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Abstract

RELAY i8 a model of faults and failures that defines failure conditions, which describe test
data for which execution will guarantee that a fault originates erroneous behavior that also
transfers through computations and information flow until a failure is revealed. This model
of fault detection provides a framework within which other testing criteria’s capabilities can
be evaluated. In this paper, we analyze three test data selection criteria that attempt to
detect faults in six fault classes. This analysis shows that none of these criteria is capable of
guaranteeing detection for these fault classes and points out two major weaknesses of these
criteria. The first weakness is that the criteria do not consider the potential unsatisfiability
of their rules; each criterion includes rules that are sufficient to cause potential failures for
some fault classes, yet when such rules are unsatisfiable, many faults may remain undetected.
Their second weakness is failure to integrate their proposed rules; although a criterion may
cause a subexpression to take on an erroneous value, there is no effort made to guarantee
that the intermediate values cause observable, erroneous behavior. This paper shows how the
RELAY model overcomes these weaknesses.







1 Introduction

Testing is intended to reveal failures or to provide confidence that failures do not occur,
where a failure is the observable result of erroneous program behavior. This is typically
done by selecting test data, executing the program on that data, and comparing the results
to some test oracle, which determines whether the results are correct or erroneous. Many
tes. .ug criteria [Bud81, DGK*88, Fos80, Ham77, How86, Mor88, Wey81, Zei83] select test
data focused on detecting failures caused by particular fault types, where a fault is a syntactic
defect in the source code. This “fault-based testing” approach is capable of detecting many
of the subtle errors of commission that are revealed only for very specific data, although it
can not, except by chance, detect errors of omission®.

In the context of certain assumptions, fault-based testing can guarantee that particular
faults are detected or do not exist. This paper reports on a study that analyzes several fault-
based testing criteria in terms of their abilities to actually reveal failures for particular fault
types. This analysis is based on the RELAY model of faults, failures, and fault detection. The
RELAY model defines how a fault originates a potential failure in an evaluated expression
containing the fault and how that potential failure must transfer through computations to
produce a state failure and through information flow until it is revealed as an external (or
observable) failure. The model provides a mechanism for developing failure conditions that
guarantee fault detection. We use these conditions to analyze the fault detection capabilities
of three fault-based testing criteria; in particular, this paper examines the ability of these
criteria to reveal state failures at the statement containing a fault.

Through this analysis, we demonstrate two major failings of these criteria. First, in most
cases, the “fault-specific rules” that comprise these criteria are merely sufficient (i.e., not

necessary and sufficient) to introduce a potential failure. When such a fault-specific rule is

unsatisfiable, a corresponding fault will not necessarily cause erroneous execution and thus

may remain undetected. Second, in all cases, the criteria do not consider the conditions

'1n general, a tosting criterion would have to take requirements and/or specifications into account to do so.




required to guarantee that erroneous behavior is observable and a failure is revealed. Instead,
the rules may introduce an erroneous intermediate value caused by a corresponding fault,
but do not guarantee that such a value affects the output or external environment (in fact,
we show that in most cases they do not even guarantee effect on the intermediate state of
the program variables). The erroneous intermediate values are often masked out by later
computations. This extremely common occurrence is coincidental correctness, which is the
bane of testing. Coincidental correctness occurs when no failure is detected, even though
a fault has been executed; thus the effort put into selecting the data and the associated
execution is for naught.

Section 2 surveys related works in fault-based testing and compares them to our work
on RELAY. Section 3 defines terminology and presents notation used later to describe the
RELAY model and the analyzed testing criteria. Section 4 summarizes the RELAY model and
developing failure conditions that guarantee fault- detection. We present the detail necessary
to understand the analysis in this paper and only briefly describe other aspects of the model
(more detailed presentations appear in other papers [RT86c, RT88, Tho91]). Section 5 de-
scribes an application of the model to develop failure conditions for fault classes and illustrates
that application for one fault clags. The failure conditions for six fault classes are developed
in [RT86b] and provided in the appendix. In section 6, we use the model and these failure
conditions to analyze the fault detection capabilities of three fault-based test data selection
criteria for these six fault classes. In conclusion, we discuss the implications of the analysis

and our future plans for RELAY.




2 Related Fault-based Testing Work

Fault-based testing criteria consist, in some sense, of “fault-specific rules” intended to detect
particular fault types. Fault-based heuristics have been used by testers since the dawn of
programming. Such heuristics are employed by examining the source code and selecting test
data sensitive to commonly occurring faults. Myers outlines many such heuristics [Mye79].

The attempts to formalize fault-based testing have a common underlying theme: distin-
guishing the test program from alternatives in a set of related programs. This approach as-
sumes the test program is “almost correct” and differs from some hypothetical correct program
by at most some definable faults (the competent programmer hypothesis [DLS78, DLS79]).
This near correctness might be determined by successfully passing some high-level functional
testing phase or by satisfying some structural testing criterion. In its various forms, this
assumption is taken to mean that the hypothetical correct program is in the “neighborhood”
of the test program. Budd and Angluin formalize the notion of “program correctness within
a neighborhood of alternate programs” [BA80]; assuming the correct program is within the
neighborhood of the test program, then a test set that distinguishes the test program from
each alternate program in the neighborhood is reliable (How76, GGT75] for the test program,
A fault-based testing criterion defines a neighborhood by the class of faults that it considers.
The broader the class of faults considered, and hence the larger the neighborhood, the more
confidence we gain in the testing activity.

Formal fault-based testing criteria use one of two techniques: either they measure the
adequacy of pre-selected test data or they guide test data selection. In what follows, we first
discuss several fault-based test data measurement criteria and then describe several fault-
based test data selection criteria. It is beyond the scope of this paper to fully compare these
criteria. We provide slightly more detail on those criteria that are most similar to the RELAY

model; more thorough surveys of fault-based testing and their relation to RELAY appear

elsewhere [RT86a, RT86¢, Tho91].




The earliest formalized fault-based testing criteria were introduced independently by Ham-
let and by DeMillo, Lipton and Sayward. Both criteria seed particular types of faults into the
test program and measure the adequacy of a set of test data selected by some other means
in terms of its ability to detect the seeded faults. Hamlet's testing with the aid of a compiler
(Ham77] seeds faults as alternative expressions that are “simpler” than the original expres-
sion in the source code. An extended compiler instruments the code to compare the values
computed by each alternate and the corresponding original expression for the pre-selected
test data and reports those alternates that are not distinguished. Mutation analysis [DLS78],
introduced by DeMillo, Lipton, and Sayward, seeds simple, single-token faults into the source
code to produce “mutant” programs. The system then executes the original and mutant
programs on the pre-selected test data and determines which mutants are “killed” — that
is, which produce different output results from the original for at least one test datum. For
both these criteria, the tester augments the test data set iteratively to eliminate the seeded
faults that have not yet been distinguished and that are determined not to be equivalent to
the original code. The underlying philosophy is that in the process of finding all seeded faults
any actual, possibly more complex, faults in the source code will also be eliminated (which is
founded on belief in the coupling effect [DLS78, DLST79]).

These two criteria require explicit construction and execution (or at best partial inter-
pretation) of many alternate prdgrams. Two more recent fault-based measurement criteria,
developed independently by Morell and Zeil, are more analytically-based. Rather than mea-
sure a pre-selected test data set through execution, both criteria analyze the test data set
and the program to determine faults that could exist in the program that would remain un-
detected by execution on the test data. Morell’s criterion is based on a fault-based testing
model [Mor84] that introduces two concepts: “creation” of an initial erroneous state after
the statement containing a fault, and its “propagation” to the output. Creation and prop-
agation conditions are described that are sufficient for a fault to create an erroneous state

that propagates to the output. Morell’s model provided the basis for our initial work on the




RELAY model?. In Symbolic fault-based testing [Mor88, Mor90], Morell uses his model to
symbolically represent faults that would not be detected by execution on a pre-selected test
data set. Zeil’s criterion describes functional descriptions of “perturbations” that correspond
to fault classes {Zei83]. Perturbation testing [Zei84, Zei89] thereby identifies faults of a par-
ticular functional class that would not introduce an incorrect state and hence would not be
detected by the pre-selected test data set. Perturbation testing also determines if the output
is partially dependent on the perturbation, thus checking to see if it could produce a failure,
but does not explicitly describe this dependence.

Fault-based test data measurement does not provide much guidance as to how to select
test data to eliminate the faults considered. Several fault-based testing criteria more directly
guide the test data selection process. Foster introduced the idea of conditions under which a
fault manifests itself as an erroneous value [Fos80]. Foster’s error-sensitive test case analysis
consists of conditions sufficient to distinguish expressions that may contain a fault from the
correct expression for several fault classes. In weak mutation testing [How78], more recently
called fault-based functional testing [How85)], Howden refined these conditions and introduced
others. Weak mutation testing is applied to the low level “functions” (e.g., statements) in a
program. Functional testing [How85, How87] augments this low-level testing by test selection
rules applicable to the synthesis of functions from component functions, which have already
been tested.

Two extensions to mutation analysis are oriented toward test data selection to assist in
satisfying mutation testing. In his mutation testing suite, Budd included the Estimate compo-
nent (for error-sensitive test monitoring) [Bud83], which has conditions that must minimally
be satisfied to detect some of the mutant classes in expressions containing them. Offutt
described constraint-based testing [DGK*88] as a part of the MOTHRA mutation analysis
system. This criterion defines constraints on a test data set required for the set to be mu-

tation adequate. There are three types of constraints: “reachability” conditions guarantee

*We highlight the significant differences at the end of this survey and in the conclusion.




that a mutant is executed; “necessary” conditions guarantee that a mutant is detected at
the statement containing it; and “sufficiency” conditions guarantee that the mutant affects
the output. The MOTHRA system explicitly selects test data to satisfy the reachability and
necessary conditions. Program execution on such test data is compared with mutant program
execution to determine if the mutant has been killed; if it has not been killed, additional test
data is tried in an effort to also satisfy the sufficiency conditions. Offutt thus recognizes the
need to affect the output but provides no guidance in developing the sufficiency conditions or
selecting data to satisfy them.

These condition-based criteria have three major weaknesses. First and foremost, they are
not easily extensible; they provide specific rules rather than defining a general framework
within which test data selection rules can be defined for particular faults. Second, these
criteria focus only on introducing erroneous behavior, either at the fault location or at the
statement containing the fault; there is no guarantee that a failure will be observable. Third,
many of the rules that comprise these criteria are sufficient but not necessary to introduce
erroneous behavior; if a rule is unsatisfiable, therefore, faults of the associated class may not
be detected.

The RELAY model differs significantly from each of the fault-based testing criteria de-
scribed here. The RELAY model is most similar to Morell’s work [Mor88]. We introduce
concepts similar to Morell’s creation and propagation; our origination and transfer® refer to
the first erroneous evaluation and the persistence of that erroneous behavior, respectively. We
refine Morell’s theory by more precisely defining origination and by differentiating between
the transfer of a potential failure through computations and its transfer through information
flow. This refinement facilitates defining fault-based rules for test data selection, whereas

Morell’s model is used for test data measurement. Moreover, RELAY considers information

*We have chosen the term *originate” rather than “create” or *introduee”, because we feel it hetter connotes
the first location at which an erroncous evaluation occurs and does not imply the mistake a programmer makes
while coding. We have chosen the term “transfor” over “propagate” so as to avoid the connotation of an
“increase in numbers” and instead of “persist” so as not to conflict with Glass's notion [{Gla81], where an crror

is persistent if it cscapes detection until late in development.




flow transfer through both data dependence and control dependence, whereas Morell’s model
does not consider propagation through control dependence. In what follows, we outline the
RELAY model and describe its potential use for test data selection. In the conclusion, we

return to the features that distinguish RELAY from other fault-based testing criteria.




3 A Framework for Testing

A number of test data selection criteria have been proposed throughout the years. These cri-
teria, however, have been defined imprecisely. Here, we outline a representation of programs,
execution, and testing, which provides a framework within which test data selection criteria
can be formally defined. This formality results in greater precision in defining the criteria as
well as a consistent base for evaluating and comparing the criteria. The full definition of this
framework is provided in [RT86a], along with the complete, formal definitions of the three
fault-based testing criteria defined and analyzed in section 6. This framework also serves as
the foundation for the RELAY model, which is described in section 4.

We consider the testing of a module, where a module is a procedure or function with a
single entry point. A module M implements some function Fyr, which maps an input vector
¢ in a domain X to an output vector z = M(z) in a range Zy, Far : Xyt — Zy. A
module implementation M can be represented by a control flow graph G, that describes
the possible flow of control through the module — Gy = (N, E), where N is a (finite) set
of nodes and F C N x N is the set of edges. N includes a unique start node ngs, and a
unique final node nfina. Each other node in N represents a simple statement, a group of
simple statements, or the predicate of a conditional statement in M. Associated with each
edge (ng, ) is a branch predicate, BP(ny,n;), which is the condition that must hold to allow
control to pass directly from node ny to node n;. If a node has a single successor node, then
the branch predicate associated with the edge leaving the node is simply true.

The control flow graph defines the paths within a module. A subpath in a control flow
graph Gy = (N, E) is a finite, possibly empty, sequence of nodes p = [n;;,n:,,..., 7, ] such
that for all 4, 1 < i < [p|, (ni;,ni;,,) € E. An initial path p is a subpath whose first node
iS Ngtart. For any node n € N, the set INIT(n) contains all initial paths in Gy whose last

node is n. A path P ¢ is an initial path whose last node is n¢na;. The set of all paths in
p f

*Where the distinction between a subpath and a path is important, we will use an upper case letter (P) to
signify a path and a lower case letter (p) for a subpath (or initial path).




Gy is denoted by PATHS(Gyr); note that PATHS(Gy) = INIT (ngina). The graph Gy is
well-formed if and only if every node in N occurs along some path in PATHS(Guy); in our
analysis, we consider only modules with well-formed control flow graphs.

An initial path p of M may be executed on some input z; this execution is denoted p(z).
Associated with execution of an initial path p on input z is a state S,,), which defines the
state of the computation. Sp,) is a vector of values for all variables and the value of the last
branch predicate (denoted by the dummy variable B P) after execution of p(z). When we are
not particular about what initial path was executed but only a state at node n, we denote
that state S,,). When we are not concerned about a particular input, we denote that state
S

Each node in the control flow graph can be represented as an expression tree, where the
leaf nodes represent data objects and the internal nodes represent operators. A subexpression
of a_ statement is then represented by a subtree of the node’s expression tree. To denote
a source code expression, EXP (upper case) is used. An expression evaluated over the
module’s state S, is denoted exp (lower case). The expression for an m-ary operator may
be represented OP (EXP;, EXP;,..., EXP,,); for convenience, a binary expression may be
written EXP; OP EXP,.

A test datum ¢ for a module M with control flow graph Gy = (N, E) is a sequence of
values input along some initial path — that is, ¢t = [¢1,...,t,]. The domain of an initial path
p, denoted dom(p), is the set of test data ¢ for which p can be executed. For any node n in

Gu, the set dom(n) ® is the set of all test data ¢ for which n can be executed —

dom(n) = U dom(p).

p EINIT(n)

Note that dom(nfina) = Xar. A test datum ¢t may be a complete sequence of input values

— that is, 3P € PATHS(Gy), t € dom(P) — or incomplete — that is, VP € PATHS (G ),

SWoe overload the dem notation, but there should be no confusion between application to nodes and appli-
cation to paths.




t ¢ dom(P). A test datum ¢ may be incomplete simply because after executing some initial
path p, additional input is needed to complete execution of some path, or there may not be any
additional data to complete ¢, because the initial input ¢ may cause the module to terminate
abnormally (before 7¢;,4) or possibly never to terminate. This allows for evaluation of testing
criteria that consider invalid inputs, which are not in the domain of M but for which M may
initiate execution. The test data domain Dy for Gy = (N, E) is the domain of inputs
from which test data can be selected, Dyr = {¢t | In € N,t € dom(n)}. Note that Dy is not
merely the domain of M, since neither invalid input values nor initial test data are in Xy —
in fact, Dy = dom(ngpare) 8.

Testing typically specifies some subset of the test data domain for execution. A test data
set Ty for a module M is a finite subset of the test data domain, Tyr C Dyr. A test data
selection criterion, or simply a criterion, C is a relation between modules and test data
sets such that if (M,Ty) € C, then the Ty satisfies C for M. A criterion, then, is a set of
rules for determining whether a test data set satisfies selection requirements for a particular
module.

Execution of a module on test data does little good unless the resulting behavior is judged.
A test oracle [HowT78, HE78, Wey82] is a means of recognizing (un)acceptable, or (in)correct,
behavior of a module. More formally, an oracle O(Xp,Zp) is a relation on Xp X Zo,
O ={(z,2)} C Xo X Zp"; Xo is the domain of the oracle and Zp is the range of the oracle.
When (z,2) € O, z represents acceptable behavior for z. Ideally, the oracle domain is the
module’s test data domain so that for any possible test, the oracle will judge the module's

behavior®. An “external” oracle verifies the module’s external behavior, or output?, for input

STf the run-time system does not disable initiation of a module on any invalid input, then the test data

domain D3y is the universe of all possible input sequoences

"Note that an oracle relation allows nondeterminism, where multiple acceptable outputs are specified for
an input, and also allows incompleteness, where “don't care” cases can be speeified.

8This allows the oracle to evaluate robuséncss {reasonable hehavior on unexpected inputs) as well as cor-

rectness (specified behavior on valid inputs)
*Woe will often refer to an output when we mean any cxternal behavior. Note also, that an external oracle

may require additional information, such as timing, to cnable it to verify correct behavior.
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data. Thus, for an external oracle O, (z, z) € O means z is an acceptable output for z. A test
oracle might specify acceptable behavior by a functional representation, correct version of the
module (a “gold program”), input/output pairs, simply a tester who can accurately evaluate
the module’s behavior, or be derived from a formal specification [RAO92]. A module M is
correct with respect to an oracle O if the module produces acceptable behavior for all valid
inputs — Vz € Xy, (2, M(z)) € O.

A tester often has a concept of the “correct” intermediate behavior in addition to its
correct output. Rather than waiting until output is produced to judge behavior, the tester
might check the computation of the module at intermediate points, as one does when us-
ing a run-time debugger. This approach to testing is supported by an oracle that includes
information about intermediate values that should be computed by the module. Such infor-
mation might be derived from some correct module, an axiomatic specification, self-checking
assertions [LvH85], run-time traces [How78], or simply a tester who evaluates intermediate
behavior. A state oracle Og is a relation Os = {((t,p), Ap))}, that relates a test datum
and an initial path (¢,p) to one or more acceptance states Ay, whic specify an acceptable
vector of variable values and the last branch predicate value after execution of p(¢). If for any
test datum ¢, satisfaction of the state oracle for execution of all initial paths on ¢ implies the
external oracle is satisfied — VtVp : ¢t € dom(p), ((t,p), Sp)) € Os = (¢, M(t)) € O — then
the state oracle and the external oracle for a module are consistent. Note that the reverse

is not true — that is, the external oracle may be satisfied while the state oracle was violated

at some point along the path.
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4 RELAY: A Model of Fault Detection

The RELAY model has two principal uses. First, it provides testing criteria that under certain
assumptions are capable of guaranteeing fault detection for chosen fault classes. The RELAY
testing criteria can be used to select test data or to measure the adequacy of test data selected
by another criterion to detect such faults. This use is described in [RT88], and the underlying
assumptions are evaluated in [TRC92]. Second, RELAY provides a means of analyzing test
data selection criteria’s fault detection capabilities. It is this second application that is the
focus of this paper. This section defines the RELAY model, but only to the extent required
for the analysis presented in sections that follow. More formal definitions of the model and
its terminology can be found elsewhere [Tho91).

The failures considered within the RELAY model are those caused by faults in the module’s
source code. The fault-based testing approach relies on two basic assumptions, as does RELAY.
The first assumption is that the module being tested is “almost correct”. This assumption
is similar to the competent programmer hypothesis [DLS78], which states that the module
being tested bears a strong resemblance to some hypothetical, correct module or differs from
the correct module by some small set of faults. Such a module need not actually exist, but
we assume that the tester is capable of producing a correct module from the given module
and knowledge of the faults detected. In the application described here, RELAY is limited
to faults that do not change the program schema although the model supports extensions
to more complex faults. Second, we assume either that there is a single fault in the module
or that multiple faults do not interact to mask each other. This is called the non-masking
faults assumption and is similar to an assumption based on the coupling effect [DLS78], which
~ states that detection of single, simple faults is sufficient to detect multiple or complex faults.
The RELAY model addresses faults independently in the formulation presented in this paper.
Although these agsumptions may seem overly restrictive, the RELAY model allows us evaluate

the implications of these assumptions and with further development may allow us to tone them

12




down a bit [Tho91, TRC92].

Development of the RELAY model was motivated by studying the problems of coincidental
correctness, where a node containing a fault may be executed yet not reveal a failure; thus,
the module appears correct, but just by coincidence of the test data selected. It is also
possible that the tested module produces correct output for all input (not just the selected
data) despite a discrepancy between it and the hypothetical, correct module. In this case, the
module is actually correct, not merely coincidentally correct. Recall that a fault is a syntactic
defect in the source code and a failure is observable incorrect behavior. A potential failure
is an intermediate incorrect result (which may potentially lead to a failure). For a fault to
cause a failure, a potential failure must originate at the faulty node and transfer through
computations and along information flow to a failure. Subsection 4.1 describes the RELAY
model of faults and failures. One application of the RELAY model is the construction of failure

conditions that guarantee fault detection; this application in outlined in subsection 4.2.

4.1 The RELAY Model

The RELAY model describes how a fault causes a failure to occur on execution for some
test datum!®, A failure occurs when execution of a module on some test datum causes an
observable incorrect behavior, which most commonly takes the form of incorrect output.

Revealing a failure by testing necessitates an oracle to verify the module’s correct externally

observable behavior.

A failure is an unacceptable result of execution of M on some test datum t —
that is, M (t) such that (t, M(t)) € O.1!

A failure is caused by one or more faults in a module. A fault may be thought of as a

transformation applied to some expression in the source code that would correct the fault and

9Tn all definitions that follow, we use the notation introduced in section 3: M is the given module being
tested; Gy = (N, B) is the control low graph of M; M* is the hypothetical, correet module; ¢ is a test datum.

while M(¢) is the exccution of M on ¢,
M'We assume that if 2 module has not terminated after some finite time period, this is incorreet behavior for

which the oracle reveals a failure. Thus, the oracle may require information other than the expected output
values.
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produce a correct module.
A fault f is a transformed ezpression f(EX P) in M such that f(EXP) = EX P*,
where EX P* is the corresponding ezpression in the hypothetical, correct module
M?*, and ezecution of EX P reveals o failure for some test datum.
For a fault to cause a failure, execution must first introduce a potential failure, which is

later reflected in the execution state, and is eventually externally observable,

A potential failure is the incorrect evaluation exp of some expression EX P2
in M on some test datum t when exp # exp*, where EX P* is the corresponding
ezpression in M*.

In the context of a state oracle, a potential failure may be observed in the module’s state,

which is termed a state failure.

A state [potential] failure is an incorrect state revealed when partial ezecution
of M on test datum t for initial path p is not accepted by the state oracle Og —

((t,p), Sp(e)) € Os.
A stéte failure exists after execution of an initial path when a variable is assigned an incorrect
value or when the last branch predicate evaluates incorrectly.

The RELAY model describes the ways in which a potential fault manifests itself as a failure.
Consider first how a potential failure is introduced. Some fault transformations affect code
that cannot by itself be evaluated (such as an operator), thus we consider introduction of a
potential failure in the smallest valued expression that contains the fault. Introduction of the
first potential failure is termed origination.

A potential failure originates for some test datum t ezecuting o foult f in M in
the smallest evaluable expression EX P containing f at node n when exp # exp*
over Sy, where f(EXP) = EXP* and EX P* is the corresponding ezpression

in M*.
The first potential failure, which occurs at origination, is termed the original potential failure.
Consider the module in Figure 1, for example. Suppose that the statement X = UV

at node 1 contains a variable reference fault and should be X := BxV. A potential failure

2Rccall that upper case, EXP. is used here to denote the source-code expression, while lower case, cxp,
denotes the expression evaluated over the module’s state.
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Figure 1: Module for Explanation of RELAY

originates in the smallest evaluable expression containing the fault, which is the reference
to U, whenever the value of U differs from the value of B — u # b. On the other hand,
suppose that node 1 containg an arithmetic operator fault and should be X := U+V. Then,
the smallest evaluable expression is UV (since * cannot be evaluated), which originates a
potential failure whenever the value of UV differs from the value of U4V — uxv # u+wv.

Ouce a potential failure originates, it must not be masked out by computations at the
faulty node so that it causes a state failure and also must not be masked out later before a
failure is revealed. When a potential failure in some expression is not masked out but rather
causes a “super”—expression that references it to evaluate incorrectly, we say the potential
failure transfers. The RELAY model defines three types of t;ansfer: computational transfer,
data dependence transfer, and control dependence transfer.

Within a node, a potential failure must transfer through all parent operators in that node

to affect evaluation of the entire node.
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A potential failure EXP in M for some test datum t computationally transfers
to a parent ezpression OP(...EXP...) when op(...exp...) # op(...exp*...) over Sy,
where exp # exp* over S,(;) and exp* is the corresponding ezpression in M*.

Take another look at Figure 1. If V holds the value zero, the original potential failure
in U in node 1 does not transfer to affect the assignment to X; the original potential failure
transfers, on the other hand, whenever V is nonzero.

Incorrect evaluation of a node requires coinputational transfer through all parent operators
of the original potential failure. This results in a state failure, which may be reflected in a
variable with an incorrect value or the incorrect selection of a branch. The first state failure,
which occurs when the node containing a fault evaluates incorrectly, is termed the original
state failure.

While it is true that no failure can be revealed if an original state failure is not first in-
troduced, it is also the case that an original state failure may be revealed only when a state
oracle of some sort is available. If only an external oracle is available, the original state failure
must transfer to affect subsequent nodes until a failure (incorrect output) is produced. In-
formation flow transfer, whereby a state failure affects a subsequent node, is based on the
concept of information flow [DD77, FOW87, HPR88] and the program dependence relations
discussed in [Pod89, PC90]. Information flow transfer occurs when the state failure, which is
reflected in the value of some variable, is used at a subsequent node either 1) to incorrectly
define a variable (e.g., in an assignment statement) or to incorrectly defined the branch pred-
icate (e.g., in a conditional predicate statement), or 2) to define a variable on an incorrectly
selected branch differently than if the correct branch had been selected. These are termed
data dependence transfer and control dependence transfer, respectively. For a fault
to cause a failure, the original state failure must transfer along some information flow chain(s)

from the faulty node to a failure node. An information flow chain is a sequence of nodes such
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Figure 2: RELAY Model of Fault Detection

that each node is either data dependent!? or control dependent!* on the previous node in the
chain. Transfer along an information flow chain requires data or control dependence transfer
at each link in the chain. Using the example of Figure 1 again, the potential failure in X
transfers through data dependence to a use, say at node 7, where it transfers through the
computations to produce a state failure in W, and then transfers to the output of W at node
8. The RELAY model of information flow transfer includes a framework within which the
components of data and control dependence transfer fit and which identifies the interaction
between multiple information flow chains. It is beyond the scope of this paper to present
the full details of information flow transfer; moreover, they are not critical to the analysis
presented in this paper. Precise definitions of information flow transfer and that aspect of
the model may be found elsewhere [Tho91, TRC92].

Figure 2 illustrates the RELAY model of fault detection and how this model provides for

the discovery of a fault. The conditions under which a fault is detected are (1) origination of .

136n a node n; when a variable V defined at n; is used at n; and there is a def-clear path with respect to V

from n; to n,.
M control dependent on a node n; if n; determines whether n; is executed.
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a potential failure in the smallest valued expression containing the fault; (2) computational
transfer of that potential failure through each operator in the node, thereby revealing a
original state failure by a state oracle; (3) information flow transfer of the state failure to an
assignment or branch predicate node on the path that references the incorrect state; either
(4) computational transfer through the assignment node producing a state failure variable, or
(5) computational transfer through the branch predicate node producing a state failure BP
and assignment of a variable on the selected branch differently than on the correct branch
thereby producing a state failure variable; and (6) cycle through (3) and (4 or 5) until a

 failure is revealed by an external oracle!s

% Note that data dependence transfer is a sequence of var-use, repeated computational transfer, and var-
definition (at an assignment) transitions, while control dependence transfer is a sequence of var-use, repeated
computational transfer, bp-definition, and var-definition (on the incorrect branch) transitions.
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The RELAY view of fault detection has an illustrative analogy in a relay race, as shown in
Figure 3, hence the name of our model. The starting blocks correspond to the fault location.
The take off of the first runner, as the gun sounds the beginning of the race, is analogous to
the origination of a potential failure. A runner carrying the baton through one leg of the race
corresponds to the computational transfer of the failure through a statement. The successful
completion of a leg of the race has a parallel in revealing a state failure, and the passing of
the baton from one runner to the next is analogous to information flow transfer of the failure
from one statement to another. The race goes on until the finish line is crossed, which is
analogous to the test oracle revealing a failure.

Our goal, of course, is to complete the relay race and analogously to detect faults. To thig
end, the RELAY model forms the basis for conditions that define how to guarantee that a fault
originates a potential failure and transfer occurs until a failure is revealed. This application

of the RELAY model is outlined in the next subsection.

4.2 Failure Conditions

Using the concepts of origination and transfer, RELAY also models failure conditions that are
necessary and sufficient to guarantee fault detection — that is, satisfaction of these conditions
for a fault means that a potential failure originates and transfers until a failure can be revealed
by the oracle. Sufficient means that if the module is executed on data that satisfies the
conditions and the node is faulty, then a failure is revealed. Necessary, on the other hand,
means that if a failure is revealed then the module must have been executed on data that
satisfies the condition and the node is faulty'®. Thus, the failure conditions are the unique
conditions to guarantee fault detection.

The RELAY model describes how a particular fault causes a failure and is thus dependent
on knowledge of the fault. Since this is unlikely (otherwise one would simply fix the fault),

application of RELAY hypothesizes that a node is faulty and considers how such a hypothetical

18This holds only in the context of a single fault
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fault causes a failure, if indeed it is a fault.

A hypothetical fault f is a transformation to some expression EXP in M
such that f(EXP) = EXP', where EXP' is an alternative expression in the
hypothetically correct module M', which is identical to M ezcept for EXP and is
correct if f is a fault.

Note that we now talk of a hypothetically correct module, since we can easily describe this
module.

The failure condition to detect a hypothetical fault guarantees an original state failure
is introduced and is transferred along an information flow chain to output. The analysis
presented in this paper is concerned only with guaranteeing original state failures, so we
focus on the original state failure condition, which consists of an origination condition and
computational transfer conditions.

The failure conditions are developed below for a hypothetical fault f independent of where
the faulty node n occurs in the module; the conditions are constraints on the module’s state
before execution of n. To guarantee fault detection, the failure conditions must be true when
evaluated over this state. In conjunction with the domain of the faulty node (dom(n)), the
failure condition describes a test data set, where execution of any single test datum in the
set would execute the faulty node and reveal a failure!”. Because the failure conditions are
necessary, if the conditions are infeasible within dom(n), then no failure can be revealed
and the hypothetical fault is not a fault. Although, in general, the feasibility problem is
undecidable, in practice, it can often be solved.

The origination condition guarantees that the smallest valued expression containing a hy-
pothetical fault originates a potential failure (hence that the hypothetically faulty expression
evaluates differently than the hypothetically correct one).

The origination condition for a hypothetical fault f in M in the smallest evalu-
able expression EX P containing f at node n is [exp # exp’] evaluated over S,
where f(EXP) = EXP' and EXP' is the corresponding expression in M'.

17A state failure would be revealed for an original state failure condition, and an external failure would be
revealed if information flow transfer conditions are added.
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When the origination condition is infeasible, the hypothetically faulty expression is equivalent
to the alternate, and no such fault exists.

The original potential failure for a hypothetical fault must transfer to affect evaluation of
the entire node. A computational transfer condition guarantees that a potential failure in an
operand transfers through a parent operator so that the parent expression is a potential failure

(hence that the parent expression referencing the hypothetical fault evaluates differently than

the hypothetically correct parent expression).

The computational transfer condition for an ezpression OP(..., EXP,...)

containing a potential failure exp in M at node n is [op(...exp...) # op(...exp’...)]
evaluated over S,, where exp # exp’ over S, and EXP' is the corresponding

expression in M'.

When a computational transfer condition is infeasible, the potential failure cannot transfer
to affect the parent expression; as above, the hypothetically faulty expression is equivalent to
the alternate one and no such fault exists.

The conjunction of the computational transfer conditions for each ancestor operator in the
node of the originating expression guarantees transfer to affect the entire node and produce an
original state failure. To guarantee a fault’s detection by revealing an original state failure,
the origination and the computational transfer conditions for all ancestor operators in the

node must be jointly satisfied.

The original state failure condition for a hypothetical fault f in M at node n
15 the conjunction of the origination condition for f and all computational transfer

conditions for f and n.

As an example of an original state failure condition, consider again the module in Figure 1.
Hypothesize that statement X := U *V at node 1 should be X := B*V, then the origination
condition is [u # b]. This original potential failure must transfer through the multiplication
by V; the corresponding computational transfer condition is (u * v # b * v), which simplifies
to (v # 0). This value must then transfer through the assignment to X, which is trivial.

Thus, the original state failure condition resulting from this hypothetical fault is [(u # b) and

(v # 0)].




For the analysis presented in this paper, we consider only the original state failure con-
ditions, because, as we will show, most fault-based testing criteria do not even satisfy these.
Typically, however, testing is primarily concerned with revealing an output failure as the
manifestation of a fault (and not only incorrect intermediate values). To address this, the
RELAY model provides a framework for developing failure conditions to guarantee that a state
failure transfers to affect module execution as a whole. It does so by extending the failure
condition to also guarantee that the original state failure transfers along some information
flow chain(s) from the faulty node to a failure node. The information flow transfer conditions
guarantee that data and/or control dependence transfer occurs at each link in the information
flow chain(s). Consider again the hypothetical variable reference fault at node 1 in Figure 1.
One information flow chain from the fault location to an output consists of the definition of
X at node 1, followed by a use of X at node 7, where W is defined, followed by a use of W
in the output statement at node 8. The potential failure in X transfers through information
flow to node 7 whenever the false branch of the conditional at node 4 is taken. Reference to
the potential failure in X must transfer through the multiplication by B to the assignment
of W at node 7. Thus, for this information flow chain, the transfer condition is [(e > b) and
(b # 0)]. Recall that the original state failure condition is [(u # b) and (v # 0)], creating
a failure condition for this information flow chain of [(u # b) and (v # 0) and (a > b) and
(b # 0)]. The development of information flow transfer conditions and failure conditions is
fully defined in [Tho91], as are the details of data dependence transfer, control dependence
transfer, and complex computational transfer (in the context of interacting potential fail-
ures). As mentioned, these are not required for the analysis presented in this paper, so we
have merely provided a general description to portray the fﬁll nature of the RELAY model.

The failure conditions describe what is required to guarantee that a fault produces a
failure. Thus, they define test data that must be executed to reveal a failure for a hypothetical
fault. This means that if a failure is not revealed for data in the domain of the hypothetically

faulty node and satisfying the failure condition, then the hypothetical fault is not a fault (for
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any test data that could execute the node) and hence the hypothetically correct module is
not correct. On the other hand, revealing a failure for such data indicates that the module
contains the hypothetical fault. In the case of the original state failure condition, we only
know that a state failure has been produced, and the additional information flow transfer
conditions must be satisfied to reveal an external failure. Moreover, a failure condition that is
infeagible within the domain of the hypothetically faulty node implies that the hypothetically
faulty module and the hypothetically correct module are equivalent'®,

One possible application of the RELAY model is to hypothesize faults in a module, actually
construct failure conditions that guarantee fault detection of the hypothesized faults, and
select test data to satisfy these failure conditions. Although this application provides a fault-
based test data selection criterion, we are not suggesting that it is feasible or practicall®
Rather, our model shows what is required to guarantee fault detection and demonstrates the
complexity of the problem. The insight provided by the failure conditions, however, are useful
for analyzing the fault detection capabilities of test data selection criteria. This analysis is
the focus of section 6.

As currently defined, a failure condition is derived for any hypothesized fault indepen-
dently, although many faults are similar and much of the transfer requirements are indepen-
dent of a particular hypothetical fault. The application described in the next section leverages
this fact by grouping hypothetical faults into classes based on some common characteristic
of the transformation and defines original state failure conditions for all hypothetical faults
of a class. When these conditions are instantiated for a particular fault class, they provide
conditions that guarantee introducing a state failure caused by any fault of that class. In the
next section, we discuss the original state failure conditions for six fault classes. A simple

example of test data satisfying a specific original state failure condition is presented at the

18 An infeasible oxternal failure condition means the failure conditions must be infeasihle for all information

flow chains; again this is described more completely in (Tho91).
1974 is well-known that sclection of data to satisfy any condition is undecidable; it is not our intention to

address the equivalence problem with failure conditions.
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end of the next section. These conditions can be used to evaluate the ability of test data
selection criteria to guarantee detection of faults in chosen classes. RELAY is applied in this

fashion to analyze three test data selection criteria for the six fault classes in section 6.
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5 Application of RELAY for Fault Classes

The previous section described the RELAY model and how it defines a failure condition for a
hypothetical fault, which guarantees origination of a potential failure, computational transfer
to produce an original state failure at the faulty node, and information flow transfer to a
failure node. Here, we describe how we can hypothesize many potential ways in which a
node might be faulty and develop failure condition sets that apply to a class of hypothetical
faults. This technique for applying the RELAY model takes advantage of two facts. First,
similar hypothetical faults (such as transformation to alternative arithmetic operators) have
similar origination conditions. Second, all hypothetical faults in a particular expression must
basically transfer through the same computations and information flow to a failure. Thus,
although the origination conditions may differ, the transfer conditions are basically the same.
This section describes RELAY’'s application for fault classes, demonstrates the instantiation of
the original state failure conditions for one fault class, and illustrates by example what these
mean for test data.

Any syntactic expression in a module’s source code may be faulty, but only in ways that
retain the module’s semantic correctness (compilability). Thus, for any expression, we can
hypothesize limited classes of faults that might occur. By grouping these hypothetical faults
into classes based on some common characteristic of the transformation, we can define failure
conditions that guarantee origination of a potential failure for any hypothetical fault of that
class. Moreover, we can consider the ancestor operators that reference such an expression
and define the computational transfer conditions that apply to a fault class and are required
to transfer the original potential failure to produce an original state failure; and likewise for
information flow transfer.

For an expression in a module, a hypothetical fault class determines a set of alternative
expressions, which must contain the correct expression if the original expression indeed con-

tains a fault of that class. To guarantee origination of a potential failure for a class, the
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hypothetically faulty expression must be distinguished from each expression in this alternate
set. For each alternative expression, the RELAY model defines an origination condition, which
guarantees origination of a potential failure if the corresponding alternate were indeed the
correct expression. For an expression and fault class, we define the origination condition
set as the set of origination conditions for each alternative expression transformed by the
fault class. The origination condition set guarantees that a potential failure originates in that
expression if the expression contains a fault of this class.

For each alternative expression, a potential failure that originates must also transfer
through each operator in the node to reveal a state failure. The computational transfer
conditions, which are determined by these subsequent manipulations of the data, are inde-
pendent of the particular alternate. Thus, for a fault class, an original state failure condition
is defined for each alternate, which is the conjunction of the origination condition and the
computational transfer conditions. The original state failure condition set contains an
original state failure condition for each alternate in the alternate set. It is a necessary and
sufficient set of conditions to guarantee that a hypothetical fault of a particular class reveals
an original state failure.

Likewise, the original state failure for each alternate must transfer through information
flow to reveal an external failure. And, likewise, these transfer conditions are independent
of the alternate and can be conjoined to each original state failure condition in the set. The
failure condition set contains a failure condition for each alternate and guarantees that a
hypothetical fault of the class reveals a failure.

Once again, consider the module in Figure 1 and the statement X := U *x V, but now
suppose that the reference to U might be faulty but we do not know what variable should
be referenced. To guarantee origination of a potential fajlﬁre for an incorrect reference to
U, the value of each alternative variable U2 must be distinguished from the value of U at

node 1. The possible alternates depend on what other variables may be substituted for U

20We use the bar notation to denote an alternate.
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without violating the language syntax. If we assume that all variables referenced in this
module are of the same type, then there are seven alternates and hence seven origination
conditions. The origination condition set is {{u # @ | U € {4, B,V,W, X, Y, Z}}. Recall that
the computational transfer condition for node 1 is [v # 0]. For the information flow chain
where X is used to define W at node 7 and W is output at node 8, recall that the transfer
condition is [(a > b) and (b # 0)]. Thus, the set {[(z # T and (v # 0) and (a > b) and (b # 0)]
| U € {A,B,V,W, X,Y,Z}} is a sufficient transfer condition set for this hypothetical fault.
This set ig sufficient but not necessary because all information flow chains are not considered.

Thus, the RELAY model can be applied for a chosen fault classification. Hypothesizing
a particular fault class, the origination and transfer conditions are instantiated to provide
conditions specific to that class. The next subsection summarizes the instantiation of RELAY
for fault classes. The instantiated origination and transfer conditions can then be evaluated
for selected (applicable) locations in a module fo provide the specific failure condition sets
that must be satisfied to guarantee the detection of any fault in the chosen classification at the
selected locations. The specific transfer conditions for a module can be used to measure the
effectiveness of a pre-selected set of test data and/or to select test data. A simple example of
constructing an original state failure condition set and of test data satisfying it is presented at
the end of this section. The instantiated origination and transfer conditions can also be used
to evaluate the ability of test data selection criteria to guarantee fault detection for chosen
fault classes. RELAY is applied in this fashion to analyze three test data selection criteria for
six fault classes in section 6. This analysis demonstrates the flaws inherent in most criteria

and the advantage of a complete model of faults and failures.

5.1 Instantiation of RELAY

In this section, we discuss the instantiation of the RELAY model for a fault class. The
application presented provides original state failure conditions for statements hypothetically

containing a fault in one of six classes. The restriction to original state failures means that
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only computational transfer need be considered at this time. Developing original state failure
conditions for a fault class consists of developing the origination conditions for the fault class
and also developing any applicable computational transfer conditions. This instantiation
process is illustrated for the class of relational operator faults. We derive the origination
conditions for this class and the computational transfer conditions through boolean operators
since a relational expression may be contained within boolean expressions.

RELAY is instantiated for six fault clagses in [RT86b]. The six classes are constant refer-
ence fault, variable reference fault, variable definition fault, boolean operator fault, relational
operator fault, arithmetic operator fault. These six classes were selected because of their rel-
evance to a number of test data selection criteria, which include those criteria analyzed here.
Each of the six classes is a class of atomic faults, where a (hypothetical) fault f is atomic if
the node n differs from the hypothetically correct node n’ by a single token.

To determine the original state failure conditions for a class of hypothetical faults, we
must instantiate the applicable computational transfer conditions as well as the origination
condition for the class. Thus, for the six fault classes, in [RT86b] we derive origination
conditions for each class as well as transfer conditions through all operators applicable to these
faults — that is, agsignment operator, boolean operators, arithmetic operators, and relational
operators. The origination conditions for the six fault classes along with the computational

transfer conditions through the four applicable operators are summarized in the appendix.

5.1.1 Origination Conditions for Relational Operator Faults

An origination condition guarantees that the smallest valued expression containing a hypo-
thetical fault produces a potential failure. Thus, given the smallest evaluable expression EX P
containing a hypothetical fault and an alternative expression £ X P, the origination condition
guarantees that exp # eZP.

Consider the class of relational operator faults, where a potential failure may result when

a relational operator is mistakenly replaced with another relational operator. We consider

28




six relational operators: <, <,=,#,>,>. Given a relational expression (EXP ROP EX P,),
if the relational operator ROP is faulty, then the correct expression must be in a set of
alternates {(EX P, ROP EXP,) | ROP is a relational operator other than ROP}.

As an example, let us construct the origination condition for the relational operator < and
an alternative operator =. We must determine the origination condition that distinguishes
(EXPy < EXP,) from (EXP, = EXP,). For any relational expression, there are three
possible relations for which test data may be selected — (exp1 < exp2), (ezp1 = expa),
(exp; > exps). The origination condition to distinguish between EXP; < EXP, and
EXPy = EXP,is [ezp; < exps]. The original expression, (EXP;, < EXP,), and al-
- ternative expression, (EXP; = FEXP), evaluate differently whenever either the relation
(exp1 < expr) or the relation (exp; = expq) is satisfied; thus the condition (exp; < exzpo) is
sufficient for origination of a potential failure. When the third possible relation is satisfied,
(exp1 > exps), the original and alternate expressions evaluate the same; hence, the condi-
tion (exzpy < expq) is also necessary for origination of a potential failure. The origination
conditions for the other alternative operators are derived similarly: this derivation is detailed
in [RT86b]. The origination conditions for all relational operator faults are summarized in
Table 1. The origination condition set for a given relational operator and the relational oper-
ator fault class is the set of all origination conditions that distinguish the given operator from
some alternate. Thus, for a hypothetically faulty , operator, the origination condition set
is {[ezp1 = exp2], [exp1 < exps],[exzp1 > expa), [true), [exp1 # expz]]}. Often an origination
condition set can be reduced to a sufficient condition set due to the overlap between condi-
tions. If this set is feasible, then it’s satisfaction implies origination. On the other hand, if it
is infeasible, the more specific origination conditions in the full set must be considered. The
sufficient origination condition set for < is {{ezpy = expa], [ezp1 > exps|}. Similar sufficient

condition sets are developed for the other fault clagses in [RT86b].
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operators unsimptlified origination condition origination condition

<< [exp1 = expo] [exp1 = expo)
<, = [(exzp1<exps) or (expy = expa)] lezp1 < ezpa)
<, # [exp1>exp2) [exp1>exp2]
<, > [(expi<ezps) or (ezp1 = exps) or (exp1>ezp2)) [ true |
<> [(exp1<exp2) or (expi>exp2)) [ezpy # expa]
= [exp1 <expo] [expy<expo)
< # [(ezp1 = exp2) or (exp1>exp2)] [(expy > expo]
<2 [(exp1<exp2) or (expi>ezpr)] lexpy # expo]
<,> [(exp1<ezps) or (expy = exp2) or (exp1>exps)] [true]
=,# [(expi<exps) or (expy = expa) or (exp1>exps)) [true]
=,> (ezpy>expo] [ezp1>expa]
=,> ((expy = expa) or (expi>expr)] [ezp1 > ezpo)
#,> [((exp1<expa) or (expy = expy)] [ezp1 < expy)
#,> ((ezp1<ezp2)] [expr <expo]
>,> [exp1 = expo] [expy = exps)

Table 1: Origination Conditions for Relational Operator Faults

5.1.2 Computational Transfer Conditions for Boolean Operators

A computational transfer condition guarantees that a potential failure in an operand of an
expression is not masked out by the computation of a parent operator. Thus, given an
expression OP(...,EXP,...), where a potential failure exists in EXP, the transfer con-
dition guarantees that op(...,ezp,...) also produces a potential failure. More specifically,
given EX P containing a hypothetical fault and EXP an alternate, the existence of a po-
tential failure in exp implies that exp # €Zp, and the transfer condition guarantees that
op(...,exp,...) # op(...,€TP,...).

Let us now continue with our illustration for relational operator faults. A relational
expression may be contained within a boolean expression; thus, we must also develop transfer
conditions through boolean operators and must consider both unary and binary boolean

operators.

Consider first transfer through a unary boolean operator. The unary boolean transfer
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condition guarantees that not (EX Py) is distinguished from not (FX P;), where EX P; and

EX P, are distinguished. No additional conditions are necessary for transfer of a potential

failure in a unary boolean expression because not (ezp;) # not (€zpy) if and only if expy #

ETP1.

The binary boolean transfer conditions guarantee both that (FEXP; BOP FXP) is
distinguished from (EXP, BOP EXP,) and that (EXP, BOP EXP)) is distinguished
from (EXP, BOP EXP)), whenever EXP; and EX P; are distinguished. Since the binary
boolean operators are commutative, we need not develop separately the transfer conditions
for a potential failure in the right operand. The binary boolean transfer conditions depend
upon the boolean operator. For the boolean operator and, (ezpi andexps) # (eZprandezps)
only when exps = true. Thus, exzps must be true to guarantee that a potential failure in expy
transfers through the boolean operator and. For the boolean operator or, (ezp| or exps) #
(eTp1 or exp2) only when exps = false. Hence, exps must be false to guarantee transfer of
the potential failure in exp; through the boolean operator or. The transfer conditions for

boolean operators are summarized in Table 2.

operator expression transfer condition
not not(expy) # not{ezpr) true
and exp; and expy # €TP1 and expq expy =true
or exTp1 Or expy # EIP Or exp) expy =false

Table 2: Transfer Conditions for Boolean Operators

5.2 Construction of Original State Failure Condition Sets

In this section, we illustrate the construction of an original state failure condition set for
the relational operator fault clags on an example module fragment and show test data that
satisfies this condition set. The example module fragment is shown in Figure 4.

Hypothesize that the relational operator at statement 2 is hypothetically faulty. The
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1 read X,Y,Z2,B,C;
2 f(X*Y < Z or B) and C then

Figure 4: Module Fragment

origination condition set for < relational operator fault is {[z*y = 2],[z xy < z|,[x xy >
z],[true],[z * y # z]}. In fact, the origination conditions [z *y = 2] and [z *y > z] are
sufficient to satisfy the conditions for all alternates, so a sufficient origination condition set
is {[z*y =z],[t*y > z]}. A potential failure resulting from the < in node 2 must transfer

through the boolean operators or and and. The computational transfer conditions are thus

(b = false) and (c = true).

The origination condition set combines with the computational transfer conditions to form
the following original state failure condition set

{[(z*y = 2) and (b = false) and (c = true)),

((z % y>2) and (b= false) and (c = true)] }.

We are now in a position to examine test data set that guarantees that an original state
failure is introduced. To do so, data must not only satisfy the original state failure condition
but also must execute the node. Hence data that satisfies a failure condition must be a
member of the domain of the node. For simplicity, we are considering a node that is not
conditionally executed, and hence dom(2) = Dys. There are many possible test data sets
that satisfy the failure conditions developed for this example. One such set contains the
following two datum (1,2, 2, false, true) and (1, 3,2, false, true). The first datum satisfies the
first failure condition, and the second datum satisfies the second failure condition. If the <
operator should have been some other relational operator, then execution for these two test

data will reveal an original state failure. If no original state failure is revealed, then the <

operator ig correct.
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6 Analysis of Related Test Data Selection Criteria

RELAY provides a sound method for analyzing the fault detection capabilities of a test data
selection criterion in terms of its ability to guarantee detection of a failure for some chosen
fault class(es). A test data selection criterion is usually expressed as a set of rules that the
test data must satisfy. Our analysis approach evaluates a criterion in terms of the relationship
between its rules and the failure conditions defined by RELAY for the six fault classes. The
failure conditions are both necessary and sufficient to guarantee fault detection, so this is an
unbiased means of analysis. A rule or combination of rules is judged either to be insufficient
to reveal a failure, to be sufficient to reveal a failure, or to guarantee that a failure is revealed.
Moreover, this analysis is completely program independent.

In this section, we use the origination and transfer conditions for the six fault classes
(provided in the appendix) to analyze the fault detection capabilities of three fault-based test
data selection criteria — Budd’s Error-Sensitive Test Monitoring [Bud81, Bud83], Howden's
Weak Mutation Testing [How78, How85)], and Foster’s Error-Sensitive Test Case Analysis
[Fos80, Fos83, Fos84, Fos85]. Each of these criteria was selected because its author claims
that it is geared toward detection of faults of the six classes previously discussed.

As noted, the application of RELAY discussed in this paper is limited to revealing original
state failures. Thus, the failure conditions discussed here are necessary for the detection
of a fault, but not sufficient, because the original state failure introduced by satisfaction of
these conditions may still be masked out by later computations on the path. To guarantee
fault detection for a particular class, the failure conditions must be augmented to include
information flow transfer. The analysis to follow does not consider whether or not the criteria
consider these additional conditions (although in most cases, they do not). As we shall see,
however, this limitation of the analysis is of little consequence, since for the most part, the
criteria do not guarantee revealing an original state failure. Our analysis shows that none of

the criteria guarantees detection of the considered fault classes and points out two weaknesses
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that are common to all three criteria. We also discuss how the RELAY model rectifies these
common problems.

For each criterion, we first define it in the terminology provided in section 3. Next, we
exammine the criterion’s ability to satisfy the origination conditions for each fault class and
also its ability to satisfy transfer conditions through applicable ancestor operators. Then, for
each fault class, we discuss the circumstances in which the criterion will guarantee revealing
an original state failure, which requires that a single test datum be selected to satisfy both
a specific origination condition and the applicable computational transfer conditions for the
node. Although a criterion may include rules that satisfy the origination conditions and
the applicable transfer conditions, if the criterion does not explicitly force all such transfer
conditions to be satisfied by the same data that satisfies the origination conditions for a
fault class, detection is not guaranteed for that clags. In the case where only origination
is guaranteed, revealing an original state failure is guaranteed only when the fault is in
the outermost expression of the statement or is contained only within expressions for which
transfer conditions are trivial (e.g., unary boolean). Furthermore, recall that the test data
selected for a particular node n must be in dom(n). If no such data exists to satisfy the
application of a particular rule in a criterion, then the rule is unsatisfiable for n. When no
alternative selection guidelines are proposed, we assume that no test data is selected for an
unsatisfiable rule.

In the analysis of each criterion, we analyze all applicable rules for each fault class but
do not belabor analysis of those that clearly do not address the class. When it is obvious
that a criterion guarantees origination or transfer (e.g., a rule of a criterion is equivalent to
an origination or transfer condition), we merely state this fact. Some of the conditions are
trivially met by any criterion that satisfies statement coverage (e.g., origination of a constant
reference fault and transfer through assignment operator). Since each of the three criteria
analyzed here direct their selection of test data to each statement in a module, we will merely

mention the satisfaction of such trivial conditions. For the first criterion examined, counter
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examples are provided when a rule does not guarantee origination or transfer. Similar counter
examples for the subsequent criteria are are not provided but the similarity is noted. Complete
detailed analysis is provided in [RT86b).

The following is not intended to be a complete analysis of the fault detection capabilities
of these criteria. Only those faults discussed in section 5 are included in the discussion. A
complete analysis must consider a more complete fault classification. The analysis presented
in this paper, however, provides insight into how our model of fault detection can be used to

analyze the strengths and weaknesses of testing criteria.

6.1 Budd’s Estimate

Budd’s Error-Sensitive Test Monitoring (Estimate) [Bud81, Bud83] is the first stage of Budd’s
Mutation Testing suite. For the most part, the testing suite is directed toward the evaluation
of a test data set but the first stage also provides a criterion that aids in the selection of test
data. A test data set satisfying Budd’s Estimate executes components in the program (e.g.,
variables, operators, statements, control flow structures) over a variety of inputs. The rules

below outline test data that must be selected to pass Estimate.

Rule 1 For each variable V', T containg test data %,,ts,%., there exist some node n,,np, 1,
such that:

a. t, € dom(n,) and v = 0
b. ty € dom(ny) and v < 0;
c. t. € dom(n,) and v > 0.

Rule 2 For each each assignment V := FXP at each node n, T contains a test datum ¢, €
dom (n) such that:

a. exp # v.

Rule 3 For each binary logical expression, FX Py BOP FXP; at each node n, T contains
test data t.,% € dom (n) such that:

a. exp1 = true and expy = false;

b. expy = false and exps = true.
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Rule 4 For each edge (n,n') € E, where BP(n,n') is the branch predicate, T contains a test
datum ¢, such that:

a. ty € dom(n) and bp(n,n') = true.

Rule 5 For each relational expression, EX Py ROP EX P,, at each node n, T contains test
data tq, ts, te, tg € dom(n) such that:

a. exp; — expy = 0;
b. exp; — expy > 0
c. expy — expy < 0
d. expy —exps = —e or +¢€ (where € is a “small” value).

Rule 6 For each binary arithmetic expression £X Py AOP EF X Ps at each node n, T contains
a test datum ¢, € dom (n) such that:

a. expy > 2 and expy > 2.

Rule 7 For each binary arithmetic expression EX Py AOP C (C AOP EXPy), (where C is
a constant), at each node n, T contains a test datum t, € dom(n) such that:

a. exp; > 2.

First, let us consider Fstimate’s ability to originate potential failures for the six fault
classes. Clearly, rule 3 satisfies the origination conditions for boolean operator faults, and rule
5 satisfies the origination conditions for relational operator faults. Thus, Estimate guarantees
origination of a potential failure for boolean and relational operator faults.

Rule 1 appears to be concerned with forcing variables to take on a variety of values, which

is one requirement for detection of variable reference faults. Consider the following code

seg111e11t21:

1 read A, B;
2 X :=2A,;

1 Por simplicity, we assume that all variables in this scction’s cxamples are cither boolean or integer.
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The three test data (0,0), (3,3), and (-10,-10) satisfy rule 1, for variables A and B, but would
not distinguish a reference to A from a reference to B at node 2. Estimate is not sufficient,
therefore, to originate a potential failure for a variable reference fault.

Estimate’s rule 2 is directed toward the detection of variable definition faults. A test
datum that satisfies this rule fulfills the origination condition set. The origination condition
set, however, contains another condition, (7 # v), that must be satisfied if (exp # v) is
infeagible. Fstimate does not satisfy this other condition, and thus a potential failure caused

by a variable definition fault may remain undetected by Estimate. Consider the following:

1 read A, B, C;
2 if C = A+B then

3 C .= A+B;

The condition (a + b # ¢), which is the evaluation of (exp # v), is unsatisfiable at node
3. It is possible, in fact quite likely, however, that the definition at node 3 should be to a
variable other than C, such as to D. To detect such a variable definition fault, the values of
C and D must differ before execution of node 3, a condition not required by Estimate. Thus,
Estimate is sufficient to originate a potential failure for a variable definition fault, but it does
not guarantee origination for this fault class.

Rule 6 is specifically concerned with arithmetic operator faults. Budd notes that test data
satisfying this rule distinguishes between an arithmetic expression and an alternate forined by
replacing the arithmetic operator by another arithmetic operator except for an addition or a
subtraction operator replaced by a division operator (or vice versa). We agree that Estimate
originates a potential failure for an arithmetic operator fault in all but the four exceptions just
cited. FEstimate, however, is more stringent than necessary. When this rule is unsatisfiable
— that is, no test datum exists such that (ezp; > 2) and (exzps > 2) — there may exist an

undetected potential failure due to an arithmetic operator fault. For instance, consider the

following:
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1 read X,Y;
2 ifX <2andY < X then
3 A= XY

Note that at node 3, X and Y are restricted to values less than or equal to 2. In this
case, FEstimate’s rule is unsatisfiable, and no data must be gelected to satisfy rule 6 for this
statement. The expression A := X+Y ig an alternate that is not equivalent; there are data
within the domain of the statement for which the two expressions evaluate differently —
(e.g., z = 2 and y = 1). Thus, Estimate is only sufficient to originate a potential failure for
arithmetic operator faults except for the four noted exceptions, where Estimate is insufficient.
Estimate, however, does not guarantee origination of a potential failure for any arithmetic
operator fault.

Let us now consider how Estimate does with transfer conditions. Note first that rule 3
fulfills and guarantees the transfer conditions through boolean operators.

Estimate’s rule 5 is similar to one of the general sufficient transfer conditions shown in
the appendix, although FEstimate does not consider the assumptions noted there. Even if
these assumptions were taken into account, one of these sufficient conditions is not by itself
sufficient to guarantee transfer through a relational operator. Suppose X xY should be X +Y
in the following:

1 read X,Y;
2 if X+Y > 10 then

Test datum (11,1) would originate a potential failure (since 11 + 1 # 11 * 1) and satisfies
rule 5 (since X * Y differs from 10 by a small amount). However, the potential failure is not
transferred through the relational operators since both 11 + 1 and 11 %1 are > 10. Thus,

Estimate is not sufficient to transfer through relational operators.
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A test datum satisfying Estimate’s rule 6 satisfies transfer conditions through all arith-
metic operators but the exponentiation operators. Rule 6, however, is more restrictive than
necessary; when unsatisfiable, it does not guarantee absence of a fault. Assume a potential

failure originates in z at node 3 in the following:

1 read X,Y;
2 ifX<2andY < X then

3 A = XxY;

No test datum satisfies rule 6 for this node; however, a test datum such that y # 0 transfers
any potential failure in . Thus, Estimate is sufficient to transfer through most but not all
arithmetic operators but does not guarantee transfer.

We are now in a position to determine the ability of Estimate to guarantee revealing an
original state failure for the six fault classes. In general, Estimate does not require data
that satisfy origination conditions to also satisfy transfer conditions, and thus transfer of an
originated potential failure is not guaranteed. This is because Estimate does not prescribe
any integration of the application of its rules. When two or more rules are applicable to an
expression, Estimate does not dictate any way in which these two rules should interact. As
an example, consider revealing an original state failure for a relational operator fault in the
expression (A < B) or Z in the following:

1 read A, B, Z;
2 if A< B or Z then

The test data shown in Table 3 satisfies Estimate’s rules 3, 4 and 5 for this expression. Test
data i, ii, and iii satisfy rule 5 for the relational expression containing the operator <. If
this relational operator should have been any other relational operator, this test data would

originate a potential failure; for these test data, however, z =true, which will not transfer
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value of variable
datum @ b z

i 1 3 true
ii 3 1 true
ifi 2 2 true
iv 1 2 false
v 2 1 true
vi 3 1 false

Table 3: Sample Test Data Selected by Estimate for (A< B)or Z

any potential failure. Test data iii and iv satisfy rule 3 for the outer boolean expression
containing or. Data v and vi satisfy rule 4 for the conditional statement. Test data iv and
vi are the only data that would transfer any potential failure originated in the relational
expression; these data alone, however, are insufficient to guarantee origination of a potential
failure for a relational operator fault.‘ If, for example, the < should be <, no selected datum
both originates and transfers a potential failure caused by this fault. Thus, Estimate does
not guarantee revealing an original state failure for this relational operator fault.

The prescription of rule integration is lacking even in the repeated use of a single rule,
as illustrated in the application of rule 3 to the boolean expression (X and Y) or Z in the
following:

1 read X,Y,Z;
2 if (X andY) or Z then

The test data shown in Table 4 satisfles Fsitmate’s rule 3 for the conditional expression in
this example. Test data i and ii satisfy rule 3 for the inner boolean expression containing the
operator and. Test data iii and iv satisfy rule 3 for the outer boolean expression containing
or. If the inner operator should have been an or, test data i and ii would originate a potential

failure. For these test data, however, z =true, which will not transfer any potential failure.
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value of variable
datum z Y z
i true false true
ii false true true
il true true false
iv false false true

Table 4: Sample Test Data Selected by Estimate for (X andY) or Z

Test data iii and v are the only data that would transfer a potential failure originated at the
inner expression, but for these test data, the values z and y would not originate a potential
failure. Thus, Fstimate does not guarantee revealing an original state failure for a boolean
operator fault,

When origination of a potential failure is guaranteed for a fault class, revealing an original
state failure is guaranteed by Fstimate only when the transfer conditions are trivial. In gen-
eral, this occurs when the smallest expression containing the fault is the outermost expression
in the node. The transfer conditions are always trivial for a variable definition fault. Since
Estimate is sufficient to originate a potential failure for this class, it is also sufficient to reveal
an original state failure. Recall, however, that Estimate does not guarantee origination for

this class.

6.2 Howden’s Weak Mutation Testing

Howden’s Weak Mutation Testing (WMT) [How82, How85, How86] is a test data selection
criterion whereby test data is selected to distinguish between a component and alternative
components generated by application of component transformations— e.g., substitution of one
variable for another. Howden considers six transformations, which may be applied to various
program components, and includes test data selection rules geared toward the detection of

these transformations. Although Howden’s transformations are presented quite differently
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than the six fault classes, each of these transformations results in one of the fault classes.
The rules below specify test data intended to distinguish between a program component and
alternatives generated by the transformations. These rules must be met by a test data set T'

to satisfy Howden’s weak mutation testing.

Rule 1 For each reference to a variable V at node n, T contains a single test datum ¢, €
dom (n) such that for each other variable V'

a 1)75—22

Rule 2 For each assignment V' := EFX P at node n, T contains a test datum ¢, € dom (n)
such that:

a. v # exp.

Rule 3 For each boolean expression BOP(EX Py, EXPs,,...,EXP;) at each node n, T con-
tains test data ty,to,...,t0 € dom (n) such that {¢i,t2,...,¢t0:} covers all possible combina-
tions of true and false values for the subexpressions EX P, EXP,,...,EXP,.

Rule 4 For each relational expression FX Py ROP EX Pg, at each node n, T contains test
data t,,tp, t. € dom (n) such that:

a. exp; — expy = —e (where —e is the negative difference of smallest satisfiable magni-
tude);

b. exp; — expa = 0

c. expy —expy = +¢ (where € i3 the positive difference of smallest satisfiable magnitude).

Rule 5 For each arithmetic expression FX P at node n, T contains test data t,,t, € dom
(n) such that:

a. the expression is executed;
b. exp # 0.

Rule 68 For each arithmetic expression EX P, where & i3 an upper bound on the exponent
in the exp, at node n, T contains test data ty,tp,...txr1 € dom (n) such that {t1,t2,...tx4+1}
is any cascade set of degree k + 1 in dom (n).

22Howden proposes a more restrictive rule that is specifically concerned with array references. Since this rule
is subsumed by rule 1, it does not provide any additional failure detection capabilitics and we do not include

it here.
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Howden's WMT guarantees origination of a potential failure for boolean and relational
operator faults. Rule 3 satisfies the origination condition set for boolean operator fault, and
rule 4 satisfies the origination condition set for relational operator fault.

Rule 1 is obviously directed toward detection of variable reference faults, and a test datum
that satisfies this rule does satisfy the origination condition set. This rule, however, is more
restrictive than required for this fault class; it requires a single test datum to distinguish
between the faulty variable reference and all other variable references. This rule may not be
satisfiable although the origination condition set is feasible. In this case, a non-equivalent
alternate may not be distinguished. Thus, WMT is sufficient to originate a potential failure,
therefore, but does not guarantee origination for variable reference faults.

WMT’s rule 2 is the same as Fstimate's rule 2, which is directed toward detection of
variable definition faults. As noted in the discussion of Estimate, a test datum satisfying
this rule will originate a potential failure for a variable definition fault. This rule alone is
incomplete, however, since it does not guarantee absence of a fault when it is unsatisfiable.
Thus, WMT is sufficient but does not guarantee origination for this class.

Rules 5 and 6 are the only rules specifically directed toward exercising arithmetic expres-
sions, For an arithmetic operator fault that exchanges an addition operator for a subtraction
operator (and vice versa), rule 5 will guarantee origination of a potential failure. For other
arithmetic operator faults, this rule is insufficient. Rule 6 is insufficient to guarantee origina-
tion of a potential failure due to an arithmetic operator fault. This is because such a fault
may change the degree of the arithmetic expression. Consider the arithmetic expression in
node 2 of the following:

1 read X,Y;
2 A=X4+Y,

Rule 6 requires a cascade set of degree 2 for this expression. One such set is {(0,0),(2,2)}.

This set of test data, however, does not distinguish the expression X + Y from the alternate
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XxY,

Next, consider the ability of WMT to transfer a potential failure. Rule 3 selects data that
satisfies the boolean transfer condition and guarantees transfer through boolean operators.

WMT’s rule 4 is similar to the sufficient transfer conditions for relational operators. For
these transfer conditions to be sufficient, the two assumptions noted in the table in the
appendix must also hold. WMT does not consider these assumptions. Hence, even when
WMT’s rule 4 is satisfied, a potential failure may not transfer through a relational operator.
Thus WMT is insufficient to transfer a potential failure through a relational operator.

Rule 5 satisfies the transfer conditions for all arithmetic operators but the exponentiation
operator. Rule 6 does not apply because a proper cascade set cannot be selected when the
degree of the expression is unknown. WMT, therefore, only partially guarantees transfer
through arithmetic operators.

As with Estimate, WMT does not require that a rule that satisfies origination be related to
a rule that satisfies transfer. Thus, origination and transfer are not guaranteed to be satisfied
by the same test datum, and hence revealing an original state failure is not guaranteed. As
with Estimate, this may happen both when the same rule applies for origination as for transfer
and when different rules apply. In sum, Howden’s WMT guarantees revealing an original state
failure when origination of a potential failure is guaranteed for a fault clags and the transfer
conditions are trivial. Only for variable definition fault are the transfer conditions always

trivial. WMT is sufficient to originate a potential failure for this class and hence is sufficient

to reveal an original state failure.

6.3 Foster’s Error-Sensitive Test Case Analysis

Foster's error-sensitive test case analysis (ESTCA) [Fos80, Fos83, Fos84, Fos85] adapts ideas
and techniques from hardware failure analysis such as “stuck-at-one, stuck-at-zero” to soft-
ware. He has presented his rules in a number of articles. Where there is inconsistency, we

will evaluate the most recently published applicable rules. A test data set T satisfies Foster’s
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ESTCA if the rules outlined below are satisfied.

Rule 1 For each variable V' input at node n,, and for each variable W input at node ny, T
contains test datum, ¢, € dom(niya) such that:

a. the value input for V' is not equal to the value input for W.

Rule 2 For each variable V input at node n and some edge(n,n’), T contains test data
ta,ty € dom (') such that the value input for V at node n is:

a. vg > 0
b, vp < O

where v, and vy have different magnitude (if v is restricted to only positive or negative values,
v, and vp need only be of different magnitude).

Rule 3 For each logical unit L 23 of each boolean expression EXP = (...L...) at node n,
let EXP' = (...=L...), T contains test data t,,t, € dom (n) such that:

a. | = true and exp’ = —exp ¥
b. | = false and exp’ = —exp.

Rule 4 For each relational expression EX P; ROP EX P, at each node n, T contains test
data te,ts, t. € dom (n) such that:

a. expy — exps = —e (where —e is the negative number of smallest magnitude repre-
sentable for the type of ezpi — exzps);

b. expL — expy = 0;

¢c. erpy —expy = +¢€ (where € is the positive number of smallest magnitude representable
for the type of exp; — expa).

Rule 5 For each assignment V' := FXP at node n and for each variable W referenced in
EXP, T contains a test datum t, € dom (n) such that:

a. w has a measurable effect on the sign and magnitude of exp.

Foster's ESTCA contain no rules that approach the origination conditions for either a
variable reference fault or a variable definition fault.
Foster's ESTCA guarantees origination of a boolean operator fault. Rule 3 considers a

boolean expression in terms of logical units. A logical unit is a variable or relational expression

A logical unit is cither a logical variable, a relational cxpression or the complement of a logical unit.
Hthat is, substituting =L in EXP complements the valuc of EXP.
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that is one of the operands or is a subexpression of one of the operands of a boolean expression
(EXP,BOP EX P;). ESTCA requires selection of test data such that each such logical unit
takes on the value true (and the value false) and complementing the logical unit complements
the entire boolean expression. This rule satisfies the origination condition sets for boolean
operator faults. To see this, notice that for any boolean expression EX P, BOP EX P,, three
test data are selected, (expy,exps) = (T,F), (F,T), and (T,T) if BOP is and, or (F,F) if
BOP is or. This test data satisfies origination conditions for a boolean operator fault. Thus,
ESTCA guarantees origination of a potential failure for the class of boolean operator faults.

Consider now the class of relational operator faults. When satisfiable, ESTCA’s rule 4
results in data such that exp; > expa, expi = exps, exp; < exps. Thus, test data satisfying
this rule will originate a potential failure for relational operator faults. This rule, however,
is more stringent than required and may be unsatisfiable while the origination condition set
is feasible. Thus, ESTCA is sufficient to originate a potential failure for relational operator
faults but does not guarantee origination of a potential failure for relational operator faults.

In an attempt to detect faults in arithmetic expressions, ESTCA’s rule 5 requires selection
of test data such that variables in arithmetic expressions have a measurable effect on the sign
and magnitude of the result. Although the meaning of this rule is ambiguous, it clearly
does not imply the origination of a potential failure for an arithmetic operator fault. It is
possible for variables in an arithmetic expression to have a measurable effect on the sign and
magnitude of the result yet still evaluate the same for alternate arithmetic operators in the
expression. ESTCA does not, we conclude, guarantee origination of a potential failure for
arithmetic operator faults.

Let us now consider the satisfaction of transfer conditions. ESTCA's rule 3 satisfles
transfer conditions through boolean operators. The requirement that complementing the

logical unit complements the entire expression is equivalent to selecting test data that satisfies

the transfer conditions.
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Rule 4 is similar to the general sufficient transfer conditions through relational operators.
Like Howden, however, Foster does not consider the assumptions that must hold for these
conditions to be sufficient for transfer. Moreover, rather than specifying e to be the smallest
satisfiable difference, Foster fixes ¢ at the smallest representable magnitude. As a result, the
ability of ESTCA to transfer a potential failure through a relational operator is further limited.
Thus, FSTCA is insufficient to transfer a potential failure through a relational operator.

Rule 5 attempts to disallow the effect of a variable or subexpression to be masked out
by other operations in the statement. While the specifics of how this rule is applied are
unclear, one might interpret this as requiring transfer of a potential failure through arithmetic
operators. Under the broadest interpretation, therefore, ESTCA guarantees transfer through
arithmetic operators.

As with the other criteria, Foster fails to prescribe integration between ESTCA rules that
satisfy origination and those that satisfy transfer. Rule 3, however, does guarantee revealing
an original state failure for boolean operator faults. As seen above, this rule satisfies the
origination and transfer conditions for relational operator faults. In addition, when applied
to the outermost boolean expression, this rule selects a single datum for each nested binary
boolean expression that originates a potential failure due to a fault in the associated boolean
operator and transfers that potential failure to the outermost expression. To see this, consider
any expression FXP = EXPiBOP FEX P,. Some test datum selected for logical units within
F X Py fulfills the origination condition for boolean operator faults in £X P;. Complementing
a test datum selected for a logical unit that is a subexpression of £X P; must complement
the value exp. To force this, if bop = and then expy =true, or if bop = or then exp, =false.
Thus, for any test datum selected for a logical unit that is a subexpression of EX Py, EX P,
will take on a value that will transfer any potential failure originated within ZX P; to the
outer expression EXP. Therefore, ESTCA’s boolean operator rule satisfies origination as
well as transfer conditions simultaneously and hence guarantees revealing an original state

failure for boolean operator faults.
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6.4 Summary of Analysis

Table 5 summarizes the analysis of the three test data selection criteria. The entry insufficient
means that the criterion does not include a rule that satisfies the condition.
sufficient means that the criterion includes a rule that when satisfiable fulfills the condition.
The entry partially sufficient means that the criterion includes a rule that is sufficient to
distinguish many but not all of the alternates or transfer through many but not all of the
operators. The entry guarantees means that the criterion includes a rule that satisfies the

conditions when the conditions are feasible, while partially guarantees means the criterion

includes a rule that satisfies many but not all of the conditions when feasible.

Budd’s Estimate

Howden’s WMT

Foster’s ESTCA

Origination

1. Constant Reference Fault guarantees guarantees guarantees
2. Variable Reference Fault insufficient sufficient insufficient
3. Variable Definition Fault sufficient sufficient insufficient
4. Boolean Operator Fault guarantees guarantees guarantees
5. Relational Operator Fault guarantees guarantees sufficient
6. Arithmetic Operator Fault partially partially insufficient
sufficient guarantees
Transfer
1. Assignment Operator guarantees guarantees guarantees
2. Boolean Operator guarantees guarantees guarantees
3. Relational Operator insufficient insufficient insufficient
4. Arithmetic Operator partially partially guarantees
sufficient guarantees
Revelation
1. Constant Reference Fault insufficient insufficient insufficient
2. Variable Reference Fault insufficient insufficient insufficient
3. Variable Definition Fault sufficient sufficient insufficient
4. Boolean Operator Fault ingufficient insufficient guarantees
5. Relational Operator Fault insufficient insufficient insufficient
6. Arithmetic Operator Fault insufficient insufficient insufficient

Table 5: Analysis Summary
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7 Conclusion

In this paper, we have described the RELAY model, which rigorously defines how a fault in
a module causes a failure. The model includes origination, computational transfer, and data
and control dependence transfer. This paper focuses on using the RELAYmodel to evaluate
the fault detection capabilities of testing criteria. This analysis demonstrates how the rules
of a test data selection criterion must be carefully designed and tightly integrated to reveal a
failure for any fault. Without this precise modeling, it is easy to arrive at test data selection
rules that do not guarantee the detection of a fault and may not even be sufficient to do so.
Using RELAY, we have evaluated where previous criteria have failed in this regard.

This paper demonstrates four points that distinguish RELAY from other work:

1. RELAY distinguishes between origination of a potential failure in the smallest expression
that contains a hypothetical fault and the computational transfer of that potential
failure to parent expressions;

2. RELAY provides a detailed model of the transfer of a state failure from the faulty node
through information flow until it is externally revealed and further considers both data

and control dependence transfer;

3. RELAY provides a mechanism for developing conditions that must be satisfied to guar-
antee fault detection;

4. RELAY provides a specific framework in which all these components fit.

Let us address the significance of each of these points in turn.

First, RELAY determines origination conditions for the smallest expression containing a
fault. It then considers additional computational transfer conditions necessary to reveal a
potential failure in parent expressions. Some researchers, such as Foster [Fos80], have pre-
sented criteria that are capable of originating a potential failure in the smallest expression,
but have not considered the additional conditions necessary to cause a larger expression to
evaluate incorrectly. Other researchers, such as Budd [Bud81], have recognized the need for a
larger expression containing a fault to evaluate incorrectly. They, however, have not detailed

specifically the conditions necessary to cause such transfer, nor have they defined the rela-
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tionship of origination to transfer. RELAY specifically defines such a relationship and details
general transfer rules. Other researchers, such as Howden [How86], have examined conditions
required to reveal faults in larger expression. The problem here is that the rules developed
are specific for certain classes of expressions, e.g., constant reference fault in polynomial ex-
pressions. As a result, although a constant reference fault can occur in a variety of types of
expressions, the rule is not generally applicable. Further, RELAY’s separation of origination
and transfer conditions provides a framework for fault detection that is easily extended. When
a new fault class is considered, RELAY requires that the origination condition set for the class
be developed. Applicable transfer conditions from other classes are applied independently,
however, and thus require no changes. Criteria that consider larger expressions must develop
the “failure” condition for that entire expression class. We feel that proving properties about
origination conditions of a new fault class is less complicated than proving properties about
the revealing conditions for expression classes.

A second major contribution of RELAY is its consideration of information flow transfer.
While some criteria that consider hypothetical fault classes in larger expressions may select
test data that is capable of producing a state failure, they do not (for the most part) consider
what is required for a state failure to transfer to output. Hence, these criteria do not guarantee
revealing a failure. Criteria that are directed toward the detection of faults in larger expres-
sions effectively achieve information flow transfer by applying their rules to [partial] path
expressions developed through symbolic evaluation. This approach, however, is only applica-
ble to faults on paths that produce particular expression classes; this limitation is discussed
above. The concept of “sufficiency” in Offutt’s constraint-based testing [DGK*88, DO91] is
similar to transfer, but Offutt does not provide any details on the nature of these conditions.
The concept of “propagation” in Morell’s symbolic fault-based testing [Mor88, Mor90] is sim-
ilar to data dependence transfer, but does not consider control dependence transfer. The
distinet contributions of RELAY’s information flow transfer model are considered further in

[Tho91, TRC92], where information flow transfer is fully defined.
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Another distinction is that RELAY provides a means of developing conditions that are
both necessary and sufficient to reveal a failure. As shown by the analysis, most fault-based
testing criteria select test data that are sufficient to originate a potential failure for some
fault classes. When these criteria are not satisfiable, however, an undetected fault in the
clags may remain. Hence, these criteria do not guarantee detection of these faults. Because
RELAY considers both the necessary and sufficient conditions, it does guarantee detection.
When a revealing condition for a fault class is not satisfiable, in the RELAY model, we know
that a hypothetical fault in the class is not a fault but rather is an “equivalent discrepancy”.
Other models of fault-based testing (such as Morell’s [Mor90]) do not direct how to construct
specific conditions or to select data to guarantee fault detection.

The final significant contribution of RELAY is that it provides a general yet applicable
framework that describes how a hypothetical fault originates a potential failure and then
how it can transfer through a module. We believe that RELAY provides a cleaner, clearer
view of fault-based testing than other approaches to date and that it is a sufficiently more
powerful approach. This is clearly demonstrated in our analysis, which indicates that none
of the examined criteria is capable of guaranteeing detection of an original state failure for
the selected fault classes. The precision of the RELAY model is what enabled this analysis.
We plan to do similar analysis of criteria’s ability to transfer a potential failure through the
model of information flow transfer; such a preliminary analysis appears in [TRC92]. Neither
analysis could be accomplished without the formal model of faults and failures.

We continue to evaluate the RELAY model’s capabilities by instantiating it for other fault
classes. Thus far, we have only considered simple faults in a single node. It is not clear that
these are the most common fault types. We believe, however, that our general framework is
applicable to larger, more complex faults and are working on extending the application to
more complex fault classes. We are also working on applying the model to specifications in
an attempt to detect faults introduced early in the software lifecycle [ROT89].

In addition, we are applying this analysis method to other testing criteria. One direction
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of future research is to analyze the fault detection capabilities of failure-based (rather than
fault-based) testing criteria, such as Cohen’s and White’s domain testing [WC80, CHR82],
and path selection criteria, such as the variety of data flow path selection criteria [RW85,
Nta84, LK83, CPRZ86]. We expect that this will provide us with further insight into the
relationship of faults and failures in programs and address the strengths and weaknesses of
these two very different approaches to testing. As mentioned, we are also investigating the
power of the model of information flow transfer in analyzing test criteria.

Finally, the RELAY model enables us to analyze the implications of many assumptions
made by testing researchers (such as the competent programmer hypothesis, the coupling
effect, and disallowed coincidental correctness, which is assumed by some path-based criteria);
some of these assumptions are analyzed in in [TRC92]. Such analysis may allow us to eliminate
or tone down some of these assumptions. The analytical perspective provided by RELAY

also suggests empirical studies that must be done to balance analytical evaluation and thus

consider the impact of these assumptions.
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Appendix

A.1 Origination Conditions %

constant referenced || origination condition set
C true

Table A-1: Origination Condition Set for Constant Reference Fault

variable referenced origination condition set
%4 {[t#v]|V is a variable other than V
that is type-compatible with V}

Table A-2: Origination Condition Set for Variable Reference Fault

agsignment origination condition set
Vi=FEXP || {{(T#v) or (exp # v) | V is a variable other than V
that is type-compatible with V]}.

Table A-3: Origination Condition Set for Variable Definition Fault

operator || origination condition set
not { [true] }
null { [true] }
and {[exp1 # exp2]}
or {[exp1 # expa]}

Table A-4: Origination Condition Sets for Boolean Operator Faults

‘ZSOrigination conditions for the alternates for a particular potential fault class are grouped and reported
here as origination condition sets.

53




operator origination condition set sufficient condition set

< {lexp1 = exps), [exp1 > exp2], | {[exp1 = exp2], [exp1 > expa]}
lexpy < exps), [expr # expa]}

< {lezp1 = expa], [ezp1 < expe], | {lezp1 < exp2], [exp1 = exp2]}
[exp1 > exps), [exp1 # expa]}

# {lexp1 > expa, [expL > expa), | {lexp1 < expa), [exp; > expo]}

lezpr < expa], [ezp1 < ezpa]}
= {lezpi < expol, [exp1 < expa), | {[exzp1 < expa), [exp1 > expa]}
[expy > expy), [expy > expa]}

> {lexp1 # expy], exp1 > expa), | {lexp1 = expa], [exp1 > expa]}
lezp) < expy), [expy = expo]}
> {[expr # expa], [exp1 > expa], | {[exp1 < expa], [exp1 = expa}

lezp1 < expo], [expy = expa]}

Table A-5: Origination Condition Sets for Relational Operator Faults

operator origination condition set

+ {[(ezp1 + exps) # (exp1 op exps)]
|op = *,/,div,*}
- {{(exp1 — exp2) # (exp1 op ezpy)]
l Op = +?*’/)div7**}

* {[(exp1 * expa) # (exp; op expo)]
| op = +) —)/,div)**}
/ {{(exp1/exp2) # (expy op exp2)]

| op =+, —, *,div, *x}

div || {[(ezp1 div expa) # (exp; op exps)|
| op = +’—"*a/)**}

*k {{(expix+exp2) # (exp1 op expy)]

I op = +,—,*,/,diV}

Table A-6: Origination Condition Sets for Arithmetic Operator Fault
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A.2 Transfer Conditions

operator expression transfer condition

== Vi=FEXP#V :=EXP true

Table A-7: Transfer Condition Through Assignment Operator

operator expression transfer condition
not not(exp1) # not(exp}) true
and ezxp; and erps # €zp; and exps expy =true
or exrp) Or expy # €IPL Or erps expy =false

Table A-8: Transfer Condition Through Boolean Operators

transfer conditions

operator expression
+ expy + exps # TPy + erpe true
- exp) — erpg # ETPL — eLP? true
- expy — erpi # exps — €IDT true
* erpy * expy # EIPL * eTP2 expy # 0
/ erp1/expy # €TP1/eTp2 expy # 0
/ expa/expy # exp2/eTPT exps # 0
*k eTp1¥*eTpy # ETPr**expe || (expe # 0) and (expy # —€Tpr or expy mod 2 # 0)
*k eTPo**eTP| # ELPI*KETP] (expy # 0) and (exp2 # 1)

and (exp2 # —1 or exp; mod 2 # €%p1 mod 2)

Table A-9: Transfer Conditions Through Arithmetic Operators
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operator expression transfer conditions

< expr<expy # €Zpr<ezp;) (exp1<exzps and eZp;>expy) or
(exp1>exps and EZpr<exps)
exp) <expy # eTPL<erpa) (ezp1<expr and eTpi>exps) or
(exp1>expy and expy<ezrps)
= expy=ezpy # €Zpi=ezp2) || (exp1 = expy and ETP1 # expa) or
(exp1 # exp2 and €ZPT = exp2)
# eTp1Fexp2 # ETPprAeTp2) || (exp1 # expy and ETPL = exps) or
(expy = expy and €TPy # expo)
> expi >erpy # TPl >eTpsr) (expy>expy and €ZPr<ezxps) or
(expi<exp and TPy >exps)
exp1>exps # ETPi>exps) || (ezpi=expz and ETpr<ezpz) or
(expi1<exps and €TPT>expsa)

IN

v

Table A-10: Transfer Conditions Through Relational Operators

operators sufficient transfer conditions
<GS = A >, 2 eTps — eTPL = €,
expy — eTP1 = —¢,
expg —exp; =0

Table A-11: General Sufficient?® Transfer Conditions Through Relational

Operators

%6For sufficicnt transfor conditions through rclational operators, € is the smallest magnitude positive differ-
ence between cxzps and ezpy and —e is the smallest magnitude negative difference; note that +¢ and —¢ may be
of different magnitude. In addition, these conditions arc only sufficient under the assumption that the relation
between cupy and ©Zpr is the same for cach of the three test data selected to satisfy all three e—conditions
listed in the table. In addition, these conditions are not sufficient unless € is the smallest positive difference
between cepy and capy and is no greater than the smallest positive difference between #Zp7 and caps. If
any of these e~ conditions is infeasible, absence of a fault is not guaranteed by satisfaction of the remaining

¢e-conditions.
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