2301.08653v1 [cs.SE] 20 Jan 2023

arxXiv

An Analysis of the Automatic Bug Fixing
Performance of ChatGPT

Dominik Sobania
Johannes Gutenberg University Mainz
Email: dsobania@uni-mainz.de

Carol Hanna
University College London
Email: carol.hanna.21 @ucl.ac.uk

Abstract—To support software developers in finding and fixing
software bugs, several automated program repair techniques have
been introduced. Given a test suite, standard methods usually
either synthesize a repair, or navigate a search space of software
edits to find test-suite passing variants. Recent program repair
methods are based on deep learning approaches. One of these
novel methods, which is not primarily intended for automated
program repair, but is still suitable for it, is ChatGPT. The
bug fixing performance of ChatGPT, however, is so far unclear.
Therefore, in this paper we evaluate ChatGPT on the standard
bug fixing benchmark set, QuixBugs, and compare the perfor-
mance with the results of several other approaches reported in
the literature. We find that ChatGPT’s bug fixing performance is
competitive to the common deep learning approaches CoCoNut
and Codex and notably better than the results reported for the
standard program repair approaches. In contrast to previous
approaches, ChatGPT offers a dialogue system through which
further information, e.g., the expected output for a certain input
or an observed error message, can be entered. By providing such
hints to ChatGPT, its success rate can be further increased, fixing
31 out of 40 bugs, outperforming state-of-the-art.

Index Terms—Automated program repair, automatic bug fix-
ing, ChatGPT, Codex, language models.

I. INTRODUCTION

Complex software usually contains undiscovered bugs in its
source code. The later these are found, the more far-reaching
consequences these can have. Uncorrected bugs in software
can lead to failures of essential systems, which can result in
high economic costs []1]].

In order to support programmers in finding and fixing
software errors, automated program repair (APR) systems have
been introduced that automatically suggest software patches
to correct the detected errors [2], [3]]. For instance, Haralds-
son et al. [4] suggest an approach based on genetic improve-
ment (GI) [5] that tracks emerging bugs during a workday and
searches for potential fixes for them overnight. The following
morning the programmers get a list of suggestions which
should help fix the detected bugs.

Standard methods for automated program repair can be
classified into two categories: the generate-and-validate ap-
proaches mutate software guided by a search strategy, while
semantics-driven (or synthesis-based) approaches use a con-

Martin Briesch
Johannes Gutenberg University Mainz
Email: briesch@uni-mainz.de

Justyna Petke
University College London
Email: j.petke@ucl.ac.uk

straint solver to synthesize repairs [3|]. The generate-and-
validate ones have first seen industrial uptake [4]. One of
the key disadvantage of standard approaches to APR is their
running cost. The generate-and-validate ones usually rely on
test suites to verify program correctness, while synthesis-based
ones on calls to a constraint solver. Both validation strategies
are costly, making typical APR tools hours to run before a
viable patch is presented to the developer.

Most recently, program repair tools based on deep learn-
ing (DL) approaches have been introduced [6]]. These learn bug
fixing patterns from existing databases and treat the automated
program repair problem as a neural machine translation task,
producing a ranking of, sometimes hundreds of, patches.
Unlike standard approaches, such generated patches are not
usually evaluated against a test suite, or other automated
verification strategy, so may not even compile. Nevertheless,
DL-based program repair has shown competitive results to
standard approaches [0].

In recent years, several large-scale language models based
on the Transformer architecture [7]] have been introduced, such
as CodeBERT [§]], PyMTS5 [9], and Codex [10], which can also
process and extend source code and achieve comparable results
to standard approaches on various coding tasks [11]]. A large-
scale language model based on the Transformer architecture
that has recently received great attention is ChatGPT With
ChatGPT not only text input can be extended, but it is even
possible to have a conversation with the language model and
the previous chat history is taken into account for answer
generation. In addition to very general or subject-specific
topics, ChatGPT can also be used to discuss source code, e.g.,
to ask for a suggestion for a fix of incorrect code. However,
the quality of these suggestions is still unclear.

Therefore, in this work we evaluate and analyse the au-
tomatic bug fixing performance of ChatGPT. Moreover, we
provide a comparison with results reported in the literature
obtained using state-of-the-art APR approaches and Codex.
We chose the QuixBugs [12] benchmark set for our study, as
it contains small, yet challenging programs for current APR

Uhttps://openai.com/blog/chatgpt/ (accessed January 18, 2023).

https://openai.com/blog/chatgpt/

approaches. We consider all Python problems from QuixBugs,
i.e., 40 overall.

We first ask ChatGPT for bug fixes for the selected bench-
marks and manually check whether the suggested solution is
correct or not. We repeat the query four times, to account for
the heuristic nature of ChatGPT. Next, we compare its perfor-
mance with that of Codex and dedicated APR approaches. For
the standard APR approaches, we take the results from a recent
paper [[13]] that examines the performance of several methods
on the QuixBugs benchmark set. For dedicated APR methods
based on deep learning, we take results from CoCoNut [14]E]
For the large-scale language model Codex, we take the results
from [15]. Furthermore, we study and categorize ChatGPT’s
answers to gain a deeper understanding of its behavior. Given
that ChatGPT provides a unique opportunity for a conversation
with the model, we provide a small hint to the model (e.g., a
failing test input with an error it produces) to see if it improves
ChatGPT’s fix rate.

We find that ChatGPT’s program repair performance is
competitive to the results achieved with CoCoNut and Codex
(19 vs. 19 vs. 21 instances solved, respectively). Compared
to the standard program repair approaches, ChatGPT achieves
notably better results. With ChatGPT, we could fix bugs in
19 out of 40 problems while with the standard approaches
only 7 can be fixed, even though we give ChatGPT only the
incorrect code snippet without any additional information and
without using the chat option in a conversational way. If the
chat function is actively used, we can fix even more instances.
This shows the power of providing manual hints to a program
repair system. All our experimental data is available online

II. CHATGPT FOR AUTOMATED PROGRAM REPAIR

In this section we present our methodology for assessing
ChatGPT’s program repair performance.

A. Benchamrk

To evaluate the automatic bug fixing performance of Chat-
GPT, we use the QuixBugs [12] benchmark set. Unlike
many other benchmark suites for automated program repair,
QuixBugs contains relatively small problems (small number of
code lines). These are thus suitable for use in a dialogue sys-
tem. For each of the 40 benchmark problems from QuixBugs,
we take the erroneous Python code, remove all contained
commentﬂ and ask ChatGPT if the code contains a bug and
how it can be fixed. For each benchmark problem, we make
several independent requests to ChatGPT and manually check
whether the given answer is correct or not. We standardize our
procedure by using the same format for each query. We ask:
“Does this program have a bug? How to fix it?” followed by
an empty line and the buggy code without comments. Figure
shows an example request to ChatGPT for the BITCOUNT
problem. Lines 1-2 contain the question to ChatGPT where

2 Although more recent approaches exist, we found this work is the most
recent providing sufficient patch ranking detail.

3https://gitlab.rlp.net/dsobania/chatgpt-apr.

4This was necessary, as sometimes the comments contain the solution.

1 Does this program have a bug? How to
2 fix it?

3

4 def bitcount(n):

5 count = 0

6 while n:

7 n "=n -1

8 count += 1

9

return count

Fig. 1: Request to ChatGPT for the BITCOUNT problem.

we ask how the bug can be fixed and starting from line 4
we present the erroneous code snippet. For this example, we
would expect from ChatGPT an answer that addresses the
bug in line 7, where n "= n - 1 should be replaced with
n &= n - 1, either with a response containing the complete
code snippet with the fixed bug (correctly addressed) or by
giving an exact and correct description how to change the
affected code lines.

B. Comparison Study

We ran four independent requests to ChatGPT for each
problem from the QuixBugs dataset. In order to compare the
results of ChatGPT with the standard APR methods, we take
the results from a comprehensive study from the literature
[13] that reports the performance of ten different methods
(Arja [16], Cardumen [17]], Dynamoth [18]], JGenProg [19],
JKali [19]], JMutRepair [[19]], Nopol [20], NPEfix [21], RSRe-
pair [16]], and Tibra [19]]) on the problems from QuixBugs. For
dedicated APR approaches based on deep learning we chose
recent results reported by Lutellier et al. [14]E] In Table
we report a fix only if the correct patch was ranked first by
Lutellier et al.’s proposed approach, CoCoNut. For the large-
scale language model Codex, we take the results from a recent
paper [15]. We ran this experiment on ChatGPT versions from
December 15, 2022 and January 9, 2023.

C. Dialogue Study

Given that ChatGPT provides a unique opportunity of a
dialogue with the model, we also conduct a study where we
provide ChatGPT with a hint, based on ChatGPT’s response. If
ChatGPT does not provide a correct answer to the first request
(described in the previous paragraph), we tell ChatGPT in a
standardized way that the function is not working correctly and
additionally provide an input example that shows that the func-
tion is not working properly. If ChatGPT incorrectly claimed
the program was correct, we replied: “The function does not
work. E.g., for the input <input> it should return <output>.”
or “The function does not work. E.g. for the input <input>
I get the following error message: <output>”, depending
on whether the failing test case from the QuixBugs dataset
returned an incorrect answer or threw an error. In the case of

5CoCoNut, solves overall only 2 instances less than best reported thus far
on the QuixBugs Python dataset [[15], though details on patch ranking for
each program were missing from the later work.

https://gitlab.rlp.net/dsobania/chatgpt-apr

more complex inputs we made the following response: “The
function does not work. E.g., given the following call: <code
snippet> The following should be the output: <0utput>.’ﬂ We
only provide one such hint and report results. This experiment
was run on the ChatGPT version from January 9, 2023.

III. RESULTS AND DISCUSSION

In this section, we present the results of the comparison
of ChatGPT, Codex, CoCoNut, and the standard APR ap-
proaches. We classify ChatGPT’s answers and report on short
discussions with the model. Furthermore, we describe what
we noticed while working with ChatGPT.

A. Automatic Bug Fixing Performance

Table [I| shows the achieved results of ChatGPT, Codex,
CoCoNut, and the dedicated APR approaches on the bench-
mark problems from QuixBugs. For the ChatGPT results, a
checkmark (v') indicates that a correct answer was given in
at least one of the four runs for a benchmark problem. A
cross (X) indicates that no correct answer was given in any
of the runs. In parentheses we additionally report the number
of runs that led to a successful solution. For the results from
the literature, a checkmark indicates that a correct bug fix is
reported. A cross means that no successful bug fix is reported.

We see that the results achieved by ChatGPT are similar
to Codex in performance and outperform the standard APR
approaches. Overall, we find bug fixes for 19 benchmark
problems with ChatGPT, 21 are reported for Codex, 19 for
CoCoNut, and only 7 for the standard approaches.

The large gap in performance between the language model
based approaches and the standard APR approaches can be
explained by the fact that the latter usually just use a small test
suite to define the problem, which can be easily overfitted. The
authors of [[13] also report this problem. If only the test suite
is considered for evaluation, the standard approaches would
solve a total of 16 benchmark problems. However, as in real-
world applications only programs that work also on unseen
inputs are usable, we have only adopted the 7 generalizing
problems from [13] as correct.

If we take a closer look at the results for ChatGPT, we
see that benchmark problems are often only solved in one or
two runs. Only for the problems BUCKETSORT and FLATTEN
ChatGPT finds a bug fix in all four runs. So ChatGPT seems
to have a relatively high variance when fixing bugs. For an
end-user, however, this means that it can be helpful to execute
requests multiple times.

Furthermore, it is not surprising that ChatGPT solves about
the same number of problems as Codex, as ChatGPT and
Codex are from the same family of language models How-
ever, we still see potential for improvement for ChatGPT, as
the given responses are often close to the correct solution
(for a detailed classification of ChatGPT’s responses see
Section [[II-B).

The third case only appeared once. All queries are available online.
"https://beta.openai.com/docs/model-index-for-researchers (accessed Jan-
uary 18, 2023).

Nevertheless, we are very strict in our evaluation and
consider only patches as correct if the bug introduced by
QuixBugs is actually identified and corrected. E.g., for some
problems, ChatGPT suggests a complete re-implementation
which is then bug-free. However, these are probably no real
bug fixes, since the introduced bug is not localized. We assume
that ChatGPT simply reproduced what it has learned here.
Furthermore, we do not count a bug as fixed if additional
changes suggested by ChatGPT introduce new errors that
prevent the program from running properly. Moreover, by
sending just a single request in this evaluation, we are not
using the full potential of the dialogue system. Consequently,
we take a closer look at how ChatGPT behaves when we
interact more with the system and give it more information
about the bug in Section [[II-C

B. A Classification of ChatGPT’s Answers

While working with ChatGPT, we noticed different types
of responses that ChatGPT gave to our requests, especially
when a bug could not be found. Therefore, we identified the
different types of answers from ChatGPT for the benchmark
problems from QuixBugs and analyzed their frequency. We
identified the following classes of ChatGPT answers:

o More information required: Asks for more information

on the program behavior to identify the bug.

¢ No bug found: Does not find a bug and states the program
is working correctly.

¢ Correct fix provided: Provides the correct fix for the
correct bug.

« Tries to fix something else: Does not find the intended
bug and tries to fix or advise on something else that is
not really a bug or adjusts for edge cases.

o Provides fix but introduces new bug: Provides the
correct fix for the target bug but introduces a new bug
somewhere else.

o Alternative implementation: Does not fix the bug but
gives a working alternative implementation.

Figure 2] shows the number of occurrences of identified
classes of ChatGPT answers given for the problems from
QuixBugs.

We see that for most of our requests, ChatGPT asks for more
information about the problem and the bug. With the second
most number of answers given, we observe ChatGPT claiming
that the given code snippet does not seem to have a bug. In
both cases it might be useful to fully utilize the possibilities
of the dialogue system ChatGPT offers, as further information
might lead to a correct bug fix.

Less often than the request for more information, we
observe that ChatGPT fixes the bug but at the same time
introduces new errors, or we see that ChatGPT not really
addresses the bug correctly but suggests a completely new
working re-implementation for the problem.

C. A Discussion with ChatGPT

In order to be able to compare ChatGPT with other systems
in a standardized form, we have so far studied how ChatGPT

https://beta.openai.com/docs/model-index-for-researchers

TABLE I: Results achieved by ChatGPT, Codex, CoCoNut, and the standard APR approaches on the problems from the
QuixBugs benchmark set. For ChatGPT, we also report the number of successful runs in brackets.

Benchmark problem ChatGPT Codex [15] CoCoNut [14] Standard APR [13]
bitcount X(0/4) v v X o
breadth-first-search v 214 X v X
bucketsort v (414 v v X
depth-first-search X (O0/4) v X X
detect-cycle X(©/4) X X v
find-first-in-sorted v (214 v v X
find-in-sorted vV 374 X X X
flatten v 414 v v X
ged X(0/4) v X X
get-factors v (174 v v X
hanoi X074 v v X
is-valid-parenthesization vV 2174 v X X
kheapsort X(0/4) v X X
knapsack v (1/4) v v v
kth X(0/4 X X X
Ics-length X(0/4) X v X
levenshtein X(O/4 X X v
lis X(0/4) X X v
longest-common-subsequence X074 v X X
max-sublist-sum X(O/4 v X X
mergesort vV (1174 X X v
minimum-spanning-tree X(0/4) X v X
next-palindrome vV (1174 X v X
next-permutation X(O/4 X v X
pascal vV (1174 X v X
possible-change v (1/4) v X X
powerset X(0/4) v X X
quicksort vV (1/4) v X v
reverse-linked-list vV 21714 v X X
rpn-eval X (O/4) X v v
shortest-path-length v (1/4) X X X
shortest-path-lengths X(O0/4 X v X
shortest-paths vV (1174 X X X
shunting-yard v (21/4) X X X
sieve X(0/4) v v X
sqrt v (1/74) v v X
subsequences vV (174 X v X
to-base X(0/4) v X X
topological-ordering X074 X v X
wrap X074 v X X
3 (Solved) 19 21 19 7

more information required

no bug found

correct fix provided

tries to fix something else

provides fix but introduces new bug
alternative implementation

other

T T T T T

0 10 20 30 40 50
of occurrences

Fig. 2: Number of occurrences of identified classes of ChatGPT answers given for the problems from QuixBugs.

return gcd(a % b, b)

1 Request (1):

2 Does this program have a bug? How to fix it?
3

4 def gcd(a, b):

5 if b == 0:

6 return a

7 else:

8

9

10 Response (1):

11 This is the Euclidean algorithm for finding the greatest common divisor (GCD) of two
12 integers, a and b. It appears to be implemented correctly. If you are experiencing
13 issues with this program, it is likely that the problem lies elsewhere in your code.
14 Without more information about the bug you are experiencing, it is difficult to say
15 how to fix it.

17 Request (2):
18 No, the function is not correct. E.g., for the input a = 4 and b = 5 I get the following
19 error message: “RecursionError: maximum recursion depth exceeded in comparison”.

21 Response (2):

22 The issue is that the function calls itself recursively, and in some cases, it never
23 reaches the base case (b == 0), causing it to recurse indefinitely. The base case of
24 the gcd algorithm is when the remainder is zero, but in this implementation, it’s when
25 b is zero. For example, when a=4 and b=5, gcd(4, 5) is called, which then calls

26 gcd(4 % 5, 5) which is gecd(4, 5). This causes an infinite loop.

28 You can fix this by swapping the parameters in the recursive call.

30 def ged(a, b):

31 if a == 0:

32 return b

33 else:

34 return gcd(b % a, a)

36 This way, if a is zero, the function returns b (which is the gcd of a and b), otherwise
37 it calls itself with the new values of b % a and a.

Fig. 3: A discussion with ChatGPT about the GCD problem from QuixBugs. We inserted request and response markers in bold
font to make the chat history more readable.

behaves when making exactly one request (see Section [[lIZA). a request in more detail. This is useful, as both, a textual
However, a potentially powerful advantage of ChatGPT is description as well as a definition given by a test suite, are
that we can interact with the system in a dialogue to specify possibly ambiguous and could be misleading.

1 Request (1):

2 Does this program have a bug? How to fix it?
3

4 def bitcount(n):

5 count = 0

6 while n:

7 n"=n -1

8 count += 1

9 return count

10

11 Response (1):
12 I’m unable to tell if the program has a bug without more information on the expected
13 behavior and the input that is causing the issue. [...]

15 Request (2):
16 The program should count the number of 1-bits in the binary encoding of n.

18 Response (2):
19 The function bitcount(n) appears to be counting the number of 1-bits [...]

21 To confirm this, you can test the function with some test cases to check if
22 it produces the expected output:

24 test_cases = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
25 expected_output = [0, 1, 1, 2, 1, 2,2, 3,1, 2, 2, 3, 2, 3, 3, 4]

27 Request (3):
28 The function does not work. For input 1 it seems to run into an infinite loop.

30 Response (3):
31 You are correct that the function will run into an infinite loop when the input is 1.

32 [...]

33

34 def bitcount(n):
35 if n == 0:

36 return 0
37 count = 0

38 while n:

39 n "=n -1
40 count += 1
41 return count
42

43 def bitcount(n):
44 count = 0

45 while n > 0:
46 n"=n -1
47 count += 1
48 return count
49

50 def bitcount(n):
51 return bin(n).count(’1”)
52

53 def bitcount(n):
54 count = 0

55 while n:

56 if n & 1:
57 count += 1
58 n >>= 1

59 return count

Fig. 4: A discussion with ChatGPT about the BITCOUNT problem from QuixBugs. We inserted request and response markers
in bold font to make the chat history more readable. In addition, we shortened ChatGPT’s responses in some places to keep
the example as small as possible. When we left out large text passages, we marked this in the text.

Consequently, we investigate for two benchmark problems
how ChatGPT behaves in a conversation and if it is possible
to find a working solution by discussing the problem with the
system. We choose GCD and BITCOUNT as benchmark prob-
lems because in our previous experiments the contained bug
could not be fixed correctly for both problems. Furthermore,
the problems consist of a relatively small number of code lines
which allows us to discuss these problems in detail.

Figure 3] shows an example discussion with ChatGPT about
the GCD problem (lines 1-8). In the first response (lines
10-15), ChatGPT does not present any solution. It asks for
more information about the bug (we observed this behavior
for many other problems, see Section [[II-B). Since the given
function causes recursion issues for many possible inputs,
we give ChatGPT an exact input example and the resulting
error message from Python (lines 17-19). By mentioning the
recursion issue, the final response goes in the right direction
and we get a correctly working patched version (lines 30-34).

In Figure [l we see an example discussion with ChatGPT
about the BITCOUNT problem (lines 1-9). Again, ChatGPT
asks for more information about the problem and for an input
that causes an error (lines 11-13). As follow-up request, we
give ChatGPT a description of what the function should do
(based on a code comment from QuixBugs) and ignore the
request for an example input to see how ChatGPT reacts (lines
15 and 16). We can see in the following answer (lines 18-25)
that there is clearly a relation between ChatGPT’s first and
second answer because now we get an explanation of how
we can test the function with some test inputs. We respond
with a problem description for a test input and describe that
there is probably an issue with an infinite loop (lines 27 and
28). ChatGPT responds with four code snippets where the first
two (lines 34-48) do not solve the problem with the infinite
loop and the last two (lines 50-59) are complete but working
re-implementations which, however, not directly address the
contained bug. It seems that ChatGPT simply returns functions
here that somehow fit the content of the problem discussion,
even though the test cases mentioned by ChatGPT show
that the first two functions cannot work correctly. Also the
bug is not simply fixed by replacing n "= n - 1 with
n &= n — 1 in the given function, but ChatGPT, as al-
ready mentioned, returns two complete re-implementations.
However, both observations are not particularly surprising for
a language model based approach. Nevertheless, the given
answers would be useful for a programmer as they help to
solve the problem.

D. Systematic Follow-up Requests for ChatGPT

Next, we conducted a study where we systematically discuss
with ChatGPT. For those programs for which the contained
bug was not correctly addressed by ChatGPT (see Table [I)),
we provide ChatGPT with a follow-up request giving a hint,
as specified in Section We report our results in Table
We use the same notation as before with the addition that a
checkmark with an asterisk (v*) defines that a solution was
found without a follow-up request being necessary in this run.

TABLE 1II: Results achieved by ChatGPT with additional
information given in a follow-up request for the unsolved
benchmark problems (see Table .

Benchmark problem ChatGPT
bitcount 4
depth-first-search v
detect-cycle vF
ged v
hanoi 4
kheapsort X
kth v
Ics-length X
levenshtein 4
lis X
longest-common-subsequence X
max-sublist-sum v
minimum-spanning-tree v
next-permutation v
powerset v
rpn-eval X
shortest-path-lengths X
sieve vF
to-base X
topological-ordering X
wrap X
3 (Solved) 9 (12)

For 9 benchmark problems we see that a more detailed
description of the bug is helpful for ChatGPT. For 3 bench-
mark problems no follow-up request was necessary in this run,
since the bug was correctly addressed in the response given
on our first request. Overall, adding a hint to ChatGPT vastly
improves its performance, with 31 out of 40 problems solved.
ChatGPT thus offers an exciting new way of approaching
automated program repair.

IV. THREATS TO VALIDITY

It is worth noting that ChatGPT is currently under active
development. During our study there was a major update to
it, which might have influenced our results. Although we
observed repairability rates before and after the update to be
similar. However, future releases might yield different results.
Furthermore, ChatGPT allows for conversation with its users.
Asking a different question than the ones presented in this
study could potentially have a different impact on results.
To mitigate this threat to validity, we conducted a pre-study,
varying the questions asked. We noted no significant influence
on the results. Moreover, the results might vary depending
on the programming language, size of the benchmarks, and

the number of queries issued. To mitigate these threats, we
chose a standard benchmark set and targeted Python — the
most popular programming languageﬂ The classification of
the results was done manually and therefore represents the
subjective assessment of the authors. To enable a verification
of our results, we made our conversations with ChatGPT
available online.

V. CONCLUSIONS AND FUTURE WORK

To support programmers in finding and fixing software
bugs, several automated program repair (APR) methods have
been proposed. ChatGPT, a recently presented deep learning
(DL) based dialogue system, can also make suggestions for
improving erroneous source code. However, so far the quality
of these suggestions has been unclear. Therefore, we compared
in this work the automatic bug fixing performance of ChatGPT
with that of Codex and several dedicated APR approaches.

We find that ChatGPT has similar performance to Codex
and dedicated DL-based APR on a standard benchmark set. It
vastly outperforms standard APR methods (19 vs. 7 out of 40
bugs fixed). Using ChatGPT’s dialogue option and giving the
system more information about the bug in a follow-up request
boosts the performance even further, giving an overall success
rate of 77.5%. This shows that human input can be of much
help to an automated APR system, with ChatGPT providing
means to do so.

Despite its great performance, the question arises whether
the mental cost required to verify ChatGPT answers outweighs
the advantages that ChatGPT brings. Perhaps incorporation
of automated approaches to provide ChatGPT with hints as
well as automated verification of its responses, e.g., through
automated testing, would yield ChatGPT to be a viable tool
that would help software developers in their daily tasks.

We hope our results and observations will be helpful for
future work with ChatGPT.

ACKNOWLEDGMENTS

This work was partially supported by UKRI EPSRC grant
no. EP/P023991/1.

REFERENCES

[1] W. E. Wong, X. Li, and P. A. Laplante, “Be more familiar with our
enemies and pave the way forward: A review of the roles bugs played
in software failures,” Journal of Systems and Software, vol. 133, pp.
68-94, 2017.

[2] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automatic software repair,” leee transactions on
software engineering, vol. 38, no. 1, pp. 54-72, 2011.

[3] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair:
a survey,” in Proceedings of the 40th International Conference
on Software Engineering, ICSE 2018, Gothenburg, Sweden, May
27 - June 03, 2018, M. Chaudron, I. Crnkovic, M. Chechik,
and M. Harman, Eds. ACM, 2018, p. 1219. [Online]. Available:
https://doi.org/10.1145/3180155.3182526

[4] S. O. Haraldsson, J. R. Woodward, A. E. Brownlee, and K. Siggeirs-
dottir, “Fixing bugs in your sleep: How genetic improvement became
an overnight success,” in Proceedings of the Genetic and Evolutionary
Computation Conference Companion, 2017, pp. 1513-1520.

8https://www.tiobe.com/tiobe-index/| (accessed January 18, 2023).

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon, D. R. White, and
J. R. Woodward, “Genetic improvement of software: a comprehensive
survey,” IEEE Transactions on Evolutionary Computation, vol. 22, no. 3,
pp. 415-432, 2017.

Q. Zhang, C. Fang, Y. Ma, W. Sun, and Z. Chen, “A survey of
learning-based automated program repair,” 2023. [Online]. Available:
https://arxiv.org/abs/2301.03270

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998-6008.

Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang et al., “CodeBERT: A pre-trained model
for programming and natural languages,” in Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing:
Findings, 2020, pp. 1536-1547.

C. Clement, D. Drain, J. Timcheck, A. Svyatkovskiy, and N. Sundaresan,
“PyMTS5: Multi-mode translation of natural language and Python code
with transformers,” in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2020, pp. 9052—
9065.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman ef al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

D. Sobania, M. Briesch, and F. Rothlauf, “Choose your programming
copilot: a comparison of the program synthesis performance of GitHub
Copilot and genetic programming,” in Proceedings of the Genetic and
Evolutionary Computation Conference, 2022, pp. 1019-1027.

D. Lin, J. Koppel, A. Chen, and A. Solar-Lezama, “QuixBugs: A multi-
lingual program repair benchmark set based on the Quixey Challenge,”
in Proceedings Companion of the 2017 ACM SIGPLAN international
conference on systems, programming, languages, and applications:
software for humanity, 2017, pp. 55-56.

H. Ye, M. Martinez, T. Durieux, and M. Monperrus, “A comprehensive
study of automatic program repair on the QuixBugs benchmark,” Journal
of Systems and Software, vol. 171, p. 110825, 2021.

T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “CoCoNuT:
combining context-aware neural translation models using ensemble for
program repair,” in ISSTA ’20: 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Virtual Event, USA, July
18-22, 2020, S. Khurshid and C. S. Pasareanu, Eds. ACM, 2020, pp.
101-114. [Online]. Available: https://doi.org/10.1145/3395363.3397369
J. A. Prenner, H. Babii, and R. Robbes, “Can OpenAl’s codex fix bugs?
an evaluation on QuixBugs,” in Proceedings of the Third International
Workshop on Automated Program Repair, 2022, pp. 69-75.

Y. Yuan and W. Banzhaf, “ARJA: Automated repair of java programs via
multi-objective genetic programming,” IEEE Transactions on software
engineering, vol. 46, no. 10, pp. 1040-1067, 2018.

M. Martinez and M. Monperrus, “Ultra-large repair search space with
automatically mined templates: The cardumen mode of astor,” in Inter-
national Symposium on Search Based Software Engineering. Springer,
2018, pp. 65-86.

T. Durieux and M. Monperrus, “Dynamoth: dynamic code synthesis
for automatic program repair,” in Proceedings of the 11th International
Workshop on Automation of Software Test, 2016, pp. 85-91.

M. Martinez and M. Monperrus, “Astor: Exploring the design space
of generate-and-validate program repair beyond GenProg,” Journal of
Systems and Software, vol. 151, pp. 65-80, 2019.

J. Xuan, M. Martinez, F. Demarco, M. Clement, S. L. Marcote,
T. Durieux, D. Le Berre, and M. Monperrus, “Nopol: Automatic repair
of conditional statement bugs in Java programs,” [EEE Transactions on
Software Engineering, vol. 43, no. 1, pp. 34-55, 2016.

B. Cornu, T. Durieux, L. Seinturier, and M. Monperrus, “NPEfix:
Automatic runtime repair of null pointer exceptions in Java,” arXiv
preprint arXiv:1512.07423, 2015.

https://doi.org/10.1145/3180155.3182526
https://www.tiobe.com/tiobe-index/
https://arxiv.org/abs/2301.03270
https://doi.org/10.1145/3395363.3397369

	I Introduction
	II ChatGPT for Automated Program Repair
	II-A Benchamrk
	II-B Comparison Study
	II-C Dialogue Study

	III Results and Discussion
	III-A Automatic Bug Fixing Performance
	III-B A Classification of ChatGPT's Answers
	III-C A Discussion with ChatGPT
	III-D Systematic Follow-up Requests for ChatGPT

	IV Threats to Validity
	V Conclusions and Future Work
	References

