
An Analysis of the Double-Precision Floating-Point FFT on FPGAs

K. Scott Hemmert Keith D. Underwood

Sandia National Laboratories∗

P.O. Box 5800, MS-1110, Albuquerque, NM 87185-1110
E-mail:{kshemme,kdunder }@sandia.gov

Abstract

Advances in FPGA technology have led to dramatic im-
provements in double precision floating-point performance.
Modern FPGAs boast several GigaFLOPs of raw comput-
ing power. Unfortunately, this computing power is dis-
tributed across 30 floating-point units with over 10 cycles
of latency each. The user must find two orders of magni-
tude more parallelism than is typically exploited in a single
microprocessor; thus, it is not clear that the computational
power of FPGAs can be exploited across a wide range of
algorithms. This paper explores three implementation al-
ternatives for the Fast Fourier Transform (FFT) on FPGAs.
The algorithms are compared in terms of sustained perfor-
mance and memory requirements for various FFT sizes and
FPGA sizes. The results indicate that FPGAs are competi-
tive with microprocessors in terms of performance and that
the “correct” FFT implementation varies based on the size
of the transform and the size of the FPGA.

KEYWORDS: IEEE floating point, FFT, Fast Fourier
Transform, FPGA, reconfigurable computing

1. Introduction

Field-programmable gate arrays (FPGAs) have long
been attractive for accelerating fixed-point applications.
Early on, FPGAs could deliver tens of narrow, low latency
fixed-point operations. Designers only needed to find a lim-
ited amount of parallelism and the most popular applica-
tions (image processing) had inherent parallelism. As FP-
GAs matured, the amount of parallelism to be exploited
grew rapidly with FPGA size. This was a boon to many
application designers as it enabled them to capture more of
the application. It also meant that the performance of FP-
GAs was growing faster than that of CPUs[20]. Thus, it

∗Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of En-
ergy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.

was possible to waste some of peak performance and still
dramatically outperform CPUs.

The design of floating-point applications for FPGAs is
much different. Whereas FPGAs have long had a signifi-
cant advantage over CPUs in raw integer performance, they
are just now reaching parity with CPUs in raw floating-
point performance. While FPGAs may be able to sustain a
higher percentage of their peak floating-point performance
than CPUs, they face some challenges in that quest. The
foremost issue for FPGAs is the need to extract massive
amounts of parallelism. This is clearly possible for matrix
multiplication[21, 22], LU decomposition[8], and matrix
vector multiplication for both dense[21] and sparse[23, 5]
matrices, but it can be difficult in other cases. With 30
floating-point units having 10 cycles of latency, it may be
impossible to find the 300 way parallelism that is implied
while satisfying all of the inherent data dependencies.

The fast fourier transform (FFT) is a next step in explor-
ing the floating-point capabilities of FPGAs. While it has
abundant parallelism, it introduces more data dependencies.
While the FFT has been studied on FPGAs before, it has
not been considered using double precision floating-point,
which is critical to scientific applications. This changes the
issues significantly because addition becomes just as expen-
sive as multiplication.

This paper presents implementation options for the com-
plex, double precision floating-point FFT (radix-2). While
radix-2 implementations are not general (mixed radix sup-
port will be required), they serve to illustrate most of the im-
portant points. Three implementations are considered that
have significantly different characteristics. They are com-
pared (with each other and to microprocessors) based on
sustained FLOPs, internal memory requirements, and ex-
ternal memory bandwidth requirements relative to the size
of the FFT. The results indicate two things: FPGAs are
competitive in performance with microprocessors, and the
“right” implementation depends on the size of the FFT be-
ing performed as well as the size of the FPGA being used.

Previous efforts studying FFTs and FPGAs as well as
other floating-point algorithms are presented in Section2.

The fast fourier transform algorithm is discussed in Sec-
tion 3 followed by discussions of the three architectures ex-
amined in Sections4, 5, and6. The three architectures are
compared in Section7. Conclusions are presented in Sec-
tion 8 followed by future work in Section9.

2. Related Work

Signal processing is a long time application for FPGAs
[4]. Some of the earliest floating-point work considered
FFTs [17], but found IEEE floating-point arithmetic to be
impractical on FPGAs. Further work on fixed-point FFTs
applied CORDIC arithmetic to the problem [6]. Designers
have continued to tweak the implementations of the FFT on
reconfigurable computing platforms [15].

Recent research has again focused on the FFT on FP-
GAs. In [10], the FFT was mapped to the MorphoSys re-
configurable computing platform to achieve higher perfor-
mance than other advanced architectures. Others have trans-
formed the architecture of the FFT implementation to re-
duce power [3] to meet the growing demand for low-power
signal processing. Finally, [19] presents an implementation
of an alternative radix-2 FFT derivation using Handel-C.

This work is most similar to [3] in that it explores the
issues of both horizontal and vertical parallelism; however,
the move from 16 bit data to double precision floating-point
significantly changes the design space. Floating-point arith-
metic requires much more area per operation and, more im-
portantly, it requires almost as much area for an adder as
a multiplier. Furthermore, it has much higher demands on
memory capacity and bandwidth. This work further differs
from [3] in that it explores the performance implications as
various architectures scale to future generations of FPGAs.

A number of efforts have also begun to consider floating-
point on FPGAs. Notably, a number of vendors sell a sin-
gle precision floating-point FFT core [2, 1, 14], but they
generally do not discuss the details of their implementa-
tions or why various design choices were made. Further-
more, they use the single precision format, which is cur-
rently more practical on FPGAs. Numerous efforts have
also begun to study double precision floating-point from
the relatively simple matrix multiply[22] and BLAS[21]
operations to the more complex LU decomposition[8] and
sparse matrix-vector operations[23, 5]. This effort contin-
ues the exploration of the rapidly increasing double preci-
sion floating-point capability of FPGAs[20].

3. The Fast Fourier Transform

The FFT is an optimized implementation of the Discrete
Fourier Transform (DFT). The DFT is a traditional signal
processing technique that is applied to a variety of domains

Xi Xi

XjXj
Wn
*

+

−

Figure 1. The basic butterfly operation

from speech processing to sonar beam forming[9]. In many
domains, fixed-point arithmetic is sufficient; however, the
DFT also has uses in scientific applications ranging from
global climate modeling [16] to molecular dynamics[12,
11, 13] that require double precision floating-point arith-
metic. The fundamental calculation of theN point DFT
is described as:

Y [j] =
N1−1∑
k=0

X[k]W jk
N ; where W jk

N = e
−i2πjk

N (1)

When implementing the DFT as an FFT[18], there are
many ways to structure the computation. The first decision
to make — the radix of the operation — determines how
many data items are combined in any given stage. Radix-
2, where each stage of computation operates pairwise on
the data set, was chosen for several reasons, including its
simplicity. Radix-2 also yields the smallest butterfly unit,
which allows for greater flexibility in studying the design
space. Other radices reduce the total number of operations,
but increase the complexity and reduce the flexibility. Sim-
ilarly, multiple-radix designs can increase flexibility.

Given a radix, there is still flexibility in formulating the
computation. One formulation yields a basic computational
kernel consisting of a single complex multiplication and two
complex additions, as shown in Figure1. This structure is
commonly referred to as a butterfly because of the cross-
ing dependencies. The radix-2 FFT is made up oflog2(N)
stages, where each stage computesN

2 butterflies.
There are two main ways to structure the stages, shown

in Figure2. A butterfly unit in a stage operates on a pair
of results from the previous stage separated by an increas-
ing (a) or decreasing (b) distance. Each of these structures
requires a data reording, either on the front- or back-end.
We chose to reorder on the back-end as it allowed us to do
the biggest butterflies first, providing more independent data
sets with each progressive stage. Both approaches produce
the same results, but in a different order.

The butterfly computation requires 4 real multiplications
and 6 real additions. The hardware used in this study does
these computations using 2 floating-point multipliers and 3
floating-point adders, as shown in Figure31. On average,

1 S is a switch that directs inputs to alternate outputs. R’s replicate the
input once. C is a crossover to facilitate the complex multiply.

2

W
0

W
0

W
0

W
0

W
0

W 2

W
0

W 2

W
0

W 2

W
1

W
3

X 7

X 3

X 5

X 1

X 2

X 4

X 0

X 1

X 2

X 3

X 4

X 5

6X

6X

X 7

X 0

W
0

X 1

X 2

X 3

X 4

X 5

6X

X 7

X 0

W 0

W
2

X 7

X 3

X 5

X 1

X 2

X 4

X 0

6X

W
0

W
2

W
1W 0

W
0

W
0

W
0

W 2
W

3

(a) Reordered inputs (b) Reordered outputs

Figure 2. Two variations of 8-point, radix-2 FFTs

the hardware accepts one new complex number per cycle
and generates one complex output per cycle. Each floating-
point unit is used twice for each set of inputs, providing
the total operations required for the butterfly. This design
for the butterfly unit was chosen because it provides the
greatest flexibility. It only requires a memory bandwidth
of one complex data item per cycle, letting memory band-
width scale more evenly. The bandwidth in and out of the
unit also matches the bandwidth of on-chip dual-port block
rams, allowing a single butterfly unit to be coupled with a
single set of block rams on the chip.

In evaluating the performance of the FFT, the floating-
point operation count that is typically used is5Nlog2(N);
there arelog2(N) stages that each contain5N computations
(four multiplies and six additions for each pair of data).
These numbers only hold strictly for radix-2, though they
are a good approximation for other radices. As the radix
increases, the number of stages goes down, but stage com-
plexity increases.

The minimal data transfers to memory for the FFT is2N
elements with each element being 16 bytes for double preci-
sion complex numbers. This gives32N bytes for a best case
overall bytes per FLOP requirement of 32

5log2(N) . The actual
bytes per FLOP requirement, however, will depend on how
much of the data can be successfully cached on chip. This
is discussed further in the discussion of each algorithm.

4. Parallel FFT Implementation

Parallelism in the FFT computation can be exploited in
two ways: pipelined units, or parallelism in the stages (S),
and parallel units, or parallelism (P) within a stage. The
parallel design point explores the extreme where all of the

mult

mult

add

add

add

R

R

S

R

R

R

R

Real(X)i

Real(X)j

Img(X)
j

Img(X)i

nReal(W)

X / Xi j

X / Xi j

Img(W)n

Real

Img

C

Figure 3. Basic butterfly datapath.

parallelism is within a single stage as shown in Figure4(a).
In this mode, data is read from external memory, processed
iteratively, and written to external memory. Each of the but-
terfly units operates on a different range of the data; each
unit iterates (mostly) independently through all the stages
of the computation. All of the butterfly units are used for
the entire computation, but the overall throughput is con-
strained by external memory bandwidth. The number of
cycles needed to compute an FFT using this scheme is:

T =
2N

BW
+ BL + (

N

P
+ BL)(log2(N)− 2) (2)

The first term of Equation2 is the time to read and then
write N items based on the memory bandwidth,BW , in
terms of complex double precision floating-point items per
cycle. The usable bandwidth is limited to the number of
units,P . The second term is the latency of passing through

3

O
ff

 C
hi

p
D

R
A

M

On−Chip
Data

Storage

On−Chip
Data

Storage

On−Chip
Data

Storage

On−Chip
Data

Storage

Butterfly
Datapath

Butterfly
Datapath

Butterfly
Datapath

Butterfly
Datapath

D
at

af
lo

w
 C

on
tr

ol

P = 4

Butterfly
Datapath

*

Butterfly
Datapath

* Butterfly
Datapath

*

Butterfly
Datapath

*

On−Chip
Data

Storage

On−Chip
Data

Storage

On−Chip
Data

Storage

On−Chip
Data

Storage

Butterfly
Datapath

Butterfly
Datapath

Butterfly
Datapath

Butterfly
Datapath

* These are simplified
butterfly datapaths

O
ff

 C
hi

p
D

R
A

M

D
at

af
lo

w
 C

on
tr

ol

BW = 2

log(P) = 2

P = 4

(a) (b)

Figure 4. (a) Exploiting higher parallelism (P); (b) An optimization to leverage extra FPGA area

the butterfly units during the read from memory. The third
term is the time to perform the iterations — usingP butter-
fly units of latencyBL for log2(N)− 2 iterations assuming
that the first and last iteration are performed as part of read-
ing and writing the data.

This design has two significant limitations. First, there
are log2(P) stages in which the units must communicate,
whereP is the number of parallel units. This arises from the
largest butterflies, which cannot have all of the data held in
an individual RAM. Second, the number of butterfly units is
a power of two (the radix), which can prevent the implemen-
tation from using the entire FPGA. Both of these issues can
be improved through the use of “lead-in” units. By using
log2(P) lead-in stages to compute the largest butterflies, the
data becomesP way independent, as shown in Figure4(b).
The parallelism in the lead-in stages is determined by the
available memory bandwidth. Each butterfly unit is able to
handle one new complex data item per clock cycle.

The first two of these lead-in stages can be optimized.
The first stage uses only one constant,1 + 0i, and the sec-
ond stage uses only1 + 0i and0 + 1i. Since these con-
stants do not require a multiply, the circuitry in the butterfly
units in the first two stages is reduced to two floating-point
adders. Using these lead-in stages reduces the number of it-
erations that the parallel portion of the circuit must perform
at the penalty of adding a startup latency to get through these
units. The new cycle count for completion becomes:

T =
2N

BW
+ BL + Startup +

(
N

P
+ BL)(log2(N)− (2 + log2(P))) (3)

All of the FFT designs require internal storage for both
data and “twiddle factors” (W jk

N). In the parallel implemen-

Butterfly
Datapath

D
at

af
lo

w
 C

on
tr

ol

D
at

af
lo

w
 C

on
tr

ol

Butterfly
Datapath

Off Chip
DRAM

S = number of stages

B
W

=2

D
at

af
lo

w
 C

on
tr

ol

Figure 5. A pipelined FFT implementation

tation, the data storage requiresN double precision com-
plex data items. This one storage area is reused by all it-
erations and must supply sufficient bandwidth to support
the number of parallel processing units; thus, using off-chip
memory is not practical. The total number of twiddle factor
constants needed is equivalent toN

4 storage locations of 16
bytes (complex double-precision numbers). The prototype
implementation has four parallel units.

5. Pipelined FFT Implementation

At the other extreme, one butterfly unit can be dedi-
cated to each of the stages of the FFT in a pipelined fash-
ion as is illustrated in Figure5. Data is read from mem-
ory and passed through a series of butterfly units before
being written back to memory. Data delays and permuta-
tions are needed between each of the stages and between the
pipelined FFT unit and DRAM memory. When the number
of stages,S, that can be implemented in the FPGA is less
than the number of stages needed by the FFT (log2(N)),
then log2(N)

S passes to memory are needed, with a the fi-
nal pass being a subset,R, of the stages. For each pass to

4

memory, data must be read and written in a particular per-
mutation to optimize the delay and storage requirements in
the pipeline (not described here). The number of cycles re-
quired to compute an FFT using a pipelined approach is:

T = P (S)×
⌊

log2(N)
S

⌋
+ P (R) (4)

P (J) = BL× J + I(J) +
2N

BW
+ (B − 1)× 2J(5)

I(K) =
K−1∑
i=0

B × 2i ≈ B × 2K (6)

R = log2(N) mod S (7)

Each pass,P (J), throughJ butterfly stages (each having a
latency ofBL) requires the time shown in Equation5. Data
dependencies between the stages introduce a delay that dou-
bles at each stage and create a total inter-stage delay given
by I(K). The burst length of standard DRAM memories
introduce a penalty associated with the burst length,B, to
both the interstage delay and a back-end reordering time.
The time to retrieve the data from memory and write it back
is defined by 2N

BW ; however, a note is in order. The us-
able bandwidth is limited to one complex double precision
floating-point number per cycle per direction due to the lim-
ited throughput of the butterfly unit. The final term repre-
sents the final pass through a subset of the stages,R, with
the corresponding delays.

The pipelined FFT implementation has two significant
disadvantages. Foremost, the high latency of the overall
pipeline means that many of the butterfly units sit idle while
the pipeline is initialized and while it is flushed; thus, if the
overall computation is short relative to the pipeline delay,
the sustained performance is low. In addition, if the num-
ber of FFT stages is not an even multiple of the number of
hardware stages, many of the hardware resources sit idle on
the final pass. The primary advantages of this implementa-
tion are the limited requirement for memory bandwidth and
the limited requirement for internal memory for relatively
short pipelines. In the prototype implementation, for exam-
ple, a six stage pipeline is implemented, which more fully
utilizes the Virtex-2Pro 100 and only requires a fraction of
the memory needed by the parallel implementation.

The on-chip memory requirements for the pipelined ver-
sion are almost entirely dependent on the number of stages.
The reordering buffer between butterfly stages is3×2i

2 el-
ements, wherei is the stage number. This gives a total of
3×2S

2 items of storage for the items being transformed. Due
to the organization of the computation, the twiddle factors
require 3N

8 locations to store the values in a way that pro-
vides the bandwidth to provide the twiddle factors to the
appropriate butterfly units.

O
ff

 C
hi

p
D

R
A

M

D
at

af
lo

w
 C

on
tr

ol

Butterfly
Datapath

D
at

af
lo

w
 C

on
tr

ol

Butterfly
Datapath

D
at

af
lo

w
 C

on
tr

ol

D
at

af
lo

w
 C

on
tr

ol

Butterfly
Datapath

Butterfly
Datapath

D
at

af
lo

w
 C

on
tr

ol

S = number of stages

P
=

de
gr

ee
 o

f p
ar

al
le

lis
m

*

* First log(P) stages must be able to communicate data
between butterfly units in the stage.

B
W

=2
P

Figure 6. Parallel-Pipelined FFT Implementation

6. Parallel-Pipelined FFT Implementation

Figure6 is the cross between the two previous architec-
tures. Data moves from external memory, through a set of
parallel pipelines, and back to external memory. The first
log2(P) stages must have additional data exchange circuits
(for the first pass through the pipeline) as these stages have
data dependencies between the pipelines. This approach
leverages the ability of the pipelined architecture to reduce
bandwidth demands and the ability of the parallel architec-
ture to tolerate shorter input vectors (as well as a wider va-
riety of vector lengths) than the pure pipelined approach.
In contrast, the parallel-pipelined hybrid has a higher band-
width demand than the purely pipelined approach and less
tolerance of short vectors than the parallel approach.

The number of cycles to compute the FFT using this ap-
proach is the same as that for the pipelined approach. The
difference is that it raises the amount of bandwidth that the
pipeline can accept and shortens the number of pipeline
stages. The overall memory requirements, however, are sig-
nificantly increased in the near term. The data storage re-
quirements fall toP × 3×2S

2 . Since the number of stages
has been reduced by a factor ofP , this is actually a factor
of 2P /P fewer iterms. For the twiddle factors, the storage
grows to an upper limit ofN storage locations (independent
of the number of stages or the parallelism) to provide both
the necessary storage and the necessary bandwidth.

7. Comparison of Architectures

The “right” FFT architecture varies not just with the size
of the FFT, but also with the size of the FPGA. This section
explores the performance of each of the architectures in two
contexts. The first is the largest, fastest FPGAs available

5

today. The second is the next two generations of FPGAs,
assuming a doubling of resources at each generation.

7.1. Performance and Area on Current FPGAs

The comparison of the architectures is based on the av-
erage sustained floating point operations per cycle (Fig-
ure 7(a)) given a number of butterfly units and an in-
put bandwidth in complex, double precision floating-point
items per cycle. In Figure7, this comparison is in the
context of the largest FPGAs available today — the Xilinx
Virtex-2Pro-100. In this device, the parallel implementation
can be configured with up to four parallel butterfly units (8
will not fit). Four “lead-in” units (a two wide lead-in path)
will also easily fit, enabling the FFT implementation to ac-
cept two complex, double precision items per cycle (Par-
allel BW-2 Units-4). This equates to a 256 bit path to a
relatively slow memory or a 128 bit path to a memory that
is twice as fast as the floating-point units (both are reason-
ably achievable in current FPGAs and with a prototype cur-
rently in development). A four-wide lead-in path (8 lead-in
units) would almost fit and would enable the design to lever-
age twice the memory bandwidth, although such a memory
configuration would be expensive.

In the same FPGA, it is possible to fit 6 full butterfly units
for either of the pipelined architectures. Note that the basic
pipelined design can only use an external memory band-
width of two complex, double precision floating-point items
per cycle, but at larger matrix sizes, it achieves better perfor-
mance than the parallel implementation that has more band-
width. The pipelined approach shows its limitations both
in the smaller FFT sizes, where the parallel implementation
clearly wins, and in the saw tooth shape of the graph. This
saw tooth shape arises from FFT sizes that require a number
of stages that is not a multiple ofS.

The parallel-pipelined architecture shown here uses a
configuration withP = 2 and S = 3. If it is possible
to provide the full usable bandwidth of four items per cy-
cle, the parallel-pipelined approach clearly wins whenN is
greater than 1024. It has equivalent peak performance to the
pipelined case, easily fits in the FPGA (unlike the parallel
implementation forBW = 4), and has a shorter path than
the purely pipelined approach, which limits the dips in the
sawtooth. In contrast, when the full bandwidth cannot be
provided, the parallel-pipelined approach is the clear loser
as one of the two paths sits idle.

Another important point of comparison is the amount
of memory required (Figure7(b)). All three architectures
have easily achievable memory requirements for FFTs of
under 32K items, and the pipelined version can handle
128K. Since the parallel approach must store the entire
vector being transformed internally, it has a significantly
higher memory requirement than the pipelined approach.

The parallel-pipelined approach has a similar memory de-
mand to the parallel approach, but for a different reason: it
must replicate the twiddle factors to provide sufficient band-
width to the computational units.

7.2. Scalability on Future FPGAs

FPGAs are rapidly growing in density and special fea-
tures that reduce area requirements for floating-point units.
Thus, it is important to consider the impact of scale on al-
gorithm performance. Figure8 compares the performance
of the various architectures for the next two doublings in
FPGA size. It is assumed that memory bandwidth will dou-
ble in the same time period, which is reasonable given the
future of memory technology (DDR-2, FB-DIMMs).

Figures8(a) and (b) display the implications of doubling
the FPGA capacity. Both the number of units and the mem-
ory bandwidth, have been doubled from Figure7. In addi-
tion, to further explore the space, we consider the case of
“slightly more than double” for the two pipelined paths2. It
is important to note that the parallel path is no longer able
to maintain the full set oflog2(P) lead-in units needed to
obtain full P -way decoupling, but the first two stages of
simplified units can be retained.

The most notable result is that the extreme depth of
the pipeline combined with the inability to leverage addi-
tional memory bandwidth leave the pipelined implementa-
tion at a clear disadvantage to the parallel implementation
until nearly 256K samples are processed. The only con-
figurations presented for the parallel-pipelined implementa-
tion match the memory bandwidth to the number of paral-
lel pipes,P . The parallel-pipelined implementations shown
have a larger advantage over the parallel approach than be-
fore as the depth of each parallel pipe has increased. Finally,
Table1 contains the parallelism,P , and stages,S, for the
parallel-pipelined implementations. Correlating Figures8
with Table 1 indicates that arrangements which are more
“square” have better performance.

In terms of memory requirements, assuming that internal
FPGA memory also doubles at each generation, the maxi-
mum size of an FFT that can be processed goes to approx-
imately 128K points. This levels out because more and
more internal memory is required to provide the bandwidth
needed for all of the butterfly units. FPGA memories tend
to run at the same frequency as the logic; thus, more ports
are needed to feed more units. This is similar to, but dif-
ferent from microprocessors where the number of units is
small and, therefore, so is the number of ports from cache.

Moving out one more generation yields 16 units for the
parallel path that are not fully decoupled and 24 units for
the pipelined approaches. The results for these are shown in
Figures8(c) and (d). As can be seen from these figures, the

2The parallel design must more than double to achieve BW-8 Units-8.

6

0

5

10

15

20

25

30

35

40

64 256 1024 4096 16384 65536 262144

P
er

fo
rm

an
ce

 (F
LO

P
s/

cy
cl

e)

FFT Size (elements)

Parallel BW-2 Units-4 (decoupled)
Parallel BW-4 Units-4 (decoupled)

Pipelined BW-2 Units-6
Parallel-pipelined BW-2 Units-6 (P=2)

Parallel-pipelined BW-4 Units-6

0.1

1

10

100

1000

10000

100000

1e+06

64 256 1024 4096 16384 65536 262144

M
em

or
y

(K
B

)

FFT Size (elements)

Parallel Total Mem - 4 units
Pipelined Total Mem - 6 units

Parallel-pipelined Total Mem - 6 units

(a) (b)

Figure 7. A comparison of the (a) performance and (b)memory requirement of FFT implementations

Table 1. Parallel pipeline shapes
BW Units P S BW Units P S

4 12 2 6 4 16 2 8
4 24 2 12 4 32 2 16
8 12 4 3 8 16 4 4
8 24 4 6 8 32 4 8
16 24 8 3 16 32 8 4

Table 2. Memory requirements summary

Arch Min Memory Max
BW

Parallel N + N
4 P

Pipelined 3×2S

2 + 3N
8 + (B − 1)× 2S 2

Hybrid P × 3×2S

2 + N + (B − 1)× 2S 2P

purely pipelined approach no longer makes sense in terms
of performance for reasonable values ofN or in terms of
memory. It is also unable to use the memory bandwidth that
will be available in this time frame. The growth in memory
for the three architectures is summarized in Table2. Nar-
row values ofP for the parallel-pipelined version have sig-
nificant disadvantages as the number of units increases. At
equivalent bandwidths, the parallel-pipelined approach does
not outperform the parallel approach untilN is over 2048.

For a “slightly more than doubled” FPGA, there are two
options for the parallel architecture. It can have 16 parallel
units with full decoupling with a BW of 8 (4 lead-in stages,
8 units wide). Alternatively, it can have 32 parallel units
with no lead-in stages. Similarly, the pipelined and parallel-

pipelined implementations can have 32 butterfly units each.
The case of the 32 parallel units gives significantly better
performance than the 16 fully decoupled units because all
of the units are used in each iteration rather than having the
lead-in units sit idle for much of the computation. What is
unique at this FPGA size is that the parallel and parallel-
pipelined implementations have the same number of units.
In general, the parallel approach is limited in that it is con-
strained to a parallelism that is a power of 2 (or, a power
of the radix). Thus, only in rare circumstances will the par-
allel approach be able to use as many units as the parallel-
pipelined approach. When it does, however, Figures8(e)
indicates that the performance of the parallel approach is
competitive with, and sometimes better than, the parallel-
pipelined approach.

7.3. FPGAs vs. CPUs

Figure9 compares estimates of performance for FPGAs
and CPUs over the next few years. The data for the 2.8 GHz
Pentium-4 is from [7] using the Intel MKL. The 3.8 GHz
Pentium-4 data was estimated using the ratio of the clock
frequencies. Beyond that, CPUs are assumed to double
in performance every 18 months, following the widely ac-
cepted corollary to Moore’s Law (starting with the 3.8 GHz
Pentium-4). Initial versions of the prototypes on FPGAs in-
dicate that the design will run at 160 MHz on a Virtex-2Pro
100-6 and FPGAs are assumed to double in clock frequency
and area every two years following historical trends[20].

The size of a single FFT must currently approach 8K
items for the FPGA to outperform a microprocessor and mi-
croprocessors currently have a dramatic advantage for small
FFTs. Within two years, the FPGAs should have an advan-
tage for FFTs as small as 1024 items, and within 4 years,
that advantage is expected to be dramatic for larger sizes.

7

0

20

40

60

80

100

64 256 1024 4096 16384 65536 262144 1.04858e+06

P
er

fo
rm

an
ce

 (F
LO

P
s/

cy
cl

e)

FFT Size (elements)

Parallel BW-4 Units-8 (non-decoupled)
Parallel BW-8 Units-8 (non-decoupled)

Pipelined BW-2 Units-12
Pipelined BW-2 Units-16

Parallel-pipelined BW-4 Units-12
Parallel-pipelined BW-8 Units-12
Parallel-pipelined BW-4 Units-16
Parallel-pipelined BW-8 Units-16

1

10

100

1000

10000

100000

1e+06

64 256 1024 4096 16384 65536 262144 1.04858e+06

M
em

or
y

(K
B

)

FFT Size (elements)

Parallel Total Mem - 8 units
Pipelined Total Mem - 12 units
Pipelined Total Mem - 16 units

Parallel-pipelined Total Mem - P=2, 12 units
Parallel-pipelined Total Mem - P=4, 12 units
Parallel-pipelined Total Mem - P=2, 16 units
Parallel-pipelined Total Mem - P=4, 16 units

(a) (b)

0

20

40

60

80

100

120

140

64 256 1024 4096 16384 65536 262144 1.04858e+06

P
er

fo
rm

an
ce

 (F
LO

P
s/

cy
cl

e)

FFT Size (elements)

Parallel BW-8 Units-16 (non-decoupled)
Parallel BW-16 Units-16 (non-decoupled)

Pipelined BW-2 Units-24
Parallel-pipelined BW-4 Units-24
Parallel-pipelined BW-8 Units-24

Parallel-pipelined BW-16 Units-24

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

64 256 1024 4096 16384 65536 262144 1.04858e+06

M
em

or
y

(K
B

)

FFT Size (elements)

Parallel Total Mem - 16 units
Pipelined Total Mem - 24 units

Parallel-pipelined Total Mem - P=2, 24 units
Parallel-pipelined Total Mem - P=4, 24 units
Parallel-pipelined Total Mem - P=8, 24 units

(c) (d)

0

50

100

150

200

64 256 1024 4096 16384 65536 262144 1.04858e+06

P
er

fo
rm

an
ce

 (F
LO

P
s/

cy
cl

e)

FFT Size (elements)

Parallel BW-8 Units-16 (decoupled)
Parallel BW-16 Units-32 (non-decoupled)

Pipelined BW-2 Units-32
Parallel-pipelined BW-4 Units-32
Parallel-pipelined BW-8 Units-32

Parallel-pipelined BW-16 Units-32

1

100

10000

1e+06

1e+08

1e+10

64 256 1024 4096 16384 65536 262144 1.04858e+06

M
em

or
y

(K
B

)

FFT Size (elements)

Parallel Total Mem - 16 units
Pipelined Total Mem - 32 units

Parallel-pipelined Total Mem - P=2, 32 units
Parallel-pipelined Total Mem - P=4, 32 units
Parallel-pipelined Total Mem - P=8, 32 units

Parallel-pipelined Total Mem - P=16, 32 units

(e) (f)

Figure 8. A comparison of the (a,c,e) performance and (b,d,f) memory requirement of FFT implementations

8

0

1000

2000

3000

4000

5000

6000

64 256 1024 4096 16384 65536 262144

P
er

fo
rm

an
ce

 (M
FL

O
P

s)

FFT Size (elements)

Pentium-4 2.8 GHz
Pentium-4 3.8 GHz (estimated)

Parallel BW-4 Units-4 (decoupled)
Pipelined BW-2 Units-6

Parallel-pipelined BW-4 Units-6

(a)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

64 256 1024 4096 16384 65536 262144

P
er

fo
rm

an
ce

 (M
FL

O
P

s)

FFT Size (elements)

Processor Projection - 2 yrs.
Parallel BW-8 Units-8 (non-decoupled)

Pipelined BW-2 Units-12
Parallel-pipelined BW-8 Units-12

(b)

0

10000

20000

30000

40000

50000

60000

70000

80000

64 256 1024 4096 16384 65536 262144 1.04858e+06

P
er

fo
rm

an
ce

 (M
FL

O
P

s)

FFT Size (elements)

Processor Projection - 4 yrs.
Parallel BW-16 Units-16 (non-decoupled)

Parallel-pipelined BW-8 Units-24
Parallel-pipelined BW-16 Units-24

(c)

Figure 9. FPGAs vs. CPUs on current technol-
ogy (a), in two years (b), and in four years (c)

Note that the far right hand side of the graph is not partic-
ularly fair since FPGAs do not have the internal memory
to achieve that level of performance. Also, the elbow in
the CPU curve will move to the right in future generations
as the cache size grows; however, the comparison does not
change as the CPU curve is still flat at 1024 elements while
the FPGA performance is still growing.

7.4. Prototyping

Prototypes of the parallel and pipelined FFTs were de-
veloped to validate the analysis here. These prototypes
were tested on the Annapolis Microsystems Wildstar-II Pro
board using a single Virtex-2Pro 100 and 4 banks of DDR-
SRAM. All memories were accessed in such a way as to
mimic SDRAM. Four complex, double-precision floating-
point butterfly units will fit in the Virtex-2Pro along with a
two-by-two lead-in unit to provide full decoupling for the
parallel array. The pipelined version of the FFT can place 6
full butterfly units in the Virtex-2Pro 100.

8. Conclusions

The FFT exposes some limitations of double precision
floating-point arithmetic on FPGAs, but it still achieves
good performance the larger transforms needed to leverage
an attached co-processor. The “right” way to achieve that
performance depends on the size of the FFT, the size of the
FPGA, and the memory bandwidth available. Increasing ei-
ther the memory bandwidth or the size of the FPGA gener-
ally favors designs with wider, rather than deeper, pipelines;
however, width and depth must be balanced to maximize the
number of floating-point units on a chip.

Relative to processors, FPGAs are heavily penalized by
their low clock rate and high latency floating-point units.
These factors make current FPGAs inferior to micropro-
cessors for a single, small FFT. For large FFTs, FPGAs
show the same trend toward dramatically outperforming
microprocessors that has been seen in other work[20, 21].
The pipelined architecture could currently address the lim-
itations with short FFTs by streaming several such FFTs
through the FPGA. Going forward, the pipelined-parallel
architecture could also help; however, the total amount of
FFT computation that is required to keep the large number
of floating-point units busy will continue to grow.

9. Future Work

The double precision floating-point FFT on FPGAs has
performance limitations for short vectors due to the floating-
point unit latency. Future work will investigate mitigating
this effect by streaming multiple, independent FFTs to the

9

circuit — a common operation in multi-dimensional FFTs.
Furthermore, we will be studying better ways to leverage
the many ports provided by block RAMs rather than hav-
ing to replicate twiddle factor storage to provide additional
twiddle factor bandwidth to the butterfly units.

The next step in studying double precision floating-point
performance on FPGAs is to look at the ability to switch be-
tween various control structures to implement different por-
tions of the algorithm. For example, an LU solver has both
a matrix decomposition and a solve step. Switching from
one to the other is reminiscent of the functional unit sharing
approaches, but has a fundamental difference: all units will
switch from one part of the algorithm to another at larger
granularity. To study this, we will investigate the viability
of algorithms such as LU solves and iterative sparse matrix
solves using double precision floating-point on FPGAs.

References

[1] FPGA cores aim to beat DSPs at float-
ing point, Nov. 2001. From webpage at
http://www.electronicstalk.com/news/nal/nal103.html.

[2] Altera. Floating-point FFT processor (IEEE 754 single
precision) radix 2 core, Jan. 2005. From webpage at
http://www.altera.com/literature/wp/wpfft radix2.pdf.

[3] S. Choi, R. Scrofano, V. K. Prasanna, and J.-W. Jang.
Energy-efficient signal processing using FPGAs. InPro-
ceedings of the 2003 ACM/SIGDA eleventh international
symposium on Field programmable gate arrays, pages 225–
234, Monterey, CA, Feb. 2003.

[4] H. A. Chow, H. Alnuweini, and S. Casselman. FPGA-based
transformable computers for fast digital signal processing.
In Proceedings of the IEEE Symposium on FPGAs for Cus-
tom Computing Machines, pages 197–203, Napa Valley, CA,
April 1995.

[5] M. deLorimier and A. DeHon. Floating point sparse matrix-
vector multiply for FPGAs. InProceedings of the ACM
International Symposium on Field Programmable Gate Ar-
rays, Monterrey, CA, February 2005.

[6] C. Dick. Computing the discrete fourier transform on
FPGA based systolic arrays. InProceedings of the 1996
ACM/SIGDA eleventh international symposium on Field
programmable gate arrays, pages 129–135, Monterey, CA,
Feb. 1996.

[7] M. Frigo and S. G. Johnson. Fft benchmark results, Jan.
2005. From webpage at http://http://www.fftw.org/speed/p4-
2.8GHz-new/.

[8] G. Govindu, S. Choi, V. K. Prasanna, V. Daga, S. Gangad-
harpalli, and V. Sridhar. A high-performance and energy-
efficient architecture for floating-point based lu decomposi-
tion on fpgas. InProceedings of the 11th Reconfigurable
Architectures Workshop (RAW), Santa Fe, NM, April 2004.

[9] P. Graham and B. Nelson. FPGA-based sonar processing. In
Proceedings of the 1998 ACM/SIGDA eleventh international
symposium on Field programmable gate arrays, pages 201–
208, Monterey, CA, Feb. 1998.

[10] A. H. Kamalizad, C. Pan, and N. Bagherzadeh. Fast parallel
FFT on a reconfigurable computation platform. InProceed-
ings of the 15th Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD’03), pages 254–
259, Sao Paulo, SP - Brazil, November 2003.

[11] S. J. Plimpton. Fast parallel algorithms for short-range
molecular dynamics.Journal Computation Physics, 117:1–
19, 1995.

[12] S. J. Plimpton. Lammps web page, July 2003.
http://www.cs.sandia.gov/ sjplimp/lammps.html.

[13] S. J. Plimpton, R. Pollock, and M. Stevens. Particle-mesh
ewald and rRESPA for parallel molecular dynamics. InPro-
ceedings of the Eighth SIAM Conference on Parallel Pro-
cessing for Scientific Computing, Minneapolis, MN, Mar.
1997.

[14] QinetiQ. Quixilica high throughput fast fourier transform
core, Jan. 2005. From webpage at http://www.transtech-
dsp.com/datasheets/qx-ffthm v1.pdf.

[15] M. Shaditalab, G. Bois, and M. Sawan. Self sorting radix-2
FFT on FPGA using parallel pipelined distributed arithmetic
blocks. InProceedings of the IEEE Symposium on FPGAs
for Custom Computing Machines, pages 337–338, Napa Val-
ley, CA, April 1998.

[16] S. Shingu, H. Takahara, H. Fuchigami, M. Yamada,
Y. Tsuda, W. Ohfuchi, Y. Sasaki, K. Kobayashi, T. Hagi-
wara, S. Habata, M. Yokokawa, H. Itoh, and K. Otsuka. A
26.58 tflops global atmospheric simulation with the spectral
transform method on the earth simulator. InProceedings of
the ACM / IEEE Supercomputing SC’2002 conference, 2002.

[17] N. Shirazi, A. Walters, and P. Athanas. Quantitative analysis
of floating point arithmetic on FPGA based custom comput-
ing machines. InProceedings of the IEEE Symposium on
FPGAs for Custom Computing Machines, pages 155–162,
1995.

[18] W. W. Smith and J. M. Smith.Handbook of Real-Time Fast
Fourier Transforms. Wiley-IEEE Press, New York, 1995.

[19] S. Sukhsawas and K. Benkrid. A high-level implementa-
tion of a high performance pipeline FFT on Virtex-E FPGAs.
In Proceedings of the IEEE Computer Society Annual Sym-
posium on VLSI Emerging Trends in VLSI Systems Design
(ISVLSI 04), pages 229–232, Lafayette, LA, February 2004.

[20] K. D. Underwood. FPGAs vs. CPUs: Trends in peak
floating-point performance. InProceedings of the ACM In-
ternational Symposium on Field Programmable Gate Ar-
rays, Monterrey, CA, February 2004.

[21] K. D. Underwood and K. S. Hemmert. Closing the gap: CPU
and FPGA trends in sustainable floating-point BLAS perfor-
mance. InProceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines, Napa Valley,
CA, April 2004.

[22] L. Zhuo and V. K. Prasanna. Scalable and modular algo-
rithms for floating-point matrix multiplication on fpgas. In
18th International Parallel and Distributed Processing Sym-
posium (IPDPS’04), Santa Fe, NM, April 2004.

[23] L. Zhuo and V. K. Prasanna. Sparse matrix-vector multipli-
cation on FPGAs. InProceedings of the ACM International
Symposium on Field Programmable Gate Arrays, Monter-
rey, CA, February 2005.

10

	Introduction
	Related Work
	The Fast Fourier Transform
	Parallel FFT Implementation
	Pipelined FFT Implementation
	Parallel-Pipelined FFT Implementation
	Comparison of Architectures
	Performance and Area on Current FPGAs
	Scalability on Future FPGAs
	FPGAs vs. CPUs
	Prototyping

	Conclusions
	Future Work

