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An Analysis of the Discontinuous Galerkin Method
for a Scalar Hyperbolic Equation

By C. Johnson and J. Pitkäranta

Abstract. We prove Lp stability and error estimates for the discontinuous Galerkin method
when applied to a scalar linear hyperbolic equation on a convex polygonal plane domain.
Using finite element analysis techniques, we obtain L2 estimates that are valid on an arbitrary
locally regular triangulation of the domain and for an arbitrary degree of polynomials. L
estimates for p =* 2 are restricted to either a uniform or piecewise uniform triangulation and
to polynomials of not higher than first degree. The latter estimates are proved by combining
finite difference and finite element analysis techniques.

1. Introduction. In this note we prove stability and error estimates for the
discontinuous Galerkin method applied to the scalar linear hyperbolic model prob-
lem

( uR + au = f   in S2,
(1-1) ' r\u = g   on T_,

where ß is a bounded convex plane domain, ß = (ßx,ß2) is a constant unit vector,
Uß = ß ■ Vu, a is a bounded measurable function on fi, and T_ denotes the
"inflow" part of the boundary 8S2: T_= {x e 3ñ: v(x) • ß < 0}, where v(x) is the
outward unit normal to 9ß at x. Let us recall the definition of the discontinuous
Galerkin method for (1.1) (cf., [9]). Given a finite element partitioning <€h = [T) of
ñ, let Pk(T) denote the space of polynomials of degree <^onie^, and seek a
function uh defined on ñ such that for all T e <êh, uh,Te Pk(T) and

(1.2)     ( (uhß + auh)vdx+ f    \vß\(u+h -u~h)vds = 0,       v e Pk(T),
jt      *■ jdT_

where v denotes the outward unit normal to dT, 971= {x e dT: v(x) ■ ß < 0}, and
uh(x) — hm£_0± uh(x + eß), with u~h(x) = g(x) if x e T_. As will be seen below,
uh is uniquely determined by (1.2) and it is possible to compute uh successively on
each re^t starting at the inflow boundary T_ where u~h is given [9]. Thus, (1.2) is
an essentially explicit scheme for (1.1).

The subsets T in (1.2) are usually triangles or quadrilaterals with possibly curved
sides on 9ñ. Here, we assume for simplicity that S2 is a polygon and that all the
subdomains in c€h are triangles. In this form, the scheme (1.2) has been used
successfully for solving the neutron transport equation approximately, cf., [11].
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2 C. JOHNSON AND J. PITKÄRANTA

To be able here to easily present our results and compare with previous work, let
us for simplicity assume that £2 is the unit square I X I with / = (0,1), ßx > 0,
ß2 > 0, and that c€h is a uniform triangulation of ß with nodes (ih, jh), 0 < /,
j < N = h'1, where h is the mesh length. Given a piecewise smooth function conß
write v"(-) = v~(-, nh). We shall under various assumptions prove error estimates of
the form

(1.3a) ||u - uh\\Lp(í¡)^ Chk + l/2\u\w^\ü),       lapaco,

II"- uh\\L,a) + mí\y.\\u" - unh\\n,)
(1.3b)

^  f~*Uk + min(l/2,l — l/p)\ ,, I     .    , 1   ^ _ ^   __

(1.3c)        max\\u"-unh\\L(I)^Chk+l/2 \u\wk/\ü) + max I u" \ w« '(/)

1 </><2.
For p = 2 we prove analogues of (1.3a, b) on general meshes and arbitrary k > 0
using finite element techniques. For p # 2 and & = 0 or k = 1 we prove (1.3b, c)
with 1 < p < oo and (1.3a) with 2 < /> < oo on piecewise uniform meshes using a
combination of techniques from Fourier and finite element analysis and finally in a
similar way we prove (1.3a) for 1 < p < 2 and k = 0,1 on uniform meshes.

Notice that if 1 < p < 2, then (1.3b) is an optimal estimate in the sense that the
exponent of h cannot be increased while keeping the norm on u, nor can the
regularity requirements on u be weakened while keeping the exponent of h. On the
other hand, (1.3a) is not optimal in this sense since for the interpolation error
u — ùh, where ùh^T e Pk(T), T e #A,is a suitable interpolant of u\T, we have

(1-4) II« - wAIU,<ß)< Chk+1\u\wk+xia).
Most likely, the estimate (1.3a) cannot be improved in the above sense for the
method (1.2) and it is an open problem if there are other methods for (1.1) which
allow such an improvement.

Estimates of the form (1.3a-c) for p = 2 on general meshes were proved in [6],
[10] for the so-called streamline diffusion method. In fact, the discontinuous Galer-
kin method and the streamline diffusion method have very similar properties when
applied to (1.1), and the analysis of the two methods is also similar. In particular, it
is possible to prove localization results and local error estimates for the discontinu-
ous Galerkin method which are analogous to those presented in [6], [10]. Let us also
mention that the L2-analysis of both the streamline diffusion method and the
discontinuous Galerkin method can be extended to Friedrichs systems, see [6], [8].

The error estimates (1.3) for p = 2 (and the localization results mentioned above)
are based on a stability estimate for (1.2) of the form

(1 -5) I uh \h,ß + ||u„ Hi.,,0) < C [||/ ||M0) + || g\\l2(t.Í
where | • \hß is a mesh-dependent seminorm which controls the derivative uhß and
the jumps of v ■ ßuh across the interelement boundaries. The stability estimate (1.5)
is a discrete (weak) counterpart of the stability inequality

IMMí2) + llMlk(a)< C[ll/lk<ñ) + llglk<r.)],
which obviously holds for the continuous problem.
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ANALYSIS OF THE DISCONTINUOUS GALERKIN METHOD 3

Lesaint and Raviart [9], who gave the first analysis of the discontinuous Galerkin
method, proved the following estimate for (1.2) on general meshes for k > 0,

(1-6) \\u- uA|L2<o)< Chk\u\Wk+i,ay

Notice that in (1.6) the gap, i.e., the difference between the number of derivatives of
u and the exponent of h, is equal to one. Results of this type are typical in the usual
finite element analysis of linear hyperbolic problems which is based on weaker
stability estimates of the form

KIIl2(S2)< C(ll/ll/.2(ii) + l|g||/.2<r_))-
The estimate (1.3a) with p = 2, for which the gap is only \, was used in a crucial

way in [7] where an L2-analysis of a fully discrete scheme for neutron transport in
cylindrical geometry was given. The estimate (1.3a) with p =£ 2 may be used to
generalize this analysis to Lp, p =t 2. Of particular interest (for eigenvalue problems)
would then be the case p = 1. Unfortunately, we have been able to prove (1.3a) for
p = 1 only on a uniform mesh.

The estimates (1.3b, c) are of interest when we consider (1.1) as a model for a
linear hyperbolic initial-boundary value problem with x2 representing a time varia-
ble and where the approximate solution uh is computed successively on the strips
Sn = {x e ß: (n - l)h < x2 < nh}, n = l,...,N, so that \\u" - u"h\\L (/) is the
error on each time level x2 = nh. For conventional finite element methods (not
including the streamline diffusion method) for (1.1) with piecewise polynomials of
degree /c,the typical result for p = 2 reads

max||i." - «ÂlU2(/)< Chk\u\w^í(ü),
n

with a loss of a factor hl/2 as compared with (1.3b). For (dissipative) finite
difference methods a typical result for (1.1) (again with gap = 1) obtained by
Fourier methods in the case of a uniform mesh reads

(1.7) max||«" - u"h\\Lp < CÄm||g||^.+1(H),

where now ß = [x e R2: 0 < x2 < 1, -oo < xx < oo}, /= 0, a = 0, the initial
data g is given at x2 = 0, and the order of accuracy of the difference scheme is m.
One can verify for k = 0 and k = 1 that the discontinuous Galerkin method in these
cases corresponds to such a dissipative finite difference method of order m = 2/c + 1
(with a special choice of initial data for k = 1), and thus we may by interpolation
from (1.7) obtain the result

m&x\\u" - K\\Lp^ Chk + l/2\\g\\wrçR),

which is the same as (1.3b, c) in the present situation.
The plan of the present paper is as follows. In Section 2 we introduce the notation,

prove a basic local stability estimate for the scheme (1.2), and carry out the error
analysis in L2. Sections 3 and 4 are devoted to the Lp stability and error analysis.
First, in Section 3, we carry out a Fourier analysis of a finite difference scheme
associated with (1.2) in the case where k = 1, a = f = 0, ß is a half-plane, and (€h
is a uniform triangulation of Ü. Finally, in Section 4, we prove Lp error estimates
using the results of Section 3.
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4 C. JOHNSON AND J. PITKÄRANTA

2. Preliminaries and L2-Analysis. For ß a convex polygonal plane domain, let S
be a given family of triangulations of ß indexed by a parameter h such that if
c€h g S then h = maxre^/, hT, where /ir denotes the diameter of T. For conveni-
ence, we assume the geometry of the triangulations to be such that if 7\, T2 G <ih G S,
Tx + T2, and dTx D dT2 is nonempty then dTx C\ dT2, is either a common side or a
common vertex of 7\ and T2. In the analysis below we will further assume that the
triangulations are either locally quasi-uniform (Section 2), uniform or piecewise
uniform (Sections 3 and 4). The family S is called locally quasi-uniform if there is a
positive constant k such that if T g c€h g S, then the angles of T are bounded from
below by k. In a uniform triangulation c€h, all the triangles are identical up to
translation and rotation. Finally, S is called a piecewise uniform triangulation
generated by a triangulation <€, if any c€h is a refinement of <€ such that the
restriction of c€h to any T g ^ defines a uniform triangulation of T.

In what follows, we use the spaces Lp(Q) and the Sobolev spaces Wm-p(Q) and
Hm(ü) = Wm-2(ü), m > 1, 1 < p < oo, in their usual meaning for ß a domain in
R2. The norm in Lp(Çl) is denoted by || • || a if p ± 2 and by || • ||ñ if p = 2.
Similarly, if T is a piecewise smooth curve or a union of such curves, || • || r denotes
the norm in Lp(T), with the subindex p omitted if p = 2. Some further mesh-
dependent norms will be introduced later on. Below, we denote by C or c, a positive
constant which may take different values on different occurrences. The constant may
depend on the above parameters k and k but not on other parameters, unless
indicated explicitly.

As is shown in [9], one can always solve (2.4) successively, triangle by triangle,
with u~h given on 971 either by the previously computed values or by the boundary
condition. Thus, uh is determined uniquely if (1.2) can be solved locally in each
Tg (€h for given / and u~h. That this is the case for h small enough is established
by the following result:

Lemma 2.1. Assume that /g Lp(ß) and g g L (T_), 1 < p < oo in (1.1). Then
there is a positive constant h0 (depending on k and k) such that if hT\\a\\xT < h0 for
all T G <€h, then uh is determined uniquely by (1.2) and one has for each T' G (€h the
local stability estimates

Kir + Ä'/IK l.BT. + hVHl,BT+
^C{hT\\f\\p,T+h\/"\\vßu-h\\p,,T}

and

\\uhß\\p^T<  C{h-T1 + l/P\\v ■ ß(ut   - U-h)\\p,dT   +\\uh\\p.T + \\f\\P.T}.

Proof. Let us first note that, by a scaling argument and by the equivalence of
norms in a finite-dimensional space, we have for any w g Pk(T), le c€h, the
inequalities

c-ihi/i-i/p\\   il     , uin-i/p\\w\\L      "T \\W\\p.T^n \\w\\p.oT

(2-1) t      , , )1/2
<    hTJ w2dx + j    \v ß\w2ds\      < Chlr/2-2/p\\w\\PtT,
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ANALYSIS OF THE DISCONTINUOUS GALERKIN METHOD 5

where 1 < p < oo and C depends only on k and k. Now consider a given T g
denote uh]T by ¿>A, ¿>A g Pk(T), and set

¿(<}>h,v) = j   (<t>hß + a<bh)vdx + f    4>h\i> ■ ß\vds.
jt j9t_

Choosing v = ¿>A + yhT<j>hß, where y g (0,1] is defined below, we have

(2-2) NI,.7-<C|l*JI,,r,       1 </><«,
and

¿($h,v) = ^i   <ti\v- ß\ds + yhT( <b2hßdx

+ 7^ri    I" • ßk^í ds + f  a<bh(<bh + yhT<bhß)dx.
JoT_ JT

Using here (2.1) and (2.2) and recalling that y < 1 we obtain

¿(<bh,v) > J(l - Cy - CAjflL.rjÍAr/ ^dx + /   ¿»H» • j8|*\.

»A

jt jdT

Choosing here y = min{l,l/2C} and assuming that ChT\\a\\xJ.^ \, say, we
conclude, recalling (2.1) and (1.2) that for some constant C,

< ¿(<bh,v) = I fvdx + f     u~hv\v-ß\ds.
JT JoT_

Applying on the right-hand side the Holder inequality, and recalling (2.1) and (2.2),
the first inequality in the lemma follows. The second inequality can now be proved
analogously, by choosing v = §hß in (1.2). We omit the details.   D

In what follows, we associate with each (€h g Sa finite element space Vh defined by

(2.3) Vh={veL2(Q):v\TePk(T),T<=V}.
Further, we set

r„=( (J^)\aß.
Te

If T c ß and S c ThU 9ß, we use the abbreviations

(o,w)T = I  vwdx,        (u,w)s= j  vw\v ■ ß\ ds,
JT Js

where v is a normal to S. In this section we drop the subindex T if T = ß. For a
piecewise continuous function v, we set v±(x) = lime_0± v(x ± eß) tor x ^ Th.

By summing over T' g <€h in (1.2), we obtain the following equivalent formula-
tion of the discontinuous Galerkin method. Given k and <€h, find uh g Vh such that

(2.4) ®(uh,v) = (f,v)+(g,v)T,       veV„,

where

(2.5) âS(w,v)=   £   (wß + aw,v)T + {w + - w-,v + )Th + (w,v)T_.
T&<gh
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6 C. JOHNSON AND J. PITKÄRANTA

Using the partial integration formula

(wß> v)T = (w, ">ar+ - (w> v)oT_-(w, vß)T

we can also write

(2.6) SB(w,v) =   £   (w,-vß + av)T + (w-,v-- v+)rh + (w,v)r+.
re«7*

Note that we can replace uh by the exact solution u in (2.4), i.e., we have the
consistency relation

(2.7) SS(u- uh,v) = 0,        uG Vh.

In the error analysis below, we also make use of the following dual variational
problem: Given qp G L,(ß), find <¡>h g Vh such that

(2.8) a(w,4>„) = (<p,w),        w<=V„.
In view of (2.6), <f>h is simply the discontinuous Galerkin solution to the problem

-¿>s + a<b = <p    in ß

\4> = 0 onT + .
Let us now assume that S is a locally quasi-uniform family of triangulations and

let us associate with each e€h g S a seminorm | • \h ñ and a norm ||| • |||Aii8 defined by

\v\lß=   Z  hT\\vß\\2T + ((v + -v-)yTh + ((v))2r,

2 2 ?
IMIIm = HI +l«L,/s.

where ((v))l = (u, i;)s. Then we can prove the following result, which is one of the
main results of this paper.

Theorem 2.1. Let S be a locally quasi-uniform family of triangulations of ß, and let
Vh be defined by (2.3) for each c€h G S and for some given k > 0. Then, there is a
constant h0 depending on k and k such that if u is the solution to (1.1) and
^1/2|lalloo,n < An, the solution uh to (2.4) satisfies the stability estimate

lklllM<c(ll/llo+|l"-i8r/2ïIr.)
and the error estimate

(2.10) \h-uh\\\h,ß<Chk+l/2\u\H^(a),

where the constants depend on Halloa and diam(ß).

Remark. Note that from the error estimate (2.10) it follows, in particular, that

((u-uh))r^Chk + 1/2\u\^>(Q)

or, more generally: we have for any ß' c ß with boundary V such that T_' = T_ that

((«- «A»r< Chk + 1/2\u\n*+\vy

This means that the estimate (2.10) is optimal. (See the Introduction.)
Proof. Following [10] we introduce the weight function

xP(x) = e-y(x-x°)ß,
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ANALYSIS OF THE DISCONTINUOUS GALERKIN METHOD 7

where x0 is a point on 9ß chosen so that ||V'lloo.o = 1- For x G L2(tl), ^et X denote
the L2-projection of x into Vh, i.e., x is defined by

(X-X,«0r-0,       vePk(T),T<=V.
By (2.4), we have

(2.11) ®(uh,^uh) = ®{uh,^uh -Î3») +(/,M) +(g,¡K,)r_.
On the left-hand side we obtain by straightforward computation

#(«*.*«*)=   ("*.(^fl-   2^/g)"*)

+ i(M* ~ uk'Hut - MÂ)>rA + h(uh,ypuh)T.

Choosing y = 2||a||00 + 1 and noting that

-4>fl(x) = yMx) > ye-ydi™w,
we obtain

(2.12) !»(uh,*uh) > C{||M||2 + \{(ut - u-h))2Th + i<<"*»r}.

where C depends on y and diamß. To estimate the right-hand side of (2.11), we use
the standard estimates

(2.13a) Ilx-Xll7-<CA*+I|x|ff^(r),
(2.13b) llx-xll3r<CA$.+ 1/2|xlr,-(r>.
Since |«Ä|w*+i(r) = 0, M\\wi.~(T) < Cy' and \\uh\\H,(T) < ChT'\\uh\\T, 0 < / < k + 1,
we obtain

\i>uh -\buh\\T + hY2\\yl>uh -\l>uh\\aTii Cmax{yhT,(yhT)k + 1}\\uh\\T.

Now setting u = \puh - \puh and recalling that (v,w)T = 0 for w g Pk(T), T g <êh,
we conclude from (2.5) that

&(uh,v) = (iijf - u-h,v+)Th + (uh,v)r_+(auh,v).

By the above interpolation error estimates, if yAr < 1, we have

((^»^«.»^CyA^KII,       ||»||<CyAB«»ll,
so that

\@{uh,ibuh - *^)| « }(K||2 + ({u+h - u-h))\h + «w„>>r) + Cy2^ll"J|2-

Assuming now that  yA1/2 = (2||a||00 + 1)A1/2  is small enough, and combining
(2.11), (2.12) and Lemma 2.1, we obtain

cHklll*., < ®{uh,Tuh) < r( 11/11 +\\v j8|1/2g||rJ|||«j||M,
which proves the asserted stability estimate.

The error estimate follows in a similar fashion noting that

c|K - «IIIm < *(«* - M(«* - ")) - *(« - «>*("* - «))
< CA*+1/2|M|^+i(a)|||uA - ü|||M.

Here the equality is a consequence of (2.7) and the last inequality follows from (2.6)
and (2.13).   D
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8 C. JOHNSON AND J. PITKÄRANTA

3. Finite Difference Analysis. In this section we apply the discontinuous Galerkin
method to the simplified model problem: Find the function u = u(x, t) defined on
R X R+ such that

du du
(3.1) dt +y'dx 0,        (x,t) (=RxR+,

x g R.M0,x) = g(x)
This is obviously a special case of problem (1.1) where ß is a half-plane, a = f = 0
and y = ß2/ßx is a constant. We assume below that 0 < y < 1. The finite element
partitioning <g';,ofß = RxR+is defined in terms of the grid points

x, = ih,       i = 0, ±1, ±2,...,
tn = nh,       » = 0,1,2,....

We set
V= {Tn+,,T„-,n = 0,1,..., i = 0, ±1,...},

where T¡¡¡ is a triangle with vertices at (x¡_1,t„_l), (x¡,t„_x) and (x¡,tn) and T~
has its vertices at (*,-_,, i„_1),(jci_1, f„)and(x., t„) (see Figure 1). Now if u'h(-,tn_x)
is given for some «> lwe can solve (1.2) for uh on any T = T¿¡ and thereafter on
any T = T„7, thus obtaining uk(•, t„). Denoting by Wh the space

Wh = [v e L2(R): B|/( g />,(/,.), /, = (*,_,,*,), / = 0, ±1,...},

we can write the discrete solution algorithm formally as

u'h(-^„) = Ghu-h(-,tn_x),       n>l,

where Gh: Wh -* Wh is a linear operator independent of n, and 7rA denotes the
L2-projection into Wh. We have here utilized the fact that the numerical scheme is
unchanged if g is replaced by irhg, a property that is obvious from (1.2).

To see the structure of the operator Gh more closely, consider the triangles
T„¥j_x, T+ and Tn~ for some given n, i (see Figure 1). Since y g [0,1], we can solve
(1.2) for T = T* once uj,(x, tn_x) is known for x g (x¡_x, x¡). In fact, we obtain for
all i,
(3.3) uh(x,t) = u-h(x-y(t -tn_x),tn_x),        (x,t)<=Tn).

(3.2)

Figure 1

Using (3.3) we can now determine uh on Tni from

àuh        du,

(3.4)
4 (î?+*fc)'*+jL. <".♦—-)•'• »*-<>.

v e Pk(T„~,)-
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ANALYSIS OF THE DISCONTINUOUS GALERKIN METHOD 9

Let us choose here v(x,t)= w(x - yt), where w is a polynomial of degree < k on
R. Then dv/dt + y dv/dx = 0 and we obtain by partial integration in (3.4) that

1 u~hvv ■ ßds =  / u~hw • ßds.

Noting that v ■ ß ds = a dx on 97^ with a a constant, and recalling (3.3), we further
obtain

/ '   Wh(x^n) - uh(x - yh,t„_x)}w(x - ytn)dx = 0.

Since w is here an arbitrary polynomial of degree < k, we conclude that Gh is
defined by

(3.5) Gh = n„G,

where G denotes the corresponding exact solution operator:

(3.6) (Gv)(x) = v(x-yh).

We may interpret (3.2) as a finite difference scheme by introducing the notation

U"(x)=[Ux"(x),...,Uk"(x)]T,
U"(x) = u~h(x,tn),

U{(x) = h^-(x,tn),

,   %        i d ul ,        .
Uk"+x(x) = hk—f(x,tn),

dxk

where x g {xi+x/2 = (i + 1/2)A, i = 0, ±1,...}. Obviously, U"(xl+x/2) defines
u'h(-,tn) uniquely on the interval (x¡,xl + x) and vice versa. Since u'h(-,tn) is
determined uniquely on (jcí_1,x¡) when u~h(-,tn_x) is known on (x¡_2,x¡), (3.2)
corresponds to a difference scheme of the form

(3.7) U"(x) = AxU"-1(x)+A2U"-l(x- h) = (EU"~l)(x),        x G R,

where Ax and y42are(rc + l)x(rc + l) matrices, and we have made the usual
extension of the scheme to all x g R. The matrices depend only on the parameters y
and k, so the operator E defined by (3.7) is translation-invariant.

In the case k = 0 we have

Ax = 1 - y,        A2 = y,

i.e., (3.7) reduces to the ordinary upwind scheme in this case. If k = 1, one has

1 -ÍY        \ . 1 1(1 "Y)A.    = v I
6y    l-2y-2Y2!' 2       1-6(1 - y)     -3 + 6y - 2y:

Below we confine our attention to the case k = 1. We let S„, n ^ 0, be defined by

s„=U(3r„,)+=U(97;-)_.
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10 C. JOHNSON AND J. PITKÄRANTA

Also, we let ß = (1, y), so that

y, x^(dTn-l)_n(dT;j_x) + ,
ll"ß{x)l    'l-T,      xG(9rn7).n(9r-)+.

We also introduce the parameter p defined by
p = y(l - y).

The main purpose of this section is to prove the following

Theorem 3.1. Let k = 1 and let uh be defined on R X R+ by (3.2) through (3.6).
Then there is a constant C such that for all n, p, n ^ 0,1 < p < oo,

(3.8) lk(-,ÜlU<C||g|L„R
and

(3-9) \\vß(ut-u-h)\\p,Sn = C(p/n)1/2\\g\\pM.

The proof of Theorem 3.1 is based on Fourier analysis of the finite difference
scheme (3.7) and is split below into several lemmas. We begin by introducing the
Fourier transform

L>"(|)=  H   e-xiUn(x)dx,       (eR,
•'-oo

which allows (3.7) to be written as
û"(0 = Ê(hi)ûn-\i),

where È(6) = Ax + e~'eA2. Below we use a vector norm | • | defined by
2V\ = \\v \  + — \vv I      \\vi\   +  n \v2

1   ...  ,2\1/2

12 2

where Vx and V2 may be real- or complex-valued. The reason for using this norm,
as will be seen in Lemma 3.2 below, is the obvious relation

|r| = HL2(o,n,       v(x)= Vx+ K2(x-i),xe(0,l).
If A is a 2 X 2 matrix, we set

I AV\
\A   = sup -1--.

Further, if V = (VX,V2)T is a. vector-valued function defined on 5 c R, we denote
by ll^ll^.s or by II^IL (s» a norm of V defined by

II^IUS = ll'/llMS) = ||in-)l||Ms,.
Similarly, if A is a 2 X 2 matrix with coefficients real- or complex-valued functions
defined on S c R, we set

MI|,.s-Mlli,<s>-|M(-)llk<«-
Let [Lp(R)]2 denote the space of vector-valued functions V = (Vx, V2)Tdefined on

R such that Vi g ^(R), / = 1,2, and let £ be a linear translation-invariant operator
defined on the whole space [Lp(K)]2 for some p, 1 < p < oo. Denote by ||£|L the
norm of E defined as

\\E\\p=       sup      ——-.
^g[z.„(R)i2 \\y\\pjt

K#0
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ANALYSIS OF THE DISCONTINUOUS GALERKIN METHOD 11

Assume further that the Fourier transform of EV, F g [Lp(R)]2, as defined above,
is given by

(ÊV)(Ç) = Ê(hè)V(t),       leR,
where A > 0 and E(0) is 2w-periodic. Note that the operator E, defined by (3.7),
satisfies these assumptions for any p.

The operator norm ||£|| can be estimated using the following lemma, which
states the well-known Carlson-Beurling inequality (cf. [4]). In the lemma, x denotes
a smooth function defined on R such that x(#) = 0 for |f?| > 37r/2 and x(#) = 1
for |0| < it.

Lemma 3.1. Under the above assumptions write Ë(6) = e~'a9E(0), where a g R is
arbitrary. Then \\E\\   = M (E(6)), where the latter can be estimated as

«,(£(«)) <C||x£L,(» 5?<*£>
1/2

In order to prove the stability estimate (3.8), we obviously need an estimate for the
translation-invariant operator E": U° -* U" defined by (3.7). We prepare the
situation so that Lemma 3.1 can finally be used. An essential step is then to estimate
the growth rate of E(8)n = (Ax + e~'eA2)" as n increases. If E(6) has two linearly
independent eigenfunctions associated with the eigenvalues \x and \2, we can use
the usual splitting
(3.10) Ên(6) = D-x(d)i\(0)"D(0),       » = 1,2,...,
where A(0) = diag{ A,, X2}. However, since E(6) is nonsymmetric and depends on
both y and 6, it is difficult to prove the existence of the diagonalizing matrix D in
(3.10) in general. Therefore, we use below the splitting (3.10) only for small |0| and
near the points (6,y) = (±7r,0) and (6,y) = ( + 7r,l); for the remaining values of
the parameters, as it turns out, it suffices to estimate the matrix norm of Ê(6).

The essential properties of E(6) to be required in the subsequent analysis are
established by the following three lemmas.

Lemma 3.2. There is a positive constant k such that Ê"(6) admits the representation
(3.10) in the range (6, y) G DK = [-k, k] X [0,1]. The eigenvalues of E(0) are smooth
functions of y and 6 in DK and satisfy

X, = expl-iyO - a(y)p64 + o(p\0\^

X2 = exp{-cp + 0(p|0|)},

where a(y) is strictly positive for y G [0,1] and c is a positive constant. Moreover,
\D(6)\ and \D'l(0)\ are bounded by a constant for all (6,y) G DK.

Proof. For a given y G (0,1), let X(6) be an eigenvalue of Ê(6) and write

X(6) = e-i« + pi = (1 - 4>V + PÊ = 1 - Y<f> + pMy.*) + *1.
where we have introduced the new variable <f> = 1 - e~,e. For any y g [0,1], \p
admits the series representation

+ (y-+)--£2T(kVl)T(2-y)*
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12 C. JOHNSON AND J PITKÄRANTA

which converges in the open unit disc |d>| < 1. Thus if is an analytic function of d>
on the open unit disc and so if = \b(y,<b(0)) is a smooth function of 6 on the
interval [-c, c] for any y g [0,1] and c < tt/3.

Denoting by I the identity matrix, we obtain, using the above notation,

My,*)-t 2<S> \
-6<b -6+(4-2y)<f> + ^-êj'

Using the series representation of >//,we further obtain, after a straightforward
computation,

Det(£(0) - X(0)I) = |2 + ax£ + a2,

where ax and a2 are smooth functions of y and ¿> behaving for small |¿>| as

ax = 6 + 0(|*|),        a2 = ¿(l - y + y2)<í»4 + o(|¿.|5).

Thus, the eigenvalues behave for small |¿>| as

a, = e-1* - p[c(y)<t>* + bx(y,<h)],        X2 = e~^ - p[6 + My,*)],

where c(y) = ^(1 -y + y2)>0 and bx and b2 are smooth functions of y and d>
in the range y g [0,1], |d>| < k, k small enough, with bx = 0(|d>|5), b2 = 0(|<f>|).
Recalling that ¿> = id + 0(62), we obtain the asserted representation of the eigen-
values for small |¿>|.

The eigenvectors corresponding to the eigenvalues Aj and X2 are given respec-
tively by

K1 = Ij \ + 0(62),       K2=i^öj + 0(t,2),

so that

(3.11) D{6) = {]e li[6) + o^2y

This proves the assertions concerning D, so the proof is complete.    D

Lemma 3.3. There is a positive constant k such that E(0) allows the representation
(3.10) in the range

DK= {(0,y)G [-77,7r]x[0,l]: y(l - y) < k, tt - \B\ < k) .

The eigenvalues of E(d) are smooth functions of y and 6 in DK satisfying

|a1i2| <<?-<",       M)ei,,

where c is a positive constant. Moreover, \D(6)\ and \D~1(6)\ are bounded by a
constant for all (6,y) G DK.

Proof. By a straightforward computation, the eigenvalues of E(0) are given for
small y by

XU2 = 1 - [2 + e-e + yax(y,6)\y +{4+ \Qe~'e - 5e~2ie + ya2(y,6)}1/2y,

where ax and a2 are smooth functions of y and 6. By inspection, if k is small
enough, the eigenvalues are smooth functions of y and 6 in the range k < \6\ < tt — k
and satisfy |X12| < e~cy, where c is a positive constant. Moreover, near the points

Ê(6)-X(6)I = p
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ANALYSIS OF THE DISCONTINUOUS GALERKIN METHOD 13

(y, 6) = (0, ±77) the matrix D in (3.10) is given by

which shows that \D\ and |D_1| are bounded in the range y < k, tt - \d\ < k, k
small enough.

The case where y is close to unity is handled similarly.   D

Lemma 3.4. Let 0 < k < \. Then there is a positive constant c depending only on k
such that

\Ê(0)\ < é>-cp,    if k <|0| < tt - Kandy g [0,1],
and

\Ê(6)\ < e'c    if k <|0| < 7ra«i/ max(y,l - y} ^ k.

Proof. We need first some notation. For K a vector, set IF = E(6)V and define
the functions p, w and z on [0,1] as

v(x) =VX+ V2(x - \),       w(x) = WX+ W2(x - |),

,   .       I e~'ev(x + 1 - y), 0 < x < y,
li>(* - y), y < x < l.

It follows from the definition of ¿(0) (see in particular (3.5) and (3.6)) that w = ttz,
where tt denotes the L2-projection into the space of polynomials (with complex
coefficients) of degree < 1 on [0,1]. Note that ||z||L [01] = |M|r_o(0,i] and that z is a
polynomial only if either p = 0 or if e~'e = 1 and V2 = 0.

Assume now that k ^ |f?| < tt — k. Then, since Im(e ,e) is strictly nonzero, it is
easy to verify that for any polynomial p of degree < 1 one has the inequality

max{ ||z - p \\L„[o,y), U-P lli.ri-r.ii) > C\\ v ||^[0il],
where C is a positive constant depending only on k. Setting p = ttz, it follows easily
that

2 2 2
||ttz — z || ̂ ¡0,1] > C min{ y, 1 - y } || v || jr,j[04] ̂  Cp|| u || ta[0>1j.

By a similar reasoning, if \0\ > « and p > k, k > 0, there is a positive constant
depending on k such that

2 2
Ikr -z|U2[o,i]> C|klU2[o,i]-

Combining the last two inequalities we have
„22 2 2

\E(6)V\   = ||w||L2[o,i] = Ilz||Lï[Q<l] - ||z - ttz\\Li{0A]

II     II2 lr/12< 9MI/.2[0,1] = tf|F|   ,
where q = 1 - C(ic)p if 0 < k < |0| < w - k, and 4 = ^(k) < 1 if 0 < k < \6\ < w
and p > k. Since this is valid for any vector V, the proof is complete.   D

Remark. From the proof of Lemma 3.4 one might think that the inequality
\Ê(6)\ < e~cp holds whenever \6\ > k, independently of y. That this is not true is
seen by choosing v(x) = x - \ and 6 = +tt. Then

hz - z\\LAo.i]*i\\v - z|U2[o.i]= 0(p3),
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14 C. JOHNSON AND J. PITKÄRANTA

which shows that one can only have (and in fact has!) the estimate

\Ê(6)\ <É>-C>\        |0| >K,y G [0,1].
This is why Lemma 3.3 is needed (see below).   D

In the next lemma we combine the estimates of Lemmas 3.2 through 3.4.

Lemma 3.5. Let Ë(6) = e'y6E(6). Then there are positive constants C and c such
that for all n > 1 and 6 G [-tt,tt],

\É(6)"\ ^ Ce-^,

4ßE(d)n   < C(l + pn\0\3)e-cp"e* + C(l + prc)e-'p".

Proof. Choose k > 0 so that the assertions of Lemma 3.2 and Lemma 3.3 hold.
Using the representation (3.10) together with Lemma 3.2 and Lemma 3.3, we then
obtain

\Ë(er\<ci\\,(ê)\H,
1 = 1

2

deË(ey <Cl(|X,(ö)f+^[^X,(ö)]"
í = 1 ^

where X, 2 are the eigenvalues of E(6). From these estimates and from Lemma 3.2
and Lemma 3.3 the asserted estimates follow ifK<|f?|<7r-Korif7r-K<|f?|<77
and max{y, 1 — y} > k. In the remaining cases, we use Lemma 3.4 to obtain

cWÉ(ey < n
»*« l¿(»),n-i

de [eiy% + e^-^"A2] \Ê(8) i"-i

i«-i*iCpn\E(0)\       ^C'pne-lpn.

This completes the proof.    D
We are now ready to apply the Carlson-Beurling inequality for proving (3.8).

Choosing a = yn in Lemma 3.1 we conclude that

(3.12)
where M (Ë") is estimated as

|l/"|L,,r<m/,(/>)||i70||;,,r,      l </,<«,

dex" £2(R),

1/2

Mp(E")^C{\\XE"\\LARy

f]

X¿1|12(R)< Cp"1 e-«"*dB * Cimin{l,(p«)-1/4}

Using the estimates of Lemma 3.5 it follows that
„2 _ /-3tt/2

'0

and
|2

deXE" ^ C P"/2 i\\ +(pn)2\e\6\e-^"BA +\l +(pn)2]e-cp") dO
£2(R) ■'0 <• >

<cJl-r-(P„)1/4].
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ANALYSIS OF THE DISCONTINUOUS GALERKIN METHOD 15

Thus, Mp(Ë") is bounded by a constant independent of p and n. The estimate (3.8)
now follows by combining (3.12) with the obvious estimates

IM-,OIU< c||t/1„,,     ||í/0ILr< c||g|LR.
It remains to prove (3.9). To this end, we will estimate the vector-valued function

W" defined by

W" = (WX",W2")T,        Wx"(x) = Ux"(x) - U{'(x - A) - U2"(x),

W2"(x)= U2"(x)- U2"(x-h),        xgR.

Here U" = (U",U2)T is defined by (3.7). Let us first show that it suffices to
estimate W".

Lemma 3.6. There is a constant C independent of y and n such that

\\v ■ ß(u+h  - u-h)\\p,Sii*i Cp\\W"\\p».

Proof. Let v, be a polynomial of degree < 1 on R2 such that (uh - v¡)lT+ = 0 (see
Figure 1). In the subdomain un = {(x, t): x g R, tn_1 < t < t„) we may interpret
wh = uh - vi as the discontinuous Galerkin solution to the problem

du du      .    . , \     i   -        \i \
~97+Y9x mW'"       uV'tn-i) = (uh-"i)(-^n-i)

on the triangulation ^*={re ^*: Tcz un). Since uh - v¡ vanishes on T¿¡, we
obtain by applying Lemma 2.1 and (3.3) that

\\p • ß(ut   - U~h) t,07-,-)_=|l" ' ß[("h - 0+~K - "/)"] \\p.(oT-,)_

K Cy\\ul - y/IUor.-i.nor;.,^).

<   CXy\\(u~h    -   DlK-.'ll-lîllv*!-!.*!-!)

and similarly,

\\V •  ß(ut   -   U-h)\\pÁ3T-:)=\\v ■ ß[(uh  -  V^x)+~(uh -  V,_x)~]  \\p,(aT-,)-

< C(l - y)||(«¿ - v¡_x)(-,tn_x)\\Lp(x¡^,Xi).

On the other hand, it follows from the definition of W that W" vanishes on the
interval (*,_,,x¡) if and only if u'h(-,tn^x) is a polynomial of degree 1 on the
interval (x¡_2,x¡), i.e., if u~h(x, t„_x) = v¡(x) = v¡_x(x) for x G (x,_2, x¡). From
this it follows easily that

|«ií(-.'.)-«'íllt,("-2.*.-.)<cllwr"llM*/-i.*«)
and

Combining these inequalities we obtain

\\v ■ ß(u+h - u-h)\\pm:i)^Cp\\W"\\Lplx^x¡).

This proves the assertion for p = oo, and for p < oo it remains only to sum
over i.    D
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16 C. JOHNSON AND J. PITKÄRANTA

Let us now complete the proof by estimating ||W"|| . Note first that the Fourier
transform of W" is given by

W"U) = B(hÇ)Û"(t) = (BÊ")(ht)Û°tt),
where

BW-l1-''" -1
\      0 l-e-

Assume first that |0| is small enough. Then using the diagonalization (3.10) of E(6)
and recalling (3.11) we obtain after a simple computation

BE   — XXHX + X2H2,

where Hx = 0(62). Therefore, using Lemma 3.2, we conclude that for |0| < k, k
small enough,

\BË"(e)\ < C(e2e-cpne4 + e-cp"),

i5\±BÉ'(0) < C e\ + pn\e\ )e-c""tf4+(l + pn)e-cp"

Using a similar argument as in the proof of Lemma 3.5, we conclude that these
estimates remain valid also for k < \6\ < tt. We can now apply the Carlson-Beurling
inequality to obtain

ll»rIU<^(^")ll^°L*
where M (BE") is estimated as in Lemma 3.1. An easy computation shows that

Mp(BË") < C(pn)-l/2.

Combining the last two estimates with that given in Lemma 3.6 we now end up with
(3.9), and the proof of Theorem 3.1 is complete.

We conclude this section by stating a stability estimate for the discontinuous
Galerkin method applied to the problem

9«        9" /      \     ^
(3.13) ¥+^=°<        <*''>Gß»'

u = g,       (jc,0e(90j_,
where y g [0,1] and ß„, « > 1, is the triangle

ß„ = {(x,t); 0 < t < tn = nh,0 < x < t).

Let the triangulation (€h of ß„ be defined as the restriction of the above triangula-
tion of the half-plane to ß„, let k = 1 and let uh be defined according to (1.2) on
each T g (€h. Then we have in analogy with (3.8) the following stability estimate.

Theorem 3.2. There is a constant C such that for all n > 1 and 1 < p < oo,

II«*(•.'■) IL,(o,o + IIuhh.a. < cll" ■ ßsIUbo.).-
The proof is based on the following localization result.

Lemma 3.7. Write the solutions of (3.7) as
+ 00

U"(x)=     I   BnjU°(x-jh),        xGR.
j- -oo
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Then the matrices Bnj satisfy

|^|<Cmin(l,(p«)-1/4,[l+(pn)1/4](;-y«r2}.

Proof. Using the Fourier transform E(6) of Gh we have

1    rBnj=j^l   E(e)"e^d6.

By Lemma 3.1,

Bnj\ < j^f e-<p"e4de < Cmin{l,(p«)-1/4}.

On the other hand, integrating by parts and using the periodicity of E(6), we have

1    rb.= J- S Ë(e)"ei(j-"y)6de
"J      2tt j_„

1 r df   ^-[Ë(e)"\e^-"y)6d6.
J—   rlttlV      V    '    J2tt(j — ny)    -* ¿^

From the argument used in the proof of Lemma 3.5, it is easy to see that

d2
de

\È(e)"\ < c[(i + pne2 +(pn)2e6)e-ipnei

+ (\ + pn+(pn)2e'ipn)\,       0<|c?|<7r.

Using this estimate we obtain

\Bnj\^c[l+(pn)l/%-yn)-2,

and so the assertion is proved.   D
Remark. Localization estimates similar to those given by Lemma 3.7 are pre-

sented, e.g., in [3], [5] for scalar difference schemes. When compared with these
estimates, Lemma 3.7 indicates that on a uniform mesh, the discontinuous Galerkin
scheme with k = 1 behaves like a finite difference scheme which is accurate of order
three and dissipative of order four.   D

Let us now prove Theorem 3.2. For 1 < m < n, define

8m(x,t) =
g(x, t),    if (x,t)<= (9ß„)_ and tm_x<t< tm,
0, elsewhere on (9ß„)_.

Then

«*(-M») =     Z»lm(x,t„), 0<X<tn,
i=l

where uhm denotes the approximate solution of (3.13) with g replaced by gm. Now
let m be given 1 < m < n, and define for m < r < n the vector-valued function
i/'-monRby

Urm(x) = (\ /im / \

*<+l/2»'r/» dx    \X' + l/2' *r' X,< X < Xi + l>
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18 C. JOHNSON AND J. PITKÄRANTA

where we set uhm = 0 outside ß„. Then Ur~m = Er~mU°, where E is as in (3.7) and
U° is nonvanishing on the intervals (x0,xx) and (xm_x,xm) only. Moreover,
applying Lemma 2.1, we have the estimates

||í/°lk<*0,*,)< Cy\\g(0, •)l!z.«(i„,_I.r„,)< Cyl! g IL,,™,,).,
and, similarly,

||t/0||^(,m_1.,,„,<C(l-y)||gL,(3i2ii)_.

On the other hand, by Lemma 3.7 we have

q\U'-m(x, + x/2)\ < qx(n - m,i)\u°(xx/2)\

+ q2(n - m,i)\u°(xm^x/2)\,       0<i<« - 1,

where qx and q2 satisfy

qx(r,i) < Cmin{l,(pr)-1/4, [l +(pr)1/4](t - yr)"2},

q2(r,i) < Cmin(l,(pr)-1/4, [l +(pr)1/4}(m - 1 -, - yr)~2}.

Combining the above inequalities and summing over m we now obtain

llW/i('> ln) \\L„(x„xí+1)
(3.14) (    °° °° \

< C||g||».on„>_ y E ?,(r, i) +(i - y) E ?2(/-.0 ■
I     r=0 r = 0 /

Using the above estimate for qx(r, i) we may estimate the first sum on the right side
of (3.14) as

00

Y E 4i(r,0 < Cy      E      min{l,(p/-)"1/4)
m=0 r:\i- yr|<t/

+ Cy     E      [l+(pr)1/4](/-yr)-2.
r:|i—yr\>d

Choosing here

d = max[l,(p//y)     j,

it is easy to see that both sums on the right side are bounded by an absolute
constant. Upon estimating the second sum on the right side of (3.14) in a similar
manner we now obtain

l|"Ä(-,'n)lk„,(0,*„)< C||c?L,(3ß„)_, n> 1-
Combining this estimate with the local estimates given in Lemma 2.1, the assertion
follows in the case p = oo. The case p = 1 can be handled in a similar manner, and
finally the remaining cases can be treated by interpolation [1]. We omit these details.
D

Remark 3.1. In the above analysis we have confined ourselves to the case k = 1.
The case k = 0 is more elementary, and one can easily verify that the estimates
stated in Theorems 3.1 and 3.2 are valid also in this case. Note that if k = 0, (3.8)
merely states the well-known /.^-stability of the upwind finite difference scheme, cf.
[4]. So far we have not been able to carry out the full /^-stability analysis of the
scheme (3.7) when k > 2.    D
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Remark 3.2. Using the stability estimate (3.8) one can perform an ordinary finite
difference error analysis of the discontinuous Galerkin method when applied to
problem (3.1). As an example, let us estimate the error of uh(-,tn) for some choices
of initial data assuming that k = 1 and n < CA'1.

Case 1. Let us first seek a scheme of maximal order of accuracy by choosing the
initial data as

U°(x) = (g(x),cxAhg(x) + c2A2g(x)),

where Ahg(x) = g(x) — g(x — A) and c, and c2 are constants to be defined shortly.
We have for the discrete solution U

Û"tt)=[Ê(hu)}"Û°tt).
Correspondingly, we have for the exact solution, defining

W"(x) = (u(x, t,,),cxAhu(x, t„) + c2A\u(x, t„)),

that
W"(Z) = e-'ynhiW°(i) = e-iynhtÙ°(è).

Let us now choose the constants cx and c2 so that <7°(£) = g(£)[F(£) + 0(|A£|3)],
where V(i-) = (1, V2(i-)) is the eigenvector of Ê(h^) corresponding to the eigenvalue
X,(£) = e-'yhi + 0((A£)4)- From the proof of Lemma 3.2 we obtain

q = l,        c2=H2-y).
With this choice we have, for nh < C,

W"U) - Û"U) = e-iynhiW°(i) - XxU)"V(è) + 0(|A||3)

= [e-'^-X1(Ol^°(0 + 0(|A||3)

= 0(hY)rV°U) + 0(\he\).
This leads to the error estimate

|"(*,+i/2,Ü - "a~(*, + i/2>Ü| < CAlgll^.^,
so with a proper choice of initial data, the scheme is accurate of order three.
Obviously, the high accuracy can only be achieved at discrete points; if the error is
measured in the norm || • ||  R, a finite difference analysis only gives

IK«- "â)(->OILr< cA||g||„,2.,(R),
which is an estimate typical for first-order schemes. We see below in Section 4 that
the latter estimate can be improved by using the improved stability estimate (3.9).

Case 2. Let the initial data be chosen as

U°(x)^([TThg(x),h^(TThg)(x)]j,

which is the choice made by the usual discontinuous Galerkin scheme. Then

\\u°- ^°IU<CA2||g|L3,(R),
which gives

|(" - «;)(*,+i/2.0| < cA^gH^-ci,,.
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To sum up, we have for k = 1 and n < CA \

|(k- uk)(xi+1/2,t„)\ < CAJ||g||^..*(R),

where s = 3 with a special choice of initial data and s = 2 with the usual choice of
data. Moreover, for (essentially) all choices of initial data we have

IK« -"*)(•> tn)\pjn<Ch\\g\\w2.rIK), K/XGO. D
4. L^-Error Estimates. We now apply the results of the previous section to derive

Lp-error estimates for the scheme (1.2) in the case where c€h is a uniform or
piecewise-uniform triangulation of ß and either k = 0 or k = 1. In the case of a
uniform triangulation we will only need the estimates of Theorem 3.1, whereas if the
triangulation is only piecewise uniform, also Theorem 3.2 will be required (in the
case p = oo ). The results below are thus valid for any value of k for which the
estimates of Theorem 3.1 and 3.2 can be proved.

We will need stability estimates analogous to (3.8) and (3.9) for the discontinuous
Galerkin method applied to the problem

uß + au = f    in ß,
(4.1) 1 u = g on 9ß.

where a e ¿„,(12). To generalize the situation stepwise, let us first assume that ß is
still the half-plane, with uß = du/dt + ydu/dx and y g [0,1] as above and with the
triangulation c€h defined as in the previous section. For each A we further use the
notation

w„ = {(x,t): xeR,/H <t< t„},
a„={(x,r):xeR,0 <t<tn),

r„= U sm,
m = l

where tn = nh and Sm is defined in Section 3. We now prove

Theorem 4.1. Let (êh be as above and let uh be the approximate solution of (4.1)
defined by (2.4) with either k = 0 or k = 1 and with h\\a\\xn sufficiently small. Then
we have for all n ^ 1 and 1 < p < oo the estimates

||"*(->ÜlL>.R+IKII/,,ß„
^cM^r^i/iu+iigiu),

and

\\r ■ ß(ut - u-h)\\pS„

< CM2q"\hl-^"n^(hnf-l/p\f\\p,a, + »^"^"^HglU],
where M = 1 + llalla r¡, q = 1 + CMh and C is an absolute constant.

Proof. Let us derive first some local estimates for uh on <o„. Applying repeatedly
Lemma 2.1 to the triangles 7^;_,, T¿ and Tn~ (see Figure 1), we see that

KIU + A1/1^-(-,'n)||M,,_1,,,) + hV\\v ■ ß(ut - u'h)\\pm_
< Ch\\f\\p,Ki + Chl/»\\u-h(-,tn_x)\\Lp(x,_2,Xi),
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where K¡ = 7^,_, U T¿¡ U Tni. For p = oo this implies immediately that

(43) ll«*L-. + *1/1«í(-.OlU + *l/1'"i8(«í-«í)IUs.
<CA||/L,i + ca1/ÍMa-(.,í„_1)||/,,r,

and for 1 < p < oo the same estimate readily follows by summation over /'.
It is easy to sharpen the estimate for uj,(-,tn) in (4.3) by writing

(4-4) u-h(-,tn) = Ghu-h(-,tn_x) + vn(-,tn),       n>\,

where Gh is defined by (3.4) and (3.5). By linearity, u„ is the discontinuous Galerkin
solution on u>n to the problem

9w   ,     9vv      , ,      x
Jf +y~fa  =fn>       (x,t) g u„,

k«(-.i.-i)-0,

where /„ = / — a«A. Thus, by (4.3), r;n satisfies

k(^OIU<c«1_1/1/JU
<C1M(A||iiï(.,/1I_1)||,it + Al-1/'||/||,i-J.

Upon solving for w^ in (4.4), we get
n

«¿(•,U = E G*-1Wy,       wy = i>,.(-,rv.),       ;>l,w0 = g.
7 = 0

Applying here (4.5) and recalling that, by Theorem 3.1,

\\G"hg\\P,R < C\\g\\pM,       g g Lp(R), n > 1,1 </> < oo,

we see that for any n > 1,
n-l

lk(-,Ol,R< CMA E lk(-,OIU + c^a»)1"1^!/!!,.«,..
7 = 0

The iteration of this inequality now gives

ll"^(-,'JlU<C(l + CMA)"[M(A«)1-1/l/||/,,i2„ + ||g||/,,R],
which proves the first estimate in the theorem.

In the remaining part of the proof we use the splitting
n

(4-6) Uh=     E   "*«, (X,t)& ß„,
m = 0

where for m > 1, MAm denotes the discontinuous Galerkin solution to the problem

d\v_ + ^w = If- auh,        (x,t)(Ea„
3'        dx      \o, elsewhere on ß,

"(•,0) = 0,
and uh0 is the discontinuous Galerkin solution to 9w/9? + y9w/9x = 0 in ß,
w(-,0) = g. Since uhm obviously vanishes for t < tm_x, we have by (4.3) that for
m > 1

(4.7)     \\v ■ ß(u+hm - «;m) t.sM +lk»(-.Üll,ji < CA^1/p||/- a«J|,,u„.
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Now Theorem 3.1 implies that for j > m ^ 1,

Ik • ß("L - «j-JIU < C(j - m)-X/2h'-^"\\f - auh\\p.»m,
and

\\v ■ ß(u+h0- uM)\\p.S] ^ Cj-^2\\g\\pA.

Combining this with (4.7) and summing over m, recalling (4.6), we have

\\v ß(u+h -«Ä)|U,r„<c[A«1/2||/-UWJ|00,ß:i+||g||ooJ,
and

n

Y.V ■ ß« - uh)\x,Si=\v ■ ß(ut - u-h)\XXn
7 = 1

<C«1/2[||/-aMJ|S2„+||g||1J.

When combined with the estimate already proved for Ht/Jl^n , these inequalities
prove the second estimate of the theorem in the cases p = oo and p = 1. The
remaining values of p can be treated similarly, and so the proof is complete.   D

Let us now return to the original situation of Eq. (1.1) where ß is a bounded
convex polygonal domain. We assume first that ß allows a uniform triangulation,
which obviously is possible only in specific cases. To simplify the notation, let us
reduce the situation to that of (4.1) by introducing the affine mapping F: R2 -* R2
with the following properties: (i) if ß = F(ß) then ß2/ßx g [0,1], (ii) if Tg <ëh
then for some n, 0 < n < CA"1 diamß and for some i, F(T) has two of its vertices
at the points (ih,nh) and ((/' - l)A,(n - 1)A) and the third vertex either at
((/' — l)h,nh) or at (ih,(n - 1)A). It is obvious that such a mapping exists and is
nonsingular. Moreover, if we write v(F(x)) = v(x), x g ß and ß = F(ß), it is easy
to see that ùh is the discontinuous Galerkin solution of the transformed problem

ß ■ V« + au = f    in ß,
ü = g   on 9ß_,

on the triangulation {f = F(T): le (êh). Note also that C_1 < |/3| < C and that
the error estimates to be proved below are invariant under the transformation F.
Thus, we may as well consider the transformed problem. Below we suppress the
tildes for simplicity, i.e., we write ß instead of ß, uh instead of üh, etc. Moreover,
we use the coordinates (x, t) instead of (xx,x2) and denote by Jth the uniform
triangulation of the half-plane {(x, t): xeR, / > 0} such that <ëh = {T <=Jíh:
Ici!}, i.e., M h coincides with the triangulation c€h referred to in Theorem 4.1.
We also use the notation

Z>,= {xeR: (*,*,.) eß}.
We can now prove

Theorem 4.2. Let the domain ß and the triangulation <êh = J(^ü be as above, let u
be the solution of (1.1) and let uh be defined by (1.2) with either k = 0 or k = 1.
Assume further that AH^H^ n is small enough and that A1/2^^ a < C. Then we have
the error estimates

II" - uh\\p,a < CAi'2A/í+1/2|m|^*+i./>(í2),       1 <p < oo,
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and

maxJ\(u-uh)(-,tj)\lDj

^t,Jhk+1/2\u\>vk+Up(a)> P>2,
< CM {

(A*+1"1/1«ln**i*(0).       Kp<2,

where M = 1 + llalla ß and C is a constant depending only on diam(ß).

Proof. Let n be sufficiently large so that ß c ßn = {(x, t): x g R, 0 < t < nh)
and let y g L,(ß„) be such that <p vanishes outside ß. Define the function <¡>h on ß„
so that <j>hW g Pk(T), T G J(h, and

f v(-<t>hß + a<bh)dxdt+ (     v-(<b~h - 4>¿)v ■ ßds

(4-8)
dxdt,       T <^J(h,T atin,

where <¡>¿ = 0 on (9ß„)+ and a = 0 outside ß. Via the simple coordinate transfor-
mation t -* nh - t, <bh becomes the discontinuous Galerkin solution of the problem
(4.1) with ß = ß„ and f(x, t) = <p(x, nh - t) and g = 0. Thus, by Theorem 4.1 and
since n < Cdiam(ß)A"\

(4.9a) lkJ,.a.<CM||<p||,,0,

(4.9b)      \\v ■ ß(ti - 4>-h)\\pSn < CMWi-V'Ul,o,       <P\n e ¿,(0)-
Let us now sum over T c ß in (4.8) to obtain

@(v,<?h) = (<p,v),       v<EVh,

where Vh is as in (2.3) and 36 is defined by (2.5) or equivalently, by (2.6). Choosing
here v = uh — ù, where ù^Vh is an interpolant of u to be defined below and
recalling (2.7), we obtain

(4.10) (uh- ~u,<f) = @(u- u,<bh).

Let us define the interpolant by requiring

(4.11a) [ (u-u)vdxdt = 0,       v g Pk_x(T) (if k = 1),
JT

(4.11b) f(u-ü)vdx = 0,       v^Pk(l),T^(gh,Ji

where / is the side of T which is parallel to the x-axis. It is easy to see that ü is
uniquely defined so far as « G IF11. Applying the Bramble-Hilbert lemma [2] we
obtain by standard reasoning the interpolation error estimates

II" ~ "IUr< Chk + l\u\Wk+i.P(T),

II" - "ll/>,3r< Chk + 1~1/p\u\wi<+i.p(T),       1 </? < oo,

where C depends only on k and k.
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Now by (2.6) and (4.11a),

3S(u -Ü,</>,,) =  f     _ (u - Ü)-(<fh - <bt)v ßds
J(Tnníl)\dQ_

+ I a(u - ü)<¡>hdxdt,

where Tn is as in (4.2). Applying on the right side the Holder inequality, (4.9) and
(4.11), and recalling (4.10), we have

[ (u„ - ü)wdxdt < CM2(hk + l/2 + ||a|L,a^ + 1)l"U><J<plU,

where 1/p + \/q = 1. Since this is valid for any w such that œ^a G Lq(Q), 1 < q <
oo, and since \\a\\xQh1/2 ^ C,by our assumptions, it follows that

II"a - ü\\p,a** CM2hk+1/2\u\W2.P(Q),       1 </> < oo.

Recalling the estimate for \\u - ö||   a and using the triangle inequality one obtains
the asserted estimate for \\u - uh\\p^.

The remaining estimates are proved in a similar manner by first introducing a
function w g L,(R), replacing the right-hand side of (4.8) by

f wvdx,       rel'jcß,,

and then proceeding as above. We omit the details.   D
We consider finally a more practical situation where the triangulation e€h in (2.1)

is only piecewise uniform.

Theorem 4.3. Let <€h be a piecewise-uniform triangulation of ß generated by #
and let otherwise the assumptions of Theorem 4.2 hold. Then if u G W ,p(Q),
1 < p < oo, we have the error estimate

^ (Chk + l-^P\u\w^,w,     ifl^p^2,

II""   Udp-^ \chk^2\u\wk+,PIÜ), */2</><oo,

where C depends on 'S and on \\a\\xü.

Proof. For K g <é, let u* be the local discontinuous Galerkin approximation to u
on K defined by (1.2) for T g <gh, T c K, with u'h replaced by u on dK_. Then
uh\K = uh + Dh> where uf is the discontinuous Galerkin solution to the problem

<pfl + aw = 0    in #,
(4.12) *w = uh — u    on 9.rv_.

Applying Theorem 4.2, we have

II " -  "/, L.ÄT < || " - Uh   Wp.K + || Vk  \\p,K

< CA*+1/2|M|^*+i.,(a) +11^11^,^,       1 <p < oo.
Assume for a moment the further estimates

(4.14) \\vKh\\p,K^Clvß(u-u-h)\\pjK_,        K^V,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ANALYSIS OF THE DISCONTINUOUS GALERKIN METHOD 25

and

(4.15) \\p-ß(u-u-h)\\PtdK+<Chk+1/2\u\w^,(K),       À-g if.

Then the repeated use of (4.13) through (4.15) gives

(4.16) ||w - uh\\pM < Chk + l/2\u\wk^.P(ay

Let us now consider the validity of (4.14) and (4.15). Assume first that dK_
contains two sides of K and denote by whK the approximate solution of (4.12) in the
case a = 0. Then it follows from Theorem 3.2, via an affine transformation, that

IK^L.tf^ C\\v ß(u - u-h)\\pjK_,       1 </? < oo.
Further, applying Theorem 4.1, we easily see that

IK- wh\\P,K< C\\awhK\\p,K,       1 </> < oo,

so combining these estimates we conclude that (4.14) is valid for any p if dK_
contains two sides of A'. Finally, if dK_ consists of one side of K only, the same
result can be read directly from Theorem 4.2.

If p = 2, the estimate (4.15) is valid by Theorem 2.1, and for p = oo (4.15)
follows from Theorem 4.2. Thus, by interpolation [1], (4.15) and (4.16) are true in the
range 2 < p < oo. In the range 1 < p < 2, however, (4.15) cannot hold, since it
would in this case violate the approximation properties of piecewise-polynomial
spaces. Thus, we need a different reasoning if p < 2.

Consider the case p = 1. Let m G Lx(ü) and <bh g Vh be defined by (2.8). By
Theorem 3.2 and by Theorem 4.1, we have

lk*L.if<c(||ç)||00,Jf + ||^+||00.9Jf+),        tfetf,

and so, by iteration,

(4.17) ll*JL.o<C||qf)||00.0.
Using now an argument from the proof of Theorem 4.2, with (4.9) replaced by the
weaker estimate (4.17), it follows that

II" - "Jli.o < CA*|«|^+i.i(0).
Upon interpolating between this estimate and the estimate (4.16) with p = 2, and
recalling that (4.16) holds for p > 2, the proof is finally complete.   D

Remark. In the proof of Theorems 4.2 and 4.3 we have used the increased stability
of the discontinuous Galerkin method as established by the fundamental inequality
(3.9). It is possible to state this stability inequality in a form analogous to that given
in Theorem 2.1. For example, if g = 0 in (1.1) and the triangulation (€h is uniform,
we have (in the cases k = 0 and k = 1) that

\uh\h,ß.p < CA"1/2||/II,>a,        1 < p < oo,

where

i \l/p

Mm.,-      E   H\\Pp,T+h-p+lv-ß(v+-v-)\\Pp,rh}     ■
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For a piecewise-uniform triangulation, the estimate remains valid in the range
1 < p < 2, but ceases to be valid in the range 2 < p < oo, as can be shown by a
counterexample. In particular, if p = oo one can show that the estimate

kL./J.oo < Ch^WfWoo.n
is optimal. Since this follows already from the Lx -stability estimate using an inverse
inequality, we see that in this case the smoothing property of the discontinuous
Galerkin method is lost.   D
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