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An Analysis of the Box and Trapezoidal
Schemes for Linear Singularly Perturbed

Boundary Value Problems
By Richard Weiss'"

Abstract. Stability and convergence results are derived for the box and trapezoidal schemes
applied to boundary value problems for linear singularly perturbed first order systems of
o.d.e.'s without turning points.

1. Introduction. Most numerical methods for singularly perturbed boundary value
problems in ordinary differential equations analyzed to date utilize some upwinding
procedure. So they are applicable only if the underlying problem exhibits some
special form or can be transformed to such a form by analytic techniques; see
Abrahamsson, Keller and Kreiss [2], Kreiss and Nichols [6], Ringhofer [9].

Frequently, however, such explicit transformations are not available. Then one has
to resort to some standard difference scheme combined with an adaptive mesh
selection procedure. Successful computations of this kind have been reported with
the trapezoidal scheme by Abrahamsson [1] and by Ascher, Christiansen and Russell
[3] and Maier [7], who have used collocation methods.

Recently, Ascher and Weiss [4] have set out to investigate the applicability of a
particular class of difference schemes, i.e. collocation with piecewise polynomials, to
singular perturbation problems. They gave a detailed analysis of these schemes when
applied to singularly perturbed first order systems with constant coefficients.

The present paper provides the basis for the extension of these results to more
general problems. We provide an analysis of the box and trapezoidal schemes
applied to boundary value problems for linear first order systems with variable
coefficients (without turning points). The box and trapezoidal schemes are the
simplest members of the families of collocation methods based on Gauss and
Lobatto points, respectively.

We consider the system of n + m equations, with n equations singularly per-
turbed,
(1.1) ey' = Axxit, e)y + AX2it, e)z + /,(/, e),

(1.2) z'= A2x(t,e)y + A22(t,e)z+f2(t,e),       0</<l,e>0,

plus the boundary conditions

(1.3) B0(yz)(0) + Bx(yz)(l) = ß.
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42 RICHARD WEISS

The matrices A¡¡it, e) and the right-hand sides/,(/, e) are assumed to be smooth on
[0,1] X [0, e0], for some e0 > 0.

A key assumption for our analysis is the existence of a smooth matrix-valued
function £(i) such that

(1.4)       £-'(/)i4„(/,0)£(0-d¡ag{X1(/),...,XJI(/)),      0 < r < 1,
i.e. that Ax,(/, 0) can be diagonalized by a smooth transformation, and that

ReA,(f) < 0,     /' = 1.n < n,
(1 5)

ReX,(/) > 0,    i = n_+ 1.n,n_+ n+= n.

Our analysis shows that the box and trapezoidal schemes perform well provided
that

(i) the conditions (1.4) and (1.5) are satisfied,
(ii) (1.1), (1.2) and (1.3) represent a well-posed boundary value problem, uniformly

in e,
(iii) the n X n matrix

U;'(i)J
is nonsingular, where £_"'(0) stands for the first n_ rows of £""'(0) and £;'(1) denotes
the last n + rows of £ " ' ( 1 ), and

(iv) a sufficiently fine grid with gridspacings of size comparable to £ is used in the
layer regions (and a "coarse" grid, just fine enough to resolve the reduced solution, is
used on the remaining part of the interval).

While condition (1.4) can be relaxed, all other assumptions are essential. In
particular, the methods do not work without the fine grids in the layer regions since
the errors in the layers otherwise pollute the solution on the whole interval. The
structure of grids suitable for the layer regions depends on the desired accuracy in
the layers, on the eigenvalues of Aui0,0) with negative real parts and on the
eigenvalues of A n( 1,0) with positive real parts, respectively. For instance, equidistri-
bution of the local truncation error leads to the following grid generation rule at
t = 0: The local truncation errors all have approximate size 8 provided that

h, = i8/c)X/2e,       hj = hj_xtxp[-^hj_x/e),

where c is a constant, p = max,., „ {Re A,(0)} and h] denotes theyth gridspacing,
counting from / = 0. This strategy is employed until the contribution of layer has
decayed to 8, i.e. until t = -pelnS. The number of gridpoints on the interval
[0, -jitelnô] generated by the above procedure can be shown to be proportional to
5"l/2. Note that it is independent of e.

When these grids for the layer regions are combined with an appropriate coarse
grid in the interior of the interval, the local truncation error of a suitable general
solution of (1.1), (1.2) is kept below some threshold for all meshpoints on [0,1],
uniformly in e. Still the schemes do not perform satisfactorily unless condition (iii)
holds. This is in contrast to the common opinion that meshes based on the
equidistribution of the local truncation error are always safe to use.

We conclude this section with an outline of the paper. In Section 2 we collect a
number of basic analytic results on linear singularly perturbed boundary value
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BOX AND TRAPEZOIDAL SCHEMES FOR SINGULARLY PERTURBED PROBLEMS 43

problems which will be required in the analysis of the difference schemes. The
schemes are defined in Section 3. Section 4 contains a stability result for scalar
variable coefficient problems. In Sections 5 and 6 we present the analysis for the box
and trapezoidal schemes, respectively, and some numerical results illustrating our
theory are given in Section 7.

2. Analytic Preliminaries. Here we collect a number of well-known results for
linear singularly perturbed first order systems; for details see O'Malley [8], Kreiss
and Nichols [6].

We consider the first order system

(2.1a) ey' = A„y + Ai2z+f„
(2.1b) z'= A2,y + A22z + f2,

where y, z are vectors with n and m components, respectively, and where A¡¡ -
ia'kJ¡it, e)), fa = fit, e),   i, j = 1,2. For simplicity of presentation we assume that
A,j,f e C°°([0,1] X [0, e0]) for some positive e0.

We assume that

(2.2) Auit,0) = Eit)Ait)E-xit)

with £ e C°°[0,1] and
(2.3) A(0-diag{X1(/),...,X.(0)
where

[ < 0,    i = 1,..., n
{2A)       ReM,)(>o,   /-.+ i..:..».-.+ «+-i../6[o.i].

Given anmXfl matrix-valued function L e C'[0,1], the linear transformation

(2.5) r = y,       s = z - eLy

applied to (2.1) yields

(2.6a) er' = (AX] + eAx2L)r + A]2s + /,,

(2.6b) s' = (-£/.' - LAU + e(A22L - LAX2L) + A2X)r

+ (A22- LAl2)s- Lfi +j2.

If L is chosen so that

(2.7) eL' = -LA,, + eíA22L - LAX2L) + A2i,

then (2.6b) is uncoupled from (2.6a). It is a consequence of (2.2), (2.3), (2.4) that for
any k > 0 and £ sufficiently small, say e < £,, there is a solution L e Ck[0,1] of
(2.7) which satisfies

< const,       0 < £ < £,.d'L

(|| • || is the maximum norm.) This L has an asymptotic expansion in powers of £,

L = L(r,e)= £L,.(iy+0(e*+1),
y-o

which can be determined by equating powers of e in (2.7).
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44 RICHARD WEISS

With L chosen in this way, (2.6a, b) become

er' = (AXi + EAX2L)r + AX2s + /,,

s' = (A22- LAx2)s - Lf¡ +f2,
This system can be simplified further by the linear transformation

(2.8)
which yields
(2.9a)

(2.9b)
where

u = Exr, v = s

eu' = (A -I- eB„)u + B[2v + g,

v' = B22v + g2,

Bxx(t,E) = E-x(t)[(A]l(t,E)-A],(t,0))E(t)E-x

+ Al2(t,E)L(t,E)E(t)-E'(t)),

Bx2(t,E) = E-x(t)AX2(t,E),

B22(t,E) = A22(t,E)-L(t,E)Ax2(t,e),

g,(t,E) = E-X(t)fx(t,E),

g2(t,E)=f2(t,E)-L(t,E)f,(t,E).

The system (2.9) is a very convenient basis for further analysis since the equations
for u in (2.9a) are a diagonal system, up to a matrix of size e. In particular, using a
contraction mapping argument as in Kreiss and Nichols [6], it is easy to obtain a
representation of the general solution of (2.9) which completely reveals the structure
inherent in such systems.

In order to state these results we introduce some notation. Let P.e R" x" and
£+e Rn+Xn be the linear maps defined by

P x =

lx

P+x =
l"-l

n.+ I (*l\

\ Xn !

Also, let

(2.10) Hw
be a shorthand notation for (2.9), with

w(t) =
u(t)

v(t)j'
g(t)- f,(0

g2(0

Then we have the key result

Theorem 2.1. The system (2.9) subject to the boundary conditions

P_u(0) = 7j_G Rn-,   P+u(l) = T/+e R">,   v(0) = j)0<=Rm

has a unique solution provided e is sufficiently small, say e < e2. This solution satisfies

(2.12) IMI < const(||g|| + |hJ| + ||t, + || + H^ii), 0  < £ < £2.
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An asymptotic expansion argument combined with this theorem yields

Theorem 2.2. For any k ^ 0 there is a i particular) solution wpit) of (2.9) ior
(2.10)) which satisfies

(2.13)
k

E
7-0

dJwn

dt>
< const,       0 < e < £2.

Using Theorem 2.1 we can define matrix solutions W_, W+ and W0 of (2.10) with
g = 0 in the following way:

(O
Uw =
0

t/e£"

(ü)

et/> (A + e£„)i/_;     P.U.(0) = I,   P+i/.(l) = 0,

W+=lU+Y       U+eR"*n+,

£(/'+= (A+ £/?,,) i/+;   £C/+(0) = 0,   P+f7+(l) = /,

(hi)

W
0     'Kn

t/n
0     G /¡(" + »)x»;

771*0 = 0;    K0(0) = /,   P_U0(0) = S_(e),   P+U0(l) = S+(«),

where (according to Theorem 2.2) the matrices S_, S+e fl*"*)*'" can be chosen such
that

(2.14)
k

E
7-0

¿yr*r,

<//>
< const,       0 < e < £2.

With the aid of these matrix solutions and the particular solution defined in
Theorem 2.2 we obtain the desired representation of the general solution of ^2.9).

Theorem 2.3. Any solution w o/(2.9) can be written as
(2.15) w = W_y_ + W+y++ W0y0 + wp,

with v.e R"-, y + g R"+ and y0 e Rm.

The standard method yields the existence of the asymptotic expansions

U_(t)=Íu_j(t/e)¿+0(ek+x),
7 = 0

(2.16) { U+(t) = E U+J(it - l)/e)t> + 0(e*+1),
7 = 0

^o(0=E^(0^ + o(£*+1).
7-0
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46 RICHARD WEISS

It is clear that

(2.17)

where

U_ cxp(A_(0)f/e)
^o-   cxp(A + (l)(r -1)/e)  '

(2.18) A.(0 = diag(X,(0,...,Xn(/)},       A + = diag(Xn+l(t),...,X„(t)}.

Now we return to (2.1) and assume that boundary conditions

(2.19) £0(£)(^)(0) + fi1(£)(^)(l) = /3(£)

are given, where B0, B, and ß depend smoothly on e. By the transformations (2.5)
and (2.8) these boundary conditions are changed to

(2.20) C0(£)w(0) + Cx(E)w(l) = tie).

Substituting (2.15) into (2.20), we obtain a linear system

(2.21) A/(e)Y = £(£)
for y = (y_, y+, y0). The matrix M has an expansion

k
M(e)= £ MjEJ + 0(ek).

7 = 0

For the sequel we assume that MQ is nonsingular. This is equivalent to assuming that
the boundary value problem (2.1), (2.19) be well posed, uniformly in e, i.e. that

(2.22) < const + 11/311, 0<£<£3,

with a constant independent of e.
In the analysis of the numerical methods we shall require certain representations

of the general solution of (2.9) not only on the interval [0,1] but on any interval
[t, f] with 0 <f < /< 1. This is achieved by defining W_, W+, W0 as previously,
but with / = 0 and / = 1 replaced by / = / and / = i. W_, W + and IV0 so defined
have asymptotic expansions analogous to (2.16). Of course, / and /" now enter into
the coefficients of these expansions. For instance, corresponding to (2.17) we have

(2 23)    U    -iexP(A(-')('--')/£M U     -I ° \

Denoting by (i/_)/ and (U+)i tne lin column of U_ and U+, respectively, we obtain
from (2.23) and (2.9) the following estimates:

(2.24)
d'(U_),

dt'

d'(U+),
dt'

< const E-'(exp{ReX,(t)(t - t)/e) + O(e)),

/< t < i, /= I,..., n_,i = 0,1,..., k,

< const£-'(exp{ReX„ +/(r)(' - i)/t) + + 0(e)),

r< i< t,l= l,...,n+,i = 0,1,...,*.
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h
z,+ i -

3. The Difference Schemes. On [0,1] we introduce the partition

(3.1) ^ = {o = tx<t2< ■•■ <tN<tN+, = i)

and define h¡ = tl +, - t„ tl+1/2 = (/, + r1+l)/2, i - 0,..., N.
The box scheme for (2.1), (2.19) is

(3.2)   ,*±ip& = ¿n( W)2LÍ^±I + Ax2(tl+x/2)Z-^^+fx(tl+]/2),

-^        = A2X(i/+|/2)        2 *" ̂ 22('1+1/2)        2 •" /2('f +1/2)'

i = 1,.,.,/V,

<"» *(SMS::)-'-
(For reasons of brevity we do not indicate the potential dependence of A,-,/), £, and
ß on e.)

In the trapezoidal scheme, (3.2) is replaced by

yi+\ -yt     Axx(ti)yi + Axx(ti+X)yi+X     A,2(ti)z¡■ + Ax2(tl+X)zi+X
(3.4)

+ /■(',)+/,(', + ,)

*<+!-*,-        -42l(',)>,, + ^2l(',+ l)>',+ l    ,    ^22(',)^ + ^22(?,+ l)^+l

+
fi(ti)+fiU¡+i) /= 1,.,.,/V.

An important step in the analysis of the difference schemes is a transformation of
the discrete variables (*,, y¡) analogous to the transformation of (2.1) to the form
(2.9). Introducing the new variables

:::)-R, ,)(?)• -.—■
we obtain, after some straightforward algebra for the box scheme (3.2),

-*(',+1/2)

(3.5)

I   ul+x- u, \£-;-

(3.6) u.xi - t>.

\ I

+ R,[u„uH.i,vi, vl+l]

/ E-X(ti+ ,/2)f(tl+,/2) \      .= i n

\-~-('i+l/2)/l('i+l/2)+/2('l+l/2)j'

where

(3.7) £(0 = A(t) + EBxx(t)    BX2(t)
0 B22(t)

and where the £, are linear maps from #2<n+m> in pn+m •with

(3.8) HÄ..IKÄÄ,.,       i= 1,..., N;K= const.
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48 RICHARD WEISS

The corresponding equations for the trapezoidal scheme (3.4) are

/ t«m - u, \

(3.9) i{/?(o(";) + £(',+,)(";^')} +Ri[u„ui+„v„v¡+í]

E-](',+ ,/2)     0
-M',+ ./2)      / /2(',)+/2(',+ 1)

7 = I,. ¿V,

where the R: are maps analogous to the £, and they satisfy an analogous estimate.
Part of the analysis of the difference schemes will be based on (3.6) and (3.9)

rather than on (3.2) and (3.4). Note that due to the occurrence of the R¡, /?,., (3.6)
and (3.9) are not precisely the box and trapezoidal schemes for (2.9). This would be
the case only when £ and L are constant matrices.

For the analysis of these schemes we assume that the partition A has the following
structure: The meshspacings h¡ are comparable to e for 7 = 1,..., N(0) and i = N -
N(X) + 1,..., N, where Nm, N0) are given. In between, i.e. for i = A(ü| + 1.TV
- N(X), no such restriction is posed on the size of the gridspacings and we will show
that the choice h, » e is feasible.

index of meshpoint 1 N(0'+1 N-N (1)

V*  " 1}  *
t=of S"

index of meshspacing ^i  "- (o)

St- \
N+1
V

^J-N

Figure 3.1. The grid

4. A Stability Result and Notation. Here we establish an estimate for the solution
of the difference equation arising from the discretization of linear scalar singularly
perturbed differential equations. In the subsequent sections this result will be used
for the treatment of vector systems. Also, we introduce some shorthand notation.

To state our estimate we shall employ a grid

(4.1) (0<  T,   <  T2   <   ■•    <   T,   <T/+,   ^   1},

which in later sections will be identified with different portions of the grid (3.1). As
before, let

TfJ., - r. V + l/2 (t, + t,+ ,)/2,        i=l./,

and in addition, let

(4.2)   h = max{h,\i = 1,...,I),       \(t) = a(t) + ißit),       t, <s / < Tj

with a, ß G C[t,, t/+i], ait) < 0, r, < / < t/+1, and define

a = min(a(i)| T, < / < ^-h),       « = max(a(i)| t, < t < t/+1},

y2 = max{(/3(i)/a(r))2|T. <f <t/+1},

/+ m

a = -ha/2e,       p = (1 + a)   + a2y2.-t2
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Then we have

Lemma 4.1. The solution {yx,...,yl+x)ofthe recursion

(4.3) e---X(t,+ 1/2)-2-¿'       i-l,...,/,

satisfies

\y,\ ^\y,\^v(â(r, - r,)/EP) + -r^ max(\fj\,j = l,...,i- 1),        7= 1,...,/+ 1.

Proof. Let w be a complex number with £ = Re w < 0 and tj = Im «/£. Then

1 + w
1 -«

2-2
=   1   + 4£

whence

(4.4)

Rewriting (4.3) as

2 _ (i + tr + en"(i"-02 + «V      ' U-*)2 + íV

<exp{4|/((l-|)2 + ¿V)},

exp{2¿/((l-í)2 + SV)}-1 + w
1 - w

-^(+-¿(1 -„,)-'/,,
1 + w..\      A,

where

(4.5)
we obtain the solution

(4-6) y, = E
7-1

By (4.4) and (4.5)

(4.7)

Hence, by (4.6)

/-i
n -LZL^

w, = X(t,+ 1/2)/i//2£,

1 + u 1 + u.

1 + u,
1 - u, < exp{oA/pe).

i-i
\y,\ < e-x max(\fj\\ j = 1,..., / - 1} E /i,exp{â(T, - TJ+i)/pe)

7=1

+ |>'l|exp{â(T,-T1)/p£},        7 = 1,...,/+!.

The lemma follows since

,-1

£"' J) /iyexp{a(T, - t>+1)/pe) < e"1 J   exp(a(T, - j)/pe} (is < p/|o|.    D
>-1

Note that Lemma 4.1 is mainly useful when h < £0£, where KQ is a constant, and
when the ratio of imaginary to real parts of X(f) is of reasonable size (i.e. the
problem is not highly oscillatory).
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Now we introduce some notation. Given a grid (4.1) and vectors or matrices
s, g /?', for 7 = 1./ + 1 (or i' = I,..., I) and some integer/, wesetsA = {*,,...,
s,+ ,)iorsà = is,.s,)). Wedefine

||iÄ|| = max{||í,||, i = 1./+ 1}

and analogously for the other case, where ||s,|| is the maximum norm of *,-. Given a
function s g C[t,, t/+ ,], we define the restriction of s to the grid,

As = {í(t,),...,í(t/+i)).

By c,, c2,... we shall denote positive constants.

5. The Analysis of the Box Scheme. The analysis proceeds in two main steps: First
representations of the general solution of the difference equations (3.2) viz (3.6) are
derived separately for each of the intervals [/,, //v«»+. J, [tNto,+ {, tN_Nux+l],
[tN-No)+,,l], and these representations are related to the general solution of the
differential system (2.1) viz. (2.9). Then the three representations are combined to
yield the general solution of the difference equations on the whole interval [0,1], and
the remaining free constants in this general solution are determined through the
boundary conditions (3.3).

5.1. The Interval [/,, /^«ol+,]. Here it is convenient to use the transformed
difference equations (3.6). We write these equations for /= 1,..., /V(0) + 1 in
compact form as

(5.1)

where

«4

¿■A

'12

f22
gl

Uà = {«,,..., UN,o>+í)

|£-"'+,_
U

V.

-A0,.,/!)"' + '"*'

Ä22(',+ I/2)

2
»i + 0/ f i

7=   1,...,/V(0'.

The L'¿ stand for the remaining parts of the difference operator, and g¿, g\ contain
the inhomogeneous terms. From (3.7) it is clear that

(5.2) IlIi'lUILi'H.HLfll < cx(h\+ e),       *".- maxi/tj/ = 1,..., Ar(0»),
and ||L¿2|| < c2.

Now we impose boundary conditions

(5.3) P_u, = 7j_G £"-,   P+u„m + x =T, + G£n*,   c,=n0e/l"

and proceed to show that (5.1) subject to these boundary conditions has a unique
solution provided that

(5.4) *,<*„«,       7= 1,...,7V*0),
with a suitable constant K0.

We begin with a discussion of the structure of the difference operator LA. The first
n components, L^u^, are scalar recursions which can be analyzed with the aid of
Lemma 4.1 in the following way: When treating the first n_ of these recursions,
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which belong to the eigenvalues of A with negative real parts (see (2.4)), the grid
(4.1) is identified with the grid (0 = tx < t2 < • • ■ < tNm+x), i.e. with the fine left
end portion of the grid (3.1). And the function X(f) of (4.2) is replaced by X,(f) of
(2.3) when considering the 7th recursion; /= 1,...,«_. When dealing with the
remaining n+ recursions, the grid (4.1) is again identified with the fine left end
portion of the grid (3.1), but now according to the labeling t7 = tNm+i - tNm+2_j,
j = 1,..., JV(0) + 1. And forX(f) of (4.2) we take X,(t>>1+1 - /), i = n_+ l,...,n.
Then it follows from Lemma 4.1 that the problem

/-¿"a = £a>   p-u\ = 7¡-,   £+«v«"+i = V +

has a unique solution for all gA, tj_, tj+, and this solution satisfies

(5-5) ||«A|| < IItj.II + ||i»+|| + </||gA||,
where the quantity d is the largest of the constants p/|ö| obtained from Lemma 4.1.
When A.= K0e, then d = ¿(£0) in (5.5) is

(5.6) d = ((1 - K0 a/2)2 + K2a2y2/4)/\a\.

The last m components of LA are easily analyzed as well. It is clear that the
problem LAcA = gA, vx = t)0, has a unique solution for all gA, tj0 provided that

(5.7) h_< \\B22\\/4,
and this solution satisfies

(5.8) Kll < e(||T,0|| + ||gA||),       e = const.

Applying the estimates (5.5) and (5.8) to (5.1), (5.3) and using (5.2), we obtain

II«aII < 11*7-11 + l|TJ + || + d(cx(h_+ e)||«a|| + c2||oA|| + ||gA||}

HII < ailloli + c,(h_+ £)(||«A|| + ||OA||) + ||g2||}.

When

(5.9) cx(h_+e)(d + e + c2de)^ (2 - v^)^,

this yields the final stability result for (5.1):

Kll < 2(||t,.|| + ||t,+|| + ¿||gA|| + ^(llTjoll + "-2"
(5.10)

II«aII < 2e(||7,0|| + cx(h_+ e)(\\V_[\ + ||r,+|| + ||gA||) + ||g2||}.

Next we state a representation of the general solution of (5.1) which is the discrete
counterpart of the representation (2.15) and is a simple consequence of (5.10). For
reasons of brevity we write (5.1) as

#a»a = gA-

Theorem 5.1. The general solution o/(5.1) on [t0, tN«»+,] can be written as

(5.11) "A =,^-+l^ + +.^A0T|0 +,W,,A,

where
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with

■*r- R( n + m ) X n _
.^+   =

n(/i + m)Xri ,

1*7
(.<

K
R(n + m)Xm

are matrix solutions defined by

H& XW¿ = 0,       P. ,£/," = /,

//A xw¿ = o,     p. ,u; = o,
//A1< = o,     p_ ,t/,° -,s_

l%.A =

£+ |Í/a7(0)+, = 0,

P+ ,U¿m+l = /,

£+   ,UNm+x =|S+,

,K,+ = 0.

r i       '•

I "p.A

75 a particular solution defined by

#ai»Va = «a.    p  i"/M - ^-«,(0),    £+ |«,.W«+| = P,up(tN«»+,).

i«V.i = o,(°)-
//ere i/ie matrices ,S_ and ,S+ are defined by

,S_-£_l/0(0),       ,S+=£+i/0(v„+1),

wnere i/0(7) is i/ie "upperpart" of lf0(/) (see Theorem 2.3), andwpit) = («,,(7), u (/))
K defined in Theorem 2.2. (77ie subscript "1" in ,H/",+,° and so forth indicates that the
representation (5.11) « valid for the first portion of the grid (3.1 ).)

It is clear that XW£ and ^ A are approximations to lV0it) and w (/). Because of
the estimates (2.13), (2.14) and of (5.10), the standard consistency plus stability
argument yields

II.»*I "A Alfolí < c3P,(5.12)
(5.13) \\,wpA - Awp\\ < c3hl

Also, ,WA" and ,rf^+ are approximations to W_it), W+(t) on [0, r^m^,]. However,
since negative powers of £ occur in the estimates (2.24), the derivation of bounds
analogous to (5.12), (5.13) is more delicate. First we consider the local truncation
error //A[AlfJ: From (5.2) and (2.24) it follows that the local truncation error of the
/th column of W_ is

withr,= ( r,„..., rin)T,

,2

o /= i,

and

K*l<c4|(^)   +«1)(exp(ReX/(0)f,/£}0,/ + £),       k=l,...,n_,

\\s,\\ < Cth^cxpiReX^t/E) + e).
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for 7 = 1.JV<0). Here 8kl is the Kronecker delta. If the grid is such that

(5.14) <5,       i=l,...,Nm,

for a given "tolerance" 8, then, using (5.10),

(5.15) ||,^A- - MV_\\ < c56.
An efficient way to achieve (5.14) is to equidistribute the principal part of the

local error, i.e., to determine the grid such that

(5.16) c4(-^) exp(ReX/(0)7,/E} = c4(-^-)   =8.

Taking the (an) / for which Re X,(0) is smallest in absolute value, this leads to the
strategy already developed in Ascher and Weiss [4],

(5.17) h, = /71exp(-ReX/(0)i,/2£},       i = 2,...,Nm,
A, = (ôyc4)l/2£.

This generates an increasing sequence {A,|i= 1,...,A(0)). Of course, now the
question arises whether h\= hNm, obtained in this way is not too large for the
previous existence theory to be meaningful. An estimate of the magnitude of hNm
can be obtained in the following way: It is natural to terminate the strategy (5.17)
once a value tN,<» is obtained such that

exp{Re X,(0)tNm/e) = 8,

i.e. when the contribution of the layer has decreased to the magnitude of 8. Then,
using (5.16),

2

8-8;       h „to, = ecY2.

So the constant K0 in (5.4) has the magnitude of c\/2, essentially independent of e.
Equation (5.15) expresses the fact that XW¿ is an approximation to Wit) on the

fine grid, provided the grid is selected according to (5.14). Given such a grid,we now
analyze ,W¿. The reason for determining the grid on the basis of ,Wà~ and not on
the basis of XW¿ is that ,lf^~ will contribute significantly to the general solution of
the difference equation (3.2) on the whole interval [0,1]. The contribution of ,W¿ on
the other hand will turn out to be insignificant, once the representations of the
solution on the three subintervals are combined to one representation valid on [0,1].
Note that there is no analytic counterpart to ,lfA+ in (2.15).

We write

(5.18) ,h/a+ = M
&

and consider P+iU¿. This is a set of N(0) + 1 matrices of size ti + X n+. For
t = 1_, Ni0) + 1 we denote the /th column of the corresponding matrix by u'¡, so
that
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Then we decompose u\ in the form

(5.19) «,'- {,e, + V*.       '=1.A<0>4- 1,^G/?"«,
wheree, = (0,..., 0,1,0,..., 0)ris the /th unit vector, the scalars£, are defined by

(5.20) £^^-X,(W)^u = 0,       7=1.*«»; k = n_+ I,

¿7V«0>+ 1 =  !.

and where the vectors tj' will turn out to be small. From (5.20) it follows that
"        1   —   ÜJ

£'-ÖTT^
I-1 J

where W> = At(/,+ 1/2)A/2e. By (4.4)

1 - uj
1   +  Uj

< exp(-ah /pe).

where a = min0</^, m    (ReXA(i)), and p = (1 + a)2 + a2y2 with a = h_a/2E,

I ImXt(Qa=      max     {ReXA(r)},       y2 =      max
0<r<iwioi+| O^Ki/vio^,     1  Ke Aj ( I J

Thus

(5.21) fi<exp{-a(Vo,+ 1-/,.)/P£},       / = 1.tf<0)+l.

On substitution of (5.19) into the equations defining ,W¿, we obtain a system of
difference equations for the i\\ and the /th columns of P_ ,U¿ and XV£. This system
has homogeneous boundary conditions and an inhomogeneity of size e + h_. Hence,
the stability result (5.10) applied to this system for each /, / = 1.n +, yields

(5.22) I|t)aIU|/>-,í/a+IUIi'/a+II < c6(h_+ e).
This completes the analysis of ,WA.

5.2. The Interval [tN_N>»+l, tN+]]. The analysis proceeds in the same way as on
the first interval. So we only state the results.

Theorem 5.2. // hi < h + < K,e, i = N - N(X) + 1,..., N, with a suitable constant
Kx, then the general solution o/(5.1) on [tN_N<u+ ¡, tN+,] can be written as

(5-23) WA = ,W^_+^1X+ + ,W^0 +3%.A.

where the 3WA"'+'° are structured like the ,WA~-*-°, and

//A3^A- = 0,   P_ 3(/,.,,11 + l = /,      P+ jC^+, = 0,       3K¿_„(„+ , = 0,

H^W¿ = 0,    P_3U¿_N„x+l = 0,      P+ 3(/¿+1 = /,        3K¿_„„I+I = 0,

"A3"Á   ""i     P- s^N~N'"+\  = 3^-'      /*+ 3^/\+l  =3^ + '      3^V-V'"+I  =3^0'

//a 3%^ = 2>A> P- 3Up,N-N0>+\  =  />-"p('/v-v">+l)!

P+ }Up,N+l  = ^+"p('/V+l)' 3ü/»,Af-7V<"+l   = ^(^/V-Af'+l)-
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Here the matrices 35_ + 0 are defined by

3S_= P-U0(tN_N<n+x),    3S + = P+U0(tN+x),    3S0 = V0(tN_No,+ i),

where U0it), V0it) are the lower and upper parts of lV0it) defined in Section 2.

For 3WA~'+'0 we have the following estimates corresponding to (5.12), (5.13), (5.15),
(5.21) and (5.22):

(5.24) \\JV°- Alf0|| <cnP+,
(5-25) ||3vyA - ¿swp\\ < csP+,

(5.26) ||3WA+ - MV+\\ < cg8;

3»a-= (;£),  p.tt- ««wX™m+1

with «,' = i,e, + ijj, i = /V- /V(1) + 1,...,/V+ l.flje /?"-,

(5.27) |É,|<«p<a(r,-/tf-w«.»+,)/P«),       / = AT - JV<» + 1,..., /V + 1,
(5.28) ||t,a||, [\P+ 3t/A-||, ||3KA-|| < cI0(e + A+).

5.3. 77ie Interval [tN«»+x, tN_No,+ l]. For brevity of notation we set 7 = N{0) + 1,
7 = N — N(,) + 1. Here it is convenient to work with the difference scheme in its
original form (3.2). First we consider the "reduced" problem

(5.29a) 0 = ¿,,(,        )&±Ji±i + An(t        )h±li±± + fi,'/+I/27 2 ^I2V'i+l/2/ t

1/2) 2 A22\li+\/2) 2(5.29b)    ^—^ - ^2,(^.,/2)^±^1 + ^(W)^^1 +/2'

7 = j,..., 7 - 1,

with/,1 g fi",/;2 g Äm. Substitution of

(5.30) JLÎ^- _^i(/j+I^)^ia(/|+l^)iLÎJi±l + /|i)

into (5.29b) yields

(5.31) ^AZAA m {Ai2 _ ,421^12)(,,+ 1/2)^±i-+1/2 7 2

+/,2-  (^nX^i*)//.       •" — J.T—I.
LetZ/ g £mXm satisfy

^^ = (A22 - A2,Ax¡An)(tl+l/2)Zf \Z¡+X ,       7 = ,„.., 7 - 1,

z/ = /;  y>/.
Then the general solution of (5.31) can be written as

(5.32)     z, = Zjz, + t hJZf+x(l- hy(A22 - A2lA'xxAX2)(tJ+,/2)/2)-'

x{fj2-(^A,x,)(tJ+,/2)fx),       7 = /,..., 7-
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The general solution of (5.30) is

(5.33)   J, = (-l)'-^-2i:(-l)'-1^(c(/y+1/2)^^ + ^(//+1/2)//)
7-7

= (-l)'-^-C(7,_l/2)z, + (-l)'-C(7,+ l/2)z,

+ E (-i)","i(c(o_1/a)-c(<y+I/2))zJ
7=7+1

1-1

-2¿:(-i)-,-jA¡i(,j+l/2)fx,
7-7

where C = A,¡AX2. The last sum in this expression can be written as

(5.34) Z(-^r'~JA-,x,(tJ+,/2)fx
7-7

</-_i)/2- 1

=    E    Axx(tl+2j+i/2)\fi+2j+, - fi+2j)
7 = 0

(<-i)/2-l

+ E (^11 l'i + 2y + 3/2/ ~" ̂ 11 \ti + 2j+\/2))fl + 2j
7-0

in the case when /' — i is even, and in a similar way when /' — i is odd.
From (5.32), (5.33) and (5.34) we obtain

Lemma 5.1. Provided h = max(/i,| i — i.7-1) is sufficiently small, say h ^ hQ,
then (5.29) subject to initial conditions specifying yt, z( has a unique solution, and this
solution satisfies

(5-35) ||Ä|| < \\yß + c„\\\z,\\ + ||/A'|| + ||/A2|| + £ ||/;+1 -//|| ,
\ 7=7 /

II'aII < cu(\\z,\\ + HA'ii + ||/A2||).
Now we turn to the " unreduced" problem, with e(.v,+ , - y,)/h, replacing 0 on the

left-hand side of (5.29a). We decompose the solution of the problem in the form

,,,Ax yi-yf + vA      .    .
("6) wu- ,=i.■•
where yf, z\ stand for the solution of the reduced problem using the starting values
y,, 2, such that i¡¡ = 0, ¿, = 0. Substitution of (5.36) into the unreduced equations
yields

(5.37) Allit¡+t/2)IklJi±lAi2ili+i/2)k±A±l
E E= ttK+i - it) - rU+i - yi)<i i

-¿T- = /12l(',+ l/2j-2-       /122('1 + 1/2J-j-' ' =-'.' ~    *

TJ, = 0,     s, = 0.
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Applying Lemma 5.1 to (5.37), we obtain

T 1-12eNaII < c.ih— + 4e £ A;'  (||t,a|| + ||Äni),
7=7

2eIIÍaII < cu t— (IIiaII + IIä'II).
\ "min /

where Amin = min{A, | / = /',...,/ — 1). Hence if

(5-38) eCl||_l- + 4,¿A;i   a<l,
*nun 7=7

which we will assume from now on, then, by the contraction principle, (5.37) has a
unique solution which satisfies

(5.39) ||i,A|| < y^IIä'H,       II*aII < jegMW-

We now derive a representation of the general solution of (3.2) for z = t,...,/- 1.
For ease of presentation we abbreviate (3.2) as

"a-Xa = /a-
A particular solution 2xp à is defined by

(5-40) #a2*„,a=/a,       ixp,i" xpitj),

where xpit) is the particular solution obtained from w (f) by inverting the transfor-
mations (2.8) and (2.5). Let eA =2xp A - &xp. Then eA satisfies //AeA = /A, e, = 0,
where /A = {/,,..., lf_x) represents the local truncation error of x it). It is well
known that

li = <f>{t,+ W2)h2 + 0(hÍ)

for some smooth function <p(i). Hence it follows from Lemma 5.1 and (5.39) that

(5.41) ||eA|| < c12A.

If the grid is locally almost uniform, i.e.

(5-42) A,+ 1=A,(1 + 0(A,)),
then li+x - /, = Oih]), and from Lemma 5.1 plus (5.39) we obtain

(5-43) ||eA|| < c13A"2.

Both estimates, (5.41) and (5.43), are sharp, as will be shown by a numerical example
in Section 6.

The general solution of the homogeneous discrete problem can be written as

(5.44) xA = X°y0 + Xtf,       y0 G /T, y G Rn,

where

vo= i yA°| y  -lYá
A      Ua°   ' A"Ua
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and

//AXA° = 0,    ïf=y0(z,),    Z,° = Z0(7,),

//AA-A = 0,    y, = /,        z, = o.

Here Y0it), Z0(/) are obtained from í/0(z), K0(z) by inverting (2.8) and (2.5). The
same argument as used for the particular solution yields

(5.45) \\X?-*X0\\*cl4h

and

(5.46) ||A? - A*o|| < clsP
if (5.42) is satisfied.

Applying the same arguments as in the derivation of (5.39) we obtain

(5.47) Yi = (-l)"¡I + %,       7 = i.i,

with

(5.48a) \\%\\*íK/(l-K)
and
(5.48b) ||ZA|| < K/(l - K).
So up to a perturbation of size K/i 1 - K)vte have

(5.49) *;.= j("1),~'/|,       z = /,..., zr.

Remark. A key assumption for the analysis of this subsection was (5.38). If a
quasiuniform family of grids is used on [/,, tf\, then (5.38) is equivalent to requiring
that e < const A2^ with an appropriate constant of size one. For such a quasiuni-
form family the analysis of this subsection can be extended to the case e >
const A2^.

5.4. Combining the Representations of the General Solution. Here we consider the
discrete boundary value problem consisting of Eqs. (3.9) for i = 1,..., N and the
boundary conditions

(5.50) P_u, = 7j_,    P+uN = rj+,   t5,=T)0.

This is the counterpart of problem (2.9) subject to the boundary conditions (2.11),
which is well posed, according to Theorem 2.1. We shall show that the discrete
problem has a unique solution and that this solution approximates the solution of
(2.9), (2.11) provided 5, A and K are sufficiently small.

On each of the three subintervals we have a different representation of the general
solution of the difference scheme:

(5.51) wl = xW¿r}_+ ,Kv\ + ,Kvo + ,%.a
on [/„ tß, with tj'-G R"; V+g R"*, i,}, G Rm,

(5-52) vvA2=2H'A7,2+2lfA0T?2+2^A

on [r„ tj], with tj2 G R", tx2 g Rm, and

(5-53) wi = 3IfAV_ + 3^AV+ + 3^a°t,30 + 3%A
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on [',-, tN+,], with V-e R"; 1+e R"+ and tj3 g Rm. Here xW¿-+fí, 3W^+ß are as in
Theorems 5.1, 5.2 and 2W^, 2W£ are obtained from Xà, X£ via the transformation
(3.5).

We now determine the parameter vectors ijl_ + 0, tj2, tj2,, tj3_+i0 sucri tnat

(5.54a)

(5.54b)
P.u\ = tj_,

«i = i7o,
w

2 3wr = wf,

(5.54c)

(5.54d)

(5.54c) />+4+1=t, + .
Equations (5.54) are a system of 3 x (/z + m) linear equations for the 3 x (n + m)
components of the unknown vectors. We shall show that this system has a uniformly
bounded inverse if 8, A and K are sufficiently small. Written out explicitly, Eqs.
(5.54) become

(5.55a)

(5.55b)

(5.55c)

(5.55d)

(5.55e)

P. ,i/fV-+ P- ,l/,+V++ P. ,i/,uTJo = IL" P- .«,.1,

i*r¿+i*7V++iWo-*>-i«>,.i.
'0„l

I' i ■!- ■ i' i ■!+ ■ ir i "ig      wo      i~/,,

,^"V-+ ,Hfn'++ ,^%0 -2W^2 -2^%2 =2wpj - ,w.
,2 j.   M/_0„2 _   h/--^3 _   u/+„3 _   u/0.,32W-V2 + 2Wfn\ -JVfixl-AVf^-AV»^ =3wpj-2wpJ,

P+ 3t/„-+1TJ3_+ P+ 3t/;+1TJ3++ ^+ ji/^llo = 1 + - ^ 3V.W+I-

Most of the matrices in (5.55) have some special structure which is now discussed for
each equation.

Structure in (5.55a). By definition,

P.XU{ = I,   P_,Uf=0,   P_,UX°=XS_.
Structure in (5.55b). By definition,

,VX- = 0,    ,K,+ = 0,    ,F° = /.

Structure in (5.55c). By (2.17) and (5.15),

.iij--MA-(°V«)) +0(3)-o(a).
By (5.22),

,K
O,«_Xn +

*n+Xn+

o„
+ 0(e + Aj,

/
and by (5.12)

tW,0- lf°(/,) + 0(A"2).

By (5.47), (5.48), on using (3.5),

,»j-(£"J'¿)) + 0(í).
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By (5.45), (5.46), on using (3.5),

2Wf = W0(t,) + 0(h:),       /=lor2.

Structure in (5.55d). By (5.47), (5.48), on using (3.5),

^J(-iWí)) + 0{í).
By (5.45), (5.46), on using (3.5),

lW?=W0(t-) + O(h'),       /=lor2.

By (5.28),

,Wf

By (2.23) and (5.26),

,»?-

/ / ^n.Xn

o„lX„

0

+ 0(e + h + ).

\
+ Oi8) = 0(8).exp(A + (l)(z--l)/£)

0
By (5.24),

3W-°=W0(t-) + O(P+).

Structure in (5.55e). By definition,

/>+3iV+1 = o, p+3i/;+, = /, p+3u°+x=3s+.
Hence, up to a small perturbation, the matrix of the linear system (5.55) has the
form indicated in Figure 5.1, where R stands for different nonsingular matrices,
rectangular matrices are indicated by S, and where the vector of unknowns is
(V-. V+, 1JÔ> if, lO'V-, 1 + , 1?o)-

/7_ n+ m n_ n+ m  a. /7+ /7?

(5.56)

m
ti-
n+
m
n_
n+
m
/**

I -E(t,)

tirât-)

s_
s
R

R
-I

R

(565a)
(565b)

■ (565 c)

(565d)

(565 e)
Figure 5.1. 77ie essential part of the matrix in (5.55)
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In the matrix (5.56) blocks which are not indicated explicitly are zero. The size of
each block in (5.56) is determined by the corresponding entry in the first row and
column of Figure 5.1. The correspondence between (5.56) and the splitting (5.55a-e)
is indicated in the last column of Figure 5.1.

Using elementary row and column operations it is easy to see that the matrix
(5.56) is nonsingular if and only if the n X n matrix

¡P-E-X(t,)\

\P + E-X(t;)j

is nonsingular. As i, = 0(£tnó), 1 - t-= O(ElnS), this matrix has a uniformly
bounded inverse for all relevant values of r,, tj'if and only if

(5.57) det

In this case, the full problem (5.55) also has a uniformly bounded inverse when 8, A
and K are sufficiently small.

We shall now show that the solution of (5.55) generates an 0(ô + A ) approxima-
tion to the solution of the corresponding continuous problem, uniformly on the
interval [0,1]. According to Theorem 2.3 the solution of the continuous problem is

(5.58) w = W_y_+ W+y++ WQy0 + wp,

where y_, y+ and y0 are uniquely determined through

(P.U.(0)y_+ P_U+(0)y + + P-Uo(0)yo = i,.- P_up(0),
(5.59) K (0)y_ + K+(0)y+ + K0(0)y0 = i,0 - vp(0),

\P+U_(l)y_+ P+UM)y++ P+U0(l)y0 = r, + - P + up(l).

With the aid of y_, y+ and y0 determined in this way we define a vector

(5.60) p = (y_,0, y0,0, y0,0, y + , y0) G **.+.»
It is easily verified with the aid of (5.59) and the approximation results for the
kW¿~-° and the particular solution that the vector p satisfies (5.55) up to a residual
vector of size O(S) + O(A'), where / = 1 or 2 depending on the coarse grid. Hence,
denoting the solution vector of (5.55) by 7j, it follows that

(5.61) \\p-V\\ = 0(8) + 0(hl).
Combining the estimate (5.61) with the various approximation results for the kW¿~-°
and for the particular solution, we obtain on comparing (5.58) with (5.51), (5.52) and
(5.53):

Lemma 5.2. The problem (3.9) subject to the boundary conditions (5.50) has a unique
solution wA provided 8, h and K are sufficiently small and (5.57) holds. This solution
satisfies

IK - Aw|| < cx6(8 + h'),
where I = / or 2, depending on the coarse grid.
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Using the inverse transformation of (3.5) and the standard procedure of extending
convergence results valid for a special set of linear boundary conditions to the case
of general linear boundary conditions, as outlined for the continuous problem in
Section 2, we obtain the principal result of this section.

Theorem 5.3. Assume that the boundary value problem (2.1), (2.19) is well posed
uniformly in e, for 0 < e < e0, and let x be its solution. Choose a grid as described in
subsections 5.1, 5.2 and 5.3, and let the quantities 8, h and K characterizing this grid be
small enough, i.e.

0<8^80,   0<A<Ao,   0 < K < K0,
for suitable constants 8Q, A0, K0. Also assume that (5.57) holds. Then the box scheme
(3.2), (3.3) has a unique solution xA = (yA, zA) which satisfies

(5.62) ||xA - Ax|| < c17(5 + h>),

where I = 2 if the coarse grid belongs to a family of locally almost uniform grids, and
I = 1 otherwise.

6. The Trapezoidal Scheme. The trapezoidal scheme (3.4) (or (3.9)) is analyzed in
very much the same way as the box scheme: separate treatment of the fine grids and
the coarse grid, and patching of the different representations of the general solution
of the difference equations. There are only minor technical differences on the fine
grids which we shall not dwell upon. Essentially all results of subsections 5.1 and 5.2
carry over to the trapezoidal scheme.

On the coarse grid however the global truncation error of the trapezoidal scheme
differs substantially from that of the box scheme, as will be borne out by the
subsequent analysis. We consider the problem

7* n          >'.+ i ~y¡     Au(',)y, + ^n('/+i)j',+ i(6.1)        £-t-=-r-

, ¿n(t,)z, + An(tl+,)z,+ t      f,(t,)+f,(tl+])
2 2

Z/+I - h     A2Xit,)y, + A21(t1±x)yl +
A, 2

,  A22(t,)z, + A22jtl+X)z,+ ,   , f2(l,)+f2(t,+ ,)
+-r-+-,        7 = z,..., 7-1,

with y¡, z, given. By a slight variation of the analysis of the box scheme we obtain
analogs to all results from Lemma 5.1 up to (5.39). We write (6.1) as

//a*A = 7A

and define a particular solution 2xp A of this problem by

H\2XP.C =/a< 2xp.j = xpitj),

as we did for the box scheme. The global truncation error eA =2xp A - Axp satisfies

/Va = /a-       e, = 0,
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where /A = {/,,...,/-,) is the local truncation error of xpit). Now this local
truncation error differs markedly from that of the box scheme. It has the structure

sy
12

12

('7+1/2)

('7+1/2)

4\\

+
EO(Af)

Hence, as £ <*: A, it follows that

(6.2) ||eA|| < c19A~2.

This estimate is to be compared with the estimates (5.41), (5.43) for the box scheme.
Note that when there is no unperturbed component z in (2.1), then (6.2) can be
replaced by

(6.3) ||eA|| < c20eA"',

where / = 2 if the grid is locally almost uniform, and / = 1 otherwise.
There are corresponding results regarding the approximation of X0it).
The remaining analysis of the trapezoidal scheme proceeds as for the box scheme

leading to the counterpart of Theorem 5.3, with the estimate (5.62) replaced by

(6.4) ||xA - Ax|| = c22i8 + P),

or

(6.5) ||xA - Ax|| < c22(r3 + eA'),       / = 1 or 2,

in case (6.3) applies.

7. Numerical Results. To provide numerical evidence for the theory of Sections 5
and 6 we present some results for the problem.

(7.1) Ey' = A(t;X)y+f(t,E;X),       0 < t < 1,
(7.2) B0y(0) + Bxy(l) = ß,

whereyit) = (y,(/), y2it))T, X is a real parameter,

(7.3)

with

and

A(t;X) = E(t;X)

E(t,X) = £"'(/, X)

-1     0
0    2 E-X(t, X),

sin Xz
cosXz

cosXz
-sin Xt

Bn
P.E~x(0;X)

0
0     1
0    0 *. =

0
^+£-'(l;X)

0
cosX

0
■ sin X / '

Equation (7.1) can be solved explicitly. Introducing the new variable «(/) =
E'xit)y, the homogeneous problem £>>' - Ait, X)y = 0 becomes

c„, .. ( -1     Xe\
£U-[-Xe     2J1
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A fundamental solution matrix of this system is

Eexp{(z - 1)(2 + Ea)/£)- exp{-z(l + eö)/e}

*(') = Xe
-exp((z - 1)(2 + £a)/£}        Eexp(-z(l + ecO/e}

\       a I
where

« = ^-[-3 + v/9-4e2X2] = - ^eX2 - ¿e3X4 + 0(e5),
¿E ill

so the general solution of (7.1) is

(7.4) y(t) = E(t)<t>it)s+yp(t),

where y it) is a particular solution of (7.1), and s = (s,, s2)T. Substitution of (7.4)
into (7.2) leads to a linear system for s, which is well conditioned provided that

|X| » £.
Note that the matrix

(P.E-x(0;\)\t   o 1     \
\P + £-'(l;X)j     I cos A     - sin A j

is singular when A = -nik + 1/2), k = 0, ±1. so that condition (5.57) is not
satisfied for these values of A, and hence Theorem 5.3 and the estimates (6.4), (6.5)
for the trapezoidal scheme do not apply.

We now report computational results for the values A = it/4 and A = tt/2.
7.1. The Case X = m/4. The fine grids were constructed according to (5.17) with c4

set equal to 1. The fine grid at the left endpoint ends once exp( - tNm+,/s) s$ 8, and
that at the right endpoint ends when exp(2(7/v_A,li1+, - 1)/e) < 8. The coarse grids
were either chosen to be uniform or of the form A, = A, t: = Nm + 1, A"U) + 3.
A, = A/2,7 = N(0) -l- 2, N{0) + 4,..., which is not locally almost uniform.

We take 8 = 10"6, which, for all values of £ considered, leads to fine grids with a
total number of 1164 points. The coarse grids are then obtained by inserting
/ = 9,19,39,... points between the two endpoints of the fine grids. 5 was taken so
small in order to be able to verify the rates of convergence of the schemes when / is
increased.

The forcing term fit, e; X) in (7.1) is chosen such that y At) = ie'.e'') is a
particular solution of (7.1), i.e. /(/, e; A) = ev^(z) - Ait, X)yp. The vector ß was
taken to be

ß, = 3,       ß2 = cos( A ) exp( 1 ) - sin( A ) exp( - 1 ) + 1,

so that y has layers at both ends.
In the following tables the values of

e,=     max    \y,(t) -y,J,       1= 1,2,
i«y«A7+i

i.e. the absolute values of the maximal error in the two components, are given for
specific values of e and /. The maximum is always obtained on the coarse grid. Away
from the coarse grid towards the left and the right endpoints, the errors decrease
rapidly and after a fairly small number of gridpoints they become of size 8.
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Table 7.1 contains the errors obtained by the box scheme for e = 10"6 using
uniform coarse grids. The results for the same e and nonuniform coarse grids are
given in Table 7.2.

Table 7.1

J 9 19 39
7.25 E-3
2.38 E-3

1.85 E-3
6.09 E-4

4.67 E-4
1.54 E-4

Table 7.2
19

1.55 E-2
1.16 E-2

8.39 E-3
5.54 E-3

39

4.36 E-3
2.70 E-3

We observe convergence of order 2 for the uniform grids and convergence of order 1
for the others. This agrees with Theorem 5.3.

In Table 7.3 we list the values of e2 obtained by the trapezoidal scheme for
different e using uniform coarse grids. The analogous entries for the nonuniform
grids are given in Table 7.4.

Table 7.3
/ 9 19 39

1. E-2
5. E-3
2.5 E-3

1.25 E-3
6.25 E-4

9.22 E-6
7.45 E-6
4.64 E-6
2.60 E-6
1.96 E-6

2.11 E-6
1.96 E-6
1.96 E-6
1.96 E-6
1.96 E-6

1.96 E-6
1.96 E-6
1.96 E-6
1.96 E-6
1.96 E-6

Table 7.4
9 19 39

l.E-2
5. E-3

2.5 E-3
1.25 E-3
6.25 E-4

1.18 E-5
1.72 E-5
1.51 E-5
1.11 E-5
6.81 E-6

2.80 E-6
2.85 E-6
3.12 E-6
2.93 E-6
2.26 E-6

1.96 E-6
1.96 E-6
1.96 E-6
1.96 E-6
1.96 E-6

The entry 1.96 E-6 in Table 7.3 is the maximal error in the right layer, and it
pollutes the whole interval [0,1]. Whenever this entry occurs in Table 7.3, it means
that the error due to the discretization on the coarse grid lies below 1.96 E-6. The
entries in the first row and column support the estimate (6.4). The values of e,
behave like those of e2, and are therefore not given.
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The entry 1.96 in Table 7.4 occurs for the same reason as above. In the first
column of the table we observe an error proportional to e, while not much can be
inferred about the dependence on /. In our computer environment we cannot
decrease 8 further.

7.2. The Case X = m/2. We have analyzed the performance of the two schemes in
the situation when the matrix

P_E'x(0)

P+Ex(l)

is singular, for systems having no z-component and for meshes having a uniformly
spaced coarse part. Assuming that all conditions of Theorem 5.3, except for (5.57),
are satisfied, we obtained the bounds for the global truncation error

/        A2
(7.5) \\yCi-liy\\<c23(S + h2){l+-

for the box scheme, and

(7.6) \\y^-Ay\\^c24(8 + Eh2)^\+^-

for the trapezoidal scheme, respectively.
Table 7.5 contains the results for the box scheme applied to the previous problem

with 8 = 10"6 and / = 9 for different values of e.

10 10
Table 7.5

10"4 10"5 io- io-7
1.73 E-3
8.39 E-2

5.54 E-3
2.12 E-3

3.68 E-2
2.26 E-3

3.49 E-l
2.28 E-3

3.47 E 0
2.28 E-3

3.47 E + 1
2.27 E-3

The behavior of e, supports the validity of (7.5). That of e2 can be explained by
looking at the particular structure of the problem (7.1). (7.2).

Table 7.6 contains the analogous entries for the trapezoidal scheme.

1. E-2       5. E-3
Table 7.6

2.5 E-3     1.12 E-3   6.25 E-4   3.125 E-4

1.04 E-5
6.53 E-6

7.76 E-6
4.49 E-6

5.26 E-6
2.87 E-6

3.85 E-6
2.32 E-6

3.14 E-6
2.03 E-6

2.79 E-6
1.96 E-6

In this table the errors do not behave linearly in e, as they did for A = ir/4.
Further agreement with (7.6) is not apparent, and there is a need for more analysis.

The computations were done on the CDC Cyber 174 of the Technical University
of Vienna, using single precision (14 digits). The code SOLVEBLOK of de Boor and
Weiss [5] was used in the implementation of the schemes. Due to the implicit scaling
feature of SOLVEBLOK, no conditioning problems were encountered even when e
was very small.
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