its own, and finally it returns the an-

swer to the neighbor that it received the query from. Once

the query originator node has received answers from all of

its neighbors, it can answer the query to the user.

When the spatial area sw of the query covers less than

the whole monitored area, i.e., only a subset of nodes, con-

tacting all sensor nodes as in FullFlood may not be the most

energy efficient approach. Since it is not feasible1to com-

pute an optimal solution for query processing at the sen-

sor nodes, we proposed two heuristic methods in [3], both

based on the STWIN query processing framework. In the

STWIN framework, the query processing is divided into

two phases. In the first phase, a routing path must be discov-

ered from the query originator node to a sensor node located

inside the query’s spatial window, called query coordinator.

In the second phase, the query coordinator node must dis-

seminate the query to all nodes located in the query’s spa-

tial window, called query relevant nodes. Then, the query

answers are gathered from the relevant nodes to the coordi-

nator and are returned to the query originator over the path

discovered in the first phase.

For the first phase of STWIN, a greedy approach (called

GreedyDF) is used to discover a routing path from the query

1 It would require that each sensor node obtains and stores informa-
tion about the whole network. Also, the query originator would have
to do expensive computation to fi nd the optimal route for each partic-
ular query.

originator node to the coordinator node located near the cen-

ter of the query’s spatial window. At each step, the query is

forwarded to the neighbor located closest to the center of

the query window. Greedy-based routing methods for po-

sition based routing in ad-hoc networks have been shown

to nearly guarantee delivery for dense network graphs [14],

as it is the case for sensor networks [13]. If the sensor net-

work is not dense, more advanced geographic routing tech-

niques such as [7] (slightly modified to accommodate the

lack of a node at the destination location) could be used to

improve the reliability of message routing.

For the second phase, two different approaches were

studied in [3]. The first heuristic, called WinFlood, consists

of a constrained parallel flooding initiated by the query co-

ordinator, where a node broadcasts the query to its neigh-

bors only if its own location is inside the query’s spatial

window. Similar to FullFlood, nodes wait to receive the

neighbors’ answers (including empty answers) before re-

turning the merged query answers to the neighbor that the

query was first received from. In the second heuristic, called

WinDepth, each node may forward the query only to those

neighbors located within the query’s spatial window. When

a node receives a query, it adds its node identifier in the

query header so that the query path is remembered. Then it

selects a neighbor located within the spatial window that has

not received the query yet (determined based on the query

header), and forwards the query to this neighbor. When the

neighbor returns the query and the query answers, the node

checks for any other neighbors that are relevant to the query

and have not received it yet. If there is one, it forwards the

query to that node and waits for the neighbor’s answer. This

process is repeated until all of a node’s neighbors located

within the query’s spatial window have answered the query,

at which point all the answers received are merged with the

locally stored answers and are returned to the neighbor that

the node received the query from.

3. A cost model for HST query processing

We start by defining a few notations and estimating some

of the basic values used in the models. The area covered by

the wireless range2 W of a node is Aw = πW 2. Assuming

a sensor network with N nodes uniformly deployed over

a monitored region of width X and height Y , each point

in the region is covered in average by the wireless ranges

of NAw

XY
nodes. Each sensor node is covered by the wire-

less ranges of its neighbors, therefore the average number

of neighbors for a node is Nn = NAw

XY
− 1. The number

of nodes relevant to a query is proportional to the area cov-

ered by the query’s spatial window, and it can be expressed

2 As typical sensors do not have sophisticated communication electron-
ics capable of adapting the transmission range [4], we assume all mes-
sages are transmitted as far as the wireless transmission range W .

as: Nr = N
QxQy

XY
, where Qx and Qy denote the width and

height of the query window. Table 1 summarizes the nota-

tions used in the models. For the WinFlood and WinDepth

algorithms, we consider a coordinator node C located at the

center of the query window. We are interested in the behav-

ior of the algorithms for variations in the number of sen-

sors N , the size of the query’s spatial window QxQy and

the temporal range Qt of the query.

Description Notation Default value

Size of monitored region on X axis X 1000 meters

Size of monitored region on Y axis Y 1000 meters

Number of nodes N 2000

Wireless range W 50 meters

Size of query’s window on X axis Qx 100 meters

Size of query’s window on Y axis Qy 100 meters

Size of query’s temporal range Qt 60 measurements

Size of query message Qs 192 bits

Size of a measurement tuple Ts 64 bits

Size of the empty query answer ∅s 8 bits

Energy used to unicast (broadcast) a bit Eu (Eb) α + γdn nJ/bit [10]

Energy used to receive a bit Er β nJ/bit [10]

Other notations

Query originator node O -

Center of the query’s area (coordinator) C -

Average number of relevant nodes Nr -

Average number of neighbors per node Nn -

Number of hops between O and C hOC -

Number of hops from a relevant node to C h2C -

Table 1. Notations and default values

3.1. Estimating the cost of GreedyDF

The energy consumed by GreedyDF for discover-

ing a path between the query originator node O and co-

ordinator C and sending the query over this path is:

EGDF = (Eu + Er)QshOC, where hOC is the num-

ber of hops between O and C. We assume a dense sen-

sor network [13], which allows us to approximate hOC

as the distance dOC between the originator and coordina-

tor nodes divided by the average advance a2C from a node

towards C: hOC = dOC/a2C. We assume that both the lo-

cations of the query originators and the query areas are uni-

formly distributed over the monitored region. Since the

query area falls inside the monitored region, the cen-

ters of the query areas are uniformly distributed in a win-

dow of size (X − Qx)(Y − Qy). We approximate (without

boundary effects) the average distance between O and C as

half of the maximum possible distance between two such

points: dOC = 1
2

√

(X − Qx

2)2 + (Y − Qy

2)2. The av-

erage distance dN between a node Ni and its neighbors

is equal to the sum of distances d from Ni to all possi-

ble neighbor locations divided by the number of these

locations: dN =

∫ ∫

Aw
d(Ni,Nj(x,y))dxdy

Aw
= 2W

3 . The prob-

ability that a neighbor is located on the direction of C is

low, and therefore the query will be forwarded to a neigh-

bor located at an angle from this direction. The average an-

gle between two successive (angle-wise) neighbors Nj

and Nk of a node Ni is 6 NjNiNk = 2π
Nn

. The direc-

tion from Ni to the selected neighbor will make in average

an angle of
6 NjNiNk

4 radians from the direction towards

C. It follows that the average advance from a node to-

wards C is a2C = dN cos
6 NjNiNk

4 = 2W
3 cos π

2Nn
.

An increase in the number of sensor nodes allows a bet-

ter neighbor selection, helping GreedyDF decrease its

costs. When the size of the query area is increased, the dis-

tance dOC decreases, reducing the cost of the algorithm.

Variations in the query’s temporal range do not af-

fect the cost of GreedyDF.

3.2. Estimating the cost of WinFlood

For estimating the energy cost EWF of the WinFlood al-

gorithm, we divide the cost into three components: the cost

to forward the query to the relevant nodes, the cost to re-

turn their answers to the coordinator C, and, finally, the

cost to send the answers from C to the query originator O:

EWF = Eq
WF

+ Ea2C

WF
+ EaC2O

WF
.

During query forwarding, each relevant node will broad-

cast the query once, and receive the query from all its neigh-

bors (we do not consider the boundary effects): Eq
WF

=
EbQsNr +ErQsNrNn. Even though Eq

WF
grows quadrat-

ically in N , for small query windows the slope of the in-

crease is small, since the fractions in Nr and Nn are small.

However, for large query windows, this cost will increase

substantially.

The query answers from the relevant nodes are returned

over the shortest path (in number of hops) to the coordina-

tor (due to flooding, nodes are first contacted over the short-

est path). We estimate the average distance between C and

a relevant node as half of the maximum distance between

any two such points: dC = 1
2

√

(Qx

2)2 + (
Qy

2)2. The aver-

age advance a2C from a relevant node to C is calculated

in the same way as for the GreedyDF algorithm. Therefore,

the average number of hops between C and a relevant node

is h2C = dC
a2C

=
3
√

Q2
x+Q2

y

8W cos π
2Nn

. The energy used for gather-

ing the answers at C is proportional to the size of the query’s

temporal range Qt and the size of a measurement tuple Ts:

Ea2C
WF

= (Eu + Er)TsQt(Nr − 1)h2C. Note that the prod-

uct TsQt represents the size of the query answer returned by

a node, and the product TsQt(Nr − 1) represents the size

of all query answers from all relevant nodes except the co-

ordinator node C (since C is one of the relevant nodes).

Finally, the coordinator C sends the query answers col-

lected from all (Nr) relevant nodes to the originator O
over the path discovered by GreedyDF: EaC2O

WF = (Eu +
Er)TsQtNrhOC. The costs of returning the answers in-

creases linearly with N , QxQy and Qt. As the cost of Eq
WF

does not depend on Qt, the size of the temporal range de-

cides which of the three costs has a larger weight in the to-

tal cost of WinFlood. Even though Eq
WF

is quadratic in N ,

when Qs ≪ Qt the cost of WinFlood is determined by the

cost to return the query answers.

3.3. Estimating the cost of WinDepth

The performance of the WinDepth algorithm is highly

dependent on the layout of the network formed by the rel-

evant nodes. To estimate its cost, we assume that the al-

gorithm can route the query and receive the answers in a

single path3 connecting all relevant nodes. Therefore, each

relevant node receives and forwards the query twice (once

from/to its parent, once to/from its child), as well as par-

ticipates in the return of the answers for all relevant nodes

located farther away from the coordinator on the contact-

ing path. We divide the estimation of the energy cost EWD

of WinDepth into three components: to forward the query

to the relevant nodes, return their answers to C, and send

the answer from C to the query originator O: EWD =
Eq

WD
+ Ea2C

WD
+ EaC2O

WD
.

Since the forwarding path is saved in the query, the query

is forwarded in average with Nr/2 node id entries (in addi-

tion to the query data), while on the return path it is for-

warded with Nr node id entries, as all relevant nodes were

already contacted. We assume 16 bits are used to store a

node id. Therefore, the cost for disseminating the query to

the relevant nodes is: Eq
WD

= (Eu+Er)(Qs+16Nr

2)(Nr−
1) + (Eu + Er)(Qs + 16Nr)(Nr − 1).

When returning the answers to the coordinator

node C, the last contacted node will return the an-

swer of one node, the next node will return the an-

swers of two nodes, until reaching C, which receives

Nr − 1 node answers (since C is also a relevant node):

Ea2C

WD
= (Eu +Er)TsQt

(Nr−1)(Nr−2)
2 . Note that the prod-

uct TsQt represents the size of the query answer returned

by a relevant node.

Finally, the coordinator C sends the query answers to the

originator node O over the path discovered by GreedyDF:

EaC2O

WD
= (Eu + Er)TsQtNrhOC, where the product

TsQtNr represents the size of all query answers from all

relevant nodes. Both Eq
WD

and Ea2C
WD

costs depend quadrat-

ically in Nr, and therefore are strongly affected by vari-

ations in N and QxQy. If the query covers a large frac-

tion from the monitored region, an increase in N leads to

a quadratic increase of these costs. Similar to WinFlood,

WinDepth is linear in Qt, which partly determines the

weight of each cost in the total cost of the algorithm.

3 For dense sensor networks, WinDepth contacts all relevant nodes in a
single path or in a very deep tree with only a few branches [3].

3.4. Estimating the cost of FullFlood

We divide the estimation of the energy cost EFF of

FullFlood algorithm into three components: to forward the

query, to return the empty answer which signals that the

query has already been processed, and finally, to send the

query answers from the relevant nodes to the originator O:

EFF = Eq
FF

+ Eea
FF

+ Ea2O
FF

.

For disseminating the query, each node will broadcasts

the query once, and receives the query from all its neigh-

bors: Eq
FF

= EbQsN + ErQsNNn. After receiving the

query, all nodes except the relevant nodes will return an

empty answer to all their neighbors, while the relevant

nodes will return the query answer to one of their neigh-

bors and the empty answer to every other neighbor. Thus,

Eea
FF

= (Eu + Er)∅s(NNn − Nr). The relevant nodes

send the answers over the shortest path (in number of hops)

to the query originator O (due to flooding, nodes are first

contacted over the shortest path). As both the query and

the nodes are uniformly distributed in the monitored region,

the average number of hops between O and a relevant node

can be approximated by the number of hops between O and

the center C of the query area (calculated for GreedyDF):

Ea2O
FF

= (Eu + Er)TsQtNrhOC.

Both Eq
FF

and Eea

FF
costs depend quadratically in N ,

Eea

FF
being also slightly affected by the size of the query

area (and not affected by Qt). Thus, for denser networks

a large increase in these costs is expected. The Ea2O

FF
cost

is linear in all three variables. Differently from WinFlood

and WinDepth, both Qt and QxQy affect the weights of

the three costs of FullFlood. For small queries, the cost of

FullFlood is dominated by the cost of query forwarding,

while for large queries the cost of returning the answers pre-

vails.

3.5. Cost Models Summary

To ease the comparison of the overall costs of the pre-

sented query processing solutions, we summarize the cost

formulas of each algorithm into one. For the typical net-

work flooding, the cost of processing HST queries is:

EFF = EbQsN + ErQsNNn +

(Eu + Er)∅s(NNn − Nr) +

(Eu + Er)TsQtNrhOC.

For the solutions within the STWIN framework, the to-

tal cost is equal to the sum of the cost of GreedyDF and

the algorithm used for the second phase (i.e., WinFlood or

WinDepth). When WinFlood is used, the total cost is:

EGDF+WF = (Eu + Er)QshOC +

EbQsNr + ErQsNrNn +

(Eu + Er)TsQt(Nr − 1)h2C +

(Eu + Er)TsQtNrhOC,

while for WinDepth we have:

EGDF+WD = (Eu + Er)QshOC +

(Eu + Er)(Qs + 24Nr)(Nr − 1) +

(Eu + Er)TsQt

(Nr − 1)(Nr − 2)

2
+

(Eu + Er)TsQtNrhOC.

4. Discussion

As examined in the previous section, the investigated al-

gorithms behave differently for variations in the query size

and number of neighbors. An increase in the number of sen-

sors should strongly affect the FullFlood algorithm, while

WinFlood should be only slightly affected. When the query

area increases, WinDepth should have a quadratic energy in-

crease, while WinFlood and FullFlood only a linear one. All

algorithms (except GreedyDF which is used for routing the

query to the coordinator) should be affected linearly by vari-

ations in the query’s temporal range. We compare the costs

of the algorithms using both the cost models and simula-

tions (taken from [3]). In the cost models we used the pa-

rameter values as listed in Table 1 and the following val-

ues needed for Eu, Eb, and Er [2]: α = 45 nJ/bit, β =
135 nJ/bit, n = 2, and γ = 10 pJ/bit/m2. Both WinDepth

and WinFlood algorithms are combined with GreedyDF to

form a complete query processing solution.

The increase in the number of sensors N (Figure 1(a))

affects strongly the average energy used by FullFlood due

to the increased number of query messages each node re-

ceives, as well as the increase in the number of empty mes-

sages that are exchanged (the Eq
FF

and Eea

FF
costs). While

having more nodes affects GreedyDF only slightly, it affects

WinFlood and WinDepth in different ways. Since the query

window is small, the increase in the number of relevant

nodes has a minor effect on WinFlood, and a stronger ef-

fect on WinDepth (due to Eq
WD

and Ea2C

WD
costs). For dense

networks, minimizing the number of nodes contacted helps

the algorithms within the STWIN framework keep the en-

ergy costs low. The experimental results (Figure 1(b)) are

qualitatively the same, while quantitatively all the methods

show a slightly lower energy usage than obtained with the

cost models.

The effects of varying the size of the query area are

shown in Figure 1(c). The increase in the size of the query

area produces a linear increase in the number of relevant

nodes Nr. Due to the Eq
WD

and Ea2C

WD
costs, the WinDepth

algorithm shows a quadratic increase in its energy cost. The

cost of GreedyDF with WinFlood increases faster than the

cost of FullFlood, whose Eq
FF

cost stays constant. When

the query area reaches a certain relative value with respect

to the monitored region, the cost of returning the query

answers dominates all algorithms, giving an advantage to

FullFlood which returns the answers over the shortest path

Cost models based Simulations based

 0

 0.5

 1

 1.5

 2

 2.5

 1000 2000 4000 8000 16000A
vg

. E
ne

rg
y

U
se

d
pe

r
S

en
so

r
(m

J)

Number of sensors (log-scale)

GreedyDF+WinDepth
GreedyDF+WinFlood

FullFlood

 0

 0.5

 1

 1.5

 2

 2.5

 1000 2000 4000 8000 16000A
vg

. E
ne

rg
y

U
se

d
pe

r
S

en
so

r
(m

J)

Number of sensors (log-scale)

GreedyDF+WinDepth
GreedyDF+WinFlood

FullFlood

(a) (b)

 0

 1

 2

 3

 4

 5

1% 5% 10% 25%A
vg

. E
ne

rg
y

U
se

d
pe

r
S

en
so

r
(m

J)

Query size - spatial area(%)

GreedyDF+WinDepth
GreedyDF+WinFlood

FullFlood

 0

 1

 2

 3

 4

 5

1% 5% 10% 25%A
vg

. E
ne

rg
y

U
se

d
pe

r
S

en
so

r
(m

J)

Query size - spatial area(%)

GreedyDF+WinDepth
GreedyDF+WinFlood

FullFlood

(c) (d)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 20 40 60 80 100A
vg

. E
ne

rg
y

U
se

d
pe

r
S

en
so

r
(m

J)

Query size - temporal range (#measurements)

GreedyDF+WinDepth
GreedyDF+WinFlood

FullFlood

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 20 40 60 80 100A
vg

. E
ne

rg
y

U
se

d
pe

r
S

en
so

r
(m

J)

Query size - temporal range (#measurements)

GreedyDF+WinDepth
GreedyDF+WinFlood

FullFlood

(e) (f)

Figure 1. The average energy used per node

using the cost models and simulations

to the query originator. In both the cost models and the sim-

ulations (Figure 1(c,d)), the FullFlood algorithm is the most

energy efficient of the three methods after the query area

covers around 12% of the monitored region, which also

shows the qualitative accuracy of the cost model. For large

queries, the overhead for discovering shortest path routes to

the relevant nodes pays off through substantial energy sav-

ings. Basic processing algorithms such as FullFlood can be

winners for such queries.

Finally, increasing the query’s temporal range Qt re-

sults in a linear increase in the costs of the algorithms (Fig-

ure 1(e)). The WinDepth algorithm is affected more than

WinFlood due to the longer path over which a larger an-

swer set must be returned to the coordinator node. As the

size of the answer grows, the weights of Eq
FF

and Eea

FF
in

FullFlood decrease relatively, while the saving in energy

due to returning the answers over the shortest path grow

when compared with the other two methods.

As shown in Figure 1(a-f), the cost models capture well

the behavior of the algorithms. Therefore, the models can

be used to determine the most energy efficient algorithm

given a query and a sensor network. They can be easily im-

plemented in the sensor nodes to help the query originator

determine which is the most energy efficient algorithm for

processing a given query.

5. Related work

Directed Diffusion [6] investigates query processing in

a sensor network environment similar to ours in the sense

that the query can be originated at any node, and nodes

are only aware of their neighborhood. Differently from us,

nodes do not store historical data and sensing is only per-

formed in response to a query request. A system focusing on

query processing over historical data is DIMENSIONS [5].

Their focus is on multi-resolution summarization of data

for data mining, where a query can first look at the data

at a coarse resolution and then focus on a region of inter-

est at a finer resolution. Several data-dissemination meth-

ods are discussed in [11, 12], and the GHT system for data-

centric storage is introduced. In [11], the simulation results

show that the local storage of measurements performs the

best for scenarios like ours where a large number of obser-

vations is available with only a small subset of them being

retrieved. In [8, 9], Madden et al. focus on query process-

ing in a sensor environment where the information about the

existing sensors is available in a catalog. Sensor nodes sim-

ply collect and transmit the raw data to the powered sensor

proxies that are in charge of further processing and rout-

ing the answers to the users. The Cougar project [15, 16]

also investigates techniques for query processing over sen-

sor data. However, unlike ours, their research focuses on a

sensor network environment where there is a central admin-

istration that knows the location of all sensors. A central op-

timizer has the tasks of building a query plan and dissemi-

nating it to the relevant sensor nodes.

6. Conclusions

In this paper we investigated energy efficient query pro-

cessing in a peer-to-peer sensor network environment. In

this scenario we studied three methods, each based on a

different processing strategy. We built analytical models to

capture the effects of various parameters on the methods,

which helped us better understand their behavior. We com-

pared the models with the experimental simulations and we

showed that they capture well the behavior of the studied

algorithms, which also makes it possible to recommend at

query time the most energy efficient method.

Our current investigations looked into processing his-

torical spatio-temporal queries for retrieving the rele-

vant raw data. In the future work, we will study the

effect of in-network data aggregation. Early data ag-

gregation at the coordinator node in the STWIN based

algorithms would reduce the energy costs, possibly mak-

ing them more efficient that FullFlood for large queries.

We will also study coordinator nodes located at other posi-

tions than the center of the query area as they may reduce

the length of the path over which the query answers are re-

turned, further reducing the energy costs.

Acknowledgments. This work was partially supported

by NSERC. We would like to thank the anonymous review-

ers for their useful suggestions to improve our work.

References

[1] I. Akyildiz et al. Wireless sensor networks: A survey. Com-

puter Networks, 38(4):392–422, 2002.

[2] M. Bhardwaj. Power-aware systems. Master’s the-

sis, MIT, 2001. http://www-mtl.mit.edu/research/ic-

systems/uamps/pubs/theses/.

[3] A. Coman et al. A framework for spatio-temporal query pro-

cessing over wireless sensor networks. In Proc. of DMSN

Workshop (with VLDB), pages 104–110, 2004.

[4] A. Demers, J. Gehrke, R. Rajaraman, N. Trigoni, and Y. Yao.

Energy-effi cient data management for sensor networks: A

work-in-progress report. In Proc. of Upstate New York Work-

shop on Sensor Networks, 2003.

[5] D. Ganesan et al. An evaluation of multi-resolution storage

for sensor networks. In Proc. of ACM SenSys, 2003.

[6] C. Intanagonwiwat et al. Directed diffusion for wireless sen-

sor networking. IEEE Trans. on Networking, 11(1):2–16,

2003.

[7] B. Karp and H. Kung. Greedy perimeter stateless routing for

wireless networks. In Proc. of ACM MobiCom, pages 243–

254, 2000.

[8] S. Madden and M. Franklin. Fjording the stream: An archi-

tecture for queries over streaming sensor data. In Proc. of

IEEE ICDE, pages 555–566, 2002.

[9] S. Madden et al. The design of an acquisitional query proces-

sor for sensor networks. In Proc. of ACM SIGMOD, pages

491–502, 2003.

[10] T. Rappaport. Wireless Communications: Principles and

Practice. Prentice-Hall Inc., 1996.

[11] S. Ratnasnmy et al. GHT: A geographic hash table for data-

centric storage. In Proc. of WSNA Workshop, 2002.

[12] S. Shenher et al. Data-centric storage in sensornets. In Proc.

of HotNets Workshop, 2002.

[13] E. Shih et al. Physical layer driven protocol and algorithm

design for energy-effi cient wireless sensor networks. In

Proc. of ACM MobiCom, pages 272 – 287, 2001.

[14] I. Stojmenovic. Position based routing in ad hoc networks.

IEEE Communications Magazine, 40(7):128–134, 2002.

[15] Y. Yao and J. Gehrke. The Cougar approach to in-network

query processing in sensor networks. SIGMOD Record,

31(3):9–18, 2002.

[16] Y. Yao and J. Gehrke. Query processing in sensor networks.

In Proc. of CIDR, 2003.

