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Abstract— This paper analyzes the performance of TCP over
satellite links with random access. The system considered consists
of large number of identical source-destination pairs, each
employing TCP at its transport layer and a random access
scheme at its MAC layer. Simple formulas that well capture the
system performance are given, and some important properties
of the system performance are presented as well. Specifically, in
order to analyze the system, we propose a simplified version
of the system. We then develop formulas for obtaining the
throughput of this simplified system as a function of various
system and protocol parameters. Based on these formulas, it
is shown that the maximum possible system throughput is
1/e, which can be achieved only when the system parameters
satisfy a given condition. The optimal MAC layer transmission
probability at which the throughput is maximized is derived as
well. Furthermore, the impact of varying system and protocol
parameters on the system performance is analyzed. The results
show that for systems with very small propagation delay or very
large number of source-destination pairs, a throughput of 1/e can
be achieved by setting the MAC layer transmission probability
to its optimal value. However, when the number of users is
(relatively) small or the propagation delay is (relatively) large,
the maximum achievable throughput can be substantially smaller
than 1/e. Although the analysis is based on the simplified system,
simulations on the original system show that the formulas and
the above results can be used to describe the performance of the
original system as well.

I. INTRODUCTION

In this paper we consider the performance of TCP over a
shared satellite link with random access (i.e., Aloha). Satellite
links are inherently different from terrestrial links, and the
performance of TCP over satellite has received a great deal
of attention over the past decade. Most previous work has
focused on the impact of the large propagation delays and
high bit error rates associated with satellite links, [1], [4], [5],
[6]. Overviews are given in [3], [8].

This paper addresses the multi-access nature of satellite
networks, and analyzes the TCP performance over satellite
links when a pure random access scheme is employed at the
MAC layer. In particular, the system considered consists of
large number of identical persistent source-destination pairs,
each pair employing TCP at its transport layer and each source
employing a random access scheme at its MAC layer. In order
to analyze the system, we propose an simplified system that
differs from the above system in that the transport layers
employ a simplified version of TCP window flow control. For
this simplified system, an analytical model is developed, and

equations are derived for solving for the system throughput,
idle probability and collision probability. Based on the equa-
tions, we show that the maximum achievable throughput is 1/e
and give a necessary and sufficient condition for achieving it.
The impact of system and protocol parameters on the system
performance is obtained both analytically and numerically.
Finally, the performance of the original system is examined by
simulations and the results are compared with those numerical
results obtained from the formulas for the simplified system.
The results show that although the analysis and formulas are
based on the simplified system, they are a good approximation
of the original system and all the results obtained are valid for
the original system as well.

The paper is organized as follows: the next section gives a
detail description on the systems and protocols examined. In
Section III we develop an analytical model for the simplified
system. Using this analytical model, Section IV gives formulas
for the system’s throughput, the conditions for achieving the
maximum throughput, as well as the optimal MAC layer
transmission probability. The impact of various system pa-
rameters on performance is also examined in Section IV, both
analytically and numerically, and simulation results for the
original system are presented and compared with the numerical
results as well. Section V discusses the implications of the
various assumptions and concludes the paper.

II. SYSTEM DESCRIPTION

The system we consider consists of N identical source-
destination pairs (SD pairs), where N is large, as shown
in Figure 1. Each of the N sources has unlimited number
of packets to be sent to its corresponding destination. All
N sources share a common channel to the satellite. Each
SD pair employs TCP at its transport layer for congestion
control purpose, and all sources employ a simplified version
of ALOHA multi-access scheme at their MAC layer for multi-
access purpose. For simplicity, we ignore the timeout update of
TCP based on its round trip time measurements, and assume
that the timeout value is a random variable with mean TO
slots. The ALOHA schemes will be described in detail later.

For all SD pairs, all packets have the same length and each
packet requires one time unit (called a slot) for transmission.
The two-way propagation delay, defined to be the duration
between the time when a packet is successfully transmitted by
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the MAC layer of the source and the time when its correspond-
ing acknowledgement is received by the source, is a random
variable with mean D slots. Here the randomness represents
the queuing delays and other random delays experienced by
the packets. To focus on the impact of random access, assume
that there are no other packet losses in the network except
losses due to MAC layer collisions.
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Fig. 1. System with TCP over MAC Random Access

The simplified version of ALOHA multi-access scheme
works as follows:

• When one or more packets are available in the MAC
layer buffer, the MAC layer transmits the first packet with
probability p.

• If two or more packets are transmitted in a given slot, a
collision occurs and all packets are assumed lost. If only
one packet is transmitted in a given slot, the packet is
successfully received.

The difference between this scheme and ordinary ALOHA
lies in that here we do not allow retransmissions of packets
involved in collisions at the MAC layer. This assumption is
reasonable over a satellite link as retransmissions at the MAC
layer will almost certainly result in a TCP time-out event,
which can be easily verified. As with ALOHA, each MAC
layer of the system can be viewed as a queuing system, with
all arrivals coming from its corresponding transport layer and
geometrically distributed service time with mean 1/p.

In order to obtain an analytical model, we consider a
simplified system that differs from the above system only in
that it has a different window flow control (WFC) scheme. Its
WFC scheme is similar to that in the congestion avoidance
phase of TCP but without the fast retransmit/recovery option.
In particular, it works as follows:

• Initially the window size W = 1.
• Upon an acknowledgement, the window size is updated

to be W ←W + 1
�W� .

• Upon a timeout, the window size is reset to be W ← 1.

We also assume that the transport layer employs a selective
repeat retransmission protocol and retransmits only those
packets that were lost. Furthermore, we assume that the
timeout value is large enough that the probability of timeout
due to queuing delay at the MAC layer can be ignored. Recall
that there are no losses other than collision losses. Hence,
timeouts can only be triggered by MAC layer collisions.

TABLE I

WINDOW EVOLUTION AND ROUNDS

ACK window packet round first packet number of packets
size released in round in round

1 1 1 1 1
1 2 2,3 2 2 2
2 2 4 3 4 3
3 3 5,6
4 3 7 4 7 4
5 3 8
6 4 9,10
7 4 11 5 11 5
8 4 12

The analysis henceforth will be based on the simplified
system with these assumptions, and we therefore call the
simplified system the system when there is no ambiguity. Nev-
ertheless, the analytical results match well with the simulations
for the original system with TCP without timeout update, as
will be presented in Section IV. Including timeout update into
analysis is part of our future work.

For convenience, we borrow the concept of round from [7]
at the transport layer, with extension that includes the timeout
signal: a round starts with transmission of W packets, where
W is the current window size of the congestion window. Once
all packets falling within the congestion window have been
sent, no other packets are sent until the first ACK for one of
these W packets or a timeout signal is received . This ACK
reception or timeout marks the end of the current round and
the beginning of the next round.

We further index the packets sent and the rounds between
two successive timeouts in order, i.e., packet k is the kth packet
and round k is the kth round. The ACK for packet k is called
ACK k. Table I illustrates the window evolution and rounds
between two successive timeouts for the simplified system.
For example in Table I, each time when the window size
is increased by 1, there are two packets released. Otherwise,
there is one packet released. After the window size reaches 3,
there are three ACKs received, namely ACK 3,4 and 5, before
the window size reaches 4. Correspondingly, four packets are
released, namely packet 5, 6, 7 and 8. These are shown in
column 1 to column 3. Round 4 begins with ACK 4, which
is the first ACK of packets in round 3, and the first packet in
round 4 is packet 7. ACK 7 thus becomes the first ACK of
packets in round 4 and marks the end of round 4 and beginning
of round 5. This is shown in the 4th and 5th columns. By
counting the number of packets in round 4, we obtain 4, which
is shown in the last column.

III. PERFORMANCE ANALYSIS

In the following we first consider the entire system including
all SD pairs, and then examine one SD pair in isolation. The
combined analysis yields formulas that together can be used
to solve for the system performance.

A. Analysis at the System Level

For every sender/receiver pair, define the throughput as the
number of packets correctly received by the receiver per unit
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time, and the send rate as the number of packets sent by
the sender per unit time. That is, the send rate includes both
packets that are included in throughput and the packets that
are lost due to collisions. By assuming equivalence between
time average and ensemble average, the throughput is also the
probability that in a slot, a packet is correctly received by the
receiver. Similarly, the send rate is also the probability that in
a slot, a packet is sent by the sender.

In our system, on one hand, we have two layers, the trans-
port layer and the MAC layer. We therefore have definitions
of throughput and send rate at both layers. On the other hand,
the MAC layers receive packets only from their corresponding
transport layers. Therefore, the send rate at both layers are the
same. In addition, collision losses at the MAC layers are the
only losses in the system. So the throughput at both layers are
the same as well. Henceforth, we use the name throughput
and send rate to refer to the throughput and send rate at both
layers. Besides, the throughput and send rate can refer to those
of a single SD pairs and those of all N SD pairs. We call those
for a single SD pair individual throughput and send rate, and
denote them by λd and Bd, respectively. We call those for all
N SD pairs system throughput and send rate, and denote them
by λs and Bs, respectively.

From the above definitions and discussions of throughput
and send rate, we conclude that in our system, the system
throughput λs is the probability that there is exactly one MAC
layer sending a packet in a slot. For one particular SD pair, the
individual send rate Bd is the probability that the MAC layer
of this SD pair sends a packet in a slot. Since we have a large
number of SD pairs (N is large), we further assume that for a
particular SD pair, its state is independent of the state of other
SD pairs. We hence have the following relationship between
the system throughput, idle probability, collision probability
and the individual send rate:

λs = NBd(1−Bd)N−1 ≈ NBde
−NBd , (1a)

PI = (1−Bd)N ≈ e−NBd , (1b)

PC = 1− λs − PI . (1c)

where PI and PC are the idle probability and collision
probability, respectively, and the approximations hold when
Bd is small and N is large.

On one hand, due to the independent assumption, the above
analysis is similar to that of a standard ALOHA system.
The equations in (1) show that, as in an ALOHA system,
the number of packets correctly received in a slot can be
approximated by a Poison random variable, with the attempt
rate NBd as its mean. The maximum possible throughput can
be achieved at NBd = 1, with the corresponding throughput,
idle probability and collision probability being 1/e, 1/e and
1 − 2/e, respectively. On the other hand, different from an
ALOHA system, NBd = 1 is not always achievable in our
system due to the transport layer window limitation, which
will be analyzed in detail later, while in an ALOHA system,
attempt rate 1 can always be achieved with proper parameter

settings. We henceforth call the system performance at NBd =
1 ALOHA performance.

Furthermore, under the independent assumption, the effects
of other SD pairs on one particular SD pair are aggregated
into one parameter Q, defined to be the probability that all
other N − 1 MAC layers transmit no packets in a slot. Since
all SD pairs are identical, we have:

Q = (1−Bd)N−1 ≈ e−(N−1)Bd ≈ e−NBd . (2)

Note that although the values of PI and Q are approximately
the same (Equation (1b) and (2)), they have different physical
meaning. PI is for all N SD pairs, while Q excludes the SD
pair considered and is for the other N − 1 SD pairs only.

Moreover, the independent assumption also gives λs = Nλd

and Bs = NBd.

B. Analysis at the session level

As mentioned before, the effects of the other N−1 SD pairs
on one particular SD pair are aggregated into one parameter Q,
the idle probability of all other N−1 SD pairs. This particular
SD pair can thus be modelled as a normal transport layer
session with collision probability of each packet being 1 −
Q. This section models one particular SD pair as a renewal
process and obtain an upper bound and a lower bound for its
send rate, Bd, in terms of Q.

For one particular SD pair, let’s consider after a timeout,
what happens before the first collision occurs. All packets
sent before the collided packet won’t encounter a timeout,
since they encounter no losses and the large timeout value
assumption ensures that their ACKs will be received before the
retransmission timer expires. Whereas the collided packet will
eventually encounter a timeout, since there is no mechanism
other than the transport layer retransmission to recover this
collision loss. Therefore, the first collision after a timeout
causes a successive timeout. We introduce the concept of cycle
to denote the interval between two successive timeouts.

Moreover, since the transmissions of the packets between
the first timeout and the collided packet were successful,
the transport layer sender will receive some ACKs after the
collision and release some new packets. The large timeout
value assumption ensures that the MAC layer will finish
the transmissions of these later released packets before the
second timeout signal. Thus upon each timeout signal, there
is no packet in the MAC buffer. In addition, according to the
WFC scheme, the window evolves exactly the same after each
timeout signal. The timeout signal sequence therefore forms a
renewal process, and a cycle between two successive timeouts
is an inter-arrival period of the renewal process. Let M be the
number of packets sent during a cycle and T be cycle length.
Then by the renewal theory,

Bd =
E[M ]
E[T ]

. (3)

To solve for Bd, let’s first consider E[T ]. Instead of deriv-
ing its exact expression, which requires complicate queuing
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analysis, we derive an upper bound and an lower bound. Let
R be the number of successful round during a cycle and RTO
be the timeout value that ends the cycle. Then T is the sum of
the duration of these R rounds plus RTO. Each round takes
at least the service time of its first packet, denoted by Fk

for round k, plus the two way propagation delay this packet
experiences, denoted by Dk, for the sender to receive its ACK.
We therefore have a lower bound for T , denoted by TL, to be
T ≥ TL =

∑R
k=1(Fk + Dk) + RTO.

Similarly, an upper bound for T , denoted by TU , can be
obtained when ignoring the overlapping between the service
time of each packet and Dk of each round k. Mathematically,
define Z to be the index of the packet that incurs the first
collision and Xk to be the service time of packet k. Then
T ≤ TU =

∑Z
k=1 Xk +

∑R
k=1 Dk + RTO. Along with the

lower bound TL, we have

R∑

k=1

(Fk + Dk) + RTO = T L ≤ T ≤ T U =
Z∑

k=1

Xk +
R∑

k=1

Dk + RTO.

By our multi-access scheme, the service time for each
packet is geometrically distributed with mean 1/p and inde-
pendent of each other and R and Z as well. Thus by taking
expectations of the above inequality,

(
1

p
+D)E[R]+TO = E[T L] ≤ E[T ] ≤ E[T U ] =

E[Z]

p
+DE[R]+TO.

(4)

Now let’s consider E[M ]. Recall that packet Z is the packet
that incurs the first collision. This means that the previous
Z − 1 packets were successfully transmitted and have been
or will be ACKed, while packet Z and thereafter won’t be
ACKed. According to the WFC scheme, new packets can be
released only upon reception of ACKs. Therefore, M equals
to 1, counting for the first packet, plus the number of packets
triggered by the Z−1 ACKs. In addition in the WFC scheme,
each ACK triggers the release of one packet, except those
ACKs that increase the window size by 1 (i.e., the last ACK
in a round) where two packets are released (See Table I for
illustration). Let I be the number of such ACKs in the Z − 1
ACKs, then M = 1 + (Z − 1) + I = Z + I . Moreover, the
window size is increased by 1 per round. Therefore I = R,
and

E[M ] = E[Z] + E[R]. (5)

We now have bounds for E[T ] as in Inequality (4) and
E[M ] as in Equation (5) in terms of E[Z] and E[R]. Recall
that Q is the probability that no other senders send their
packets in one slot and this event is independent of the state of
the particular SD pair. Therefore, each packet of the particular
SD pair incurs a collision with probability of 1 − Q and
independent of each other. Z is thus geometrically distributed
with Pr(Z = z) = Qz−1(1 − Q) and E[Z] = 1/(1 − Q).
By exploring the relationship between R and Z, it can be
shown that E[R] =

∑∞
k=1 Qk(k+1)/2. For brevity, we omit

the details. By combining them with Equation (3), Inequality

(4) and Equation (5), we obtain the following bounds for the
send rate Bd:

1
1−Q +

∑∞
k=1 Qk(k+1)/2

1
p(1−Q) + D

∑∞
k=1 Qk(k+1)/2 + TO

= fL ≤ Bd

≤ fU =
1

1−Q +
∑∞

k=1 Qk(k+1)/2

( 1
p + D)

∑∞
k=1 Qk(k+1)/2 + TO

. (6)

Notice that for large enough timeout value TO, both bounds
are increasing functions of Q. Mathematically, this can be
shown by taking the derivative of the bounds with respect to Q.
Physically, from our derivation, the lower bound corresponds
to the send rate of the following system: after sending the first
packet of each round, the MAC layer holds the transmission
of other packets until it receives the ACK of the first packet.
This is how we obtain the upper bound for the duration T
between two successive timeouts. Clearly, the send rate of
this system increases with the idle probability of the other
N − 1 SD pairs Q. Similarly, the upper bound corresponds to
the send rate of the following system: after sending the first
packet of each round, the MAC layer finishes the transmission
of all other outstanding packets before it receives the ACK of
the first packet, that is, within time Dk for round k. This is
how we obtain the lower bound for the duration T between
two successive timeouts. Again, the send rate of this system
increases with the idle probability of the other N−1 SD pairs
Q.

To fully under the system behavior, the expectation of the
collision window Wz , defined to the window size when the
collided packet Z is released (i.e., when the collision occurs),
can also be shown to be:

E[WZ ] = 1 +
∞∑

k=2

Q
k(k+1)

2 −2. (7)

Again for brevity, we omit the details.

IV. SYSTEM PERFORMANCE

Section III-A analyzes N SD pairs together and gives one
relationship between the individual send rate Bd and the idle
probability of N −1 SD pairs Q, in Equation (2). Section III-
B gives an upper bound and a lower bound of Bd in terms of
Q in Inequality (6). Based on these results, this section first
gives bounds for Bd and Q in terms of system and protocol
parameters, and then discusses the system performance. A
sufficient and necessary condition for the system to achieve
the ALOHA performance is also given, as well as the optimal
MAC layer transmission probability at which the throughput is
maximized. The analysis is confirmed by the numerical results
under different system and protocol parameters. This section
also gives the simulation results on the original system and
compares them with the numerical results for the simplified
system.

Before proceeding, let’s first introduce how we set the
system and protocol parameters in the numerical computations
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and simulations. For the systems, we consider the following
data that is typical for a satellite link: the two-way propagation
delay of one transmission is around 1sec; packet size L is
about 10000 bits; and transmission rate is around 100k - 1M
bps. Converting these into the parameters in our system, we
obtain that the two-way propagation delay is about 10 - 100
time slots. We therefore set the two-way propagation delay
of packets to be a uniformly distributed random variable with
mean D being 10-100 slots and range of 4 slots. As mentioned
before, the randomness represents the queuing delay and other
random delayed experienced by packets.

The transport layer timeout value is also set to be a
uniformly distributed random variable with mean TO. Similar
to the timeout update in TCP, TO is set to be the average
round trip time seen by the transport layer packets, denoted
by RTT , plus four times its standard deviation. Because of
the large propagation delay of satellite links, when p is not
close to zero, we can ignore the queuing delays the packets
experiences at the MAC layer and approximate RTT by the
sum of packet service time at the MAC layer and the two-
way propagation delay. Recall that the packet service time
at the MAC layer is geometrically distributed with mean
1/p and variance (1 − p)/p2. Therefore, we obtain TO ≈
1
p + D + 4

√
1−p
p . Notice that this setting of TO is used only

in the numerical computations and simulations. The following
analysis of impact of parameters on the system performance
does not depend on this particular timeout value setting. It
only requires that TO decreases with p and increases with D,
which should be true for other TO settings as well.

Simulations are performed on ns simulator for the original
system. The timeout value is set in the same way described
above.

A. System Performance and Condition for ALOHA Perfor-
mance

Based on the Equation (2) and Inequality (6), this subsection
shows how to obtain the system performance given the system
and protocol parameters.

Fig. 2. Bounds for Bd and Q

Figure 2 plots the relationship between Bd and Q as given
in Equation (2), called curve g. Figure 2 also plots the bounds
of Bd, fL and fU , as given in Inequality (6). For clarity, the
distances between the curves are exaggerated. The actual Bd

and Q should be on curve g, as well as be inside the area
between curve fL and fU . Therefore, Bd and Q are on the
section of curve g between curve fL and fU . The intersections
of curve g with curve curve fL and fU thus give a lower
bound and an upper bound for Bd as well as a lower bound
and an upper bound for Q. Denote them by BL

d and BU
d , QL

and QU , respectively. Clearly, BL
d and BU

d are solutions of
the following two equations, respectively:

Bd =
1

1−e−NBd
+

∑∞
k=1 e−NBdk(k+1)/2

1
p(1−e−NBd )

+ D
∑∞

k=1 e−NBdk(k+1)/2 + TO
, (8a)

Bd =
1

1−e−NBd
+

∑∞
k=1 e−NBdk(k+1)/2

( 1
p + D)

∑∞
k=1 e−NBdk(k+1)/2 + TO

. (8b)

Figure 3 plots the system performance, the system through-
put, idle probability and collision probability, as a function
of Bd, given in Equation (1). From the figure we can see
that the bounds for Bd actually give us the range of the
system performance. Specifically, if both bounds for Bd,
BL

d and BU
d , lie within the same monotonic region of the

throughput, i.e., within [0, 1/N ] or [1/N,∞] as in Figure 3,
then their corresponding throughput, λL

s and λU
s in Figure 3,

are also lower and upper bounds for the actual throughput λs.
Otherwise, BL

d ∈ [0, 1/N ] and BU
d ∈ [1/N,∞], the actual

throughput is close to the maximum possible throughput 1/e.
Furthermore, since PC and PI are monotonic with Bd, the
collision probability and idle probability corresponding to BL

d

and BU
d are also bounds for PC and PI . As in Figure 3,

PL
C ≤ PC ≤ PU

C and PL
I ≤ PI ≤ PU

I . We thus conclude that
the two bounds given in Equations (8), together with Equation
(1), fully characterize the system performance.

Fig. 3. System Performance with Bd

Our numerical results further show that in almost all cases,
these two bounds are very close to each other. Table II
gives some numerical results for different system and protocol
parameters N , D and p. The difference between BL

d and
BU

d is shown in the last column. Henceforth we approximate
the actual Bd by BU

d and use Bd and BU
d exchangeably. In

conclusion, the system performance is well approximated by
Equations (8b) and (1).

Now let us find a sufficient and necessary condition on
which the ALOHA performance, with the system throughput
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TABLE II

DIFFERENCES BETWEEN BU
d AND BL

d

D N p BU
d BL

d BU
d − BL

d
20 20 0.8 0.0528 0.0509 0.0019
30 10 0.9 0.0539 0.0524 0.0015
50 40 0.7 0.0254 0.0249 0.0005

1/e, can be achieved. Recall that this performance can be
achieved if and only if NBd = 1. By plugging NBd = 1
into Equation (8b) and noting that its solution for Bd is unique
(see Figure 2), we obtain the following sufficient and necessary
condition for the ALOHA performance:

2.0N − 0.42D − TO − 0.42
p

= 0. (9)

Notice that TO is a function of D and p. Also notice that due
to the limit range of the actual parameters, the above condition
cannot be always satisfied by adjusting one parameter with
others fixed. For example for very large D, the solution of
the above condition for p can be negative, while the actual
transmission probability p has to be nonnegative. In this case,
the ALOHA performance cannot be achieved by adjusting p
only.

Overall, given the system and protocol parameters, the
system performance can be solved from Equation (1) and
(8b). Condition (9) is a sufficient and necessary condition for
the system performance to achieve the ALOHA performance.
Due to the limited range of system and protocol parameters,
this condition cannot be always satisfied by adjusting one
parameter with others fixed. That is, the ALOHA performance
is not always achievable.

The following subsections analyze how the system perfor-
mance changes with different system and protocol parameters.

B. Impact of Transmission Probability on System Performance

First consider the impact of transmission probability p on
the system performance. By the definition of fU (Inequality
(6)) and noting that TO is a decreasing function of p, fU

increases with increasing p. Thus as p increases, curve fU in
Figure 2 moves up. On the other hand, curve g is not a function
of p and remains the same. Therefore, the intersection of
curve g and fU moves leftwards. Consequently, BU

d increases
monotonically with p.

Recall that condition (9) is a sufficient and necessary
condition for BU

d to achieve 1/N . Also note that p ∈ [0, 1]
and when p = 0, BU

d = 0. Therefore, when p increases
from 0 to 1, if the solution of condition (9) for p, denoted
by pmax, lies within [0, 1], then BU

d increases from 0 to
1/N then to some number. Consequently, the throughput first
increases, then decreases, with maximum 1/e (see Figure 3).
Otherwise, BU

d increases from 0 to some number below 1/N .
Consequently, the throughput increases monotonically with p,
and the maximum throughput is achieved at p = 1.

Similarly, since PI and PC is monotonic with Bd, PI de-
creases monotonically with p, and PC increases monotonically
with p.

The above discussion actually gives us the transmission
probability at which the throughput achieves its highest value,
denoted by popt, as follows:

popt = { pmax when pmax ∈ [0, 1]
1 otherwise

(10)

Moreover, if popt = pmax ∈ [0, 1], then the system achieves
ALOHA performance. Otherwise, popt = 1, and the system
performance, with throughput below 1/e, can be solved from
Equation (8b) and Equation (1).

Physically, when p is very small, the send rate Bd is very
small (lies in [0,1/N]. See Figure 3). Most times the system
is idle and few packets incur collisions. That is, the idle
probability PI is high and the collision probability PC is low.
Increasing p increases Bd and PC but decreases PI . Although
this leads to more collisions, the number of idle slots also
decreases, and the overall system throughput λs increases. If
with increasing p, the send rate Bd remains below 1/N after
p reaches 1, the throughput increases monotonically with p
(the case popt = 1). Otherwise, the send rate Bd goes beyond
1/N after p reaches a certain point (pmax < 1), the system
begins to incur too many collisions, and the throughput begins
to drop. That is, in this case, the throughput first increases then
decreases, with maximum 1/e achieved at pmax.

Fig. 4. System Throughput as a Function of Transmission probability

By solving Equation (8b) and (1), Figure 4 shows the
numerical results for the throughput λs as a function of p
when D = 10 and N = 20 as well as when D = 50 and
N = 20. The first case (D = 10) corresponds to the case
popt < 1, and as expected, the throughput first increases with
p then decreases. The second case (D = 50) corresponds to
the case popt = 1, and the throughput increases monotonically
with p. For comparison, the throughput corresponding to BL

d

is also shown. We can see that the two throughput curves cor-
responding to BU

d and BL
d are very close to each other, which

further confirms that using the throughput corresponding to
BU

d to approximate the actual throughput is good.
Figure 4 also plots the simulation results for the original

system with the same sets of parameters. It can be seen that
the numerical results based on Equation (8b) and (1) match
well with the simulation results for the original system.
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Moreover, both the numerical results and simulation results
for the above cases indicate that the expected collision window
decreases monotonically with p, with value below 2 for p ≥
0.1. For brevity, the curves are not shown here.

C. Impact of Two-way Propagation Delay on System Perfor-
mance

Analog to the above analysis for p, it can be shown that
BU

d decreases monotonically with D. For brevity, we omit
the details. Furthermore, when D ranges from 1 to infinity,
if the solution of condition (9) for D, denoted by Dmax, lies
within [1,∞], then the ALOHA performance is achieved at
Dmax. In this case both larger D and smaller D lead to a
throughout below 1/e. Otherwise, Dmax /∈ [1,∞], and the
throughput increases monotonically with decreasing D and is
always below 1/e.

Physically, a low throughput can be either due to too many
idle slots or too many collisions. Consequently, for normal
p and N with Dmax ∈ [1,∞] and starting from Dmax,
increasing D leads to too many idle slots and reducing D leads
to too many collisions. Therefore both result in monotonic
decreasing of the throughput with D. While for very small p
and N with Dmax /∈ [1,∞], there are always too many idle
slots no matter how small D is. Reducing D thus reduces the
number of idle slots and always increases the throughput.

Fig. 5. System Throughput as a Function of Two-way Propagation Delay

Figure 5 shows the numerical results for the throughput λs

as a function of D ∈ [10, 100] when N = 20 and p = 0.7 as
well as when N = 10 and p = 0.7. In the first case (N = 20)
the ALOHA performance in achieved around Dmax ≈ 25,
while in the second case (N = 10), even when D = 10, there
are still too many idle slots and the throughput is still below
1/e.

To illustrate the impact of adjusting protocol parameters on
the system performance, for each D in each case, pmax and
popt are also calculated from condition (9) and Equation (10)
and the resulting throughput is plotted in Figure 5 as well. The
figure shows that for large D, pmax /∈ [0, 1] and popt = 1.
The resulting optimal throughput is below 1/e. While when
D is relatively small, the highest possible throughput 1/e can
always be achieved by setting the transmission probability

p = popt = pmax. That is, we can always lower the
transmission probability p to counterbalance the increasing
collisions resulting from smaller D.

Fig. 6. Comparison between Numerical and Simulation Results - Throughput
vs Two-way Propagation Delay

Simulation results for the original system with the same sets
of parameters are plotted in Figure 6. For comparison purpose,
the numerical results obtained from Equation (8b) and (1) and
plotted in Figure 5 are replotted here as well. Again, the figure
shows good match between them.

Moreover, the numerical and simulation results for all cases
also show that the expected collision window is a nondecreas-
ing function of D and is always below 3. Actually even when
D is further increased to 5000, the expected collision window
is still below 8. Again for brevity, the curves are not shown
here.

D. Impact of Number of Users on System Performance

The analysis for the impact of the number of users N
on the system performance is also analog to that for the
transmission probability p. Differently, when N increases from
1 to infinity, curve fU remains the same while curve g moves
downwards. Consequently, the intersection of the two curves
moves leftwards, and QL decreases. Recall that NBd increases
as Q decreases (Equation (2)). Therefore, NBd increases
monotonically with N .

Moreover, it can be easily verified that, for any p ∈ [0, 1],
D ≥ 1 and TO ≥ 1

p + D (the actual TO should be at least
the average RTT of packets, which is at least 1

p + D), the
solution of condition (9) for N , denoted by Nmax, is always
greater than 1. Therefore, as N ranges from 1 to infinity, NBd

increases from some value below 1 to infinity. Consequently,
the system throughput first increases then decreases, with
maximum close to 1/e achieved at the integer closest to Nmax.

Physically, larger N makes the packets in the system more
“dense”, which means less idle slots and more collisions.
When N is close to Nmax, the idle slots and collisions reach
a balance and the throughput is close to its highest value 1/e.
Further decreasing N or increasing N results in either too
many idle slots, or too many collisions, both of which lower
the throughput.
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Fig. 7. System Throughput as a Function of the Number of SD Pairs

Figure 7 shows the numerical results for the throughput λs

as a function of N ∈ [10, 40] when D = 30 and p = 0.7 as
well as when D = 30 and p = popt. As mentioned before, the
mean timeout value is set to be TO = 1

p + D + 4
√

1−p
p . The

throughput of the curve with p = 0.7 has maximum value
of 1/e, and first increases then decreases, which confirms
the above analysis. The curve with p = popt further shows
that for large enough N , the maximum possible throughput
1/e can be achieved by adjusting the transmission probability
according to condition (9). That is, in order to achieve higher
throughput, we can always lower the transmission probability
p to counterbalance the increasing collisions resulting from
larger N .

Simulations for the original system with the same sets of
parameters are also performed and the results are compared
with the numerical results from Equation (8b) and (1) as well.
Again, they have a good match. Besides, both of them give
the expected collision window size in all cases being below
3. Again for brevity, the curves are not shown here.

In summary, since the numerical curves obtained from
the equations match well with the simulation results for the
original system, we conclude that the equations can be used to
describe the performance of the original system. In particular,
given the system and protocol parameters, p, D, N and
TO, Equation (1) and (8b) give us the system performance.
Condition (9) is a sufficient and necessary condition on the
parameters for the system to achieve ALOHA performance,
which has maximum possible throughput 1/e. The optimal
transmission probability at which the throughput can achieve
its highest value is given in Equation (10). For systems with
very small D and/or very large N , the ALOHA performance
can always be achieved by setting p to its optimal value. For
fixed p, a system with very large D and/or very small N has
a smaller throughput than a system with relatively smaller D
and/or larger N due to too many idle slots. On the contrary,
a system with very large N has a smaller throughput than a
system with relatively smaller N due to too many collisions.
Furthermore, in all cases in our numerical computations, the
expected collision window is below 4. This is because of too
many collisions due to random access.

V. DISCUSSIONS

Our purpose is to analyze the TCP performance over satel-
lite links with random access. We focus on its window flow
control mechanism and deliberately disregards other aspects
of TCP, such as RTT measurements and estimation and timer
granularity. The system analyzed has a window flow control
scheme that differs from that in TCP in two aspects: first,
we only considered the window evolution in the congestion
avoidance phase; and second, we ignored the effect of dupli-
cate ACKs for fast retransmission/recovery. Our simulations
show that even with these differences, the analysis gives good
prediction on the performance of the original system. Here we
discuss the effects of these two differences.

Due to the large number of collisions that result from the
random access protocol, the system original with TCP has
a very small congestion window size. This is confirmed by
the simulations, which shows that it is normally below 4 and
below 8 for extremely large D. As a result, the TCP window
threshold will also be very small (below four). With such
a small window threshold, the window evolution with only
congestion avoidance phase is close to that with both slow
start and congestion avoidance phase.

Furthermore, the authors in [2] show that for a small
congestion window such as eight, fast retransmission/recovery
can seldom be entered into if there are multiple losses within
the window, which is the case in our system due to collisions.
Therefore the window flow control scheme analyzed is a good
approximation of that in TCP in our system as well.

For the random access scheme, we did not consider collision
recovery at the MAC layer. Over a large delay satellite link,
this assumption is also reasonable as any attempt at delayed
retransmission will result in a time-out event with very high
probability. Hence, it is sensible to leave such retransmissions
to higher layers. In addition, we did not take into account the
timeout update in TCP. One future direction is therefore to
consider collision recovery at the MAC layer as well as to
model the timeout update at the transport layer.
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